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Abstract. We prove that, for any infinite-type surface S, the integral homology of the closure of the

compactly-supported mapping class group PMapc(S) and of the Torelli group T (S) is uncountable in

every positive degree. By our results in [PW] and other known computations, such a statement cannot

be true for the full mapping class group Map(S) for all infinite-type surfaces S. However, we are still
able to prove that the integral homology of Map(S) is uncountable in all positive degrees for a large

class of infinite-type surfaces S. The key property of this class of surfaces is, roughly, that the space of

ends of the surface S contains a limit point of topologically distinguished points. Our result includes in
particular all finite-genus surfaces having countable end spaces with a unique point of maximal Cantor-

Bendixson rank α, where α is a successor ordinal. We also observe an order-10 element in the first
homology of the pure mapping class group of any surface of genus 2, answering a recent question of

G. Domat.

Introduction

There has been a recent wave of interest in big mapping class groups (mapping class groups of infinite-
type surfaces); see [AV20] for a survey. In [PW], the authors recently computed the homology of a large
family of big mapping class groups, namely the families of (1-holed or punctured) binary tree surfaces
(see the introduction of [PW] for this terminology). Precisely, the mapping class group of every 1-holed
binary tree surface is acyclic and the homology of the mapping class group of every punctured binary tree
surface is periodic with Z in every even degree and zero in every odd degree. One instance of this result
says that the mapping class group Map(D2 r C) is acyclic and that Hi(Map(R2 r C)) is Z for i even and
zero for i odd, where C is a Cantor set embedded in the interior of the disc. In particular, in all of these
examples, the homology groups Hi(Map(S)) are finitely generated for each i. Some earlier results on the
homology of big mapping class groups – in degrees 1 and 2 – include: H1(Map(S r C)) ∼= H1(Map(S))
if C is a Cantor set embedded in the interior of a finite-type surface S [CC22] (see also [Vla21] for three
special cases of this) and H2(Map(S2 r C)) ∼= Z/2 [CC21].

In this paper we prove a contrasting result: for many infinite-type surfaces S, the group Hi(Map(S))

is uncountable for all i > 0. In addition, we prove – for all infinite-type surfaces S – that Hi(PMapc(S))

and Hi(T (S)) are uncountable for all i > 0, where PMapc(S) and T (S) denote, respectively, the closure
of the compactly-supported mapping class group and the Torelli group of S.

Our proofs are built on ideas from [APV20, Dom22, MT]. In [APV20], Aramayona, Patel and Vlamis
determined H1(PMap(S)) for any infinite-type surface S of genus at least 2; in particular, they showed
that it is countable. (This was extended to genus 1 in [DP20], where it was also shown that H1(PMap(S))
is uncountable when S has genus 0.) Along the way they proved that, when S has infinitely many non-
planar ends, its pure mapping class group PMap(S) admits a split-surjection onto the Baer-Specker group
ZN. Later, Domat proved that big pure mapping class groups PMap(S) are never perfect [Dom22]. Mo-
rover, he showed that H1(PMap(S)) is uncountable for many infinite-type surfaces S and that H1(T (S))

and H1(PMapc(S)) are uncountable for all infinite-type surfaces S. Malestein and Tao [MT] were able
to push the results of Domat further and prove that the first homology of the full mapping class group
H1(Map(S)) is uncountable for a certain class of surfaces S, including S = R2 r Z.

Uncountable homology. Given a surface S, recall that its pure mapping class group PMap(S) is the
subgroup of its mapping class group Map(S) = π0(Homeo(S)) consisting of all those mapping classes
that fix the ends of S pointwise. Its Torelli group T (S) is the kernel of the natural homomorphism
Map(S)→ Aut(H1(S)). Recall also that PMapc(S) denotes the subgroup of Map(S) of mapping classes

that admit representative homeomorphisms with compact support, and PMapc(S) denotes its closure in
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Map(S) in the quotient topology induced by the compact-open topology on Homeo(S). We note that in

general we have inclusions T (S) ⊆ PMapc(S) ⊆ PMap(S) ⊆ Map(S). (The only non-obvious inclusion
is the first one: it is explained during the proof of Theorem 4.10 below.) Our first result concerns the
first two groups of this nested sequence and holds for all infinite-type surfaces S.

