Braid groups MCGs Rep of *B_n* Rep of MCGs

- Moriyama

– abelian coeff

– non-abelian

– kernel

Representations of the Torelli group via the Heisenberg group

Martin Palmer-Anghel

IMAR

 $20 \mbox{ May 2021} \label{eq:may2021} Workshop for Young Researchers in Mathematics – <math display="inline">10^{th}$ ed.

Joint work with Christian Blanchet and Awais Shaukat

Partially supported by project nº PN-III-P4-ID-PCE-2020-2798 (CNCS - UEFISCDI)

Braid groups

MCGs

Rep of *B_n*

Rep of MCGs

- Moriyama
- abelian coeff
- non-abelian
- kernel

Many definitions of B_n :

- $\pi_1(C_n(D^2))$
- {diffeomorphisms of $S = D^2 \smallsetminus \{n \text{ points}\}\}/\text{isotopy}$

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2 \end{array} \right\rangle$$

Braid groups

Braid groups – applications & connections

Knot theory:

- $\bigsqcup_{n \ge 1} B_n \twoheadrightarrow \{ \text{knots/links in } \mathbb{R}^3 \}$ [Alexander, Markov]
- Burau representation \longmapsto Alexander polynomial
- Algebraic geometry:
 - [Moishezon]: alg. curve in $\mathbb{CP}^2 \mapsto braid monodromy F_N \to B_d$
 - [Libgober]: alg. curve in $\mathbb{CP}^2 \mapsto$ invariant using a representation of B_d

Homotopy theory:

• [Berrick-Cohen-Wong-Wu, 2006]:

$$\pi_*(S^2) \cong \frac{\{\text{Brunnian braids in } S^2 \times [0,1]\}}{\{\text{Brunnian braids in } D^2 \times [0,1]\}}$$

Mapping class groups of surfaces

Braid groups

MCGs

Rep of B_n

- Moriyama
- abelian coeff
- non-abelian
- kernel

Definition

 $Map(S) = \{diffeomorphisms of S\}/isotopy\}$

Example: Map $(D_n) = B_n$ where $D_n = D^2 \setminus \{n \text{ points}\}$

Applications & connections:

- Map(S) = π₁(M_S)
 M_S = moduli space of algebraic curves of topological type S
- 3-manifold topology via Heegaard splittings
- 4-dimensional symplectic topology [Donaldson]

Braid groups MCGs Rep of *B_n*

Rep of MCGs

- Moriyama
- abelian coeff
- non-abelian
- kernel

[Burau] representation (1935):

$$\sigma_i \quad \longmapsto \quad \mathrm{I}_{i-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus \mathrm{I}_{n-i-1}$$

- This defines $B_n \longrightarrow GL_n(\mathbb{Z}[t^{\pm 1}]) \subset GL_n(\mathbb{R})$
- $Q(\leq [Birman'74])$: Is this representation injective? (\equiv 'faithful')
- $A(n \leq 3)$: Yes [Magnus-Peluso'69]
- A(n ≥ 5): No [Moody'91,Long-Paton'93,Bigelow'99]
- A(n = 4): ??
- Q: Are the braid groups linear?
 Does B_n embed into some GL_N(F)?

Braid groups MCGs Rep of *B*_n

Rep of MCG

- Moriyama

- abelian coeff
- non-abelian

– kernel

[Lawrence] representation (1990) — geometric definition.

- $Diff(D_n)$ acts on $C_k(D_n)$ (unordered configuration space)
- $B_n = \operatorname{Map}(D_n) = \operatorname{Diff}(D_n)/\sim \operatorname{acts} \operatorname{on} H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose π₁(C_k(D_n)) → Q invariant under the action. Then B_n acts on H_{*}(C_k(D_n); ℤ[Q])
 - Replace H_{*} with H^{bm}_{*} (Borel-Moore homology) Then H^{bm}_{*}(C_k(D_n); Z[Q]) is a free Z[Q]-module concentrated in degree * = k

 $\mathsf{Lawrence}_k \colon B_n \longrightarrow \mathsf{GL}_N(\mathbb{Z}[Q]) = \mathrm{Aut}_{\mathbb{Z}[Q]} \left(H^{bm}_*(C_k(D_n); \mathbb{Z}[Q]) \right)$

Braid groups MCGs Rep of *B*_n

Rep of MCGs

- Moriyama

– abelian coefl

- non-abelian

– kernel

Representations of braid groups - Lawrence

How is the quotient Q defined?

