Homology of symmetric diffeomorphism groups of manifolds and diffeomorphism groups of manifolds with singularities

Martin Palmer — Université Paris XIII Topology of Manifolds, Lisbon — 29 June 2016

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \gg i$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$

Examples:

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$

Examples:

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability:
$$H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$$
 for $n \geqslant 2i$

Examples:

B(homologically stable family of groups), e.g.

• $B(\mathfrak{S}_n)$ [Nakaoka]

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Homological stability:
$$H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$$
 for $n \ge 2i$

Examples:

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(\operatorname{GL}_n(\mathbb{Z}))$ [Charney, van der Kallen]

Family of spaces:
$$Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$$

Homological stability:
$$H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$$
 for $n \geqslant 2i$

Examples:

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(GL_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \mathrm{Diff}_{\partial}(\Sigma_{g,1}))$ [Harer, Ivanov, Boldsen, Randal-Williams]

Family of spaces:
$$Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$$

Homological stability:
$$H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$$
 for $n \ge 2i$

Examples:

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(GL_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \operatorname{Diff}_{\partial}(\Sigma_{g,1}))$ [Harer, Ivanov, Boldsen, Randal-Williams]
- $B(Aut(F_n))$ [Hatcher-Vogtmann]

Family of spaces:
$$Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$$

Homological stability:
$$H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$$
 for $n \ge 2i$

Examples:

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(GL_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \operatorname{Diff}_{\partial}(\Sigma_{g,1}))$ [Harer, Ivanov, Boldsen, Randal-Williams]
- $B(Aut(F_n))$ [Hatcher-Vogtmann]
- Configuration spaces, moduli spaces of manifolds, ...

ullet M connected (smooth) manifold

- ullet M connected (smooth) manifold
- P closed manifold

- M connected (smooth) manifold
- P closed manifold

Define:
$$\operatorname{Conf}_{P}(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- M connected (smooth) manifold
- P closed manifold

Define:

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

• $\iota \colon P \hookrightarrow \partial M$

- M connected (smooth) manifold
- P closed manifold

Define:

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0, \infty] \longrightarrow M$

- M connected (smooth) manifold
- P closed manifold

Define:

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0, \infty] \longrightarrow M$

- M connected (smooth) manifold
- P closed manifold

Define:

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0, \infty] \longrightarrow M$

 \longrightarrow one-parameter family of embeddings $[0,\infty) \longrightarrow \operatorname{Emb}(M,M)$

• "stabilisation maps"

$$\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$$

 $(nP = P \sqcup \ldots \sqcup P)$

• "stabilisation maps"

$$\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$$

 $(nP = P \sqcup \ldots \sqcup P)$

$$nP$$
 $\phi \int_{M}$

$$0\,1\,2\,3\,\,\cdots\,\infty$$

 $\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

• unstable on π_0

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

 $\{ \text{knots in } D^3 \} \longrightarrow \{ \text{2-component links in } D^3 \}$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

 $\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$

$$\begin{array}{ccc}
\operatorname{Conf}_{P}(M) & \longrightarrow & \operatorname{Conf}_{2P}(M) & \longrightarrow & \operatorname{Conf}_{3P}(M) & \longrightarrow & \cdots \\
& & & & & & \\
e_{1}(\iota(P)) & & & & & & \\
\end{array}$$

Definition

$$\operatorname{conf}_{nP}(M) = \underset{e_1(\iota(P)) \sqcup \ldots \sqcup e_n(\iota(P))}{\operatorname{path-component}}$$
 of $\operatorname{Conf}_{nP}(M)$ containing

Moduli spaces of submanifolds

Definition

$$\operatorname{conf}_{nP}(M) = \underset{e_1(\iota(P)) \sqcup \ldots \sqcup e_n(\iota(P))}{\operatorname{path-component}}$$
 of $\operatorname{Conf}_{nP}(M)$ containing

 $\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

• Homologically stable when P = point.