Theorem A (Corollary 4.5 and Theorem 4.10). Let S be any infinite-type surface. Then the integral
homology groups

Hi(PMapc(S)) and Hi(T (S))

are uncountable for every i ≥ 1. Moreover, they each contain
⊕

c Z in every degree, where c denotes the
cardinality of the continuum.

Remark 0.1. One might hope that our methods could be used to prove that the homology of the pure
mapping class group Hi(PMap(S)) is also uncountable for every i ≥ 1 and for any infinite-type surface
S. However, the methods of the present paper can only prove this result in the case when S has at most
one or infinitely many non-planar ends; see Remark 4.7 for more information. When S has n non-planar
ends for 1 < n <∞, one can in fact prove that the (uncountably many) elements constructed in Domat’s
paper [Dom22, Theorem 6.1] all vanish in H1(PMap(S)); see Remark 4.9 for more information.

In order to state our result for the full mapping class groups Map(S), we first recall some background
about ends of surfaces; more details are given in §1 and §2. Every surface S has a space of ends E, which
is a compact, separable, totally disconnected topological space. The key hypothesis in our main theorem
is a condition on the structure of the space E.

Definition 0.2. For points x, y ∈ E, we write x ∼ y and say that x is similar to y if and only if there
are open neighbourhoods U, V of x, y respectively such that (U, x) and (V, y) are homeomorphic as based
spaces. A point x ∈ E is topologically distinguished if it is not equivalent to any other point of E under
this equivalence relation.

Definition 0.3. For a topological space E, write Υ+(E) = Eω+1, where Eω means a countably infinite
disjoint union of copies of E and X + 1 means the one-point compactification of X.

Theorem B. Let S be a connected, finite-genus surface with finitely many boundary components, whose
space of ends E is of the form E = E1 tΥ+(E2), where E2 has a topologically distinguished point x and
no point of E1 is similar to x. Then the integral homology group

Hi(Map(S))

is uncountable for every i ≥ 1. In fact, there is an injective homomorphism of graded abelian groups

Λ∗
(⊕

c

Z
)
−→ H∗(Map(S)),

where Λ∗ denotes the exterior algebra on an abelian group.

Remark 0.4. In the course of the proof of Theorem B, we also prove the same statement with S replaced
by the Loch Ness monster surface L, see Proposition 4.3.

Remark 0.5. All countable end spaces of surfaces (equivalently: countable compact Hausdorff spaces)
are of the form E = ωα.n+ 1 for a countable ordinal α and a positive integer n [MS20]. Hence a surface
S of finite genus with this end space satisfies the assumption of Theorem B whenever n = 1 and α is a
successor ordinal.

Thus for a large class of infinite-type surfaces S with countably many ends we know that Map(S) has
uncountable integral homology in all positive degrees. This suggests the following question.

Question 0.6. Let S be an infinite-type surface with countably many ends. Is the homology of Map(S)
uncountable in all positive degrees?

Remark 0.7. Without the hypothesis on the structure of the space of ends E of S, the conclusion of
Theorem B is false. For example, as mentioned above, we prove in [PW] that

Hi(Map(R2 r C)) ∼=

{
Z i even

0 i odd.
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Remark 0.8. The hypotheses of this paper and the hypotheses of [PW] are in some sense opposite, with
opposite conclusions. In [PW] we consider 1-holed binary tree surfaces, whose end spaces are Cantor
compactifications (Eω)C (see [PW, §1.2] for the definition), which are highly self-similar (in particular
(Eω)C ∼= C if E = ∅ or E = C, which is homogeneous), and we prove that Hi(Map(S)) = 0 for all i > 0.
On the other hand, in this paper we consider surfaces S whose end spaces E satisfy the “self-similarity-
breaking” hypothesis of Theorem B (roughly: E has a limit point of topologically distinguished points),
and conclude that Hi(Map(S)) is uncountable for all i > 0.

