On the different flavours of

Lawrence-Bigelow representations

Joint with Cristina Anghel

arXiv: 2011.02388

Moscow-Beijing Topology seminar 2 December 2020

Motivation

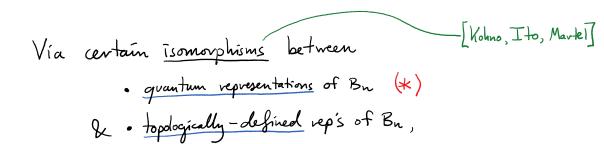
(relevance of the representations that we study)

Quantum invariants

(e.g. H= Ug (sl(2)) V= Verma module)

Quantum group \mathcal{H} \longrightarrow \mathbb{B}_n \longrightarrow \mathbb{A}_n \longrightarrow \mathbb{A}_n \longrightarrow \mathbb{A}_n Witten - Reshetikhin - (algebraic)
- Turaev Invariants of links in R3 and of 3-manifolds

le.g. coloured Jones poly. coloured Alexander poly.)



several topological interpretations of certain WRT invariants have been found.

[Ito, Anghel, Martel]

2 Linearity

• The (reduced) Buran representation of Bn is

faithful (i.e. injective) for
$$n \le 3$$
 (easy)

grantfaithful for $n \ge 5$ [Moody,
Long-Paton,
Bigelow]

· The "Lawrence - Kvammer - Bigglow" (LKB) representation of Bn is

faithful for all n [Bigalow, Kvammer]

They are also finite-dimensional,
hence Bn is linear for all n.

isomorphic to a subgrap of

GL_K(F), F Sield,

· Linearity is open for almost all other MCGs of surfaces & surface braid groups.

 $\begin{array}{l} \text{($\pm$is known for} \\ \cdot \text{ Mod (Ξ_1)} \cong \text{SL}_2(\mathbb{Z}) \leqslant \text{GL}_2(\mathbb{C}) \\ \cdot \text{ Mod (Ξ_2)} \leqslant \text{GL}_{64}(\mathbb{C}) \quad \text{[Bigglow-Budney 'O1]} \end{array}$

Constructions

Lawrence - Bigelow representations

. (reduced) Buran repr. [Buran'35]

$$\sigma_{i} \longmapsto \begin{array}{c} \boxed{I} \\ 0 \times 0 \\ 0 & 1 \end{array} \in GL_{n-1} \left(\mathbb{Z} \left[x^{\pm 1} \right] \right)$$

· [Lawrence 90, Bigelow '00/'04]

$$B_{n} \longrightarrow H_{k}\left(C_{k}\left(D^{2} \cdot n\right); \mathbb{Z}\left[x^{\pm 1}, d^{\pm 1}\right]\right) \qquad (k72)$$

$$H_{1}\left(D^{2} \cdot n; \mathbb{Z}\left[x^{\pm 1}\right]\right) \qquad (k=1)$$
or H_{k}^{ff} , $H_{k}\left(-, \delta\right)$, $H_{k}\left(\text{covering}\right)$,...

General setting (homological repr's of MCGs)

E surface (connected, compact, orientable)

 $\partial \Sigma = \partial_{out} \cup \partial_{in}$ partition into two non- ϕ submanifolds: $\partial_{out} \wedge \partial_{in} = \partial \partial_{out} = \partial \partial_{in}$.

 $\underline{\text{Def}} \qquad \Gamma := \pi_{o} \left(\text{Diff} \left(\Sigma, \partial_{\text{out}} \right) \right)$ restriction to ∂_{out} is the identity

$$\frac{\text{Def}}{M_{\text{in}}} = C_{\kappa} (\Sigma \setminus \partial_{\text{out}})$$

$$M_{\text{out}} = C_{\kappa} (\Sigma \setminus \partial_{\text{in}})$$

$$Connected, onientable 2k - manifolds$$

Assume that
$$L$$
 is invariant under $Diff(\Sigma, \partial_{out})$

$$T_{i}C_{k}(\Sigma)$$

$$Diff(\Sigma, \partial_{out}) \ni \varphi$$

$$T_{i}C_{k}(\Sigma)$$

Observation

Pacts on
$$H_{\kappa}(M_{in}; L)$$
 $H_{\kappa}(M_{out}; L)$ $H_{\kappa}^{\text{ef}}(M_{in}; L)$ $H_{\kappa}^{\text{ef}}(M_{out}; L)$ $H_{\kappa}(M_{out}, \partial M_{out}; L)$ $H_{\kappa}(M_{out}, \partial M_{out}; L)$ $H_{\kappa}(M_{out}, \partial M_{out}; L)$ $M_{\kappa}(M_{out}, \partial M_{out}; L)$

One more flavour

$$\hat{C}_{\kappa}(\Sigma)$$
 regular covering with $\mathbb{Z}[\hat{C}_{\kappa}(\Sigma)]$ rank-1 local system $\mathbb{Z}[\hat{C}_{\kappa}(\Sigma)]$ over $\mathbb{Z}[G]$ $\mathbb{Z}[G]$

If L arises in this way, we may also consider the M-representations

$$H_{\kappa}^{ff}(\widehat{M}_{in})$$
 $H_{\kappa}^{ff}(\widehat{M}_{ort})$

where
$$\widehat{M}_{in} \longrightarrow \widehat{C}_{\kappa}(\Sigma)$$
 and similarly for \widehat{M}_{out}

$$M_{in} \longrightarrow C_{\kappa}(\Sigma)$$
*We could also however, but

*We could also do this for ordinary (not lf) homology, but this is the same as $H_k(M_\bullet; L)$ by Shapiro's Lemma.