[McDuff; Segal]

$$\operatorname{conf}_{P}(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold P such that [P]

$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$$

$$\operatorname{conf}_{P}(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold P such that [P]

$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$$

• Also true for $P = S^1$ and $M = D^3$

[Kupers]

$$\operatorname{conf}_{P}(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold P such that [P]

$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$$

- Also true for $P = S^1$ and $M = D^3$ [Kupers]
- Also true for $P = (\text{finite set}) \text{ and } \dim(M) = 2$ [Tran]

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold P such that [P]

$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$$

• Also true for $P = S^1$ and $M = D^3$

- [Kupers]
- Also true for $P = (\text{finite set}) \text{ and } \dim(M) = 2$ [Tran]
- Similar: moduli spaces of connected, oriented subsurfaces

[Cantero-Randal-Williams]

$$\operatorname{conf}_{P}(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold P such that [P]

$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$$

• Also true for $P = S^1$ and $M = D^3$

[Kupers]

• Also true for $P = (\text{finite set}) \text{ and } \dim(M) = 2$

[Tran]

• Similar: moduli spaces of connected, oriented subsurfaces

 $[{\bf Cantero\text{-}Randal\text{-}Williams}]$

$$\operatorname{conf}_{\Sigma_g}(M) = \operatorname{Emb}(\Sigma_g, M) / \operatorname{Diff}^+(\Sigma_g),$$

when $\pi_1(M) = 0$ and $\dim(M) \ge 5$.

$$\begin{array}{c} X \\ \pi \Big\downarrow & \text{Diff}(P)\text{-equivariant} \\ \text{Emb}(P,\mathcal{M}) \end{array}$$

$$X \\ \pi \downarrow \qquad \text{Diff}(P)\text{-equivariant} \\ \text{Emb}(P, \mathbf{M}) \\ \Big(\text{lift of } \iota \text{ to } X \quad , \quad \text{lift of } [0, \infty) \to \text{End}(\text{Emb}(P, M)) \text{ to } [0, \infty) \to \text{End}(X) \Big)$$

$$X$$

$$\pi \downarrow \qquad \text{Diff}(P)\text{-equivariant}$$

$$\text{Emb}(P, M)$$

$$\left(\text{lift of } \iota \text{ to } X \quad , \quad \text{lift of } [0, \infty) \to \text{End}(\text{Emb}(P, M)) \text{ to } [0, \infty) \to \text{End}(X)\right)$$

$$X^n \xrightarrow{\pi^n} \quad \text{Emb}(P, M)^n$$

$$X$$

$$\pi \downarrow \qquad \text{Diff}(P)\text{-equivariant}$$

$$\text{Emb}(P, \mathbf{M})$$

$$\left(\text{lift of } \iota \text{ to } X \quad , \quad \text{lift of } [0, \infty) \to \text{End}(\text{Emb}(P, M)) \text{ to } [0, \infty) \to \text{End}(X)\right)$$

$$X^n \xrightarrow{\pi^n} \qquad \text{Emb}(P, M)^n$$

$$\cup \qquad \qquad \cup$$

$$\text{Emb}(nP, \mathring{M})$$

$$\begin{array}{ccc} X & & & \\ \pi & & & \text{Diff}(P)\text{-equivariant} \\ & & & \text{Emb}(P, \mathbf{M}) \\ \\ \left(\text{lift of } \iota \text{ to } X &, & \text{lift of } [0, \infty) \to \text{End}(\text{Emb}(P, M)) \text{ to } [0, \infty) \to \text{End}(X) \right) \\ & & & X^n \xrightarrow{\pi^n} & \text{Emb}(P, M)^n \\ & & & \cup \\ X_n \xrightarrow{\gamma} & & \text{Emb}(nP, \mathring{M}) \end{array}$$

$$\begin{array}{c} X \\ \pi \bigvee \qquad \operatorname{Diff}(P)\text{-equivariant} \\ \operatorname{Emb}(P, \operatorname{M}) \\ \left(\operatorname{lift of } \iota \text{ to } X \right. , \quad \operatorname{lift of } [0, \infty) \to \operatorname{End}(\operatorname{Emb}(P, M)) \text{ to } [0, \infty) \to \operatorname{End}(X) \right) \\ X^n & \xrightarrow{\pi^n} & \operatorname{Emb}(P, M)^n \\ & \downarrow \\ X_n & \xrightarrow{} & \operatorname{Emb}(nP, M) \\ & \downarrow \\ -/\operatorname{Diff}(nP) & \downarrow \\ & & \downarrow \\ \operatorname{Conf}_{nP}(M; X) & \xrightarrow{} & \operatorname{Conf}_{nP}(M) \end{array}$$

