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Homological stability for families of spaces

Family of spaces: Y1 — Y, —Y, —
Homological stability: H;(Y,) =, H;(Yni1) for n > 2i
Examples:
B(homologically stable family of groups), e.g.
e B(6,) [Nakaoka]
o B(GL,(Z)) [Charney, van der Kallen]
e B(mDiff5(X4,1)) [Harer, Ivanov, Boldsen, Randal-Williams]
e B(Aut(F,)) [Hatcher-Vogtmann]

e Configuration spaces, moduli spaces of manifolds, ...
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Moduli spaces of submanifolds

e M connected (smooth) manifold

e P closed manifold

Emb(P, M)

Define: Confp(M) = Diff(P)

e 11 P—0M
e collar neighbourhood M x [0, 00] — M

—— one-parameter family of embeddings [0, c0) — Emb(M, M)
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e unstable on g
eeg. M=D3and P=S"!

{knots in D3} {2-component links in D3}

\ {linking number = 0}
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confp(M) —— confop(M) —— confsp(M) — - --

e Homologically stable when P = point. [McDuff; Segal]

e True more generally for any closed manifold P such that [P]
dim(P) < 3(dim(M) — 3).

e Also true for P = S! and M = D3 [Kupers]

e Also true for P = (finite set) and dim(M) = 2 [Tran]

e Similar: moduli spaces of connected, oriented subsurfaces

[Cantero-Randal-Williams]
confy, (M) = Emb(3Zy, M)/Diff* (%),

when 71 (M) = 0 and dim(M) > 5.
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X
™ J Diff (P)-equivariant
Emb(P, M)
(liﬁ of Lto X , lift of [0,00) — End(Emb(P, M)) to [0, 00) — End(X))
7Tn
X Emb(P, M)"
U u o
XK Emb(nP, M)
—/Diff (nP) —/Diff(nP)
Conf,p(M; X) Conf,p(M)
U U

conf,, p(M; X) ——  conf,,p(M)
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Parametrised connected sum

e XY manifolds
ee:Z—Xand f: Z—=Y
o p:v. Zvy
- XEY = (X \ Tub(e)) Uy (Y \ Tub(f))

Example

o k: Sl g3

e {framings of k} +— {trivialisations of v}

o standard framing ~— 1, = S! x R?

o f: St~ L(p,q) = (S! x D?) Ue (S x D?)

e vy =St x R?

o S3S{11L(p, q) = result of Dehn surgery of slope £ along k
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If dim(P) < 3(dim(M) — 3) then this is homologically stable.

Proof uses conf, p(M; X;{e}) for

_ Emb(N\”i‘,]R;"o))
X=Bub(T,0) X (B

J M C R®
Emb(P, M)

MnjiPnN = (M\nT)n%JTn(N\T)
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... — LDiff (Mnﬂp nN) — EDiff (M(n LG DN) — -

If dim(P) < 3(dim(M) — 3) then this is homologically stable.

Generalisation:

o Also true for H-symmetric diffeomorphism groups
(under certain conditions on H)

e Example: if T'= P x D¢ then we may take

H = Diff;(P) x SO(c) < Diff(P x S¢71)

e Generalises a theorem of Tillmann

-~ P = point and the ‘usual’ §
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* 9p(A)=A
o ¢|rr-a diffeomorphism blaaray = id

e ¢|a diffeomorphism

e o(U)=U dlu = dla x id under U = A x cone(Q)

P closed manifold

e M connected manifold

o P— 0OM

collar neighbourhood of 9M >—— embedding nP — M
nT C M
OT-manifold N,

tubular neighbourhood of nP

collapse each T' to a point
Q=0T A={1,...,n}
e N, = N,

o Diff%’(N,,) — Diffo"(N,,;1)
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... — DiffT(N,,) — Diff?T (N, 1) — - -

If dim(P) < 3(dim(M) — 3) then this is homologically stable.

In fact this is a subset of the previous corollary. Define:

[ ] N = T
e P— T zero-section
o H={e}
Then: EDiff(M { nT) = DiffT(N,,)

nP
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