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Homological stability

e Homological stability for --- — X,, — X, 41 — --- is the property that
H*(Xna Z) — H*(Xn+17 Z)

is an isomorphism in a stable range x < f(n), where f(n) — oo as n — oco.

e Theoretically useful.

o Computationally useful, if you know (a) the stable range f and (b) the stable
homology H.(X o) = Hy(telescope(--+ — X — Xpyp1 — 1)),

e Usually (b) is done by finding a more ‘tractable’ space Y and a homology
equivalence Xo, — Y. This requires different techniques to proving
homological stability; we will focus on homological stability in this talk.

e There are many examples of this phenomenon from different areas:

classical groups

mapping class groups

automorphism groups of free groups

configuration spaces

More detailed examples on the next slide. ..
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A selection of homological stability results

(from many more)

¥,  symmetric groups n/2  [Nakaoka] Qg° S [BPQ]

B,  braid groups n/a2  [Arnol'd] 0%9? ~ 0283 [Segal]
Cr(R d) config. spaces on R? n/a  [Segal] Qdsd [Segal]
Cn(M) (M conn. and open) | 7/2  [McDuff,Segall To(TM) [McDuff]
GL,(R) (R Dedekind domain)|(n=1)/4 [Charney] K(GL(R),1)" ~ K-theory. ..
szn( ) (R Dedekind domain)|(n=6)/2 [Charney] K(Sp(R),1)

O,(F) (F=R,C,H) n—1 [Sah] K(O(F),1)
Many other families of classical groups. ..
Aut(F,) (Fn = free group) (n=2)/3 [Hatcher-Vogtmann] Q6°S* [Galatius]
Out(Fy) (n=4)/2 [Hatcher-Vogtmann]
MCGs of oriented surfaces 29/3  [Harer,Ivanov,Boldsen] QFMTSO(2) [Madsen-Weiss]
(9=3)/3 [Wahl,Randal-Williams] QFMTO(2) [Wahl|

MCGs of nonorientable surfaces
MCGs of 3-dim handlebodies
BDiffy of #4(5! x 52)\ D3

BDiffy of #4(S™ x S™)~\D2n

(9-2)/2 [Hatcher-Wahl]

(9=4)/2 [Galatius-Randal-Williams]

QX BSO(3)+ [Hatcher]
QF°E*°BS0O(4)+ [Hatcher]
QMTO(2n)™ [GRW]

* Xpn = K(Gn,1) if the entry is a group Gn,.
Notation: we use K (G, 1) when G is a discrete group, and BG when it is a (non-discrete) topological group.

T

For n > 3.

More generally: MCGs of (compact connected) oriented 3-manifolds.
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Configuration spaces of points

Definition

Configuration space on M with labels in X:
Co(M, X) = (M™ < A) x X™)/S,

Theorem (McDuff, Randal-Williams)

C (M, X) satisfies homological stability with stable range x < n/2
as long as M, X are both path-connected and M is open (non-compact)

How about increasing the dimension of the points? E.g.:

Cpn(R2) "ANANANAN~ Oy 51 (R3)
3

BB, ™ = SAut(F,) = MCG( ;@)

)/twists

!
H.S. by [Hatcher-Wahl]

Note: (a) mC, g1(R*) contains a copy of &,,, hence torsion.
(b) C, s1(R?) ~ a 6n-dimensional manifold [Brendle-Hatcher]
So C, 51 (R3) cannot be aspherical.
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Configuration spaces of disconnected submanifolds

e Choose:
M connected, non-compact, = interior(M) P and @ closed (same dim.)
An embedding ¢: @Q < M and an embedding “at infinity” p: P < OM

¢ Define Co(M) := Emb(Q, M) /Diff (Q).
Note: this is not path-connected:

O e C@

Define C,(M) := the path-component of Cq(M) containing [g
e Define g+ p: QUP — M to beeo (qUp):

g+p=eco(pUq): “Q@ 'D

where e: M < M is a self-embedding such that e(OM) C M.
e This induces a map Cy(M) — Cyyp(M), defined by ¢’ — ¢’ + p.
Iterating this we get a sequence Cy(M) = Coqip(M) = Cyyop(M) — - -
e In particular this defines C,, ,(M) =: C,, p(M) for n > 0.
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Configuration spaces of disconnected submanifolds (cont.)

Aside: we lose nothing by assuming that P is connected, and adding just one
component at a time — so we will assume this from now on.

Note:
C,, p(R*®) ~ BDiff(PU---U P)
= B(Diff(P)1 %,,)
~ C,(R*°, BDiff (P))
[G1E, =G x %,)]

So homological stability is certainly true when M = R (at least when @ = @).
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The main result

Theorem (P)

As long as dim(P) < 1(dim(M) — 3), the map Cy(M) — Cyyp(M) is an
isomorphism on H,(—;Z) in the stable range x < n/2. Here, n is the
number of components qqg of ¢ which are isotopic to p and unlinked from
q ~ qo- Equivalently:

n:=max{m €N | q=q +m.p for some ¢’}

e Labels: Each component can be given a label in a path-connected space X.
e Parametrised embeddings: Let @ = PU---UP
Cnp(M|G) C Emb(Q, M)/(G13)
for G < Diff(P) an open or finite subgroup. E.g. G = 1 or Diff ™ (P).
o Alternating structure: Replace ¥,, ~» A,,. Stable range is x < (n —5)/3.
o Spheres: If P is a “nicely-embedded” sphere p: S* ¢ R¥*1 — R4~ C oM,
then the codimension condition can be relaxed to dim(P) < dim(M) — 3.
e Improvement (in progress): Remove the codimension condition altogether. ..
This would then include the case C,, 51 (R?).
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A recent closely related result

A recent result of [Cantero-Randal-Williams] concerns configuration spaces of
connected surfaces in a manifold M — stabilising w.r.t. the genus, rather than
the number of components:

e Given: a simply-connected, open manifold M of dimension > 6.

Define £,(M) := Emb(S,, M)/Diff * (S,).

Then H, (E4(M);Z) = H,(Eg41(M); Z) in the stable range * < (2g — 2)/3.
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