$$T \downarrow \qquad \text{Diff}(P)\text{-equivariant}$$

$$Emb(P, M)$$

$$\left(\text{lift of } \iota \text{ to } X \quad , \quad \text{lift of } [0, \infty) \to \text{End}(\text{Emb}(P, M)) \text{ to } [0, \infty) \to \text{End}(X)\right)$$

$$X^n \xrightarrow{\pi^n} \qquad \text{Emb}(P, M)^n \\ \downarrow \\ X_n \xrightarrow{} \qquad \text{Emb}(nP, M)$$

$$\downarrow \\ -/\text{Diff}(nP) \downarrow \qquad \qquad \downarrow \\ -/\text{Diff}(nP) \downarrow \qquad \qquad \downarrow \\ \text{Conf}_{nP}(M; X) \xrightarrow{} \qquad \text{Conf}_{nP}(M) \\ \cup \\ \text{conf}_{nP}(M; X) \xrightarrow{} \qquad \text{conf}_{nP}(M)$$

• May also replace $\operatorname{Diff}(P)$ by $G \leqslant \operatorname{Diff}(P)$

• May also replace $\mathrm{Diff}(P)$ by $G \leqslant \mathrm{Diff}(P)$ correspondingly $\mathrm{Diff}(nP) = \mathrm{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$

• May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longrightarrow \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. G = Diff⁺(P) if P is orientable
 → moduli space of n oriented copies of P in M

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable \longrightarrow moduli space of n oriented copies of P in M
- e.g. $G = \{e\}$

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable \longrightarrow moduli space of n oriented copies of P in M
- e.g. $G = \{e\}$ \longrightarrow moduli space of n parametrised copies of P in M

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable \longrightarrow moduli space of n oriented copies of P in M
- e.g. $G = \{e\}$ \longrightarrow moduli space of n parametrised copies of P in M

Theorem (P)

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. G = Diff⁺(P) if P is orientable
 → moduli space of n oriented copies of P in M
- e.g. $G = \{e\}$ \longrightarrow moduli space of n parametrised copies of P in M

Theorem (P)

$$\operatorname{conf}_P(M;X;G) \longrightarrow \operatorname{conf}_{2P}(M;X;G) \longrightarrow \operatorname{conf}_{3P}(M;X;G) \longrightarrow \cdots$$

 $is\ homologically\ stable.$

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \leadsto G \wr \mathfrak{S}_n$ $\longmapsto \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable \longrightarrow moduli space of n oriented copies of P in M
- e.g. $G = \{e\}$ \longrightarrow moduli space of n parametrised copies of P in M

Theorem (P)

If
$$\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3)$$
 and $G \leqslant \operatorname{Diff}(P)$ is open or trivial then $\operatorname{conf}_P(M; X; G) \longrightarrow \operatorname{conf}_{2P}(M; X; G) \longrightarrow \operatorname{conf}_{3P}(M; X; G) \longrightarrow \cdots$ is homologically stable.

${\bf Symmetric\ diffeomorphism\ groups}$

Connected sum

• X, Y manifolds

${\bf Symmetric\ diffeomorphism\ groups}$

Connected sum

- X, Y manifolds
- $x \in X, y \in Y$

Connected sum

- X, Y manifolds
- $x \in X, y \in Y$
- $\phi \colon T_x X \cong T_y Y$

Connected sum

- \bullet X, Y manifolds
- $x \in X, y \in Y$
- $\phi: T_x X \cong T_y Y$

$$\longleftarrow \qquad X\sharp Y = \left(X \smallsetminus \exp(T_x^{\leqslant \varepsilon}X)\right) \cup_{\phi} \left(Y \smallsetminus \exp(T_y^{\leqslant \varepsilon}Y)\right)$$