Motivating example (n),2)

$$\geq = (\circ \circ \circ \circ) \quad \text{or} \quad (so \ \Gamma \cong \mathcal{B}_n)$$

So
$$R = \mathbb{Z}[G] \cong \begin{cases} \mathbb{Z}[x^{\pm 1}] & k=1 \\ \mathbb{Z}[x^{\pm 1}, d^{\pm 1}] & k>2 \end{cases}$$

We may also consider

$$L' = L \otimes S$$
 for any $R \xrightarrow{\theta} S$ ("specialisation")

For example $R\cong \left\{ \begin{array}{ll} \mathbb{Z}\big[x^{\pm i}\big] & \text{$k=1$}\\ \mathbb{Z}\big[x^{\pm i},\,d^{\pm i}\big] & \text{$k\geqslant 2$} \end{array} \right\} \longrightarrow \mathbb{C} \quad , \quad \text{determined by } x,d\in\mathbb{C}^*$

Theorem [Anghel-P. '20]

These T-representations are related in the following way:

$$\mathcal{H}_{K}^{\mathfrak{F}}(M_{\text{in}}; L) \qquad \mathcal{H}_{K}^{\mathfrak{F}}(M_{\text{out}}; L) \qquad \text{free } R\text{-modules}$$

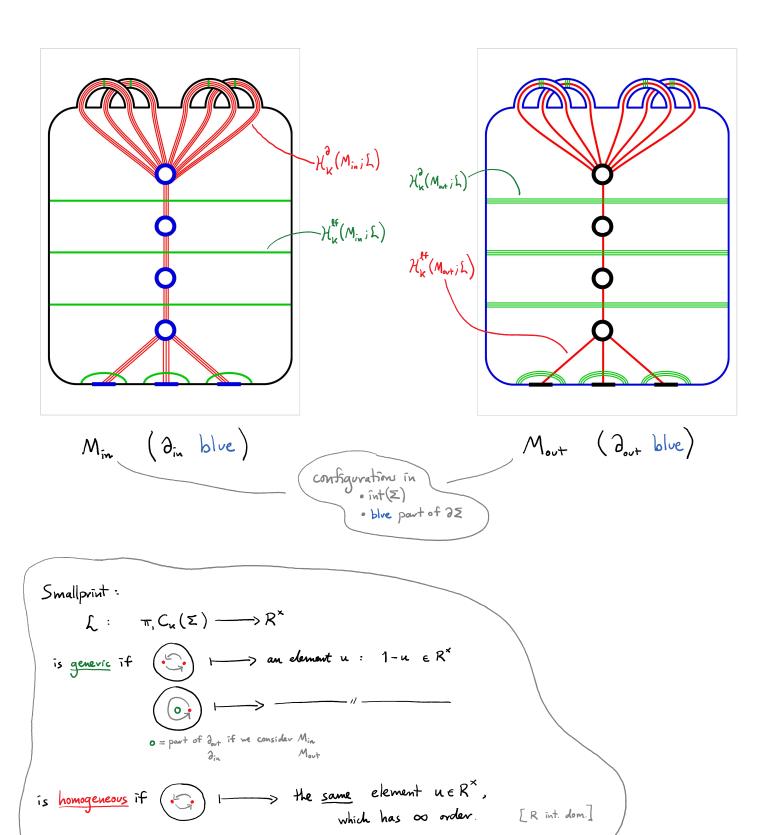
$$\mathcal{H}_{K}(M_{\text{in}}; L) \cong \mathcal{H}_{K}^{\mathfrak{F}}(M_{\text{in}}; L) \cong \mathcal{H}_{K}(M_{\text{out}}; L) \cong \mathcal{H}_{K}(M_{\text{out}}; L) \qquad \text{free } \widehat{R}\text{-module}$$

$$\mathcal{H}_{K}^{\mathfrak{F}}(\widehat{M}_{\text{in}}) \qquad \mathcal{H}_{K}^{\mathfrak{F}}(\widehat{M}_{\text{out}}) \qquad \text{free } \widehat{R}\text{-module}$$

- where $\mathcal{H}_{\kappa}^{\partial}(M_{\bullet}; L) \subseteq \mathcal{H}_{\kappa}(M_{\bullet}, \partial M_{\bullet}; E)$ is an explicit subrepresentation
 - . "dual" means that there is a non-degenerate pairing
 - · the isomorphisms \(\sigma \text{ hold if L is "genevic" [Kohno]} \)
 - · the diagonal embeddings exist if L is "homogeneous" (below ...)
 - . the embeddings (^) are certain completions of R-modules (R=Z[G]).