Non-trivial torsion. So far, the elements that we have constructed in the homology of big mapping
class groups all have infinite order. It would be interesting also to find some torsion elements. In fact,
the following question was asked by Domat in [Dom22, Question 11.3].

Question 0.9. Let S be an infinite-type surface. Are there torsion elements in H1(PMapc(S))?

Recall that PMapc(S) denotes the subgroup of Map(S) of mapping classes that admit representative

homeomorphisms with compact support, and PMapc(S) denotes its closure in Map(S) in the quotient

topology induced by the compact-open topology on Homeo(S). Also recall that PMapc(S) ⊆ PMap(S)
coincides with PMap(S) if and only if S has at most one non-planar end [PV18, Theorem 4]. Our third
result answers Domat’s question in the positive.

Theorem C. Let S be an infinite-type surface of genus 2 and with finitely many (possibly zero) boundary

components. Then the homology groups H1(PMap(S)) = H1(PMapc(S)) and H1(Map(S)) both contain
an order-10 element. Moreover, the cyclic group generated by this element is a direct summand.

Remark 0.10. By comparing the stable homology of (orientable, finite-type) mapping class groups
with rational coefficients [MW07] and with mod-p coefficients [Gal04], one sees that there are also many
torsion elements in the integral homology of mapping class groups in the stable range. Using this and
Lemma 6.2, one may find many higher-degree torsion elements in the homology of mapping class groups
of infinite-type surfaces of finite genus.

In a sense, our answer to Domat’s question is “cheating”, since we simply show that a certain torsion
element in the homology of the mapping class group of a finite-type subsurface of S injects into the
homology of the mapping class group of S. Together with our uncountability results above (Theorems
A and B), this suggests two refinements of Domat’s question:

Question 0.11. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or H1(PMap(S))
contain torsion elements that are not supported on any finite-type subsurface of S?

Question 0.12. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or H1(PMap(S))
contain an uncountable torsion subgroup?

We note that a positive answer to Question 0.12 would imply a positive answer to Question 0.11, since
torsion admitting finite-type support can only account for countably many torsion elements.

Outline. We begin with two sections of background: §1 on infinite-type surfaces and big mapping class
groups and §2 on notions of topologically distinguished points. In §3 we prove a basic lemma that gives a
sufficient criterion for the homology of a group to contain an embedded copy of the exterior algebra on
a direct sum of continuum many copies of Z. We also discuss techniques of [Dom22] that may be used
to construct the inputs for this lemma.

Theorems A and B are then proven in §4–§5. In §4 we prove uncountability of the homology of the
mapping class group of the Loch Ness monster surface, which is the first step in the proof of Theorem B.
We then adapt these techniques to prove Theorem A on the homology of the closure of the compactly-
supported mapping class group and the Torelli group of an arbitrary infinite-type surface S. In §5 we
apply the results of §4, together with a covering space argument inspired by a technique of Malestein
and Tao [MT], to complete the proof of Theorem B. The covering space argument in this section is the
step in which we use in an essential way the hypothesis on the structure of the end space of the surface.

We prove Theorem C on torsion elements in §6. Finally, in §7, we record some related open questions,
in particular discussing the cohomology of mapping class groups in §7.2. Appendix A gathers some basic
facts about abelian groups that are needed in several of our proofs.

