Stability and stable homology for moduli spaces of disconnected submanifolds

Martin Palmer-Anghel Universität Bonn

PCMI, Utah, 12 July 2019

Definition

Fix a choice of

$$e: L \longrightarrow \partial \overline{M}$$

where

- *L* is a closed, connected, smooth manifold,
- \overline{M} is a connected, smooth manifold. Write $M = int(\overline{M})$.

Then

$$C_{nL}(M) = \text{path-component of} \quad \frac{\text{Emb}\left(\bigsqcup_{n}L, M\right)}{\text{Diff}\left(\bigsqcup_{n}L\right)}$$

containing [*ne*]

where

• the embedding *ne* is *n* parallel copies of *e* in a collar neighbourhood of $\partial \overline{M}$.

Moduli space of n unlinked copies of L in M.

Examples

- Configuration spaces (*L* = point)
- Space of *n*-component unlinks in \mathbb{R}^3

```
(e \colon L = S^1 \hookrightarrow \partial \mathbb{B}^3)
```

Stability and stable homology for moduli spaces of disconnected submanifolds

Martin Palmer-Anghel Universität Bonn

PCMI, Utah, 12 July 2019

Remark

• $\pi_1 C_{nL}(M) = motion \ groups \ of \ (L \hookrightarrow \partial \overline{M})$

 $\begin{array}{ll} (a) \bullet (\mathsf{point} \hookrightarrow \partial S) & \rightsquigarrow & \mathsf{surface \ braid \ groups} \\ (b) \bullet (S^1 \hookrightarrow \mathbb{B}^3) & \rightsquigarrow & \mathsf{extended \ loop-braid \ groups} \end{array}$

Aim Understand $H_*(C_{nL}(M))$... in a stable range.

Remark

This is typically not the same as $H_*(B\pi_1 C_{nL}(M))$.

- In example (a), it is the same if $\mathbb{S}^2 \neq S \neq \mathbb{RP}^2$. [Fadell-Neuwirth]
- In example (b), it is not the same:
 - $H_i(\text{loop braid groups}) \neq 0$ for infinitely many *i* since the loop braid groups contain torsion

 $H_i(C_{nS^1}(\mathbb{R}^3)) = 0 \text{ for all } i > 6n$ since $C_{nS^1}(\mathbb{R}^3) \simeq 6n$ -dimensional manifold [Brendle-Hatcher]

Definition

Fix a choice of

$$e: L \longrightarrow \partial \bar{M}$$

where

- *L* is a closed, connected, smooth manifold,
- \overline{M} is a connected, smooth manifold. Write $M = int(\overline{M})$.

Then

$$C_{nL}(M) = \text{path-component of} \quad \frac{\text{Emb}\left(\bigsqcup_{n}L, M\right)}{\text{Diff}\left(\bigsqcup_{n}L\right)}$$

containing [*ne*]

where

• the embedding *ne* is *n* parallel copies of *e* in a collar neighbourhood of $\partial \overline{M}$.

Moduli space of n unlinked copies of L in M.

Examples

- Configuration spaces (*L* = point)
- Space of *n*-component unlinks in \mathbb{R}^3 (*e*: $L = S^1 \longrightarrow \partial \mathbb{B}^3$)

Consider $n \longrightarrow \infty$

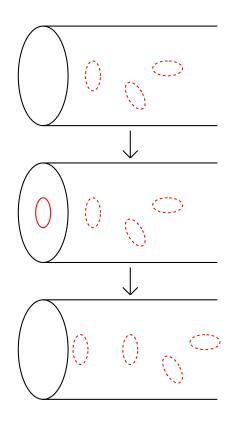
Definition (*Stabilisation maps*)

 $s: C_{nL}(M) \longrightarrow C_{(n+1)L}(M)$

• Adjoin [e] to the configuration

 $\rightsquigarrow n+1$ copies of L in \overline{M}

• Push new configuration inwards along collar nbhd $\rightsquigarrow n+1$ copies of L in M



Remark

- $\pi_1 C_{nL}(M) = motion \ groups \ of \ (L \hookrightarrow \partial \overline{M})$
- (a) (point $\hookrightarrow \partial S$) \rightsquigarrow surface braid groups (b) • ($S^1 \hookrightarrow \mathbb{B}^3$) \rightsquigarrow extended loop-braid groups

Aim Understand $H_*(C_{nL}(M))$... in a stable range.

Remark

This is typically not the same as $H_*(B\pi_1C_{nL}(M))$.

