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Introduction and overview

My research interests lie in the area of topology, including algebraic topology and low-dimensional
topology, and interactions between the two. The two main themes of my previous research work are con-
cerned with studying:

(A) The homology of moduli spaces of submanifolds of an ambient manifold (such as configuration
spaces or spaces of links in R3), as well as diffeomorphism groups of manifolds, via the phenomenon
of homological stability.

(B) The representation theory of the fundamental groups of such moduli spaces (which includes examples
such as surface braid groups, loop braid groups and mapping class groups) through geometrically-
defined “homological” representations, and in particular different kinds of functoriality for such rep-
resentations, including topological quantum field theories.

As well as being interesting geometrical objects in their own right, these objects are also relevant for many
diverse areas of topology. For example, classifying spaces of diffeomorphism groups control the character-
istic classes associated to the corresponding manifold bundles, via their cohomology. Configuration spaces
are ubiquitous in topology, appearing in connection with mapping spaces in homotopy theory, functor cal-
culus and operads. Braid groups and motion groups are related to mapping class groups of surfaces and to
knot theory, including variants such as virtual knot theory, where their representations play a fundamental
role in constructing and understanding knot and link invariants.

An important tool for studying moduli spaces of submanifolds is homological stability. This is the
phenomenon where a sequence {Xn | n ∈ N} of spaces has the property that its homology Hi(Xn) in any
fixed degree i is eventually independent of n. This can be calculationally very useful when combined with a
computation of the stable limit of the homology groups. The philosophy is that the homology of the family
{Xn} of spaces typically carries a topological structure that is not visible at the level of the individual spaces,
but becomes visible in the limit when n→ ∞, making it amenable to explicit calculations, and homological
stability allows one to leverage this fact.

An important example of this is homological stability for the mapping class groups of orientable sur-
faces Mod(Σg,1), due to Harer [Har85], together with the theorem of Madsen and Weiss [MW07], which
completely determines the rational cohomology of the mapping class groups in a stable range, thereby prov-
ing the Mumford Conjecture [Mum83]. It can also have powerful theoretical consequences: for example,
homological stability for certain examples of configuration-mapping spaces was used in [EVW16] to prove
results in number theory related to the Cohen-Lenstra conjecture.

In my previous work, I have carried out one or both steps of this programme for a number of moduli
spaces of interest, fitting into theme (A) of my research programme. In particular:

(a) I proved [Pal13] in my thesis that the oriented configuration spaces C+
n (M) on open, connected mani-

folds M are homologically stable: a point in this space is a configuration of points in M, equipped with
the non-local data of an ordering modulo the action of the alternating group. Together with J. Miller
[MP15b], we then identified a space modelling the limiting homology of these spaces, as the number
of particles goes to infinity, completing step (ii) of the above programme, and lifting the classical re-
sult of D. McDuff [McD75] and G. Segal [Seg73; Seg79] (which concerns unordered configuration
spaces). Along the way, we also generalised their group-completion theorem [MS76] to the setting of
twisted-homology-equivalences [MP15a]. — See §1 for more details.
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(b) The unordered configuration spaces Cn(M) on a closed, connected manifold M are known not to sta-
bilise in general, and represent a much more difficult and complicated case. Together with F. Cantero
[CP15], we proved that there are nevertheless some more subtle stability and periodicity phenomena
in the homology of configuration spaces on closed manifolds. For example, the homology of Cn(M)
with coefficients in Z[ 1

2 ] stabilises for dim(M) odd, whereas, for dim(M) even, their mod-p homology
is unstable but periodic in a stable range (with an explicit period depending only on p and χ(M)). —
See §3 for more details of these results.

(c) Another direction in which I have taken these ideas, which opens the door to a wide variety of interesting
new examples, is to generalise configuration spaces to moduli spaces of disconnected submanifolds,
where point particles are replaced with embedded submanifolds of a specified diffeomorphism type
and isotopy class (which may be parametrised, oriented, unoriented, etc.). Under a certain restriction
on the codimension, I have proven [Pal18a] that these moduli spaces are also homologically stable as
the number of components of the submanifold goes to infinity. As a corollary, I also proved [Pal18b]
homological stability for:
◦ the diffeomorphism groups of manifolds with conical singularities, with respect to the number of

singularities of a given type,
◦ the symmetric diffeomorphism groups of any sequence of manifolds obtained by iterating the op-

eration of “parametrised connected sum”, an operation which generalises both ordinary connected
sum and surgery.

