Homology of symmetric diffeomorphism groups of manifolds and diffeomorphism groups of manifolds with singularities

Martin Palmer — Université Paris XIII Topology of Manifolds, Lisbon — 29 June 2016

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \gg i$

 $\begin{array}{ll} \mbox{Family of spaces:} & Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots \\ \mbox{Homological stability:} & H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1}) & \mbox{ for } n \geqslant 2i \end{array}$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

•
$$B(\mathfrak{S}_n)$$
 [Nakaoka]

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(\operatorname{GL}_n(\mathbb{Z}))$

[Charney, van der Kallen]

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(\operatorname{GL}_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \text{Diff}_{\partial}(\Sigma_{g,1}))$ [Harer, Ivanov, Boldsen, Randal-Williams]

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(\operatorname{GL}_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \operatorname{Diff}_{\partial}(\Sigma_{g,1}))$
- $B(\operatorname{Aut}(F_n))$

[Harer, Ivanov, Boldsen, Randal-Williams]

[Hatcher-Vogtmann]

• $B(\operatorname{Aut}(F_n))$

Family of spaces: $Y_1 \longrightarrow Y_2 \longrightarrow Y_2 \longrightarrow \cdots$ Homological stability: $H_i(Y_n) \xrightarrow{\cong} H_i(Y_{n+1})$ for $n \ge 2i$ Examples:

B(homologically stable family of groups), e.g.

- $B(\mathfrak{S}_n)$ [Nakaoka]
- $B(\operatorname{GL}_n(\mathbb{Z}))$ [Charney, van der Kallen]
- $B(\pi_0 \text{Diff}_{\partial}(\Sigma_{g,1}))$ [Harer, Ivanov, Boldsen, Randal-Williams]
 - [Hatcher-Vogtmann]
- Configuration spaces, moduli spaces of manifolds, ...

• *M* connected (smooth) manifold

- *M* connected (smooth) manifold
- P closed manifold

- *M* connected (smooth) manifold
- P closed manifold

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

Define:

- *M* connected (smooth) manifold
- P closed manifold

$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

• $\iota \colon P \hookrightarrow \partial M$

Define:

- *M* connected (smooth) manifold
- P closed manifold

Define:
$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0, \infty] \longrightarrow M$

- *M* connected (smooth) manifold
- P closed manifold

Define:
$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0,\infty] \longrightarrow M$

$$t \mapsto \left(\begin{array}{c|c} +t & \text{id} & \stackrel{e_t}{\rightarrow} \\ 0 & \infty & 0 & t & \infty \end{array} \right)$$

- *M* connected (smooth) manifold
- P closed manifold

Define:
$$\operatorname{Conf}_P(M) = \frac{\operatorname{Emb}(P, \mathring{M})}{\operatorname{Diff}(P)}$$

- $\iota \colon P \hookrightarrow \partial M$
- collar neighbourhood $\partial M \times [0, \infty] \longrightarrow M$

$$t \mapsto \left(\begin{array}{c|c} & +t & \text{id} & \stackrel{e_t}{\longrightarrow} & \\ 0 & \infty & 0 & t & \infty \end{array} \right)$$

 \rightarrow one-parameter family of embeddings $[0,\infty) \rightarrow \operatorname{Emb}(M,M)$

• "stabilisation maps"

• "stabilisation maps"

 $\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$

 $(nP = P \sqcup \ldots \sqcup P)$

• "stabilisation maps"

$$\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$$

 $(nP = P \sqcup \ldots \sqcup P)$

• "stabilisation maps"

 $\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$ nP $(nP = P \sqcup \ldots \sqcup P)$ nP ϕ ϕ^{\parallel} \mapsto MM÷ . $0\ 1\ 2\ 3\ \cdots\ \infty$ $0\ 1\ 2\ 3\ \cdots\ \infty$

• "stabilisation maps"