- $\pi_1(D_n) = F_n \longrightarrow \mathbb{Z} = Q$ "total winding number"
- $\pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z}$ ("total winding number", "self-winding number")

Lemma

This quotient is $Map(D_n)$ -invariant, and hence

```
Lawrence<sub>k</sub>: B_n \longrightarrow GL_N(\mathbb{Z}[Q])
```

is well-defined. Moreover, we have $Lawrence_1 = Burau$.

Theorem [Bigelow'00,Krammer'00]

Lawrence₂ is faithful (injective). Hence B_n embeds into $GL_N(\mathbb{R})$.

Braid groups MCGs

- Rep of MCGs
- Morivama
- abelian coeff
- non-abelian
- kernel

Representations of mapping class groups

- Q: Does Map(S) embed into $GL_N(\mathbb{F})$ for other surfaces S?
- $Map(torus) \cong SL_2(\mathbb{Z}) \subset GL_2(\mathbb{R})$
- $\operatorname{Map}(\Sigma_2) \subset GL_{64}(\mathbb{C})$

[Bigelow-Budney'01]

- In general, wide open!
 - Kontsevich (2006): proposal of a sketch of a construction of a faithful finite-dimensional representation of $Map(\Sigma_g)$
 - Dunfield (cf. [Margalit'18]): computational evidence suggesting that this will *not* actually be faithful
- From now on, focus on $\Sigma = \Sigma_{g,1}$ (orientable, genus *g*, one boundary component)

Main result [Blanchet-P.-Shaukat'21]

A new representation of (a central extension of) $\mathrm{Tor}(\Sigma)\subset\mathrm{Map}(\Sigma).$

Braid groups MCGs Rep of *B_n*

- Morivama
- abelian coef
- non-abelian
- kernel

Representations of MCGs – Moriyama

Simplest analogue of the Lawrence representations:

 $\operatorname{Map}(\Sigma)$ \circlearrowleft $H_k^{bm}(F_k(\Sigma');\mathbb{Z})$

- $F_k() = ordered$ configuration space
- $\Sigma' = \Sigma \smallsetminus$ (interval in $\partial \Sigma$)
- *untwisted* \mathbb{Z} coefficients
- *H*^{bm}_k(*F*_k(Σ'); ℤ) is a free abelian group of finite rank

Theorem [Moriyama'07]

The kernel of this representation is $\mathfrak{J}(k) \subset \operatorname{Map}(\Sigma)$.

- $\mathfrak{J}(k)$ is the *k*-th term of the Johnson filtration of $Map(\Sigma)$
- What is this?

Braid groups MCGs Rep of *B_n*

– Moriyama

- abelian coeff
- non-abeliar
- kernel

The Johnson filtration

- Lower central series: $\pi_1(\Sigma) = \Gamma_0 \supseteq \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\pi_1(\Sigma), \Gamma_{i-1}]$ (commutators of length i + 1)

Definition [Johnson'81]

- $\mathfrak{J}(k) = \text{kernel of the action of } \operatorname{Map}(\Sigma) \text{ on } \pi_1(\Sigma)/\Gamma_k.$
 - $\operatorname{Map}(\Sigma) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$
 - $\mathfrak{J}(1) = \operatorname{Tor}(\Sigma) = \ker (\operatorname{Map}(\Sigma) \circlearrowleft H_1(\Sigma; \mathbb{Z}))$ 7

Torelli group

Theorem [Johnson'81]

$$\bigcap_{k=1}^{\infty} \mathfrak{J}(k) = \{1\}$$

Corollary [Moriyama'07]

