Homological stability for configuration spaces of disconnected submanifolds

Martin Palmer // Lausanne, 8th July 2013

Slides also on webpage: zatibq.com

Homological stability for configuration spaces of disconnected submanifolds

Martin Palmer // Lausanne, 8th July 2013

Slides also on webpage: zatibq.com

• Homological stability for $\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots$ is the property that

 $H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$

• Homological stability for $\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots$ is the property that

 $H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$

is an isomorphism in a stable range $* \leq f(n)$, where $f(n) \to \infty$ as $n \to \infty$.

• Theoretically useful.

• Homological stability for $\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots$ is the property that

$$H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$$

- Theoretically useful.
- Computationally useful, if you know (a) the stable range f and (b) the stable homology H_{*}(X_∞) = H_{*}(telescope(··· → X_n → X_{n+1} → ···)).

• Homological stability for $\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots$ is the property that

 $H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$

- Theoretically useful.
- Computationally useful, if you know (a) the stable range f and (b) the stable homology $H_*(X_\infty) = H_*(telescope(\dots \to X_n \to X_{n+1} \to \dots)).$
- Usually (b) is done by finding a more 'tractable' space Y and a homology equivalence $X_{\infty} \to Y$.

• Homological stability for $\cdots \to X_n \to X_{n+1} \to \cdots$ is the property that

 $H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$

- Theoretically useful.
- Computationally useful, if you know (a) the stable range f and (b) the stable homology $H_*(X_\infty) = H_*(telescope(\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots)).$
- Usually (b) is done by finding a more 'tractable' space Y and a homology equivalence X_∞ → Y. This requires different techniques to proving homological stability; we will focus on homological stability in this talk.

• Homological stability for $\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots$ is the property that

 $H_*(X_n;\mathbb{Z}) \to H_*(X_{n+1};\mathbb{Z})$

is an isomorphism in a stable range $* \leq f(n)$, where $f(n) \to \infty$ as $n \to \infty$.

- Theoretically useful.
- Computationally useful, if you know (a) the stable range f and (b) the stable homology $H_*(X_\infty) = H_*(telescope(\cdots \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots)).$
- Usually (b) is done by finding a more 'tractable' space Y and a homology equivalence X_∞ → Y. This requires different techniques to proving homological stability; we will focus on homological stability in this talk.
- There are many examples of this phenomenon from different areas:
 - classical groups
 - mapping class groups
 - automorphism groups of free groups
 - configuration spaces
 - ...

More detailed examples on the next slide...

A selection of homological stability results (from many more)

A selection of homological stability results (from many more)

X_n^*		f(n)		Y	
Σ_n	symmetric groups	n/2	[Nakaoka]	$\Omega_0^\infty S^\infty$	[BPQ]
B_n	braid groups	n/2	[Arnol'd]	$\Omega_0^2 S^2 \simeq \Omega^2 S^3$	[Segal]
$C_n(\mathbb{R}^d)$	config. spaces on \mathbb{R}^d	n/2	[Segal]	$\Omega_0^d S^d$	[Segal]
$C_n(M)$	(M conn. and open)	n/2	[McDuff,Segal]	$\Gamma_0(\dot{T}M)$	[McDuff]
$GL_n(R)$	(R Dedekind domain)	(n-1)/4	[Charney]	$K(GL(R),1)^+ \sim$	→ K-theory
$Sp_{2n}(R)$	(R Dedekind domain)	(n-6)/2	[Charney]	K(Sp(R),1)	
$O_n(\mathbb{F})$	$(\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H})$	n-1	[Sah]	$K(O(\mathbb{F}), 1)$	
Many other families of classical groups					
$\operatorname{Aut}(F_n)$	$(F_n = \text{free group})$	(n-2)/2	[Hatcher-Vogtmann]	$\Omega_0^\infty S^\infty$	[Galatius]
$\operatorname{Out}(F_n)$		(n-4)/2	[Hatcher-Vogtmann]		
MCGs of oriented surfaces		$^{2g/3}$	[Harer, Ivanov, Boldsen]	$\Omega_0^\infty MTSO(2)$	[Madsen-Weiss]
MCGs of nonorientable surfaces		(g-3)/3	[Wahl,Randal-Williams]	$\Omega_0^\infty MTO(2)$	[Wahl]
MCGs of 3-dim handlebodies		(g-2)/2	$[Hatcher-Wahl]^{\dagger}$	$\Omega_0^{\infty} \Sigma^{\infty} BSO(3)_+$	[Hatcher]
$B Diff_{\partial} \text{ of } \sharp_g(S^1 \times S^2) \smallsetminus \mathring{D}^3$				$\Omega_0^\infty \Sigma^\infty BSO(4)_+$	[Hatcher]
$BDiff_\partial$ of $\sharp_g(S^n \times S^n) \smallsetminus \mathring{D}^{2n \ddagger}$		(g-4)/2	[Galatius-Randal-Williams]	$\Omega_0^\infty MTO(2n)^{\langle n \rangle}$	[GRW]