 $\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$ $nP \sqcup P$ $(nP = P \sqcup \ldots \sqcup P)$ $\phi \int \iota$ nP ϕ \mapsto M. $0\ 1\ 2\ 3\ \cdots\ \infty$ $0\ 1\ 2\ 3\ \cdots\ \infty$

• "stabilisation maps"

 $\operatorname{Conf}_{nP}(M) \longrightarrow \operatorname{Conf}_{(n+1)P}(M)$ $nP \sqcup P$ $(nP = P \sqcup \ldots \sqcup P)$ $\phi \bigvee_{\iota} \int_{\iota}$ nP ϕ \mapsto M e_1 MM. $0\ 1\ 2\ 3\ \cdots\ \infty$ $0\ 1\ 2\ 3\ \cdots\ \infty$

 $\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

• unstable on π_0

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

$$\{\text{knots in } D^3\} \longrightarrow \{2\text{-component links in } D^3\}$$

$$\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$$

- unstable on π_0
- e.g. $M = D^3$ and $P = S^1$

 $\operatorname{Conf}_P(M) \longrightarrow \operatorname{Conf}_{2P}(M) \longrightarrow \operatorname{Conf}_{3P}(M) \longrightarrow \cdots$

$$\begin{array}{ccc} \operatorname{Conf}_{P}(M) & \longrightarrow & \operatorname{Conf}_{2P}(M) & \longrightarrow & \operatorname{Conf}_{3P}(M) & \longrightarrow & \cdots \\ & & & & \\ & & & \\ & & & \\ & & & e_{1}(\iota(P)) \end{array}$$

Definition $\operatorname{conf}_{nP}(M) = \frac{\operatorname{path-component} \text{ of } \operatorname{Conf}_{nP}(M) \text{ containing}}{e_1(\iota(P)) \sqcup \ldots \sqcup e_n(\iota(P))}$
Moduli spaces of submanifolds

Definition $\operatorname{conf}_{nP}(M) = \frac{\operatorname{path-component} \text{ of } \operatorname{Conf}_{nP}(M) \text{ containing}}{e_1(\iota(P)) \sqcup \ldots \sqcup e_n(\iota(P))}$

 $\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

• Homologically stable when P = point. [McDuff; Segal]

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold *P* such that [P]

 $\dim(P) \leq \frac{1}{2}(\dim(M) - 3).$

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold *P* such that [P]

 $\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$

• Also true for $P = S^1$ and $M = D^3$ [Kupers]

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold *P* such that [P]

 $\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$

• Also true for
$$P = S^1$$
 and $M = D^3$ [Kupers]

• Also true for P = (finite set) and $\dim(M) = 2$ [Tran]

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold *P* such that [P]

 $\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$

- Also true for $P = S^1$ and $M = D^3$
- Also true for P = (finite set) and $\dim(M) = 2$ [Tran]
- Similar: moduli spaces of connected, oriented subsurfaces

[Cantero-Randal-Williams]

[Kupers]

$$\operatorname{conf}_P(M) \longrightarrow \operatorname{conf}_{2P}(M) \longrightarrow \operatorname{conf}_{3P}(M) \longrightarrow \cdots$$

- Homologically stable when P = point. [McDuff; Segal]
- True more generally for any closed manifold *P* such that [P]

 $\dim(P) \leqslant \frac{1}{2}(\dim(M) - 3).$

- Also true for $P = S^1$ and $M = D^3$
- Also true for P = (finite set) and $\dim(M) = 2$ [Tran]
- Similar: moduli spaces of connected, oriented subsurfaces

[Cantero-Randal-Williams]

 $\operatorname{conf}_{\Sigma_g}(M) = \operatorname{Emb}(\Sigma_g, M) / \operatorname{Diff}^+(\Sigma_g),$

when $\pi_1(M) = 0$ and $\dim(M) \ge 5$.