Parametrised connected sum

• X, Y manifolds

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

Parametrised connected sum

- \bullet X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- ϕ : $\nu_e \cong \nu_f$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi$$
: $\nu_e \cong \nu_f$

$$\longrightarrow X \sharp Y = \left(X \smallsetminus \exp(\nu_e^{\leqslant \varepsilon}) \right) \cup_{\phi} \left(Y \smallsetminus \exp(\nu_f^{\leqslant \varepsilon}) \right)$$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi : \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi : \nu_e \cong \nu_f$$

$$\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

Example

• $k \colon S^1 \hookrightarrow S^3$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi : \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing \mapsto $\nu_k \cong S^1 \times \mathbb{R}^2$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $\bullet \ f \colon S^1 \hookrightarrow L(p,q)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $f \colon S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing \mapsto $\nu_k \cong S^1 \times \mathbb{R}^2$
- $f \colon S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing \mapsto $\nu_k \cong S^1 \times \mathbb{R}^2$
- $f \colon S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$
- $S^3 \underset{S^1}{\sharp} L(p,q)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$ $\longrightarrow X \sharp Y = (X \setminus \text{Tub}(e)) \cup_{\phi} (Y \setminus \text{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing \mapsto $\nu_k \cong S^1 \times \mathbb{R}^2$
- $f \colon S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$
- $S^3 \sharp L(p,q) = \text{ result of Dehn surgery of slope } \frac{p}{q} \text{ along } k$

• M, P, etc. as before

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$
- $\nu(e_1\iota\colon P\hookrightarrow \mathring{M})\cong \nu(P\hookrightarrow N)$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$
- $\nu(e_1\iota\colon P\hookrightarrow \mathring{M})\cong \nu(P\hookrightarrow N)=T$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota \colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

 $\longrightarrow M \sharp nN$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

• $M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$
- $\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$ $\longleftarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

- \bullet M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

 $\longleftarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

Symmetric diffeomorphism ϕ of $M \sharp_{\mathbb{R}} nN$:

• $\phi|_{\partial M} = \mathrm{id}$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$
- $\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$ $\longleftarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$
- $\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$ $\longrightarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$
- $\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id}$ $\sigma \in \mathfrak{S}_n$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

 $\longleftarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$
- $\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id}$ $\sigma \in \mathfrak{S}_n$

$$\Sigma \text{Diff}\left(M \underset{nP}{\sharp} nN\right)$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota: P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

 $\longrightarrow M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$

Definition

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$
- $\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id}$ $\sigma \in \mathfrak{S}_n$

$$\Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right)$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff} \left(M \underset{nP}{\sharp} nN \right) \longrightarrow \Sigma \mathrm{Diff} \left(M \underset{(n+1)P}{\sharp} (n+1)N \right) \longrightarrow \cdots$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff} \left(M \underset{nP}{\sharp} nN \right) \longrightarrow \Sigma \mathrm{Diff} \left(M \underset{(n+1)P}{\sharp} (n+1)N \right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $conf_{nP}(M; X; \{e\})$ for

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $conf_{nP}(M; X; \{e\})$ for

$$X = \operatorname{Emb}(T, M) \underset{\operatorname{Emb}(\partial T, M)}{\times} \left(\frac{\operatorname{Emb}(N \setminus \mathring{T}, \mathbb{R}^{\infty})}{\operatorname{Diff}_{\partial}(N \setminus \mathring{T})} \right)$$

$$\downarrow \qquad \qquad M \subset \mathbb{R}^{\infty}$$

$$\operatorname{Emb}(P, M)$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $conf_{nP}(M; X; \{e\})$ for

$$X = \operatorname{Emb}(T, M) \underset{\operatorname{Emb}(\partial T, M)}{\times} \left(\frac{\operatorname{Emb}(N \setminus \mathring{T}, \mathbb{R}^{\infty})}{\operatorname{Diff}_{\partial}(N \setminus \mathring{T})} \right)$$

$$\downarrow \qquad \qquad M \subset \mathbb{R}^{\infty}$$

$$\operatorname{Emb}(P, M)$$

$$M \sharp nN = \left(M \setminus n\mathring{T} \right) \underset{n\partial T}{\cup} n \left(N \setminus \mathring{T} \right)$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(n\partial T) = n\partial T$
- $\phi|_{n\partial T} = \sigma \times \mathrm{id}$ $\sigma \in \mathfrak{S}_n$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(n\partial T) = n\partial T$
- $\phi|_{n\partial T} \in \mathfrak{S}_n \qquad \leqslant \operatorname{Diff}(n\partial T)$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(n\partial T) = n\partial T$
- $\phi|_{n\partial T} \in \mathfrak{S}_n \qquad \leqslant \operatorname{Diff}(n\partial T) = \operatorname{Diff}(\partial T) \wr \mathfrak{S}_n$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