See §4 for more details of these results.

Related to theme (B) of my research programme:

(d) I have proven [Pal18c] that the unordered configuration spaces Cn(M) are homologically stable with
coefficients in any polynomial twisted coefficient system (this in particular includes a choice of repre-
sentation of π1(Cn(M)) for each n). — See §2 for more details.

(e) In joint work with A. Soulié, we have set up a unified framework for topologically constructing rep-
resentations of motion groups (fundamental groups of moduli spaces of disconnected submanifolds),
extending several known constructions, due to R. Lawrence, S. Bigelow, D. Long and J. Moody, as
well as obtaining new families of representations, including analogues, for the loop braid groups, of
the Lawrence-Bigelow representations for the classical braid groups.
Moreover, our construction automatically gives not only a family of representations of, for example, the
braid groups or loop braid groups, but a functor on a category having these groups as its automorphism
groups, as well as a richer structure that allows one to define the degree of such a functor. In particular,
we extend the Lawrence-Bigelow representations of the braid groups to functors of this kind and prove
that they have finite degree, and deduce that the homology of the braid groups with coefficients twisted
by the Lawrence-Bigelow representations is stable. — See §5 for more details.

In addition to these two main themes, I have also studied multi-crossing diagrams for links, in joint work
with C. Adams and J. Hoste, where our main result is the construction of a complete set of Reidemeister
moves for triple-crossing diagrams. — See §6 for more details.

1. Configuration spaces with non-local structure

— Homological stability for oriented configuration spaces; a twisted group-completion theorem; stable
homology of oriented configuration spaces. —

For a space M, the nth ordered configuration space C̃n(M) is defined to be the subspace of Mn con-
sisting of all n-tuples of pairwise distinct points in M. The symmetric group Sn acts on this space, and we
define

Cn(M) = C̃n(M)/Sn and C+
n (M) = C̃n(M)/An,

where An <Sn is the alternating group. These are called, respectively, the unordered configuration space
on M and the oriented configuration space on M. It is a classical result, going back to McDuff [McD75] and
Segal [Seg73; Seg79], that the sequence Cn(M), when M is a connected, open manifold, is homologically
stable. This means that, for each degree i, there are isomorphisms Hi(Cn(M)) ∼= Hi(Cn+1(M)) once n is
sufficiently large (depending on i).
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Aside. The condition that M is connected is clearly necessary, as one can see by considering H0. On the
other hand, the condition that M is open is not obviously necessary, and the situation in this case is much
more subtle. This is the subject of another part of my previous work, see §3.

The ordered configuration spaces C̃n(M) are not homologically stable: for example, the first homology
of C̃n(R2) is the abelianisation of the pure braid group, which is Z(

n
2). This raises the question of whether

there is an intermediate covering space between C̃n(M) and Cn(M) for which homological stability still
holds. I proved in [Pal13] that the answer is positive for the oriented configuration spaces C+

n (M), which
doubly cover the unordered configuration spaces Cn(M):

Theorem ([Pal13]) The natural stabilisation map C+
n (M)→C+

n+1(M) induces isomorphisms on homology
in degrees ∗6 n−5

3 and surjections in degrees ∗6 n−2
3 .

The theorem also holds more generally for labelled configuration spaces, where each point is equipped
with a “label” in some fixed, path-connected parameter space X . The so-called slope of the stability range
here is 1

3 (and one may calculate explicitly for certain M to see that this is sharp), in contrast to the slope of
1
2 that holds for the unordered configuration spaces.

Note. The integral homology of C+
n (M) may be interpreted as a certain twisted homology group H∗(Cn(M);Z[Z/2]),

where π1(Cn(M)) acts on the group ring of Z/2 via the natural projection π1(Cn(M))→ Sn followed by
the sign homomorphism. This is an example of an abelian twisted coefficient system on Cn(M), and is a
precursor (in a special case) of the notion of abelian homological stability, which has been developed more
recently by Randal-Williams and Wahl [RW17] and Krannich [Kra17]. See §2 for more twisted homologi-
cal stability results.