[Kupers]

• May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$

• May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$

• May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

• e.g.
$$G = \{e\}$$

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

• e.g.
$$G = \{e\}$$

 \longrightarrow moduli space of *n* parametrised copies of *P* in *M*

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

• e.g.
$$G = \{e\}$$

 \rightarrow moduli space of *n* parametrised copies of *P* in *M*

Theorem (P)

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

• e.g.
$$G = \{e\}$$

 \longrightarrow moduli space of *n* parametrised copies of *P* in *M*

Theorem (P)

 $\operatorname{conf}_P(M;X;G) \longrightarrow \operatorname{conf}_{2P}(M;X;G) \longrightarrow \operatorname{conf}_{3P}(M;X;G) \longrightarrow \cdots$

is homologically stable.

- May also replace $\operatorname{Diff}(P)$ by $G \leq \operatorname{Diff}(P)$ correspondingly $\operatorname{Diff}(nP) = \operatorname{Diff}(P) \wr \mathfrak{S}_n \rightsquigarrow G \wr \mathfrak{S}_n$ $\rightarrowtail \operatorname{conf}_{nP}(M; X; G)$
- e.g. $G = \text{Diff}^+(P)$ if P is orientable

 \rightarrowtail moduli space of *n* oriented copies of *P* in *M*

• e.g.
$$G = \{e\}$$

 \rightarrow moduli space of *n* parametrised copies of *P* in *M*

Theorem (P) If dim(P) $\leq \frac{1}{2}(\dim(M) - 3)$ and $G \leq \operatorname{Diff}(P)$ is open or trivial then $\operatorname{conf}_P(M; X; G) \longrightarrow \operatorname{conf}_{2P}(M; X; G) \longrightarrow \operatorname{conf}_{3P}(M; X; G) \longrightarrow \cdots$

is homologically stable.

Connected sum

• X, Y manifolds

Connected sum

- X, Y manifolds
- $x \in X, y \in Y$

Connected sum

- X, Y manifolds
- $x \in X, y \in Y$
- $\phi : T_x X \cong T_y Y$

Connected sum

- X, Y manifolds
- $x \in X, y \in Y$

•
$$\phi: T_x X \cong T_y Y$$

$$\rightarrowtail X \sharp Y = \left(X \smallsetminus \exp(T_x^{\leqslant \varepsilon} X) \right) \cup_{\phi} \left(Y \smallsetminus \exp(T_y^{\leqslant \varepsilon} Y) \right)$$

Parametrised connected sum

• X, Y manifolds

Parametrised connected sum

- X, Y manifolds
- $e \colon Z \hookrightarrow X$ and $f \colon Z \hookrightarrow Y$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$
- $\phi \colon \nu_e \cong \nu_f$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

$$\rightarrowtail X \sharp_Z Y = \left(X \smallsetminus \exp(\nu_e^{\leqslant \varepsilon}) \right) \cup_{\phi} \left(Y \smallsetminus \exp(\nu_f^{\leqslant \varepsilon}) \right)$$
Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \sharp Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

Example

 $\bullet \ k \colon S^1 \hookrightarrow S^3$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $\bullet \ f\colon S^1 \hookrightarrow L(p,q)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $f: S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $f: S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \underset{Z}{\sharp} Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $f: S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$
- $S^3 \underset{S^1}{\sharp} L(p,q)$

Parametrised connected sum

- X, Y manifolds
- $e: Z \hookrightarrow X$ and $f: Z \hookrightarrow Y$

•
$$\phi: \nu_e \cong \nu_f$$

 $\longrightarrow X \sharp_Z Y = (X \smallsetminus \operatorname{Tub}(e)) \cup_{\phi} (Y \smallsetminus \operatorname{Tub}(f))$

- $k \colon S^1 \hookrightarrow S^3$
- {framings of k} \longleftrightarrow {trivialisations of ν_k }
- standard framing $\mapsto \nu_k \cong S^1 \times \mathbb{R}^2$
- $f: S^1 \hookrightarrow L(p,q) = (S^1 \times D^2) \cup_{\frac{p}{q}} (S^1 \times D^2)$
- $\nu_f = S^1 \times \mathbb{R}^2$
- $S^3 \sharp_{S^1} L(p,q) =$ result of Dehn surgery of slope $\frac{p}{q}$ along k