* $X_n \coloneqq K(G_n, 1)$ if the entry is a group G_n .

Notation: we use K(G, 1) when G is a discrete group, and BG when it is a (non-discrete) topological group.

 † More generally: MCGs of (compact connected) oriented 3-manifolds.

[‡] For $n \ge 3$.

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M, X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M, X are both path-connected and M is open (non-compact)

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M, X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M, X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points?

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

$$C_n(\mathbb{R}^2) \xrightarrow{} C_{n.S^1}(\mathbb{R}^3)$$

$$\stackrel{\uparrow}{\underset{BB_n}{\longrightarrow}} BB_n$$

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

$$C_{n}(\mathbb{R}^{2}) \xrightarrow{} C_{n.S^{1}}(\mathbb{R}^{3})$$

$$\stackrel{\scriptsize (1)}{\underset{}{\mathfrak{BB}_{n}}} \xrightarrow{} C_{n.S^{1}}(\mathbb{R}^{3})$$

$$\pi_{1} = \Sigma \operatorname{Aut}(F_{n}) = \operatorname{MCG}\left(\underbrace{\swarrow}_{:} \underbrace{\bigcirc}_{:} \right) / \operatorname{twists}$$

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

$$C_{n}(\mathbb{R}^{2}) \xrightarrow{C_{n.S^{1}}(\mathbb{R}^{3})} \underset{BB_{n}}{\stackrel{\mathfrak{f}}{\underset{H.S. \text{ by [Hatcher-Wahl]}}{\overset{\mathfrak{f}}{\underset{Hacher-Wahl]}}} MCG\left((\overbrace{\cdot}^{\overset{\mathfrak{f}}{\underset{I}}})/twists\right)$$

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

Note: (a) $\pi_1 C_{n,S^1}(\mathbb{R}^3)$ contains a copy of Σ_n , hence torsion.

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

Note: (a) $\pi_1 C_{n.S^1}(\mathbb{R}^3)$ contains a copy of Σ_n , hence torsion. (b) $C_{n.S^1}(\mathbb{R}^3) \simeq a \ 6n$ -dimensional manifold [Brendle-Hatcher]

Definition

Configuration space on M with labels in X: $C_n(M,X)\coloneqq \big((M^n\smallsetminus \Delta)\times X^n\big)/\Sigma_n$

Theorem (McDuff, Randal-Williams)

 $C_n(M,X)$ satisfies homological stability with stable range $* \leq n/2$ as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

$$\begin{array}{c} C_n(\mathbb{R}^2) & & & \\ \updownarrow & & & \\ BB_n & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$$

Note: (a) $\pi_1 C_{n.S^1}(\mathbb{R}^3)$ contains a copy of Σ_n , hence torsion. (b) $C_{n.S^1}(\mathbb{R}^3) \simeq a \ 6n$ -dimensional manifold [Brendle-Hatcher] So $C_{n.S^1}(\mathbb{R}^3)$ cannot be aspherical.