This result leads to the question of whether one can identify the stable homology of the sequence
{C+

n (M) | n ∈N}, in other words the colimit limn→∞H∗(C+
n (M)), in terms of other well-understood spaces.

In joint work with Jeremy Miller, we answered this question positively by lifting the classical scanning
map [Seg73; McD75] to a homology equivalence between appropriate covering spaces.

◦ First, in our paper [MP15a], we generalise the McDuff-Segal group-completion theorem [MS76] as
well as McDuff’s homology fibration criterion [McD75, §5] to the setting of homology with twisted
coefficients (more precisely to a setting where we consider homology with respect to all twisted
coefficient systems in a fixed class C that is closed under pullbacks).

◦ Using these tools, we proved in [MP15b] a new kind of scanning result, lifting the classical scanning
map to covering spaces and showing that it remains a homology equivalence after doing so. This
identifies the stable homology of oriented configuration spaces on M with the homology of an explicit
double cover of the section space of a certain bundle over M:

Theorem ([MP15b]) Writing Ṫ M→M for the fibrewise one-point compactified tangent bundle of M and
Γc(Ṫ M→M)◦ for its space of compactly-supported sections of degree zero, we have:

limn→∞H∗(C+
n (M)) ∼= H∗(Γ̃c(Ṫ M→M)◦), (1)

for a certain explicit double cover Γ̃c(Ṫ M→M)◦ −→ Γc(Ṫ M→M)◦.

This double cover may be defined as the connected covering space of Γc = Γc(Ṫ M→M)◦ correspond-
ing to the projection

π1(Γc)→ H1(Γc)∼= H1(C2(M))→ H1(C2(R∞))∼= Z/(2).

Here, the isomorphism H1(Γc)∼= H1(C2(M)) arises from homological stability and the identification of the
stable homology for unordered configuration spaces, and the map H1(C2(M))→H1(C2(R∞)) is induced by
any embedding M ↪→ R∞. For example, when M = R∞ the right-hand side of (1) is the universal cover of
(one component of) the infinite loopspace Ω∞S∞ = QS0. When M = R2 it is the unique connected double
cover of Ω2S3.
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2. Twisted homological stability

— Twisted homological stability for configuration spaces; different notions of the degree of twisted coeffi-
cient systems. —

As well as the notion of abelian homological stability mentioned in the previous section, another sense
in which a sequence of spaces (or groups) can satisfy twisted homological stability is with respect to a so-
called polynomial twisted coefficient system. This consists of a choice of local coefficient system on each
space Xn, together with additional morphisms of local coefficient systems between them, organised into a
functor C → Ab, where the automorphism groups of C are the fundamental groups π1(Xn). In addition, the
degree of this functor (defined using extra structure on C ) is required to be finite.

Many families of groups G = {Gn} are known to be homologically stable in this sense (where we
set Xn = BGn in the above paragraph), for appropriately-defined categories CG, for example the symmetric
groups Sn, braid groups βn, general linear groups, automorphism groups of free groups Aut(Fn) and map-
ping class groups of surfaces and of 3-manifolds.1 In [Pal18c], I proved the first such result for a sequence
of spaces, namely the unordered configuration spaces Cn(M) on any connected, open manifold M. Note
that, when dim(M) > 3, these spaces are not aspherical (in contrast to the case of surfaces), so this does
not reduce to a statement about the homology of their fundamental groups. When dim(M) = 2, these con-
figuration spaces are aspherical, so the result may be thought of as twisted homological stability for their
fundamental groups, the surface braid groups Bn(M) = π1(Cn(M)).

Theorem ([Pal18c]) Let M be an open, connected manifold and let T be a twisted coefficient system for
{Cn(M)}. This includes in particular the data of a local coefficient system Tn for each Cn(M), as well as a
homomorphism

H∗(Cn(M);Tn)−→ H∗(Cn+1(M);Tn+1).

This homomorphism is split-injective in all degrees, and, if T has finite degree d, it is an isomorphism in
the range ∗6 n−d

2 .

This theorem also generalises to configuration spaces with labels in any path-connected space X , as in
the previous section.