- $\phi|_{\partial M} = \mathrm{id}$
- $\phi(n\partial T) = n\partial T$
- $\phi|_{n\partial T} \in H \wr \mathfrak{S}_n \leqslant \mathrm{Diff}(n\partial T) = \mathrm{Diff}(\partial T) \wr \mathfrak{S}_n \qquad H \leqslant \mathrm{Diff}(\partial T)$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

 Also true for H-symmetric diffeomorphism groups (under certain conditions on H)

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for H-symmetric diffeomorphism groups (under certain conditions on H)
- Example: if $T = P \times D^c$

Symmetric diffeomorphism groups – homological stability

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for H-symmetric diffeomorphism groups (under certain conditions on H)
- Example: if $T = P \times D^c$ then we may take

$$H = \mathrm{Diff}_1(P) \times \mathrm{SO}(c) \leqslant \mathrm{Diff}(P \times S^{c-1})$$

Symmetric diffeomorphism groups – homological stability

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for H-symmetric diffeomorphism groups (under certain conditions on H)
- Example: if $T = P \times D^c$ then we may take

$$H = \mathrm{Diff}_1(P) \times \mathrm{SO}(c) \leqslant \mathrm{Diff}(P \times S^{c-1})$$

• Generalises a theorem of Tillmann

$$\leftarrow \rightarrow P = \text{point and the 'usual' } \sharp$$

```
Definition ( )
```

```
Definition ( )
• space M
```

$\begin{array}{c} \text{Definition (} \\ \bullet \text{ space } M \\ \bullet A \subset M \quad \quad singularity \ set \end{array}$

Definition (

- space M
- $A \subset M$ singularity set such that A and $M \setminus A$ are smooth manifolds $(\partial A = \emptyset)$

Definition (

- ullet space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- \bullet manifold Q singularity type

Definition (

- ullet space M
- $A \subset M$ singularity set such that A and $M \setminus A$ are smooth manifolds $(\partial A = \emptyset)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Definition (Q-manifold)

- space M
- $A \subset M$ singularity set such that A and $M \setminus A$ are smooth manifolds $(\partial A = \emptyset)$
- \bullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Definition (Q-manifold)

- \bullet space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- \bullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

Definition (Q-manifold)

- \bullet space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component

Definition (Q-manifold)

- space M
- $A \subset M$ singularity set such that A and $M \setminus A$ are smooth manifolds $(\partial A = \emptyset)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component $A = \{1, \dots, k\}, k = \text{number of components}$

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component $A = \{1, \dots, k\}, k = \text{number of components}$ $Q = S^1 \times S^1$

Definition (Q-manifold)

- space M
- $A \subset M$ singularity set such that A and $M \setminus A$ are smooth manifolds $(\partial A = \emptyset)$
- \bullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• M = graph with uniform valency v

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \text{cone}(Q)$

Examples:

M = graph with uniform valency v
 A = vertices

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• M = graph with uniform valency v A = vertices $Q = \{1, \dots, v\}$

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

•
$$M = \bigsqcup_k (S^1 \times D^2)$$

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \bigsqcup_k (S^1 \times D^2) / \text{identify all boundary tori}$

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

•
$$M = \bigsqcup_k (S^1 \times D^2) / \text{identify all boundary tori}$$

 $A = S^1 \times S^1$

Definition (Q-manifold)

- space M
- $A\subset M$ singularity set such that A and $M\smallsetminus A$ are smooth manifolds $(\partial A=\varnothing)$
- ullet manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

•
$$M = \bigsqcup_k (S^1 \times D^2)$$
 / identify all boundary tori
$$A = S^1 \times S^1$$

$$Q = \{1, \dots, k\}$$

${\bf Manifolds\ with\ Baas\text{-}Sullivan\ singularities}$

Definition (Diff $^Q(M)$)