- In example (a), it is the same if $\mathbb{S}^2 \neq S \neq \mathbb{RP}^2$. [Fadell-Neuwirth]
- In example (b), it is not the same:

 $H_i(\text{loop braid groups}) \neq 0$ for infinitely many *i* since the loop braid groups contain torsion

 $H_i(C_{nS^1}(\mathbb{R}^3)) = 0$ for all i > 6nsince $C_{nS^1}(\mathbb{R}^3) \simeq 6n$ -dimensional manifold [Brendle-Hatcher]

When L = point:

Theorem (McDuff, Segal)

- (a) The map s induces isomorphisms on homology up to degree n/2.
- (b) Construct "computable" spaces X(M) such that

 $\lim_{n\to\infty}H_*(C_n(M)) \cong H_*(X(M)).$

For example: $X(\mathbb{R}^d) = \Omega^d_{\bullet} S^d$ Where $\Omega^d_{\bullet}(-) =$ one path-component of $Map_*(S^d, -)$.

When $\dim(L) > 0$:

Theorems

- In the case of C_{nS1}(ℝ³), the map s induces isomorphisms on homology up to degree n/2.
 [Kupers, 2013]
- If dim(L) ≤ ¹/₂(dim(M) 3), the map s induces isomorphisms on homology up to degree n/2.
 [P., 2018]

Remark For the extended loop-braid groups LB_n , we also have:

- Homological stability for LB_n [Hatcher-Wahl, 2010]
- Calculation of integral homology of LB_n [Griffin, 2013]

Consider $n \longrightarrow \infty$

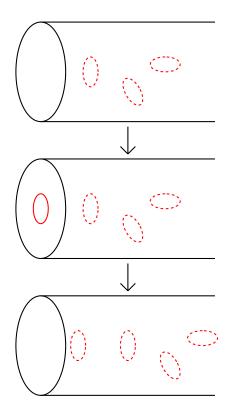
Definition (*Stabilisation maps*)

$$s: C_{nL}(M) \longrightarrow C_{(n+1)L}(M)$$

• Adjoin [e] to the configuration

 $\rightsquigarrow n+1$ copies of *L* in \overline{M}

• Push new configuration inwards along collar nbhd $\rightsquigarrow n+1$ copies of L in M



Sketch of proof

General strategy:

- Build a simplicial complex X_n of "ways to undo the map $s: C_{nL}(M) \to C_{(n+1)L}(M)$ "
- Prove that X_n is *highly-connected* $(\pi_{\leq n/2} = 0)$

Homological stability machine [Quillen,]

Here is a "toy model" of the complex X_n in our case:

- Fix $f \in \operatorname{Emb}(\bigsqcup_n L, M)$
- Vertices:

$$\begin{cases} e \colon L \times [0,1] \longleftrightarrow \bar{M} & e(L \times \{0\}) \subseteq \partial \bar{M} \\ e(L \times \{1\}) \subseteq f\left(\bigsqcup_{n} L \right) \end{cases} \end{cases}$$

A set {e₀,..., e_p} spans a p-simplex if and only if the images e_i(L × [0, 1)) are pairwise disjoint.

This is *contractible*:

- Any map $S^i o X_n$ lands in span_{X_n} (e_1, \ldots, e_k)
- Transversality & 2.dim $(L \times [0, 1]) < \dim(M) \Rightarrow$

When L = point:

Theorem (McDuff, Segal)

- (a) The map s induces isomorphisms on homology up to degree n/2.
- (b) Construct "computable" spaces X(M) such that $\lim_{n \to \infty} H_*(C_n(M)) \cong H_*(X(M)).$

For example: $X(\mathbb{R}^d) = \Omega^d_{\bullet}S^d$ Where $\Omega^d_{\bullet}(-) =$ one path-component of $Map_*(S^d, -)$.