Twisted coefficient systems. In connection with these results, I have also explored in more depth [Pal17]
the notion of twisted coefficient system (a.k.a. finite-degree or polynomial functor), and in particular the
degree of a twisted coefficient system. The main results of [Pal17] are:

• A comparison and unification of various different notions of “finite-degree” functor C →A , where
A is an abelian category and C is a category with various kinds of additional structure.

• The development of a functorial construction of (injective or partial) braid categories, which were
used in [Pal18c] as the domain of definition of twisted coefficient systems, and of finite-degree func-
tors on such braid categories.

3. Configurations on closed manifolds

— Stability phenomena for configuration spaces on closed manifolds. —

When M is closed, homological stability for the unordered configuration spaces Cn(M) is not true in
general, for example one may calculate that H1(Cn(S2);Z)∼=Z/(2n−2), which does not stabilise as n→∞.
Moreover, the stabilisation maps mentioned in the theorem in §1 do not exist, since these depend on adding
a new configuration point in M “near infinity”. In joint work with Federico Cantero [CP15], we prove
three main results which show that the homology of configuration spaces on closed manifolds exhibits a
large amount of stability despite these issues.

(1) When the Euler characteristic of M is zero, we construct replication maps Cn(M)→ Cλn(M) for any
integer λ > 2, and prove that they induce homological stability after inverting λ :

1 Symmetric groups: [Bet02]; braid groups: [CF13; RW17; Pal18c]; general linear groups: [Dwy80; Kal80]; automorphism
groups of free groups: [RW17]; mapping class groups of surfaces: [Iva93; CM09; Bol12; RW17]; mapping class groups of 3-
manifolds: [RW17]. Note that these are references for the proofs of twisted homological stability; in each case, homological stability
with untwisted coefficients was known earlier.
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Theorem ([CP15]) These maps induce isomorphisms on Hi(−,Z[ 1
λ
]) in the range 2i 6 λ .

Note. A construction related to our replication maps has also been used in the paper [Ber+06], in which they
use something similar to a replication map in §3 to build a crossed simplicial group out of the configuration
spaces on any given manifold M that admits a non-vanishing vector field.

(2) When the manifold M is odd-dimensional, the configuration spaces Cn(M) do in fact satisfy homological
stability after inverting 2.

Theorem ([CP15]) When dim(M) is odd, there are isomorphisms

Hi(Cn(M);Z[ 1
2 ])
∼= Hi(Cn+1(M);Z[ 1

2 ]) and Hi(Cn(M);Z)∼= Hi(Cn+2(M);Z)

in the range 2i 6 n, induced by a zigzag of maps.

This strengthens a result of [BM14].

(3) When the manifold M is even-dimensional, and F is a field of characteristic 0 or 2, it is known by the
work of many people [BCT89; ML88; Chu12; Ran13; BM14; Knu17] that homological stability holds for
Cn(M) with coefficients in F, even when M is closed. When F has odd characteristic p, however, this is
false, as one can see from the example of M = S2 mentioned above. In fact:

H1(Cn(S2);F)∼=
{
F p | n−1
0 p - n−1

}
for n > 2.

From this example we see that the first homology of Cn(S2) is not stable, but it is p-periodic and takes
on only 2 different values. Our third result is that this phenomenon holds in general, when the Euler
characteristic χ of M is non-zero. Write a = νp(χ) for the p-adic valuation of χ , in other words χ = pab
with b coprime to p.

Theorem ([CP15]) Suppose that dim(M) is even. For each fixed i, the sequence

Hi(Cn(M);F) for n > 2i (2)

is pa+1-periodic and takes on at most a+ 2 values. Moreover, if χ ≡ 1 mod p then the above sequence is
1-periodic, i.e. homological stability holds with coefficients in F.

The pa+1-periodicity result is similar to a theorem of [Nag15], although his estimate of the period is
different, namely a power of p depending on i rather than on χ . This result was later improved by [KM16]
to p-periodicity, independent of i or χ . Combining this with (a slightly more precise statement of) our
result, a corollary is that in fact the sequence (2) above takes on only two different values.