Acknowledgements. MP was partially supported by a grant of the Romanian Ministry of Education
and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2798, within PNCDI III.
XW is currently a member of LMNS and supported by a starter grant at Fudan University. He thanks
Guozhen Wang for discussions related to the mod-p homology of the stable mapping class group.
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1. Surfaces, ends and mapping class groups

1.1. Infinite-type surfaces. All surfaces will be assumed to be second countable, connected, orientable
and to have compact boundary. If the fundamental group of S is finitely generated, we say that S has
finite type, otherwise it has infinite type. The classification of surfaces of possibly infinite type was proven
by von Kerékjártó [vK23] and Richards [Ric63]. Recall that an end of a surface S is an element of the
set

(1.1) Ends(S) = lim←−π0(S \K),

where the inverse limit is taken over all compact subsets K ⊂ S. The Freudenthal compactification of S
is the union

S = S t Ends(S)

equipped with the topology generated by U t {e ∈ Ends(S) | e < U} for all open subsets U ⊆ S. Here
e < U means that there is a compact subset K ⊂ S such that U contains the component of S \K hit by
e under the canonical map Ends(S)→ π0(S \K). The induced subspace topology on Ends(S) coincides
with the limit topology induced from the discrete topology on each term in the inverse system. With this
topology, Ends(S) is homeomorphic to a closed subset of the Cantor set. We call an end e ∈ Ends(S)
planar if it has a neighbourhood (in the topology of S) that embeds into the plane, otherwise we call it
non-planar. The (closed) subspace of non-planar ends is denoted by Endsnp(S) ⊆ Ends(S).

Theorem 1.1 ([Ric63, §4.5]). Let S1, S2 be two surfaces of genus g1, g2 ∈ N ∪ {∞} and with b1, b2 ∈ N
boundary components. Then S1

∼= S2 if and only if g1 = g2, b1 = b2 and there is a homeomorphism of
pairs of spaces

(Ends(S1),Endsnp(S1)) ∼= (Ends(S2),Endsnp(S2)).

Conversely, given g ∈ N ∪ {∞}, b ∈ N and a pair X ⊆ Y of closed subsets of the Cantor set, where we
require that g =∞ if and only if X 6= ∅, there exists a surface S of genus g with b boundary components
such that (Ends(S),Endsnp(S)) ∼= (Y,X).

1.2. Mapping class groups. For a surface S, the mapping class group of S is the group of isotopy
classes of orientation-preserving diffeomorphisms of S fixing the boundary of S pointwise, i.e.

Map(S) := π0(Diff+(S, ∂S)).

The pure mapping class group PMap(S) of S is the subgroup of Map(S) consisting of all elements
whose induced action on Ends(S) is the identity. These groups fit into the following short exact sequence.

Proposition 1.2. Let S be any surface. Then there is a short exact sequence of groups

1→ PMap(S) −→ Map(S) −→ Homeo(Ends(S),Endsnp(S))→ 1,

where Homeo(Ends(S),Endsnp(S)) is the group of homeomorphisms of the pair (Ends(S),Endsnp(S)).

2. Topologically distinguished points

We now recall from the introduction the notion of topologically distinguished points (Definition 0.2)
and compare it to a weaker notion of globally topologically distinguished points.

Definition 2.1. Let E be a topological space. Two points x, y ∈ E are called similar if there are open
neighbourhoods U and V of x and y respectively and a homeomorphism U ∼= V taking x to y. This is
an equivalence relation on E. A point x ∈ E is called topologically distinguished if its equivalence class
under this relation is {x}, in other words it is similar only to itself.

Definition 2.2. Let E be a topological space. Two points x, y ∈ E are called globally similar if there is
a homeomorphism ϕ ∈ Homeo(E) with ϕ(x) = y. This is an equivalence relation on E. A point x ∈ E is
called globally topologically distinguished if its equivalence class under this relation is {x}, in other words
it is similar only to itself. Equivalently, x ∈ E is globally topologically distinguished if it is a fixed point
of the action of Homeo(E) on E.

Remark 2.3. We record two immediate observations:
• If x and y are globally similar then they are similar.
• If x is topologically distinguished then it is globally topologically distinguished.

4



Figure 2.1. The 3-valent vertices of this graph are globally topologically distinguished
but not topologically distinguished, since they are similar (but not globally similar) to
each other.