• M, P, etc. as before

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota \colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N)$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota \colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota \colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail M \underset{nP}{\sharp} nN$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota \colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

•
$$\phi|_{\partial M} = \mathrm{id}$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$$

•
$$\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id} \qquad \sigma \in \mathfrak{S}_n$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

Symmetric diffeomorphism ϕ of $M \ddagger nN$:

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$$

•
$$\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id} \qquad \sigma \in \mathfrak{S}_n$$

$$\Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right)$$

- M, P, etc. as before
- N manifold, $P \hookrightarrow N$

•
$$\nu(e_1\iota\colon P \hookrightarrow \mathring{M}) \cong \nu(P \hookrightarrow N) = T$$

$$\rightarrowtail \qquad M \sharp nN \supset n(\partial T) = \{1, \dots, n\} \times \partial T$$

Definition

Symmetric diffeomorphism ϕ of $M \ddagger nN$:

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(\{1,\ldots,n\}\times\partial T)=\{1,\ldots,n\}\times\partial T$$

• $\phi|_{\{1,\dots,n\}\times\partial T} = \sigma \times \mathrm{id} \qquad \sigma \in \mathfrak{S}_n$

$$\Sigma \operatorname{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \operatorname{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right)$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $\operatorname{conf}_{nP}(M; X; \{e\})$ for

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $\operatorname{conf}_{nP}(M; X; \{e\})$ for

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Proof uses $\operatorname{conf}_{nP}(M; X; \{e\})$ for

$$X = \operatorname{Emb}(T, M) \underset{\operatorname{Emb}(\partial T, M)}{\times} \left(\frac{\operatorname{Emb}(N \smallsetminus \mathring{T}, \mathbb{R}^{\infty})}{\operatorname{Diff}_{\partial}(N \smallsetminus \mathring{T})} \right)$$
$$\downarrow \qquad \qquad M \subset \mathbb{R}^{\infty}$$
$$\operatorname{Emb}(P, M)$$
$$M \underset{nP}{\ddagger} nN = \left(M \smallsetminus n\mathring{T} \right) \underset{n\partial T}{\cup} n\left(N \smallsetminus \mathring{T} \right)$$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(n\partial T) = n\partial T$$

•
$$\phi|_{n\partial T} = \sigma \times \mathrm{id}$$
 $\sigma \in \mathfrak{S}_n$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

Symmetric diffeomorphism ϕ of $M \underset{nP}{\ddagger} nN$:

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(n\partial T) = n\partial T$$

• $\phi|_{n\partial T} \in \mathfrak{S}_n \qquad \leqslant \operatorname{Diff}(n\partial T)$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

Symmetric diffeomorphism ϕ of $M \underset{nP}{\ddagger} nN$:

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(n\partial T) = n\partial T$$

• $\phi|_{n\partial T} \in \mathfrak{S}_n \qquad \leqslant \operatorname{Diff}(n\partial T) = \operatorname{Diff}(\partial T) \wr \mathfrak{S}_n$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

Definition (recall)

H-Symmetric diffeomorphism ϕ of $M \ddagger nN$:

•
$$\phi|_{\partial M} = \mathrm{id}$$

•
$$\phi(n\partial T) = n\partial T$$

• $\phi|_{n\partial T} \in H \wr \mathfrak{S}_n \leq \operatorname{Diff}(n\partial T) = \operatorname{Diff}(\partial T) \wr \mathfrak{S}_n \qquad H \leq \operatorname{Diff}(\partial T)$

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M_{nP} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M_{(n+1)P} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

• Also true for *H*-symmetric diffeomorphism groups (under certain conditions on *H*)

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for *H*-symmetric diffeomorphism groups (under certain conditions on *H*)
- Example: if $T = P \times D^c$
Symmetric diffeomorphism groups – homological stability