4. Moduli spaces of disconnected submanifolds

— Moduli spaces of disconnected submanifolds; symmetric diffeomorphism groups; manifolds with conical
singularities; partitioned braid groups. —

Instead of configurations of points in M (closed 0-dimensional submanifolds), one may consider con-
figurations of closed submanifolds of M of higher dimension, which are diffeomorphic to the disjoint union
of finitely many copies of a fixed (“model”) manifold L. In the recent preprint [Pal18a], I proved that moduli
spaces of disconnected submanifolds of this kind are also homologically stable as the number of compo-
nents goes to infinity, just as in the classical setting of points [Seg73; McD75; Seg79] – under a certain
hypothesis on the relative dimensions of the manifolds involved.

Let M be a connected manifold with non-empty boundary and of dimension at least 2, and denote its
interior by M. Also fix a closed manifold L and an embedding ι0 : L ↪→ ∂M. Choose a self-embedding
e : M ↪→M which is isotopic to the identity and such that e(ι0(L)) is contained in the interior M ⊂M. We
then obtain a sequence of pairwise-disjoint embeddings of L into M by defining ιn := en ◦ ι0 for n > 0.

Let nL = {1, . . . ,n}×L and write ι1,...,n : nL ↪→M for the embedding (i,x) 7→ ιi(x).
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Definition Define CnL(M) to be the path-component of

Emb(nL,M)/Diff(nL)

containing [ι1,...,n]. Here, the embedding space is given the Whitney topology and CnL(M) the quotient
topology. There is a natural stabilisation map

CnL(M)−→C(n+1)L(M) (3)

defined by adjoining the embedding ι0 to a given embedding nL ↪→M, to obtain a new embedding of the
form (n+ 1)L ↪→ M, and then composing with the self-embedding e. In symbols, this may be written as
[φ ] 7→ [φ+], where φ+(i,x) = e◦φ(i,x) for 1 6 i 6 n and φ+(n+1,x) = ι1(x).

Theorem ([Pal18a]) Assume that the dimensions m = dim(M) and `= dim(L) satisfy

2` 6 m−3. (4)

Then (3) induces isomorphisms on homology in degrees ∗6 n−2
2 and surjections in degrees ∗6 n

2 .

This theorem may be extended further:

• There is a more general version of this setting, in which the submanifolds L ⊂ M are parametrised
modulo a subgroup of Diff(L) and come equipped with labels in some bundle over Emb(L,M). The
theorem proved in [Pal18a] includes this more general setting.

• This setting is compatible with the techniques of §1 above, so we also have homological stability for
“oriented” (in the sense of §1) versions of these moduli spaces, in which the submanifolds L⊂M are
ordered modulo even permutations.

Applications to diffeomorphism groups. In the sequel [Pal18b], I used homological stability for the mod-
uli spaces CnL(M) (and their more refined versions mentioned in the first point above) to prove homological
stability for:

◦ Symmetric diffeomorphism groups, with respect to parametrised connected sum.
◦ Diffeomorphism groups of manifolds with conical singularities, with respect to the number of singu-

larities.

Definition Given two embeddings L ↪→M and L ↪→ Q with isomorphic normal bundles, one may cut out
a tubular neighbourhood of each embedding and glue the resulting boundaries to obtain the parametrised
connected sum M]LQ. If L is a point this corresponds to the ordinary connected sum of M and Q. Other
examples include the following.

◦ If L ↪→ Q is the canonical embedding Sk ↪→ Sm, where k 6 m = dim(M), then M]LQ is the result of a
k-surgery on M.

◦ If L ↪→Q is the embedding S1 ↪→T ↪→T∪p/q T = L(p,q), where T = D2×S1 denotes the solid torus,
then M]LQ is the result of a Dehn surgery of slope p/q on the 3-manifold M.

If we now iterate the operation−]LQ many times, using a different copy of Q and a disjoint embedding
L ↪→M each time (but always using the same copy of M), we obtain a sequence

M M]LQ M]LQ]LQ M]LQ]LQ]LQ · · · (5)

of manifolds, which we abbreviate to M]n
LQ, the n-th iterated parametrised connected sum.