Definition (Diff $^{Q}(M) \leq \text{Homeo}(M)$)

 $\bullet \ \phi(A) = A$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$

- $\bullet \ \phi(A) = A$
 - $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
 - $\phi|_A$ diffeomorphism

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$

- $\phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times \mathrm{id}$ under $U \cong A \times \mathrm{cone}(Q)$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times \mathrm{id}$ under $U \cong A \times \mathrm{cone}(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow \text{embedding } nP \hookrightarrow \mathring{M}$

Definition $(\operatorname{Diff}^{Q}(M) \leqslant \operatorname{Homeo}(M))$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of nP

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times \mathrm{id}$ under $U \cong A \times \mathrm{cone}(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$

- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$

- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point \longrightarrow ∂T -manifold \mathbf{N}_n

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point \longrightarrow ∂T -manifold \mathbf{N}_n

$$Q = \partial T \qquad A = \{1, \dots, n\}$$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times \mathrm{id}$ under $U \cong A \times \mathrm{cone}(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset M$
- collapse each T to a point \longrightarrow ∂T -manifold \mathbf{N}_n $Q = \partial T$ $A = \{1, \dots, n\}$
- $Q = OI \qquad A = \{1, \dots, n\}$
- $\mathbf{N}_n \hookrightarrow \mathbf{N}_{n+1}$

- $\bullet \ \phi(A) = A$
- $\phi|_{M \setminus A}$ diffeomorphism $\phi|_{\partial(M \setminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$ $\phi|_U = \phi|_A \times id$ under $U \cong A \times cone(Q)$
- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M \longrightarrow embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point \longrightarrow ∂T -manifold \mathbf{N}_n

$$Q = \partial T$$
 $A = \{1, \dots, n\}$

- $\mathbf{N}_n \hookrightarrow \mathbf{N}_{n+1}$
- $\operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1})$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\bullet$$
 $N = T$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- \bullet N=T
- $P \hookrightarrow T$ zero-section

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- \bullet N=T
- $P \hookrightarrow T$ zero-section
- $\bullet \ H = \{e\}$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- \bullet N=T
- $P \hookrightarrow T$ zero-section
- $H = \{e\}$

Then:
$$\Sigma \text{Diff}\left(M \underset{nP}{\sharp} nT\right) = \text{Diff}^{\partial T}(\mathbf{N}_n)$$

• Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\leadsto S^1$'s in 3-manifolds
- Treat more complicated path-components

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for Σ Diff(3-manifolds) w.r.t. iterated Dehn surgery
- More general singularities
 - \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M;X;G) \longrightarrow \operatorname{conf}_{(n+1)P}(M;X;G) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \to \Sigma \text{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \text{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \to \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

$$\rightarrow$$
 e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M;X;G) \longrightarrow \operatorname{conf}_{(n+1)P}(M;X;G) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

• P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_g}(M)$: $H_*(\operatorname{space of sections of a bundle over } M)$ [C-RW]

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_g}(M)$: $H_*(\operatorname{space\ of\ sections\ of\ a\ bundle\ over\ }M)$ [C-RW]
- $scanning\ map$: limiting space \longrightarrow section space

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities
 - \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$
- Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M;X;G) \longrightarrow \operatorname{conf}_{(n+1)P}(M;X;G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_g}(M)$: $H_*(\operatorname{space of sections of a bundle over } M)$ [C-RW]
- scanning map: limiting space \longrightarrow section space
- but not a homology equivalence for general P

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

$$\rightarrow$$
 e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\leadsto S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

$$\rightarrow$$
 e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

• [Perlmutter]: homotopy type of \mathbf{Cob}_{d+1}^Q

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ $\Rightarrow S^1$'s in 3-manifolds
- Treat more complicated path-components
 - \leadsto e.g. non-trivial links in \mathbb{R}^3
 - \leadsto coro: stability for $\Sigma \mathrm{Diff}(3\text{-manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

$$\rightarrow$$
 e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

• [Perlmutter]: homotopy type of \mathbf{Cob}_{d+1}^Q

$$\operatorname{hocolim}_{n \to \infty} \left(B \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \right) \longleftrightarrow \operatorname{\mathbf{Cob}}_{\dim(M)}^{\partial T}$$

