Twisted homological stability and homological representations of braid groups Martin Palmer-Anghel // University of Bonn Winter Braids VIII 5–9 February 2018

Configuration spaces

Let M be a connected, smooth, open manifold and $n \ge 1$ an integer. **Definition.** The nth unordered configuration space on M is

 $C_n(\mathcal{M}) = \{(x_1, \ldots, x_n) \in \mathcal{M}^n \mid i \neq j \Rightarrow x_i \neq x_j\}/\mathfrak{S}_n$

Facts. The space $C_n(\mathbb{R}^2)$ is aspherical and $\pi_1(C_n(\mathbb{R}^2)) \cong B_n$, the braid group on n strands. In other words $C_n(\mathbb{R}^2) \simeq K(B_n, 1)$. **Variants.** Instead of quotienting by the symmetric group \mathfrak{S}_n above, we may instead quotient by a subgroup, for example:

	$\{1\}$	ordered configuration space	$\widetilde{C}_{n}(M)$
	An	oriented configuration space	$C_n^+(M)$
(n = km)	$\mathfrak{S}_k \wr \mathfrak{S}_m$	partitioned configuration space	$C_{\mathfrak{m} k}(M$

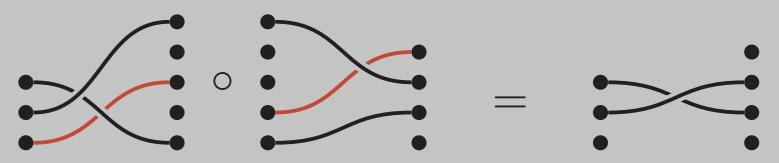
Moduli spaces of submanifolds

Twisted coefficient systems

Setting. Fix M and P as before and let P_1, P_2, P_3, \ldots be pairwise disjoint, parallel copies of P in a collar neighbourhood of the boundary of M. **Notation.** For a set S of positive integers write P_S for the union $\bigcup_{n \in S} P_n$. **Definition.** The *partial braid category* $\mathcal{B}_{P}(\mathcal{M})$ has objects 0, 1, 2, ... and

$$\mathsf{Hom}(\mathfrak{m},\mathfrak{n}) = \coprod_{k,S,T} \{ \mathsf{paths in } C_{kP}(\mathcal{M}) \text{ from } P_S \text{ to } P_T \} / \sim$$

where the disjoint union runs over $k \leq \min(m, n)$ and k-element subsets $S \subseteq \{1, \ldots, m\}$ and $T \subseteq \{1, \ldots, n\}$, and \sim is endpoint-preserving homotopy. Composition is defined as suggested by the following example:



The red strands are erased and the black (composable) strands are glued. **Idea.** Arrows are *partially-defined braids in* $M \times [0, 1]$ with *cross-section* P. **Note.** The automorphism group of n is $\pi_1(C_{nP}(\mathcal{M}))$.

Generalisation. Let $M = interior(\overline{M})$ and $P \subseteq \partial \overline{M}$ closed submanifold. **Examples.** (a) P = point (b) P = finite set of size k (c) $P = S^1 \subseteq \partial D^3$ **Construction.** Fix $n \ge 1$.

 $\mathcal{L}_{\mathfrak{m}|k}(\mathcal{M})$

Emb(nP, M): space of embeddings of n disjoint copies of P into M. Diff(nP): topological group of diffeomorphisms of n disjoint copies of P. $c_0 \in \text{Emb}(nP, M)$: n parallel copies of $P \subseteq \partial M$ in a collar neighbourhood. **Definition.** The nth moduli space of submanifolds of M modelled on P is $C_{nP}(M)$ = the path-component of Emb(nP, M)/Diff(nP) containing $[c_0]$ **Examples.** The examples above define (a) unordered and (b) partitioned configuration spaces. Example (c) is the moduli space of unlinks in \mathbb{R}^3 . **Note.** This may be extended to allow (i) embedded copies of P parametrised modulo a fixed subgroup $G \leq \text{Diff}(P)$ and (ii) labels in a bundle $E \rightarrow \text{Emb}(P, \overline{M})$.