A diffeomorphism of M]n
LQ is called symmetric if it fixes the boundary of M and preserves the decom-

position of M]n
LQ into pieces of the form MrnT (L) and QrT (L), where T (L) is a tubular neighbour-

hood of L in M or Q. The corresponding subgroup

ΣDiff(M]n
LQ) 6 Diff(M]n

LQ)

is called the symmetric diffeomorphism group of M]n
LQ.2

2 A mild technical condition has been elided from the definition of symmetric diffeomorphism group and in the statement of the
theorem below, in order to simplify the discussion.
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Theorem ([Pal18b]) If M is connected and has non-empty boundary and dim(L) 6 1
2 (dim(M)− 3), the

sequence
· · · −→ BΣDiff(M]n

LQ)−→ BΣDiff(M]n+1
L Q)−→ ·· ·

of (classifying spaces of) symmetric diffeomorphism groups is homologically stable.

This generalises a result of Tillmann [Til16], which corresponds to the case L = point (i.e. the usual
connected sum operation).

Informal definition Fix an (m− 1)-dimensional manifold T . Let cone(T ) = (T × [0,∞))/(T ×{0}) be
the open cone on T . An m-dimensional manifold with conical T -singularities is a space M that is locally
homeomorphic to cone(T ), together with a smooth atlas on the subset Mmfd ⊆M of locally Euclidean points
of M. A diffeomorphism of M is a homeomorphism M→M that restricts to a diffeomorphism Mmfd→Mmfd
and is of the form cone(ϕ) for some diffeomorphism ϕ : T → T near each point of the discrete subset
MrMmfd ⊆M. These form a subgroup

DiffT (M) 6 Homeo(M).

For example, we may construct a manifold with conical singularities by collapsing a tubular neigh-
bourhood T (L) of any submanifold L ⊂M. The quotient ML = M/T (L) is then a manifold with a single
conical ∂T (L)-singularity. In particular, using the setting at the beginning of this subsection, we may col-
lapse a tubular neighbourhood of each submanifold ιi(L)⊂M for 1 6 i 6 n, to obtain a manifold Mn·L with
(precisely n) conical ∂T (L)-singularities.

Theorem ([Pal18b]) If M is connected and has non-empty boundary and dim(L) 6 1
2 (dim(M)− 3), the

sequence of classifying spaces BDiff∂T (L)(Mn·L) is homologically stable.

Special values of ` and m. The condition (4) on the relative dimensions of L and M excludes some inter-
esting special cases of the moduli space CnL(M).

One such special case is ` = 1, m = 3, in other words, moduli spaces of links in a 3-manifold. If
one considers moduli spaces of unlinks in a 3-manifold M, then this is known to be homologically stable
as the number of components of the unlink goes to infinity, by a result of Kupers [Kup13]. However, the
techniques of Kupers do not generalise to moduli spaces of non-trivial links (even if the components are
pairwise unlinked), so this question is open for general links.

Another special case is `= 0, m = 2. If L is a point, this corresponds to configuration spaces of points
on a surface M, for which homological stability is known classically. However, the only assumption that
we have made about L is that it is closed, not necessarily connected, so we could also take L = {1, . . . ,ξ}
for any positive integer ξ . The moduli space CnL(M) is then the covering space of Cnξ (M) with

pξ (n) =
(nξ )!

n!(ξ !)n

sheets, whose fibres correspond to all ways of partitioning the nξ points of a configuration into n subsets of
size ξ . Since configuration spaces on M are aspherical (M is a connected surface with non-empty boundary),
this is equivalent to studying the corresponding index-pξ (n) subgroup of the surface braid group Bnξ (M),
called the partitioned surface braid group Bξ |n(M), consisting of all braids that preserve a given partition
nξ = ξ +ξ + · · ·+ξ of their endpoints. In joint work with TriThang Tran, we have shown that homological
stability holds also in this special case, corresponding to (`,m) = (0,2).

Theorem ([PT14]) Let M be a connected surface with non-empty boundary. Then the sequence of parti-
tioned surface braid groups Bξ |n(M) is homologically stable as n→ ∞, for any fixed ξ > 1.