When $\dim(L) > 0$:

Theorems

- In the case of C_{nS1}(ℝ³), the map s induces isomorphisms on homology up to degree n/2. [Kupers, 2013]
- If dim(L) ≤ ¹/₂(dim(M) 3), the map s induces isomorphisms on homology up to degree n/2.
 [P., 2018]

Remark For the extended loop-braid groups LB_n , we also have:

- Homological stability for *LB_n* [Hatcher-Wahl, 2010]
- Calculation of integral homology of LB_n [Griffin, 2013]

Manifolds with conical singularities

Fix a closed, smooth (d - 1)-manifold P and let $Cone(P) = (P \times [0, \infty)) / (P \times \{0\})$

Definition (Manifold with conical P-singularities)

- space M
- discrete subset $A \subset M$ (set of singularities)
- smooth *d*-dimensional atlas on $M \smallsetminus A$
- ∀a ∈ A: germ of (U_a, u_a), where

 U_a is an open neighbourhood of a in M
 u_a: U_a → Cone(P) is a homeomorphism
 taking a to the tip of the cone,
 restricting to a diffeomorphism
 U_a \ {a} ≅ P × (0,∞)

Definition $(\text{Diff}^{P}(M))$

Homeomorphisms $\varphi \colon M \to M$ that

- fix A setwise
- act on $M \smallsetminus A$ by a diffeomorphism
- act on $\partial(M \smallsetminus A)$ by the identity
- act on ∐{U_a | a ∈ A} by Diff(P)^A ⋊ 𝔅_A (φ acts "cylindrically" near each singularity)

Example

• Graph of uniform valency $v \qquad P = \{1, 2, \dots, v\}$

Sketch of proof

General strategy:

- Build a simplicial complex X_n of "ways to undo the map $s: C_{nL}(M) \to C_{(n+1)L}(M)$ "
- Prove that X_n is *highly-connected* $(\pi_{\leq n/2} = 0)$

Homological stability machine [Quillen,]

Here is a "toy model" of the complex X_n in our case:

- Fix $f \in \operatorname{Emb}(\sqcup L, M)$
- Vertices:

$$\left\{ e \colon L \times [0,1] \longleftrightarrow \bar{M} \mid \begin{array}{c} e(L \times \{0\}) \subseteq \partial \bar{M} \\ e(L \times \{1\}) \subseteq f\left(\bigsqcup_{n} L \right) \end{array} \right\}$$

• A set $\{e_0, \ldots, e_p\}$ spans a *p*-simplex if and only if the images $e_i(L \times [0, 1))$ are pairwise disjoint.

This is *contractible*:

- Any map $S^i \to X_n$ lands in span_{X_n}(e_1, \ldots, e_k)
- Transversality & 2.dim $(L \times [0, 1]) < \dim(M) \Rightarrow$

More examples

For a submanifold $N \subset M$, let

 $M/\!\!/N$ = result of collapsing each component of N to a point

- $\mathbb{R}^3 /\!\!/ \mathcal{L}$ for a link \mathcal{L} $P = S^1 \times S^1$
- $M/\!\!/ c_n$ for a point $c_n \in C_{nL}(M)$ $P = \partial T$ where $T = \text{Tub}(L \hookrightarrow M)$

Theorem (P., 2018) $H_i(B\text{Diff}^{\partial T}(M/\!\!/ c_n))$ stabilises as $n \to \infty$ as long as dim $(L) \leq \frac{1}{2}(\dim(M) - 3)$.

Sketch of proof ... that $BDiff_{\partial}(M, c_n)$ stabilises $C_{nL}(M) = \text{path-comp}^t \text{ of } Emb(c_n, M)/Diff(c_n)$ $= \text{orbit of } Emb(c_n, M)/Diff(c_n) \frown Diff_{\partial}(M)$ $\stackrel{\frown}{\longrightarrow} \text{ isotopy extension theorem}$ $\cong \text{Diff}_{\partial}(M)/\text{Diff}_{\partial}(M, c_n)$ $\stackrel{\frown}{\longrightarrow} \text{ topological orbit-stabiliser theorem}$ $\cong \text{ fibre of } \Phi$

$Emb(M,\mathbb{R}^\infty)$	Φ	$Emb(M,\mathbb{R}^\infty)$
$\operatorname{Diff}_{\partial}(M, c_n)$	· · · · · · · · · · · · · · · · · · ·	$Diff_{\partial}(M)$
II		II
$B Diff_{\partial}(M, c_n)$		$BDiff_\partial(M)$

Manifolds with conical singularities

Fix a closed, smooth (d - 1)-manifold P and let $Cone(P) = (P \times [0, \infty)) / (P \times \{0\})$

Definition (Manifold with conical P-singularities)

- space M
- discrete subset $A \subset M$ (set of singularities)
- smooth *d*-dimensional atlas on $M \smallsetminus A$
- ∀a ∈ A: germ of (U_a, u_a), where

 U_a is an open neighbourhood of a in M
 u_a: U_a → Cone(P) is a homeomorphism
 taking a to the tip of the cone,
 restricting to a diffeomorphism
 U_a \ {a} ≅ P × (0,∞)