Untwisted homological stability

Let's abbreviate $C_n = C_{nP}(M)$. By default, H_i means *integral* homology. **Observation.** There are natural *stabilisation maps* $C_n \longrightarrow C_{n+1}$. (Idea: push a new copy of P inwards from the boundary along a collar neighbourhood.) **Theorem A.** For any fixed $i \ge 0$ the sequence

 $\cdots \longrightarrow H_i(C_{n-1}) \longrightarrow H_i(C_n) \longrightarrow H_i(C_{n+1}) \longrightarrow \cdots$

Twisted homological stability

Let F: $\mathcal{B}_{P}(\mathcal{M}) \longrightarrow Ab$ be a functor to the category of abelian groups. **Degree.** There are two equivalent definitions of the *degree* of F, using (1) A stabilisation endofunctor $\mathcal{B}_{P}(\mathcal{M}) \longrightarrow \mathcal{B}_{P}(\mathcal{M})$ and recursion. (2) A decomposition of F(n) into *cross-effects*. **Question.** Since $\pi_1(C_{nP}(M))$ acts on F(n) we may ask if the sequence $\cdots \longrightarrow H_i(C_n; F(n)) \longrightarrow H_i(C_{n+1}; F(n+1)) \longrightarrow \cdots$ (2)of twisted homology groups stabilises, where we abbreviate $C_n = C_{nP}(M)$. **Theorem B.** If the sequence (1) stabilises for all $i \ge 0$, and deg(F) $< \infty$,

then the sequence (2) stabilises for all $i \ge 0$. $|P_2|$ In particular, twisted homological stability holds for all four cases on the left.

Corollaries and extensions.

(1)

 $[S_1, M, S_2]$

 $[P_1]$

[PT]

[Ku]

Example. The actions $\pi_1(C_n) \longrightarrow \mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathfrak{S}_n/\mathfrak{S}_{\lambda[n]}]$ for a partition λ assemble into a finite-degree functor $P_{\lambda} \colon \mathcal{B}_{P}(\mathcal{M}) \longrightarrow \operatorname{Vect}_{\mathbb{Q}} \subset \operatorname{Ab}$. **Corollary.** Theorem B for $F = P_{\lambda}$, together with elementary representation theory, implies that the rational cohomology of the ordered analogue C_n of C_n satisfies *representation stability*. (First proved for configuration spaces by [C].) **Extension.** Twisted homological stability for unordered configuration spaces $C_n(M)$ has been extended by [RWW] and [Kr] to all finite-degree functors F: $\mathcal{UB}(\mathcal{M}) \longrightarrow \mathsf{Ab}$ defined on another certain category $\mathcal{UB}(\mathcal{M})$. (There is a functor $\Upsilon: \mathcal{UB}(\mathcal{M}) \longrightarrow \mathcal{B}_{point}(\mathcal{M})$ so that $-\circ \Upsilon$ preserves degree.)

consists of isomorphisms (*stabilises*) for $n \ge 2i$, as long as

• P is a point

- the dimension of P is at most $\frac{1}{2}(\dim(M) 3)$
- P is a finite set and M is a surface

• $P = S^1$ and dim(M) = 3 (the moduli space of unlinks)

Question. Is there a space X (depending on M and P) whose homology is the limiting homology (also called *stable homology*) of the sequence (1)? **Partial answer.** If P is a single point then we may take X to be any path-component of $\Gamma_{c}(TM)$. E.g. if $M = \mathbb{R}^{m}$ this space is $\Omega^{m}S^{m}$. **Open question.** What is X for other manifolds P?

Related results

Some related spaces (or groups) whose homology is also stable as $n \to \infty$.

- The groups $\pi_1(C_{nS^1}(\mathbb{R}^3))$ (string motion groups) [HW] Note that $C_{nS^1}(\mathbb{R}^3)$ is *not* aspherical, in contrast to $C_n(\mathbb{R}^2)$.
- Moduli spaces $Emb(S_n, M)/Diff^+(S_n)$ of embedded surfaces [CRW] of genus n, assuming $\pi_1(\mathcal{M}) = 0$ and dim $(\mathcal{M}) \ge 5$.
- The sequences $C_{2n}(M)$ and $C_{2n+1}(M)$, [CP] when M is *closed* and odd-dimensional.