This recovers the classical case of homological stability for configuration spaces of points when ξ = 1,
and is new for ξ > 2.
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5. Homological representations of motion groups

— A unified functorial construction of representations; new representations of loop braid groups; polyno-
miality and twisted homological stability. —

The braid groups Bn (on n > 3 strands) are known to have “wild” representation theory, so there
is no easy classification system for their representations.3 It is therefore useful to be able to construct
representations of the braid groups topologically, so that they may be studied using geometry and topology.

Important examples of topologically-defined representations of braid groups are given by the Lawrence-
Bigelow representations, introduced by R. Lawrence in 1990 and later generalised by S. Bigelow to a con-
struction that inputs a Bm-representation V over a ring k and outputs a Bn-representation over k[t±1] for all
n. The original construction LBm,n of Lawrence corresponds to the case V = k = Z[q±1] = Z[Z], where
Bm acts through its abelianisation, for m > 2, and V = k = Z, for m = 1. The significance of this family of
representations is that the sequence LB2,n of representations was used by S. Bigelow and D. Krammer to
prove (independently) that the braid groups are linear.

Other examples of topologically-defined representations of braid groups come from the Long-Moody
construction, which inputs a Bm-representation V over k and outputs a Bm−1-representation over k. Both of
these constructions are topological, induced by the action (up to homotopy) of Bn on a space equipped with
a certain local system.

Unified construction of homological representations. Braid groups are simultaneously examples of mo-
tion groups and of mapping class groups; other examples of these are surface braid groups, loop braid
groups, mapping class groups of surfaces and automorphism groups of free groups.

In joint work with Arthur Soulié, we set up a general framework for constructing “homological rep-
resentations” of motion groups and mapping class groups that recovers the constructions of Lawrence-
Bigelow and Long-Moody for the classical braid groups (so in a sense it unifies these constructions, as
well as extending them to a much wider setting). Moreover, the construction produces “coherent” families
of representations, in the sense that they extend to a functor on a category with object set N and whose
automorphism groups are the family of groups under consideration (e.g. braid groups on any number of
strands). The richer structure of this category may then be used

(i) to organise the representation theory of the family of groups, and
(ii) to prove twisted homological stability results, via a certain notion of polynomiality.

Informally, our construction may be summarised as follows:

Theorem ([PS19]) Let G = {π1(CnL(M))}n>1 be a family of motion groups, considered as a groupoid, and
let UG be the associated “homogeneous category” of [RW17] (whose underlying groupoid (UG )∼ is G ).
There is then a construction, taking as input a functor from a certain topological category of embeddings
between manifolds to the category of covering spaces, and outputting a representation of the category UG .
Moreover, there is an iterative variant of this in which the construction itself is twisted by a representation
of the category UG , giving an endofunctor of the category of representations of UG .

Based on this construction, we obtain the following results for the classical braid groups.

Theorem ([PS19]) If G = β is the family of braid groups and m > 2,4 we obtain functors

LBm : Uβ −→ Z[q±, t±]-Mod

that, on objects, recover the Lawrence-Bigelow representations LBm,n of Bn. Moreover, the functor LBm is
polynomial of degree m. Hence, from [RW17], we deduce that the twisted homology groups Hi(Bn;LBm,n)
are stable (independent of n for n� i) for any fixed m.

3 More precisely, their representation theory is “wild” in the sense that the representation theory of the free group F2 may be
embedded into the representation theory of Bn for any n > 3. This also implies that the representation theory of Bn (for any fixed
n > 3) contains the representation theory of all finite groups, and that there are k-parameter families of irreducible representations of
Bn for arbitrarily large k.

4 These statements also hold for m = 1, but in this case the ground ring is Z[t±] instead of Z[q±, t±]; in other words, we set q = 1.
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Using the iterative version of our construction above, we also recover the Long-Moody construction
as an endofunctor

LM : Functors(Uβ ,k-Mod)−→ Functors(Uβ ,k-Mod)

for any ring k. Moreover, we construct a new family {LMm}m>1 of “higher Long-Moody constructions”
with LM1 = LM.

For the loop braid groups LBn and extended loop braid groups LBext
n , we obtain:

Theorem ([PS19]) If G = Lβ = {LBn}n>1 is the family of loop braid groups and G = Lβ
ext = {LBext

n }n>1
the family of extended loop braid groups, we obtain, for any integers m > 2,5 functors

LBα
m : ULβ −→ Z[q±,s±, t±]/(s2)-Mod,

LBβ
m : U(Lβ

ext)−→ Z[q±,r±,s±, t±]/(q2,r2,s2, t2)-Mod,

LBγ
m : U(Lβ

ext)−→ Z[q±,s±, t±]/(s2, t2)-Mod.