The converses of these two statements are false in general. For example, the two vertices of valence 3 in
the graph pictured in Figure 2.1 are similar but not globally similar; also, both of them are globally topo-
logically distinguished but not topologically distinguished. However, for zero-dimensional (Hausdorff)
spaces the converse does hold:

Lemma 2.4. Suppose that E is Hausdorff and zero-dimensional, i.e. it has a basis for its topology
consisting of clopen subsets. Then two points x, y ∈ E are similar if and only if they are globally similar.
Thus x ∈ E is topologically distinguished if and only if it is globally topologically distinguished.

Proof. The second statement follows from the first one, so we only have to prove the first statement, that
x, y ∈ E are similar if and only if they are globally similar. One implication is obvious; we will prove the
opposite implication. So let us assume that x, y ∈ E are similar and choose open neighbourhoods U and
V of x and y respectively and a homeomorphism ϕ : U → V taking x to y. Assume that x 6= y (otherwise
the result is obvious). Since E is zero-dimensional, we may assume, by shrinking them if necessary, that
U and V are clopen. Since E is Hausdorff, we may assume, by shrinking them if necessary, that U and
V are disjoint. We may therefore extend ϕ to a homeomorphism ϕ̄ ∈ Homeo(E) by:

• ϕ̄(e) = ϕ(e) for e ∈ U ;
• ϕ̄(e) = ϕ−1(e) for e ∈ V ;
• ϕ̄(e) = e for e ∈ E r (U t V ).

This bijection is continuous since {U, V,E r (U t V )} is an open cover of E and ϕ̄ is continuous when
restricted to each of these subsets. Its inverse is continuous for the same reason, so it is a homeomorphism
of E taking x to y. Thus x and y are globally similar. �

Remark 2.5. Ends spaces of surfaces are always Hausdorff and zero-dimensional, so Lemma 2.4 implies
that topologically distinguished and globally topologically distinguished are the same for end spaces.

Lemma 2.6. If a space E has a topologically distinguished point, then Eω+1 has a globally topologically
distinguished point. In fact, the point at infinity is globally topologically distinguished.

Proof. Let ∞ denote the point at infinity of the one-point compactification Eω + 1 of Eω =
⊔
ω E. Let

ϕ ∈ Homeo(Eω+ 1). We just need to show that ϕ(∞) =∞, since it will then follow that∞ is a globally
topologically distinguished point of Eω+ 1. Suppose for a contradiction that ϕ(∞) 6=∞. Write Ei = E
for each i ∈ N, and identify Eω =

⊔
i∈NEi. By assumption, ϕ(∞) ∈ Ej for some j ∈ N. Let x ∈ E be a

topologically distinguished point. Every open neighbourhood U of ∞ ∈ Eω+ 1 contains infinitely many
points that are similar to x, since, by definition of the one-point compactification, U must contain Ei for
infinitely many i. Since ϕ is a homeomorphism, it must also be true that every open neighbourhood of
ϕ(∞) ∈ Eω + 1 contains infinitely many points that are similar to x. But Ej is an open neighbourhood
of ϕ(∞) ∈ Eω + 1 and it contains only one point that is similar to x, a contradiction. �

Corollary 2.7. Suppose that E is Hausdorff and zero-dimensional. If E has a topologically distinguished
point, then the point at infinity of Eω + 1 is topologically distinguished.

Proof. By Lemma 2.6, the point at infinity of Eω+1 is globally topologically distinguished. Hausdorffness
and zero-dimensionality of E imply Hausdorffness and zero-dimensionality of Eω+1, so Lemma 2.4 then
implies that the point at infinity of Eω + 1 is topologically distinguished. �

Remark 2.8. There is another, a priori different, equivalence relation on topological spaces, defined by
[MRb]. They define, for points x, y ∈ E:

x ≤ y ⇐⇒ ∀ open neighbourhoods U 3 y, ∃z ∈ U : z ∼ x,
5



where z ∼ x means that z and x are similar in the sense of Definition 2.1. This is a pre-order on E, so
it induces an equivalence relation

x ≈ y ⇐⇒ x ≤ y and y ≤ x

on E and a poset structure on the quotient E/≈. Clearly x ∼ y implies x ≈ y. Also, if we now assume
that E is the end space of a surface Σ, it is not hard to see (using Lemma 2.4) that x ∼ y if and only if
there is a homeomorphism of Σ taking x to y. Theorem 1.2 of [MRb] says that if x ≈ y then there is a
homeomorphism of Σ taking x to y. It follows that ∼ and ≈ are the same equivalence relation on E if it
is the end space of a surface. In [MRa], the authors often consider the condition that “Σ has a unique
maximal end”, i.e. there is a unique maximal equivalence class [x] ∈ E/≈ and the equivalence class [x]
has size 1. The condition that we require in this paper is however much weaker, namely that “Σ has a
topologically distinguished end”, i.e. there is an equivalence class [x] ∈ E/≈ of size 1 (but it need not be
maximal in the poset structure of E/≈).

3. Tools for proving uncountability

We start with a key lemma, which we use several times to conclude uncountability of the homology
of a given group G in all positive degrees.

Notation 3.1. Let us fix some notation that will be used throughout the rest of the paper.
• For an abelian group A, denote by Λ∗(A) the exterior algebra on A.
• We denote by c the cardinality of the continuum.

Lemma 3.2. Let G be a group, denote by α : G� Gab = H1(G) the quotient onto its abelianisation and
let ι :

⊕
c Z→ G be a homomorphism. Suppose that there is an embedding f :

⊕
c Q ↪→ H1(G) such that

the diagram

(3.1)

⊕
c

Z G

⊕
c

Q H1(G),

ι

α

f

commutes, where
⊕

c Z ↪→
⊕

c Q is the canonical inclusion. Then there is an injective homomorphism
of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(G).

In particular, Hi(G) is uncountable for all i ≥ 1.

Proof. By Lemma A.1, the embedding f admits a retraction. Hence the canonical inclusion

(3.2)
⊕
c

Z ↪−→
⊕
c

Q

factors through G. It follows that the induced homomorphism of graded abelian groups

(3.3) H∗

(⊕
c

Z
)
−→ H∗

(⊕
c

Q
)

factors through H∗(G). The integral homology of a torsion-free abelian group A is naturally isomorphic
to the exterior algebra Λ∗(A) (see [Bro82, Theorem V.6.4(ii)]), so we have homomorphisms of graded
abelian groups

(3.4) Λ∗
(⊕

c

Z
)
−→ H∗(G) −→ Λ∗

(⊕
c

Q
)

whose composition is injective by Lemma A.3. In particular the first map must be injective. �

In order to apply Lemma 3.2, we will need to be able to construct embeddings of direct sums of
copies of Q into the first homology of big mapping class groups. The key topological input for this is a
theorem of Domat, which we recall below and whose proof uses the machinery of Bestvina, Bromberg
and Fujiwara [BBF15]. We first make some definitions that are implicit in the statement of [Dom22,
Theorem 6.1].
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Figure 3.1. The once-punctured Loch Ness monster surface equipped with a sequence
{γi}i∈N of simple closed curves that is a well-spaced, escaping sequence in the sense of
Definition 3.3. The fact that it is well-spaced is witnessed by the associated sequence of
simple closed curves {γ′i}i∈N given by γ′i = Tαi

(γi).

Figure 3.2. The flute surface equipped with a sequence {γi}i∈N of simple closed curves
that is an escaping sequence in the sense of Definition 3.3. After passing to the subse-
quence {γ2i}i∈N, it becomes well-spaced, as explained in Example 3.6.

Definition 3.3. Let S be a connected surface with at least two ends. Let us call a sequence {γi}i∈N of
isotopy classes of simple closed curves on S an escaping sequence if:

• each γi is end-separating, i.e., cutting along it disconnects S into two non-compact surfaces;
• γi and γj have pairwise-disjoint representatives for i 6= j;
• the sequence γ1, γ2, . . . eventually leaves every compact subset of S, i.e., if K ⊂ S is a compact

subset then only finitely many γi may be isotoped to lie in K.
An escaping sequence {γi}i∈N is well-spaced if there exists another escaping sequence {γ′i}i∈N such that:

• γ′i is not isotopic to γi;
• γ′i and γj have pairwise-disjoint representatives for i 6= j;
• there is a (necessarily non-trivial) element gi ∈ PMapc(S) taking γi to γ′i.