Note: $C_n(M)$ is usually unstable if M is closed, e.g. $H_1(C_n(S^2)) \cong \mathbb{Z}/(2n-2)$.

More examples — Homological representations of braid groups

Idea. Given a space X with a G-action, construct a G-representation by lifting to a covering X^{φ} of X and taking the induced action on $H_d(-;\mathbb{Z})$. This is an action by $\mathbb{Z}[H]$ -module automorphisms, where $H = \text{Deck}(X^{\varphi})$. **Burau representation.** Take $X = D_n = D^2 \setminus \{n \text{ points}\}$. Its mapping class group is $\pi_0(\text{Diff}(D_n, \partial D_n)) \cong B_n = G$. The quotient $\varphi \colon \pi_1(D_n) = F_n \longrightarrow \mathbb{Z} = H$ determines a covering X^{φ} . The induced B_n -representation (with d = 1) is the *Burau representation*. **Higher homological (Lawrence) representations.** Set $X = C_d(D_n)$. For $d \ge 2$ there is a quotient $\varphi \colon \pi_1(C_d(D_n)) \longrightarrow \mathbb{Z}^2 = H$ defined by: $r: \pi_1(C_d(D_n)) \longrightarrow B_{d+n} \longrightarrow \mathbb{Z}$ $\varphi = \left(\mathsf{t}, \frac{1}{2}(\mathsf{r} - \mathsf{t})\right)$ t: $\pi_1(C_d(D_n)) \longrightarrow B_d \longrightarrow \mathbb{Z}$

References

- F. Cantero, M. Palmer, On homological stability for configuration spaces on closed background [CP] manifolds, 2015.
- [CRW] F. Cantero, O. Randal-Williams, Homological stability for spaces of embedded surfaces, 2017.
- T. Church, Homological stability for configuration spaces of manifolds, 2012.
- [HW A. Hatcher, N. Wahl, Stabilization for mapping class groups of 3-manifolds, 2010.
- M. Krannich, Homological stability of topological moduli spaces, preprint, 2017. [Kr]
- [Ku] A. Kupers, Homological stability for unlinked circles in a 3-manifold, preprint, 2017.
- [M] D. McDuff, Configuration spaces of positive and negative particles, 1975.
- $[P_1]$ M. Palmer, Configuration spaces and homological stability, PhD thesis, 2013.
- [P₂] M. Palmer, Twisted homological stability for configuration spaces, 2018.
- [PT] M. Palmer, T. Tran, Homological stability for partitioned surface braid groups, to appear, 2018.
- [RWV O. Randal-Williams, N. Wahl, Homological stability for automorphism groups, 2017.
- G. Segal, Configuration spaces and iterated loop spaces, 1973. $[S_1]$
- $[S_2]$ G. Segal, The topology of spaces of rational functions, 1979.

The induced B_n -representation is the *Lawrence representation* at *height* d. **Example C.** (Part of joint work in progress with Arthur Soulié.) These assemble into a functor $\mathcal{L}_d: \mathcal{UB}(\mathbb{R}^2) \longrightarrow \mathbb{Z}[\mathbb{Z}^2]$ -mod of degree d. Thus the Lawrence representations are homologically stable.

Further directions / ongoing projects

• What is the stable homology of $C_{nP}(M)$ when P is not a point? • What is the stable *twisted* homology of $C_n(M)$? (... of $C_{nP}(M)$?) • Weaken the dimension restriction on P in Theorem A to allow, e.g., moduli spaces of unlinked copies of a *non-trivial* knot in a 3-manifold. • Construct interesting twisted coefficient systems on $\mathcal{B}_{P}(\mathcal{M})$ or $\mathcal{UB}(\mathcal{M})$ • when P = point (or a finite set) and M is a surface. • when $P = S^1$ and M is a 3-manifold.