In particular, these give coherent families of representations, over rings of Laurent polynomials, of the loop
braid groups {LBn}n>1 (for the first) and of the extended loop braid groups {LBext

n }n>1 (for the second and
third), which are analogues of the Lawrence-Bigelow representations of the classical braid groups {Bn}n>1.

6. Higher crossing diagrams in knot theory

— Reidemeister moves for triple-crossing link diagrams; relations between different n-crossing numbers
for links. —

The last theme of my previous work is in knot theory (which one may think of as the study of π0 of the
moduli space of 1-dimensional submanifolds of the 3-sphere), and more precisely with the representation
of links by diagrams in the plane (or 2-sphere). A classical link diagram is an immersion of a 1-manifold
into the plane, which is an embedding except at a finite number of double points, where the 1-manifold
must intersect itself transversely, together with additional data at each intersection point specifying which
strand passes “over” the other at that point. For a given link, such a diagram is unique up to ambient isotopy
and the well-known Reidemeister moves.

In joint work with Colin Adams and Jim Hoste [AHP17], we study instead triple-crossing diagrams,
which consist of an immersed 1-manifold in the plane, which is an embedding except at a finite number of
points, at which exactly three strands must intersect transversely (plus additional data at each intersection
point specifying which strands pass “over” others). We introduce an analogue of the Reidemeister moves
for such diagrams, consisting of:

◦ Analogues of the (classical) I- and II-moves, which may be thought of as surgeries supported on a
small subdisc of a diagram.

◦ The trivial pass move, which consists of cutting a strand and re-attaching it through another part
of the diagram without introducing any new crossings. This may be thought of as a surgery on an
annular neighbourhood of a diagram.

◦ Two families of moves, called the band moves and basepoints moves, which each consist of a surgery
supported on a pair of disjoint subdiscs of the diagram.

Definition For a link L in S3, a maximal nonsplit sublink of L is a sublink L1 of L such that (a) there exists an
embedded 2-sphere in S3 rL separating L1 and LrL1, and (b) there does not exist any embedded 2-sphere
in S3 rL1 separating L1 into two smaller sublinks.

A relative orientation of L is an orientation of L modulo orientation-reversal of each maximal nonsplit
sublink. Equivalently, this is a choice, for each maximal nonsplit sublink L1 of L, of an orientation of L1
modulo complete reversal (reversing every component of L1 simultaneously).

Theorem ([AHP17]) A triple-crossing diagram determines a relatively oriented link. Any two triple-
crossing diagrams representing the same relatively oriented link differ by a finite sequence of I-moves,
II-moves, trivial pass moves, band moves, basepoints moves and ambient isotopy.

5 These statements also hold for m = 1, but in this case we set q = s = 1.
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The notion of triple-crossing diagram may be generalised to any integer n > 2, with n = 2 corre-
sponding to the classical notion of link diagram. The n-crossing number cn(L) of a link L is then the
smallest number of crossings among all n-crossing diagrams of that link. One can ask how the sequence
{cn(L) | n ∈ N} behaves for each L, and which relations between the crossing numbers hold for all links L
(or for all but finitely many links L). For example, it is not hard to show that cn(L)> cn+2(L) for all n and
L, and this inequality is known be strict for n = 2. We prove that, with a few small exceptions, it is also
strict for n = 3.

Theorem ([AHP17]) Let L be a non-split link that is neither the unlink nor the Hopf link. Then

c3(L)> c5(L). (6)

Note that this inequality is clearly false for the unlink and the Hopf link: for these links, c3(L) and
c5(L) are both equal to 0 and both equal to 1, respectively.

Also note that, if L can be written as the union of maximal nonsplit sublinks L1, . . . ,Lk, then cn(L) =
cn(L1)+ · · ·+ cn(Lk). Thus the strict inequality (6) holds whenever L has at least one maximal nonsplit
sublink that is nontrivial and not the Hopf link.
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