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for *H*-symmetric diffeomorphism groups (under certain conditions on *H*)
- Example: if $T = P \times D^c$ then we may take

 $H = \text{Diff}_1(P) \times \text{SO}(c) \leqslant \text{Diff}(P \times S^{c-1})$

Symmetric diffeomorphism groups – homological stability

$$\cdots \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

Generalisation:

- Also true for *H*-symmetric diffeomorphism groups (under certain conditions on *H*)
- Example: if $T = P \times D^c$ then we may take

 $H = \text{Diff}_1(P) \times \text{SO}(c) \leqslant \text{Diff}(P \times S^{c-1})$

• Generalises a theorem of Tillmann

$$\longrightarrow$$
 $P = \text{point and the 'usual' }$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component $A = \{1, \dots, k\}, k =$ number of components

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \mathbb{R}^3$ with link, collapse each component $A = \{1, \dots, k\}, k =$ number of components $Q = S^1 \times S^1$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• M =graph with uniform valency v

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• M = graph with uniform valency vA = vertices

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• M = graph with uniform valency v A = vertices $Q = \{1, \dots, v\}$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \bigsqcup_k (S^1 \times D^2)$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \bigsqcup_k (S^1 \times D^2) / \text{identify all boundary tori}$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

• $M = \bigsqcup_k (S^1 \times D^2) \,/ \, \text{identify all boundary tori}$ $A = S^1 \times S^1$

Definition (*Q*-manifold)

- space M
- $A \subset M$ singularity set
 - such that A and $M \smallsetminus A$ are smooth manifolds $(\partial A = \emptyset)$
- manifold Q singularity type
- neighbourhood U of A $U \cong A \times \operatorname{cone}(Q)$

Examples:

•
$$M = \bigsqcup_k (S^1 \times D^2) / \text{identify all boundary tori}$$

 $A = S^1 \times S^1$
 $Q = \{1, \dots, k\}$

•
$$\phi(A) = A$$

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism
- $\phi(U) = U$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times \mathrm{id}$

under $U \cong A \times \operatorname{cone}(Q)$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

• P closed manifold

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$

under $U \cong A \times \operatorname{cone}(Q)$

• $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times \mathrm{id}$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of ∂M

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of nP
Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$

Definition $(\text{Diff}^Q(M) \leq \text{Homeo}(M))$

- $\phi(A) = A$
- $\phi|_{M \searrow A}$ diffeomorphism $\phi|_{\partial(M\smallsetminus A)} = \mathrm{id}$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- M connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point $\longrightarrow \partial T$ -manifold \mathbf{N}_n

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point $\longrightarrow \partial T$ -manifold \mathbf{N}_n

 $Q = \partial T \qquad A = \{1, \dots, n\}$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point $\longrightarrow \partial T$ -manifold \mathbf{N}_n

$$Q = \partial T \qquad A = \{1, \dots, n\}$$

• $\mathbf{N}_n \hookrightarrow \mathbf{N}_{n+1}$

Definition (Diff^Q(M) \leq Homeo(M))

- $\phi(A) = A$
- $\phi|_{M \smallsetminus A}$ diffeomorphism $\phi|_{\partial(M \smallsetminus A)} = id$
- $\phi|_A$ diffeomorphism

•
$$\phi(U) = U$$
 $\phi|_U = \phi|_A \times id$ under $U \cong A \times \operatorname{cone}(Q)$

- P closed manifold
- *M* connected manifold
- $P \hookrightarrow \partial M$
- collar neighbourhood of $\partial M \longrightarrow$ embedding $nP \hookrightarrow \mathring{M}$
- tubular neighbourhood of $nP \longrightarrow nT \subset \mathring{M}$
- collapse each T to a point $\longrightarrow \partial T$ -manifold \mathbf{N}_n

$$Q = \partial T \qquad A = \{1, \dots, n\}$$

- $\mathbf{N}_n \hookrightarrow \mathbf{N}_{n+1}$
- $\operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1})$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If dim $(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P)

If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

•
$$N = T$$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P) If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- N = T
- $P \hookrightarrow T$ zero-section

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P) If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- N = T
- $P \hookrightarrow T$ zero-section
- $H = \{e\}$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

Corollary (P) If $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$ then this is homologically stable.

