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Moduli spaces CnL(M) n → ∞ Singularities n = ∞

Definition
Fix a choice of

e : L �−→ ∂M

where
• L is a closed, connected, smooth manifold,
• M is a connected, smooth manifold.

Write M = int(M).
Then

CnL(M) = path-component of
Emb

�
�
n
L, M

�

Diff
�
�
n
L
�

containing [ne]

where
• the embedding ne is n parallel copies of e in a

collar neighbourhood of ∂M .
Moduli space of n unlinked copies of L in M.

Examples
• Configuration spaces (L = point)
• Space of n-component unlinks in R3

(e : L = S1 �−→ ∂B3)
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Moduli spaces CnL(M) n → ∞ Singularities n = ∞

Remark
• π1CnL(M) = motion groups of (L �→ ∂M)

(a) • (point �→ ∂S) � surface braid groups
(b) • (S1 �→ B3) � extended loop-braid groups

Aim Understand H∗(CnL(M)) ... in a stable range.

Remark
This is typically not the same as H∗(Bπ1CnL(M)).

• In example (a), it is the same if S2 �= S �= RP2.
[Fadell-Neuwirth]

• In example (b), it is not the same:

Hi(loop braid groups) �= 0 for infinitely many i
since the loop braid groups contain torsion

Hi(CnS1(R3)) = 0 for all i > 6n
since CnS1(R3) � 6n-dimensional manifold

[Brendle-Hatcher]
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Moduli spaces CnL(M) n → ∞ Singularities n = ∞

Consider n −→ ∞
Definition (Stabilisation maps)

s : CnL(M) −→ C(n+1)L(M)
• Adjoin [e] to the configuration

� n + 1 copies of L in M
• Push new configuration inwards along collar nbhd

� n + 1 copies of L in M
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When L = point:
Theorem (McDuff, Segal)

(a) The map s induces isomorphisms on homology
up to degree n/2.

(b) Construct “computable” spaces X (M) such that
lim

n→∞
H∗(Cn(M)) ∼= H∗(X (M)).

For example: X (Rd) = Ωd
• Sd

Where Ωd
• (−) = one path-component of Map∗(Sd ,−).

When dim(L) > 0:
Theorems

• In the case of CnS1(R3), the map s induces
isomorphisms on homology up to degree n/2.

[Kupers, 2013]

• If dim(L) � 1
2(dim(M)− 3), the map s induces

isomorphisms on homology up to degree n/2.
[P., 2018]

Remark For the extended loop-braid groups LBn, we also have:
• Homological stability for LBn [Hatcher-Wahl, 2010]
• Calculation of integral homology of LBn [Griffin, 2013]
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Sketch of proof
General strategy:

• Build a simplicial complex Xn of
“ways to undo the map s : CnL(M) → C(n+1)L(M)”

• Prove that Xn is highly-connected (π�n/2 = 0)

Homological stability machine
[Quillen, .........] �

Here is a “toy model” of the complex Xn in our case:
• Fix f ∈ Emb(�

n
L, M)

• Vertices:�
e : L × [0, 1] �−→ M

�����
e(L × {0}) ⊆ ∂M
e(L × {1}) ⊆ f

�
�
n
L
�
�

• A set {e0, . . . , ep} spans a p-simplex if and only
if the images ei(L× [0, 1)) are pairwise disjoint.

This is contractible:
• Any map S i → Xn lands in spanXn(e1, . . . , ek)
• Transversality & 2.dim(L × [0, 1]) < dim(M) ⇒

D i+1

S i

Cone(spanXn(e1, . . . , ek))

XnspanXn(e1, . . . , ek , ē)

⊂ ∼ =

⊂
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Manifolds with conical singularities

Fix a closed, smooth (d − 1)-manifold P and let
Cone(P) = (P × [0,∞)) / (P × {0})

Definition (Manifold with conical P-singularities)
• space M
• discrete subset A ⊂ M (set of singularities)
• smooth d -dimensional atlas on M � A
• ∀a ∈ A: germ of (Ua, ua), where

◦ Ua is an open neighbourhood of a in M
◦ ua : Ua → Cone(P) is a homeomorphism

◦ taking a to the tip of the cone,
◦ restricting to a diffeomorphism

Ua � {a} ∼= P × (0,∞)

Definition (DiffP(M))
Homeomorphisms ϕ : M → M that

• fix A setwise
• act on M � A by a diffeomorphism
• act on ∂(M � A) by the identity
• act on

�{Ua | a ∈ A} by Diff(P)A �SA
(ϕ acts “cylindrically” near each singularity)

Example
• Graph of uniform valency v P = {1, 2, . . . , v}
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⊂ ∼ =

⊂



Moduli spaces CnL(M) n → ∞ Singularities n = ∞

More examples
For a submanifold N ⊂ M , let
M//N = result of collapsing each component of N to a point

• R3//L for a link L P = S1 × S1

• M//cn for a point cn ∈ CnL(M) P = ∂T
where T = Tub(L �→ M)

Theorem (P., 2018)
Hi(BDiff∂T (M//cn)) stabilises as n → ∞

as long as dim(L) � 1
2(dim(M) − 3).

Sketch of proof ... that BDiff∂(M , cn) stabilises

CnL(M) = path-compt of Emb(cn, M)/Diff(cn)
= orbit of Emb(cn, M)/Diff(cn) � Diff∂(M)

isotopy extension theorem
∼= Diff∂(M)/Diff∂(M , cn)

topological orbit-stabiliser theorem
∼= fibre of Φ

Emb(M ,R∞)
Diff∂(M , cn)

Emb(M ,R∞)
Diff∂(M)

Φ

BDiff∂(M , cn) BDiff∂(M)

= =
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Consider n = ∞

Restrict to the case of M = Rd and write

C∞L(Rd) = colim
n→s ∞

CnL(Rd)

When L = point: McDuff-Segal prove that

H∗(C∞(Rd)) ∼= H∗(Ωd
• Sd).

(1) They construct a homology-equivalence:

C∞(Rd) Ωd
• Z (Rd)

H∗∼=

=�
n

Cn(Rd)

�∼

c ∼ d ⇔ c ∩ (0, 1)d = d ∩ (0, 1)d

(2) Geometric argument:

Z (Rd) � (Rd)+ = Sd
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Guess for dim(L) > 0:

C∞L(Rd) Ωd
• ZL(Rd)??

=�
n

CnL(Rd)

�∼

c ∼ d ⇔ c ∩ (0, 1)d = d ∩ (0, 1)d

∈ ZS1(R2)e.g.

Geometric argument:

ZL(Rd) � Tdim(L),Rd

=
�

affine dim(L)-planes in Rd�+

Counterexample: in the case L = S1 �−→ ∂B3

• H1
�
Ω3
•T1,R3

�
⊗Q ∼= Q

• H1
�
CnS1(R3)

� ∼= (Z/2Z)3 (for n � 2)

= (Z/2Z)
�

, ,
�

[Brendle-Hatcher, 2010]
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New idea:

Definition
ZL(Rd) ⊇ ẐL(Rd)

Those submanifolds of Id that are disjoint from the
union of orthogonal hyperplanes

Ii−1 × {ti} × Id−i

for some t1, . . . , td ∈ I = (0, 1).

Theorem (P., 2019 (in progress))
There is a (twisted-)homology-equivalence

C∞L(Rd) −→ Ωd
• ẐL(Rd).

Remark
In general, ẐL(Rd) �� Tdim(L),Rd

Ẑpoint(Rd) = Zpoint(Rd) � T0,Rd = Sd

ẐS1(R3) �� T1,R3
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Thank you for your attention!
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