Definition $(\text{Diff}^{P}(M))$

Homeomorphisms $\varphi \colon M \to M$ that

- fix A setwise
- act on $M \smallsetminus A$ by a diffeomorphism
- act on $\partial(M \smallsetminus A)$ by the identity
- act on ∐{U_a | a ∈ A} by Diff(P)^A ⋊ 𝔅_A
 (φ acts "cylindrically" near each singularity)

Example

• Graph of uniform valency $v = \{1, 2, \dots, v\}$

Restrict to the case of $M = \mathbb{R}^d$ and write

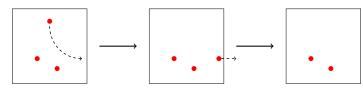
$$C_{\infty L}(\mathbb{R}^d) = \operatorname{colim}_{n \to \infty} C_{nL}(\mathbb{R}^d)$$

When L = point: McDuff-Segal prove that

$$H_*(C_\infty(\mathbb{R}^d)) \cong H_*(\Omega^d_{\bullet}S^d).$$

(1) They construct a homology-equivalence:

$$oldsymbol{c}\simoldsymbol{d}\ \Leftrightarrow\ oldsymbol{c}\cap(0,1)^d=oldsymbol{d}\cap(0,1)^d$$



(2) Geometric argument:

$$Z(\mathbb{R}^d) \simeq (\mathbb{R}^d)^+ = S^d$$

More examples

For a submanifold $N \subset M$, let

 $M/\!/N$ = result of collapsing each component of N to a point

- $\mathbb{R}^3/\!\!/\mathcal{L}$ for a link \mathcal{L} $P = S^1 \times S^1$
- $M /\!\!/ c_n$ for a point $c_n \in C_{nL}(M)$ $P = \partial T$ where $T = \operatorname{Tub}(L \hookrightarrow M)$

Theorem (P., 2018) $H_i(B\text{Diff}^{\partial T}(M/\!\!/ c_n))$ stabilises as $n \to \infty$ as long as dim $(L) \leq \frac{1}{2}(\dim(M) - 3).$

Sketch of proof ... that $BDiff_{\partial}(M, c_n)$ stabilises

$$C_{nL}(M) = \text{path-comp}^{t} \text{ of } \text{Emb}(c_{n}, M)/\text{Diff}(c_{n})$$

$$= \text{orbit of } \text{Emb}(c_{n}, M)/\text{Diff}(c_{n}) \curvearrowleft \text{Diff}_{\partial}(M)$$

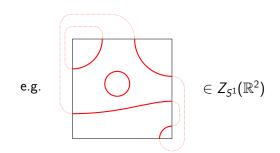
$$\stackrel{(M)}{=} \text{Diff}_{\partial}(M)/\text{Diff}_{\partial}(M, c_{n})$$

 \cong fibre of ϕ

1

$Emb(M,\mathbb{R}^\infty)$	ϕ	Emb (M, \mathbb{R}^{∞})
$\operatorname{Diff}_{\partial}(M, c_n)$		\rightarrow Diff _{∂} (<i>M</i>)
		II
B Diff $_{\partial}(M, c_n)$		$BDiff_\partial(M)$

 $\boldsymbol{c} \sim \boldsymbol{d} \iff \boldsymbol{c} \cap (0,1)^d = \boldsymbol{d} \cap (0,1)^d$



Geometric argument:

$$egin{aligned} &Z_L(\mathbb{R}^d)\simeq \mathcal{T}_{\dim(L),\mathbb{R}^d}\ &=ig\{ ext{affine dim}(L) ext{-planes in }\mathbb{R}^dig\}^+ \end{aligned}$$

Counterexample: in the case $L = S^1 \hookrightarrow \partial \mathbb{B}^3$

•
$$H_1(\Omega^3_{\bullet}T_{1,\mathbb{R}^3}) \otimes \mathbb{Q} \cong \mathbb{Q}$$

• $H_1(\mathcal{C}_{nS^1}(\mathbb{R}^3)) \cong (\mathbb{Z}/2\mathbb{Z})^3$ (for $n \ge 2$)
 $= (\mathbb{Z}/2\mathbb{Z}) \left\{ \bigcirc \cdots \bigcirc \ , \ \bigoplus \ , \ \bigcirc \ \bigcirc \ \rangle \right\}$

[Brendle-Hatcher, 2010]