Explicit bases:

(assume that $\partial_{\text{out}} \subseteq \alpha$ single component of $\partial \Sigma$)



The <u>completion</u> (^) is given by $-\otimes \mathbb{Z}[G]$,

 $\mathbb{Z}[G] = \bigoplus_{G} \mathbb{Z}$

where $\mathbb{Z}[G] = \prod_{G} \mathbb{Z}$

Ideas of the proof Pairings

$$H_{\kappa}^{\vartheta}(M_{\bullet}) \subseteq H_{\kappa}(M_{\bullet}, \partial M_{\bullet})$$
 submodules generated by the elements pictured above (Definition)

Calculation => evaluating the pairing on all pairs of elements pictured above pidentity matrix!

=> (1) these sets of elements are linearly independent (generale free submodules) (2) restricted to these submodules, the pairing is non-degenerate

Proposition
$$H_{\kappa}^{ff}(M_{\bullet}) = H_{\kappa}^{ff}(M_{\bullet})$$
 ie the elements pictured above span the lf-homology.

Idea of proof (extension of [Bigalow '04], [An-Ko'10])

- · It is enough to prove that: induces an ≅ on H* C_{κ} (ved arcs) \longrightarrow $C_{\kappa}(\Sigma \setminus \partial_{in}) = M_{out}$
- · E deformation retracts onto (red arcs) u din - through self-embeddings except at time t=1
- · run this deformation retraction until time $t = 1 \epsilon$ ($\epsilon > 0$ very small)
- . (!) excision argument => pass to the subspace of configurations with the property that $\int_{-\infty}^{\infty} f$ you continue the def. retraction up to time t=1, then no collisions occur
- · finish the deformation retraction.

Completions

An analogous deformation retraction argument also works on the covering space \hat{M}_{at} and proves the statement about completions (^). \hat{M}_{out}

Instead of
$$C_{\kappa}(\text{red arcs}) \longrightarrow C_{\kappa}(\Sigma \setminus \partial_{in}) = M_{\text{ext}}$$
we have (all lifts of configs) $\longrightarrow \widehat{M}_{\text{ext}}$.

Embeddings

$$(M_{in}, 3M_{in}) \longrightarrow H_{K}(M_{out}) \cong \widetilde{H}_{K}((M_{out})^{+}, \{\infty\})$$

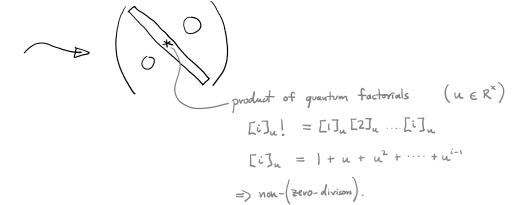
$$(M_{in}, 3M_{in}) \longrightarrow H_{K}((M_{out})^{+}, \{\infty\})$$

$$((M_{out})^{+}, \{\infty\})$$

• Diff(ξ , δ_{out}) - equivariant => Γ -equivariant on H_* .

· why injective ??

Use our explicit bases above & compute the matrix of this map



Remark (1) We know explicitly the images of the embeddings

$$H_{\kappa}^{\vartheta}(M_{in}; L) \longleftrightarrow H_{\kappa}^{\varrho f}(M_{out}; L)$$
 $H_{\kappa}^{\vartheta}(M_{out}; L) \longleftrightarrow H_{\kappa}^{\varrho f}(M_{in}; L)$

(2) If $k \gg 2$, they are <u>not</u> surjective, so $H_{K}^{kf}(M_{inj}L)$ and $H_{K}^{lf}(M_{out};L)$ are <u>reducible</u>

•

•

•

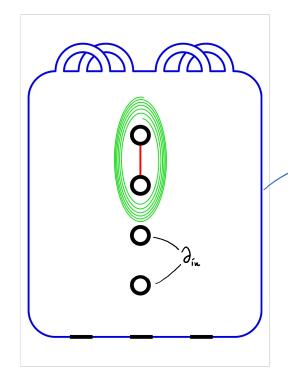
BONUS

•

•

•

An "exotic" element of $H_1^{\text{ef}}(\widehat{M}_{\text{out}})$ (with k=1)



Let $y, z \in G_1$ be the monodromy of the covering $\widehat{M}_{out} = \widehat{z} \cdot \partial_{in}$ around the top two punctures.

(In our motivating example, $y=z=x\in G=\mathbb{Z}[x^2], d^2]$.)

Then:

[green helix] = [red arc].
$$\sum_{i \in \mathbb{Z}} (1-y)(y \neq i) \in H_i^{\text{ef}}(\widehat{M}_{\text{out}})$$