 $\bigoplus_{k=1} H_k^{bm}(F_k(\Sigma');\mathbb{Z}) \text{ is a faithful } (\infty\text{-dim.}!) \operatorname{Map}(\Sigma)\text{-representation}.$

Braid groups MCGs Rep of *Bn*

Rep of MCGs

- Moriyama
- abelian coeff
- non-abelian

- kernel

Rep. of MCGs - abelian twisted coefficients

- Idea: Enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ')) = B_k(Σ) → Q.
- Q = 𝔅_k corresponds to the Moriyama representations: H^{bm}_k (F_k(Σ'); ℤ) = H^{bm}_k (C_k(Σ'); ℤ[𝔅_k]).
- First try abelian quotients Q.

Fact $(k \ge 2)$

$$B_k(S)^{ab} \cong \pi_1(S)^{ab} \oplus egin{cases} \mathbb{Z} & S ext{ planar} \ \mathbb{Z}/(2k-2) & S = S^2 \ \mathbb{Z}/2 & ext{ otherwise.} \end{pmatrix}$$

- If S is non-planar, we can only "count" the *self-winding number* of braids on S mod 2. (or mod 2k 2 if $S = S^2$)
- In ℤ[B_k(S)^{ab}], the corresponding "variable" t will have order two: t² = 1.
 - \longmapsto We get a much "weaker" representation...

Braid groups MCGs Rep of *B_n* Rep of MCGs

- Moriyama
- abelian coeff
- non-abelian
- kernel

Rep. of MCGs - non-abelian twisted coefficients

Theorem [Bellingeri'04]

$$\mathcal{B}_k(\Sigma_{g,1}) \cong \left\langle \sigma_1, \dots, \sigma_{k-1}, egin{smallmatrix} a_1, \dots, a_g \ b_1, \dots, b_g \end{bmatrix} \cdots$$
 some relations $\cdots
ight
angle$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

$$B_k(\Sigma_{g,1})/\langle\!\langle [\sigma_1, x] \rangle\!\rangle \cong \left\langle \sigma, \begin{matrix} a_1, \dots, a_g \\ b_1, \dots, b_g \end{matrix} \right| \begin{array}{c} \text{all pairs commute except} \\ a_i b_i = \sigma^2 b_i a_i \end{matrix} \right\rangle$$

Definition

$$\mathcal{H}_{g} = B_{k}(\Sigma_{g,1}) / \langle\!\langle [\sigma_{1}, x] \rangle\!\rangle$$

This is the genus-g discrete Heisenberg group. Note that:

$$\mathcal{H}_1 \cong \left\{ \begin{pmatrix} 1 & \ast & \ast \\ 0 & 1 & \ast \\ 0 & 0 & 1 \end{pmatrix} \right\} \subset \textit{GL}_3(\mathbb{Z})$$

Braid groups MCGs Rep of *B_n*

- Rep of MCGs
- Moriyama
- abelian coefl
- non-abelian
- kernel

Rep. of MCGs - non-abelian twisted coefficients

Lemma

The action $\operatorname{Map}(\Sigma) \circlearrowleft B_k(\Sigma)$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(B_k(\Sigma) \twoheadrightarrow \mathcal{H}_g)$ is preserved by the $\operatorname{Map}(\Sigma)$ -action.
- This is $\langle\!\langle [\sigma_1, x] \rangle\!\rangle$, so it is enough to show that σ_1 is fixed by the Map(Σ)-action.
- Let [φ] ∈ Map(Σ) = Diff(Σ)/~ be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of ∂Σ.
- The loop of configurations σ₁ ∈ B_k(Σ) = π₁(C_k(Σ)) can be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

$$1 \to \mathbb{Z} \longrightarrow \mathcal{H}_g \longrightarrow \mathcal{H}_1(\Sigma; \mathbb{Z}) \to 1$$

and the $\mathrm{Map}(\Sigma)\text{-}\mathrm{action}$ on \mathcal{H}_g lifts the natural action on $H_1(\Sigma;\mathbb{Z}).$