Consider $n = \infty$

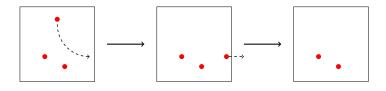
Restrict to the case of $M = \mathbb{R}^d$ and write

$$C_{\infty L}(\mathbb{R}^{a}) = \operatorname{colim}_{\substack{n \to \infty \\ s}} C_{nL}(\mathbb{R}^{a})$$

When L = point: McDuff-Segal prove that $H_*(C_{\infty}(\mathbb{R}^d)) \cong H_*(\Omega^d_{\bullet}S^d).$

(1) They construct a homology-equivalence:

$$\boldsymbol{c} \sim \boldsymbol{d} \ \Leftrightarrow \ \boldsymbol{c} \cap (0,1)^d = \boldsymbol{d} \cap (0,1)^d$$



(2) Geometric argument:

$$Z(\mathbb{R}^d)\simeq (\mathbb{R}^d)^+=S^d$$

New idea:

Definition

 $Z_L(\mathbb{R}^d) \supseteq \hat{Z}_L(\mathbb{R}^d)$

Those submanifolds of \mathbf{I}^d that are disjoint from the union of orthogonal hyperplanes

$$\mathbf{I}^{i-1} \times \{t_i\} \times \mathbf{I}^{d-i}$$

for some $t_1, \ldots, t_d \in \mathbf{I} = (0, 1)$.

Theorem (P., 2019 (*in progress*)) *There is a* (*twisted-*)*homology-equivalence*

$$C_{\infty L}(\mathbb{R}^d) \longrightarrow \Omega^d_{\bullet} \hat{Z}_L(\mathbb{R}^d).$$

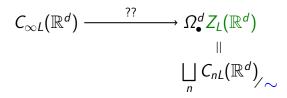
Remark

In general, $\hat{Z}_{L}(\mathbb{R}^{d}) \not\simeq T_{\dim(L),\mathbb{R}^{d}}$

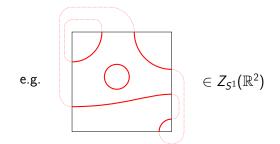
$$\hat{Z}_{\mathsf{point}}(\mathbb{R}^d) = Z_{\mathsf{point}}(\mathbb{R}^d) \simeq T_{0,\mathbb{R}^d} = S^d$$

 $\hat{Z}_{S^1}(\mathbb{R}^3)
ot \simeq T_{1,\mathbb{R}^3}$

Guess for dim(L) > 0:



$$\boldsymbol{c} \sim \boldsymbol{d} \iff \boldsymbol{c} \cap (0,1)^d = \boldsymbol{d} \cap (0,1)^d$$



Geometric argument:

$$\begin{aligned} Z_{L}(\mathbb{R}^{d}) &\simeq T_{\dim(L),\mathbb{R}^{d}} \\ &= \left\{ \text{affine dim}(L) \text{-planes in } \mathbb{R}^{d} \right\}^{+} \end{aligned}$$

Counterexample: in the case $L = S^1 \hookrightarrow \partial \mathbb{B}^3$

• $H_1(\Omega^3_{\bullet}T_{1,\mathbb{R}^3})\otimes\mathbb{Q}\cong\mathbb{Q}$

[Brendle-Hatcher, 2010]

New idea:

Definition

 $Z_L(\mathbb{R}^d) \supseteq \hat{Z}_L(\mathbb{R}^d)$

Those submanifolds of \mathbf{I}^d that are disjoint from the *union of orthogonal hyperplanes*

$$\mathbf{I}^{i-1} \times \{t_i\} \times \mathbf{I}^{d-i}$$

for some $t_1, \ldots, t_d \in \mathbf{I} = (0, 1)$.

Theorem (P., 2019 (*in progress*)) There is a (twisted-)homology-equivalence

 $C_{\infty L}(\mathbb{R}^d) \longrightarrow \Omega^d_{\bullet} \hat{Z}_L(\mathbb{R}^d).$

Remark In general, $\hat{Z}_{L}(\mathbb{R}^{d}) \not\simeq T_{\dim(L),\mathbb{R}^{d}}$

$$\hat{Z}_{\mathsf{point}}(\mathbb{R}^d) = Z_{\mathsf{point}}(\mathbb{R}^d) \simeq T_{0,\mathbb{R}^d} = S^d$$

 $\hat{Z}_{S^1}(\mathbb{R}^3) \not\simeq T_{1,\mathbb{R}^3}$

Thank you for your attention!