Choose:

 $\begin{array}{ll} M \mbox{ connected, non-compact, = interior}(\overline{M}) & P \mbox{ and } Q \mbox{ closed (same dim.)} \\ \mbox{An embedding } q \colon Q \hookrightarrow M \mbox{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Choose:

M connected, non-compact, = interior(\overline{M}) P and Q closed (same dim.) An embedding $q: Q \hookrightarrow M$ and an embedding "at infinity" $p: P \hookrightarrow \partial \overline{M}$

Define C_Q(M) ≔ Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) ≔ Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Choose:

M connected, non-compact, = interior(\overline{M}) P and Q closed (same dim.) An embedding $q: Q \hookrightarrow M$ and an embedding "at infinity" $p: P \hookrightarrow \partial \overline{M}$

• Define $C_Q(M) \coloneqq \operatorname{Emb}(Q, M)/\operatorname{Diff}(Q)$. Note: this is not path-connected:

$$\bigcirc \bigcirc \checkmark \checkmark \checkmark \bigcirc \qquad \text{in } \mathbb{R}^3$$

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

$$\bigcirc \bigcirc \checkmark \checkmark \checkmark \bigcirc \qquad \text{in } \mathbb{R}^3$$

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q].

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

$$\bigcirc \bigcirc \checkmark \checkmark \checkmark \bigcirc \qquad \text{in } \mathbb{R}^3$$

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q].

• Define $q + p \colon Q \sqcup P \hookrightarrow M$ to be $q \sqcup p \colon$

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

$$\bigcirc \bigcirc \checkmark \checkmark \checkmark \bigcirc \qquad \text{in } \mathbb{R}^3$$

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q].

• Define $q + p \colon Q \sqcup P \hookrightarrow M$ to be $q \sqcup p \colon$

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q]. Define $q + p : Q \sqcup P \hookrightarrow M$ to be $e \circ (q \sqcup p)$:

where $e\colon \overline{M} \hookrightarrow \overline{M}$ is a self-embedding such that $e(\partial \overline{M}) \subset M.$

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q]. Define $q + p : Q \sqcup P \hookrightarrow M$ to be $e \circ (q \sqcup p)$:

where $e \colon \overline{M} \hookrightarrow \overline{M}$ is a self-embedding such that $e(\partial \overline{M}) \subset M$.

- This induces a map $C_q(M) \to C_{q+p}(M)$, defined by $q' \mapsto q' + p$.

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q]. Define $q + p : Q \sqcup P \hookrightarrow M$ to be $e \circ (q \sqcup p)$:

where $e \colon \overline{M} \hookrightarrow \overline{M}$ is a self-embedding such that $e(\partial \overline{M}) \subset M$.

• This induces a map $C_q(M) \to C_{q+p}(M)$, defined by $q' \mapsto q' + p$. Iterating this we get a sequence $C_q(M) \to C_{q+p}(M) \to C_{q+2.p}(M) \to \cdots$

Choose:

M connected, non-compact, = interior(M) P and Q closed (same dim.) An embedding $q: Q \hookrightarrow M$ and an embedding "at infinity" $p: P \hookrightarrow \partial \overline{M}$

• Define $C_Q(M) \coloneqq \operatorname{Emb}(Q, M) / \operatorname{Diff}(Q)$. Note: this is not path-connected:

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q]. Define $q + p \colon Q \sqcup P \hookrightarrow M$ to be $e \circ (q \sqcup p) \colon$

where $e: \overline{M} \hookrightarrow \overline{M}$ is a self-embedding such that $e(\partial \overline{M}) \subset M$.

- This induces a map $C_a(M) \to C_{a+p}(M)$, defined by $q' \mapsto q' + p$. Iterating this we get a sequence $C_q(M) \to C_{q+p}(M) \to C_{q+2,p}(M) \to \cdots$ for $n \ge 0$.
- In particular this defines $C_{n,p}(M)$

Choose:

 $\begin{array}{ll} M \text{ connected, non-compact,} = \operatorname{interior}(\overline{M}) & P \text{ and } Q \text{ closed (same dim.)} \\ \text{An embedding } q \colon Q \hookrightarrow M \text{ and an embedding "at infinity" } p \colon P \hookrightarrow \partial \overline{M} \end{array}$

Define C_Q(M) := Emb(Q, M)/Diff(Q).
 Note: this is not path-connected:

Define $C_q(M) :=$ the path-component of $C_Q(M)$ containing [q]. Define $q + p : Q \sqcup P \hookrightarrow M$ to be $e \circ (q \sqcup p)$:

where $e \colon \overline{M} \hookrightarrow \overline{M}$ is a self-embedding such that $e(\partial \overline{M}) \subset M$.