Braid groups MCGs Rep of *B_n* Rep of MCG

- Moriyama

– abelian coeff

- non-abelian

- kernel

Rep. of MCGs - non-abelian twisted coefficients

Proposition [Blanchet-P.-Shaukat'21]

(a) $\operatorname{ker}(\operatorname{Map}(\Sigma) \circ \mathcal{H}_g) = \operatorname{Chill}(\Sigma)$

(b) $\{\varphi \in \operatorname{Map}(\Sigma) \mid \varphi \text{ acts on } \mathcal{H}_g \text{ by conjugations}\} = \operatorname{Tor}(\Sigma)$

 $\operatorname{Map}(\Sigma) \supset \operatorname{Tor}(\Sigma) \supset \operatorname{Chill}(\Sigma) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$

Idea of proof

 $\Phi \colon \operatorname{Map}(\Sigma) \longrightarrow \operatorname{Aut}^+(\mathcal{H}_g) \cong H \rtimes Sp(H) \qquad H = H_1(\Sigma; \mathbb{Z})$

 $\begin{array}{ll} \mbox{(a) Under this identification, } \Phi = ``Trapp representation'' \\ (= the action of Map(\Sigma) \mbox{ on } \{ unit vector fields on $\Sigma \}) \end{array}$

(b) alg.:
$$\operatorname{Inn}(\mathcal{H}_g) \longleftrightarrow 2H$$

top.: $\operatorname{image}(\Phi) \subseteq 2H \rtimes Sp(H)$

Braid groups MCGs Rep of *B_n* Rep of MCGs

- Moriyama
- abelian coef
- non-abelian
- kernel

Rep. of MCGs - non-abelian twisted coefficients

Theorem [Blanchet-P.-Shaukat'21]

We obtain well-defined representations, defined over $\mathbb{Z}[\mathcal{H}_g]$:

- (a) Chill(Σ) \circlearrowleft $H_k^{bm}(C_k(\Sigma'); \mathbb{Z}[\mathcal{H}_g])$
- (b) $\widetilde{\operatorname{Tor}}(\Sigma)$ \circlearrowright $H_k^{bm}(C_k(\Sigma'); \mathbb{Z}[\mathcal{H}_g])$

where $\widetilde{\mathrm{Tor}}(\Sigma)$ is a \mathbb{Z} -central extension of $\mathrm{Tor}(\Sigma)$.

Idea of proof

Lemma \Rightarrow we obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

$$\operatorname{Map}(\Sigma)$$
 \circlearrowleft $H_k^{bm}(C_k(\Sigma'); \mathbb{Z}[\mathcal{H}_g])$

"Twisted" means:

- the action is \mathbb{Z} -linear
- there is also an action on the ground ring $\mathbb{Z}[\mathcal{H}_g]$
- these are compatible: $\varphi(\lambda.v) = \varphi(\lambda).\varphi(v)$.

Braid groups MCGs Rep of *B_n*

- Moriyama

– abelian coef

- non-abelian

– kernel

Idea of proof (cont.)

 $\begin{array}{l} \text{Proposition (a)} \Rightarrow \text{the action of } \mathrm{Chill}(\Sigma) \text{ on } \mathbb{Z}[\mathcal{H}_g] \text{ is trivial} \\ \Rightarrow \text{the representation is } \textit{untwisted on } \mathrm{Chill}(\Sigma). \end{array}$

Untwisting Lemma: A twisted representation of Γ over $\mathbb{Z}[G]$, where the action $\Gamma \circlearrowleft G$ is by conjugations, can be *untwisted* by passing to a central extension of Γ by $\mathcal{Z}(G) = \text{Centre}(G)$.

Q: What is the kernel of this representation? Q': Is it smaller than $\mathfrak{J}(k) = \ker(\operatorname{Moriyama}_k)$?