- N = T
- $P \hookrightarrow T$ zero-section
- $H = \{e\}$

Then:
$$\Sigma \operatorname{Diff}\left(M \underset{nP}{\sharp} nT\right) = \operatorname{Diff}^{\partial T}(\mathbf{N}_n)$$

• Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) - 3)$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - $\rightsquigarrow \quad S^1\text{'s in 3-manifolds}$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$ \rightsquigarrow S¹'s in 3-manifolds
- Treat more complicated path-components

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\text -}{\rm manifolds})$ w.r.t. iterated Dehn surgery

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components
 - \rightsquigarrow e.g. non-trivial links in \mathbb{R}^3
 - \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\text -}{\rm manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\text{-manifolds}})$ w.r.t. iterated Dehn surgery
- More general singularities

$$\rightsquigarrow$$
 e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

 $\cdots \longrightarrow \operatorname{conf}_{nP}(M;X;G) \longrightarrow \operatorname{conf}_{(n+1)P}(M;X;G) \longrightarrow \cdots$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \to \Sigma \mathrm{Diff}\left(M \underset{nP}{\sharp} nN\right) \longrightarrow \Sigma \mathrm{Diff}\left(M \underset{(n+1)P}{\sharp} (n+1)N\right) \to \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

 $\cdots \longrightarrow \operatorname{conf}_{nP}(M;X;G) \longrightarrow \operatorname{conf}_{(n+1)P}(M;X;G) \longrightarrow \cdots$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma Diff(3-manifolds)$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

• P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma Diff(3-manifolds)$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_q}(M)$: $H_*(\text{space of sections of a bundle over } M)$ [C-RW]

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma Diff(3-manifolds)$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_q}(M)$: $H_*(\text{space of sections of a bundle over } M)$ [C-RW]
- scanning map: limiting space \longrightarrow section space

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma Diff(3-manifolds)$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \longrightarrow \operatorname{conf}_{nP}(M; X; G) \longrightarrow \operatorname{conf}_{(n+1)P}(M; X; G) \longrightarrow \cdots$$

- P = point: $H_*(\text{space of sections of a bundle over } M)$ [McDuff]
- $\operatorname{conf}_{\Sigma_q}(M)$: $H_*(\text{space of sections of a bundle over } M)$ [C-RW]
- scanning map: limiting space \longrightarrow section space
- but not a homology equivalence for general P

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\rm -manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma {\rm Diff}(3{\text -}{\rm manifolds})$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

• [Perlmutter]: homotopy type of \mathbf{Cob}_{d+1}^Q

- Improve the codimension condition $\dim(P) \leq \frac{1}{2}(\dim(M) 3)$
 - \rightsquigarrow S^1 's in 3-manifolds
- Treat more complicated path-components

$$\rightsquigarrow$$
 e.g. non-trivial links in \mathbb{R}^3

- \rightsquigarrow coro: stability for $\Sigma Diff(3-manifolds)$ w.r.t. iterated Dehn surgery
- More general singularities

 \rightsquigarrow e.g. $A = \Sigma_g$ instead of $A = \{1, \dots, n\}$

• Q: What is the limiting homology?

$$\cdots \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \longrightarrow \operatorname{Diff}^{\partial T}(\mathbf{N}_{n+1}) \longrightarrow \cdots$$

• [Perlmutter]: homotopy type of \mathbf{Cob}_{d+1}^Q

$$\operatorname{hocolim}_{n \to \infty} \left(B \operatorname{Diff}^{\partial T}(\mathbf{N}_n) \right) \xleftarrow{?} \mathbf{Cob}_{\dim(M)}^{\partial T}$$

Thank you for your attention