- This induces a map $C_q(M) \to C_{q+p}(M)$, defined by $q' \mapsto q' + p$. Iterating this we get a sequence $C_q(M) \to C_{q+p}(M) \to C_{q+2,p}(M) \to \cdots$
- In particular this defines $C_{n,p}(M) \rightleftharpoons C_{n,P}(M)$ for $n \ge 0$.

Aside: we lose nothing by assuming that P is *connected*, and adding just one component at a time – so we will assume this from now on.

Aside: we lose nothing by assuming that P is ${\it connected},$ and adding just one component at a time – so we will assume this from now on.

Note:

 $C_{n.P}(\mathbb{R}^{\infty}) \simeq BDiff(P \sqcup \cdots \sqcup P)$

Aside: we lose nothing by assuming that P is *connected*, and adding just one component at a time – so we will assume this from now on.

Note:

$$C_{n.P}(\mathbb{R}^{\infty}) \simeq B\mathrm{Diff}(P \sqcup \cdots \sqcup P)$$
$$= B(\mathrm{Diff}(P) \wr \Sigma_n)$$

 $[G \wr \Sigma_n \coloneqq G^n \rtimes \Sigma_n]$

Aside: we lose nothing by assuming that P is ${\it connected},$ and adding just one component at a time – so we will assume this from now on.

Note:

$$C_{n.P}(\mathbb{R}^{\infty}) \simeq BDiff(P \sqcup \cdots \sqcup P)$$

= $B(Diff(P) \wr \Sigma_n)$
 $\simeq C_n(\mathbb{R}^{\infty}, BDiff(P))$
 $[G \wr \Sigma_n \coloneqq G^n \rtimes \Sigma_n]$

Aside: we lose nothing by assuming that P is *connected*, and adding just one component at a time – so we will assume this from now on.

Note:

$$C_{n,P}(\mathbb{R}^{\infty}) \simeq BDiff(P \sqcup \cdots \sqcup P)$$

= $B(Diff(P) \wr \Sigma_n)$
 $\simeq C_n(\mathbb{R}^{\infty}, BDiff(P))$
 $[G \wr \Sigma_n \coloneqq G^n \rtimes \Sigma_n]$

So homological stability is certainly true when $M = \mathbb{R}^{\infty}$ (at least when $Q = \emptyset$).

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$.

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \setminus q_0$. Equivalently:

$$n \coloneqq \max\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\}$$

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \setminus q_0$. Equivalently:

$$n \coloneqq \max\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\}$$

• Labels: Each component can be given a label in a path-connected space X.

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \setminus q_0$. Equivalently:

$$n \coloneqq \max\left\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\right\}$$

- Labels: Each component can be given a label in a path-connected space X.
- Parametrised embeddings: Let $Q = P \sqcup \cdots \sqcup P$ $C_{n.p}(M) \subset \operatorname{Emb}(Q, M) / \operatorname{Diff}(Q)$

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \setminus q_0$. Equivalently:

$$n \coloneqq \max\left\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\right\}$$

- Labels: Each component can be given a label in a path-connected space X.
- Parametrised embeddings: Let $Q = P \sqcup \cdots \sqcup P$ $C_{n.p}(M) \subset \operatorname{Emb}(Q, M)/(\operatorname{Diff}(P) \wr \Sigma_n)$

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \setminus q_0$. Equivalently:

$$n \coloneqq \max\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\}$$

• Labels: Each component can be given a label in a path-connected space X.

```
    Parametrised embeddings: Let Q = P ⊔ · · · ⊔ P
C<sub>n.p</sub>(M|G) ⊂ Emb(Q, M)/(G ≀ Σ<sub>n</sub>)
for G ≤ Diff(P) an open or finite subgroup. E.g. G = 1 or Diff<sup>+</sup>(P).
```

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \smallsetminus q_0$. Equivalently:

$$n \coloneqq \max\left\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\right\}$$

- Labels: Each component can be given a label in a path-connected space X.
- Parametrised embeddings: Let Q = P ⊔ · · · ⊔ P C_{n.p}(M|G) ⊂ Emb(Q, M)/(G ≀ Σ_n) for G ≤ Diff(P) an open or finite subgroup. E.g. G = 1 or Diff⁺(P).
- Alternating structure: Replace $\Sigma_n \rightsquigarrow A_n$. Stable range is $* \leq (n-5)/3$.