Braid groups MCGs Rep of *B_n*

- Morivama
- abelian coeff
- non-abelian
- kernel

Upper bound on the kernel

(k = 2)Quotient of $\widetilde{\mathrm{Tor}}(\Sigma)$ -representations / twisted $\mathrm{Map}(\Sigma)$ -representations:

$$H_2^{bm}(C_2(\Sigma');\mathbb{Z}[\mathcal{H}_g]) \longrightarrow H_2^{bm}(C_2(\Sigma');\mathbb{Z}[\mathfrak{S}_2])$$

 $\text{ induced by } \mathcal{H}_g \longrightarrow (\mathcal{H}_g)^{\textit{ab}} = \mathbb{Z}/2 \oplus \textit{H}_1(\Sigma;\mathbb{Z}) \longrightarrow \mathbb{Z}/2 = \mathfrak{S}_2.$

The right-hand side is precisely H^{bm}₂(F₂(Σ'); ℤ) = Moriyama₂, hence

 $\ker \left(H_2^{bm} \left(\mathit{C}_2(\Sigma'); \mathbb{Z}[\mathcal{H}_g] \right) \right) \quad \subseteq \quad \mathfrak{J}(2)$

- Let γ ⊂ Σ be a simple closed curve that separates off a genus-1 subsurface. Then the Dehn twist T_γ lies in ℑ(2).
- Calculations \Rightarrow T_{γ} acts *non-trivially* in our representation.

Corollary [Blanchet-P.-Shaukat'21]

The kernel of the $Tor(\Sigma)$ -representation $H_2^{bm}(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_g])$ is strictly smaller than $\mathfrak{J}(2)$.

Example calculation

Representations of Torelli via Heisenberg

Braid groups MCGs Rep of *B_n* Rep of MCGs

- Moriyama

– abelian coef

– non-abelia

kernel

Set k = 2 and g = 1. In this case the representation

 $H_2^{bm}(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_1])$

is free of rank 3 over $\mathbb{Z}[\mathcal{H}_1] = \mathbb{Z}[\sigma^{\pm 1}]\langle a^{\pm 1}, b^{\pm 1} \rangle / (ab = \sigma^2 ba)$ Let γ be a curve isotopic to $\partial \Sigma = \partial \Sigma_{1,1}$. Then T_{γ} acts via:

 $(\sigma^{2}+1-2\sigma^{-1}+\sigma^{-2}+\sigma^{-4})a^{-2}b^{2}-\sigma a^{-2}b^{4}+$ $(-1+2\sigma^{-1}-\sigma^{-2}-\sigma^{-4}+\sigma^{-5})a^{-2}b+(\sigma-1)a^{-2}b^{3}+$ $a^{-8}b^2 + a^{-4}a^{-2} - a^{-2}b^2 + (a^{-1} - a^{-2})a^{-2}b + a^{-2}b^2 + (a^{-1} - a^{-2})a^{-2}b + a^{-2}b^2 + a^{-2}b$ $(-\sigma^{2}+\sigma+\sigma^{-1}-\sigma^{-2})a^{-2}b^{3}-\sigma^{-3}a^{-2}+$ $(\sigma^{2} - \sigma - \sigma^{-1} + 2\sigma^{-2} - \sigma^{-3})a^{-2}b^{2} + (-\sigma^{-3} + \sigma^{-4})a^{-1}b +$ $(\sigma^{-3} - \sigma^{-4})a^{-1}b^2 + (\sigma^{-4} - \sigma^{-5})a^{-1}b$ $(-1+\sigma^{-1}+\sigma^{-3}-\sigma^{-4})a^{-2}b$ $(\sigma^{-4} - \sigma^{-5})a^{-1}b^3 + (-\sigma^{-2} + \sigma^{-3} + \sigma^{-5} - \sigma^{-6})a^{-1}b^2 + (-\sigma^{-3} + \sigma^{-4})a^{-2}$ $1 + \sigma^{-2} - \sigma^{-3} + \sigma^{-6} + \sigma^{-6} a^{-2} b^2 - \sigma^{-1} b^2 +$ $(-\sigma^{-6}+\sigma^{-7})a^{-2}b+(\sigma^{-1}-\sigma^{-2}-\sigma^{-4}+2\sigma^{-5}-\sigma^{-6})b+$ $-\sigma^{-1}-\sigma^{-3}+2\sigma^{-4}-\sigma^{-5}-\sigma^{-7}+\sigma^{-2}a^{2}+$ $(\sigma^{-3} - \sigma^{-4})a^{-1}b^2 + (-1 + \sigma^{-1} + \sigma^{-3} - \sigma^{-4})b +$ $(-\sigma^{-3}+2\sigma^{-4}-\sigma^{-5}-\sigma^{-7}+\sigma^{-8})a^{-1}b+1-\sigma^{-1}+\sigma^{-2}-\sigma^{-1}+\sigma^{-2}-\sigma^{-1}+\sigma^{-2}-\sigma^{-1}+\sigma^{-2}-\sigma^{-1}+\sigma^{-2}-\sigma^{-1}+\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma^{-2}-\sigma^{-2}-\sigma^{-2}+\sigma^{-2}-\sigma$ $(\sigma^{-1} - \sigma^{-2} - \sigma^{-4} + \sigma^{-5})a + \sigma^{-6}a^{-2} +$ $(\sigma^{-2}-2\sigma^{-3}+\sigma^{-4}+\sigma^{-6}-\sigma^{-7})a^{-1}b-\sigma^{-5}a^{-2}+$ $3\sigma^{-3}+2\sigma^{-4}+\sigma^{-6}-\sigma^{-7}+(-\sigma^{-2}+2\sigma^{-3}-\sigma^{-4}+\sigma^{-5}-2\sigma^{-6}+\sigma^{-7})a^{-1}$ $(\sigma^{-3} - \sigma^{-4} - \sigma^{-6} + \sigma^{-7})a^{-1}$ $(-\sigma^{-2}+\sigma^{-3}+\sigma^{-5}-\sigma^{-6})a^{-1}+(\sigma^{-5}-\sigma^{-6})a^{-2}b$ $+(\sigma^{-2}-\sigma^{-3})ab+(-1+\sigma^{-1}+\sigma^{-3}-\sigma^{-4})a+(-\sigma^{-5}+\sigma^{-6})a^{-2}$ $\sigma^{-3} + (\sigma^{-2} - \sigma^{-3} - \sigma^{-5} + \sigma^{-6})a^{-1} +$ $(-1-\sigma^{-2}+2\sigma^{-3}-\sigma^{-6})a^{-1}b+\sigma^{-1}a^{-1}b^3+$ $-\sigma^{-6}ab+(-\sigma^{-3}+\sigma^{-4}-\sigma^{-7})b-\sigma^{-4}+$ $(-\sigma^{-1}+\sigma^{-2}-\sigma^{-5}+\sigma^{-6})a^{-1}b^2+(-\sigma^{-2}+\sigma^{-3})a^{-2}b^2+$ $\sigma^{-2}a^{-2}b^3+(1-\sigma^{-1}-\sigma^{-3}+\sigma^{-4})a^{-1}b^2+$ $(\sigma^{-1} - \sigma^{-4} + \sigma^{-5})a^{-1}b + \sigma^{-2}a^{-2}b +$ $(-1+\sigma^{-1}+2\sigma^{-3}-3\sigma^{-4}+\sigma^{-7})a^{-1}b+$ $(\sigma^{-1}-\sigma^{-2}+\sigma^{-5})a^{-2}b^2+(-\sigma^{-1}+\sigma^{-4}-\sigma^{-5})a^{-2}b+$ $(-\sigma^{-3}+\sigma^{-6})a^{-1}+\sigma^{-5}a^{-2}$ $(-\sigma^{-1}+\sigma^{-2}-\sigma^{-5}+\sigma^{-6})a^{-2}b+(-\sigma^{-4}+\sigma^{-5})b^{2}+$ $(\sigma^{-2} - \sigma^{-5})a^{-1} - \sigma^{-4}a^{-2}$ $(\sigma^{-2} - \sigma^{-3} - \sigma^{-5} + \sigma^{-6})b + (-\sigma^{-4} + \sigma^{-5})a^{-2}$

Braid groups MCGs Rep of *B_n*

Rep of MCGs

- Moriyama
- abelian coeff
- non-abelian
- kernel

Thank you!