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Homological stability

• Homological stability for · · · → Xn → Xn+1 → · · · is the property that

H∗(Xn;Z)→ H∗(Xn+1;Z)

is an isomorphism in a stable range ∗ 6 f(n), where f(n)→∞ as n→∞.
• Theoretically useful.
• Computationally useful, if you know (a) the stable range f and (b) the stable

homology H∗(X∞) = H∗(telescope(· · · → Xn → Xn+1 → · · · )).
• Usually (b) is done by finding a more ‘tractable’ space Y and a homology

equivalence X∞ → Y . This requires different techniques to proving
homological stability; we will focus on homological stability in this talk.

• There are many examples of this phenomenon from different areas:
• classical groups
• mapping class groups
• automorphism groups of free groups
• configuration spaces
• . . .

More detailed examples on the next slide. . .
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A selection of homological stability results (from many more)

Xn
∗ f(n) Y

Σn symmetric groups n/2 [Nakaoka] Ω∞0 S
∞ [BPQ]

Bn braid groups n/2 [Arnol’d] Ω2
0S

2 ' Ω2S3 [Segal]

Cn(Rd) config. spaces on Rd n/2 [Segal] Ωd
0S

d [Segal]

Cn(M) (M conn. and open) n/2 [McDuff,Segal] Γ0(ṪM) [McDuff]

GLn(R) (R Dedekind domain) (n−1)/4 [Charney] K(GL(R), 1)+  K-theory. . .

Sp2n(R) (R Dedekind domain) (n−6)/2 [Charney] K(Sp(R), 1)
On(F) (F = R,C,H) n− 1 [Sah] K(O(F), 1)

Many other families of classical groups. . .

Aut(Fn) (Fn = free group) (n−2)/2 [Hatcher-Vogtmann] Ω∞0 S
∞ [Galatius]

Out(Fn) (n−4)/2 [Hatcher-Vogtmann]

MCGs of oriented surfaces 2g/3 [Harer,Ivanov,Boldsen] Ω∞0 MTSO(2) [Madsen-Weiss]

MCGs of nonorientable surfaces (g−3)/3 [Wahl,Randal-Williams] Ω∞0 MTO(2) [Wahl]

MCGs of 3-dim handlebodies (g−2)/2 [Hatcher-Wahl]† Ω∞0 Σ∞BSO(3)+ [Hatcher]

BDiff∂ of ]g(S1×S2)rD̊3 Ω∞0 Σ∞BSO(4)+ [Hatcher]

BDiff∂ of ]g(Sn×Sn)rD̊2n ‡ (g−4)/2 [Galatius-Randal-Williams] Ω∞0 MTO(2n)〈n〉 [GRW]

∗ Xn := K(Gn, 1) if the entry is a group Gn.

Notation: we use K(G, 1) when G is a discrete group, and BG when it is a (non-discrete) topological group.
† More generally: MCGs of (compact connected) oriented 3-manifolds.
‡ For n > 3.
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Configuration spaces of points

Definition
Configuration space on M with labels in X:

Cn(M,X) :=
(
(Mn r ∆)×Xn

)
/Σn

Theorem (McDuff, Randal-Williams)

Cn(M,X) satisfies homological stability with stable range ∗ 6 n/2
as long as M,X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

Cn(R2)

BBn

 

Cn.S1(R3)

π1 = ΣAut(Fn) = MCG
( )

/twists

 

. .
.

 

H.S. by [Hatcher-Wahl]

Note: (a) π1Cn.S1(R3) contains a copy of Σn, hence torsion.

(b) Cn.S1(R3) ' a 6n-dimensional manifold [Brendle-Hatcher]

So Cn.S1(R3) cannot be aspherical.
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Configuration spaces of disconnected submanifolds

• Choose:

M connected, non-compact, = interior(M) P and Q closed (same dim.)

An embedding q : Q ↪→M and an embedding “at infinity” p : P ↪→ ∂M

• Define CQ(M) := Emb(Q,M)/Diff(Q).

Note: this is not path-connected:

in R3

Define Cq(M) := the path-component of CQ(M) containing [q].
• Define q + p : Q t P ↪→M to be

e ◦ (

q t p

)

:

where e : M ↪→M is a self-embedding such that e(∂M) ⊂M .
• This induces a map Cq(M)→ Cq+p(M), defined by q′ 7→ q′ + p.

Iterating this we get a sequence Cq(M)→ Cq+p(M)→ Cq+2.p(M)→ · · ·
• In particular this defines Cn.p(M)

=: Cn.P (M)

for n > 0.
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Configuration spaces of disconnected submanifolds (cont.)

Aside: we lose nothing by assuming that P is connected, and adding just one
component at a time – so we will assume this from now on.

Note:

Cn.P (R∞) ' BDiff(P t · · · t P )

= B(Diff(P ) o Σn)

' Cn(R∞, BDiff(P ))

[G o Σn := Gn o Σn]

So homological stability is certainly true when M = R∞ (at least when Q = ∅).
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The main result

Theorem (P)

As long as dim(P ) 6 1
2 (dim(M)− 3), the map Cq(M)→ Cq+p(M) is an

isomorphism on H∗(−;Z) in the stable range ∗ 6 n/2. Here, n is the
number of components q0 of q which are isotopic to p and unlinked from
q r q0. Equivalently:

n := max
{
m ∈ N

∣∣ q = q′ +m.p for some q′
}

• Labels: Each component can be given a label in a path-connected space X.
• Parametrised embeddings: Let Q = P t · · · t P
Cn.p(M) ⊂ Emb(Q,M)/ Diff(Q)

for G 6 Diff(P ) an open or finite subgroup. E.g. G = 1 or Diff+(P ).
• Alternating structure: Replace Σn  An. Stable range is ∗ 6 (n− 5)/3.
• Spheres: If P is a “nicely-embedded” sphere p : Sk ⊂ Rk+1 ↪→ Rd−1 ⊆ ∂M ,

then the codimension condition can be relaxed to dim(P ) 6 dim(M)− 3.
• Improvement (in progress): Remove the codimension condition altogether. . .

This would then include the case Cn.S1(R3).
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A recent closely related result

• A recent result of [Cantero-Randal-Williams] concerns configuration spaces of
connected surfaces in a manifold M – stabilising w.r.t. the genus, rather than
the number of components:

• Given: a simply-connected, open manifold M of dimension > 6.
• Define Eg(M) := Emb(Sg,M)/Diff+(Sg).
• Then H∗(Eg(M);Z) ∼= H∗(Eg+1(M);Z) in the stable range ∗ 6 (2g − 2)/3.
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Thanks for listening ,