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \smallsetminus q_0$. Equivalently:

$$n \coloneqq \max\left\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\right\}$$

- Labels: Each component can be given a label in a path-connected space X.
- Parametrised embeddings: Let $Q = P \sqcup \cdots \sqcup P$ $C_{n.p}(M|G) \subset \operatorname{Emb}(Q, M)/(G \wr \Sigma_n)$ for $G \leq \operatorname{Diff}(P)$ an open or finite subgroup. E.g. G = 1 or $\operatorname{Diff}^+(P)$.
- Alternating structure: Replace $\Sigma_n \rightsquigarrow A_n$. Stable range is $* \leq (n-5)/3$.
- Spheres: If P is a "nicely-embedded" sphere $p: S^k \subset \mathbb{R}^{k+1} \hookrightarrow \mathbb{R}^{d-1} \subseteq \partial \overline{M}$, then the codimension condition can be relaxed to $\dim(P) \leq \dim(M) 3$.

Theorem (P)

As long as $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$, the map $C_q(M) \to C_{q+p}(M)$ is an isomorphism on $H_*(-;\mathbb{Z})$ in the stable range $* \leq n/2$. Here, n is the number of components q_0 of q which are isotopic to p and unlinked from $q \smallsetminus q_0$. Equivalently:

 $n \coloneqq \max\left\{m \in \mathbb{N} \mid q = q' + m.p \text{ for some } q'\right\}$

- Labels: Each component can be given a label in a path-connected space X.
- Parametrised embeddings: Let $Q = P \sqcup \cdots \sqcup P$ $C_{n.p}(M|G) \subset \operatorname{Emb}(Q, M)/(G \wr \Sigma_n)$ for $G \leq \operatorname{Diff}(P)$ an open or finite subgroup. E.g. G = 1 or $\operatorname{Diff}^+(P)$.
- Alternating structure: Replace $\Sigma_n \rightsquigarrow A_n$. Stable range is $* \leq (n-5)/3$.
- Spheres: If P is a "nicely-embedded" sphere $p: S^k \subset \mathbb{R}^{k+1} \hookrightarrow \mathbb{R}^{d-1} \subseteq \partial \overline{M}$, then the codimension condition can be relaxed to $\dim(P) \leq \dim(M) 3$.
- Improvement (in progress): Remove the codimension condition altogether... This would then include the case $C_{n.S^1}(\mathbb{R}^3)$.

• A recent result of [Cantero-Randal-Williams] concerns configuration spaces of connected surfaces in a manifold M – stabilising w.r.t. the *genus*, rather than the number of components:

- A recent result of [Cantero-Randal-Williams] concerns configuration spaces of connected surfaces in a manifold M stabilising w.r.t. the *genus*, rather than the number of components:
- Given: a simply-connected, open manifold M of dimension ≥ 6 .

- A recent result of [Cantero-Randal-Williams] concerns configuration spaces of connected surfaces in a manifold M stabilising w.r.t. the *genus*, rather than the number of components:
- Given: a simply-connected, open manifold M of dimension ≥ 6 .
- Define $\mathcal{E}_g(M) \coloneqq \operatorname{Emb}(S_g, M) / \operatorname{Diff}^+(S_g)$.

- A recent result of [Cantero-Randal-Williams] concerns configuration spaces of connected surfaces in a manifold M stabilising w.r.t. the *genus*, rather than the number of components:
- Given: a simply-connected, open manifold M of dimension ≥ 6 .
- Define $\mathcal{E}_g(M) \coloneqq \operatorname{Emb}(S_g, M) / \operatorname{Diff}^+(S_g)$.
- Then $H_*(\mathcal{E}_g(M);\mathbb{Z}) \cong H_*(\mathcal{E}_{g+1}(M);\mathbb{Z})$ in the stable range $* \leqslant (2g-2)/3$.

Thanks for listening $\ensuremath{\textcircled{\sc 0}}$