Remark 3.4. It follows from the classification of surfaces that an escaping sequence exists on S if and
only if S has infinite type. In addition, any escaping sequence becomes well-spaced after passing to an
appropriate subsequence.

Example 3.5. In the key example of S = L′ the once-punctured Loch Ness monster surface, we may
for example take {γi}i∈N to be the sequence of curves pictured in Figure 3.1. Each γi is clearly end-
separating, they are pairwise disjoint and no compact subset of L′ contains more than finitely many of
them, so this sequence is escaping. Moreover, taking γ′i = Tαi

(γi) using the curves αi also pictured in
Figure 3.1, we obtain another escaping sequence {γ′i}i∈N witnessing that {γi}i∈N is well-spaced.

Example 3.6. As another example, we may consider the flute surface depicted in Figure 3.2, together
with the curves γi illustrated. These form an escaping sequence {γi}i∈N, but this is not a well-spaced
escaping sequence: for example, one may attempt to construct another escaping sequence witnessing
that it is well-spaced by setting γ′i = Tαi(γi) using the curves αi illustrated, but then γ′i intersects
γ′i+1, so {γ′i}i∈N is not an escaping sequence as in Definition 3.3. However, the subsequence {γ2i}i∈N is
well-spaced, as witnessed by the subsequence {γ′2i}i∈N.

Theorem 3.7 ([Dom22, Theorem 6.1]). Let S be an infinite-type surface with at least two ends and let
{γi}i∈N be a well-spaced escaping sequence of simple closed curves on S. Let a1, a2, . . . be an unbounded
sequence of positive integers. Then

∞∏
i=1

(Tγi)
ai ∈ PMapc(S)

projects to a non-zero element in
(
PMapc(S)

)ab
.
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In fact, what is used in practice in [Dom22] is the following stronger fact, in the case when S has
genus at least three. It is implicit in [Dom22, §8.1.1]; here we make the statement and the details of the
proof explicit.

Corollary 3.8. Let S be an infinite-type surface of genus at least three with at least two ends and let
{γi}i∈N be a well-spaced escaping sequence of simple closed curves on S. Let a1, a2, a3, . . . be a strictly

increasing sequence of positive integers. Then there is an injective homomorphism ϕ : Q ↪→
(
PMapc(S)

)ab
sending 1/n ∈ Q to the element

∞∏
i=rn

(Tγi)
ai!/n ∈

(
PMapc(S)

)ab
,

where rn ≥ 1 is any integer sufficiently large so that ai ≥ n for all i ≥ rn.

Proof. Using the presentation Q ∼= 〈x1, x2, x3, . . . |(xn)n = xn−1〉, where xn corresponds to 1/n! ∈ Q, we
see that in order to define a homomorphism ϕ : Q→ G, for any group G, it suffices to choose an element
ϕ(1) of G, a square root ϕ(1/2!) of ϕ(1), a cube root ϕ(1/3!) of ϕ(1/2!), etc. We begin by choosing

ϕ(1) =

∞∏
i=1

(Tγi)
ai! ∈

(
PMapc(S)

)ab
.

This is non-trivial by Theorem 3.7, since the sequence (ai!) is unbounded. In fact, Theorem 3.7 implies
that ϕ(1) has infinite order, since the sequence (nai!) is unbounded for all n ≥ 1. We next need to choose
a square root ϕ(1/2!) of this element. First choose r2 ≥ 1 so that ai ≥ 2 for all i ≥ r2 (this is possible
since (ai) is strictly increasing). Then set

ϕ(1/2!) =

∞∏
i=r2

(Tγi)
ai!/2! ∈

(
PMapc(S)

)ab
and notice that

ϕ(1)

2ϕ(1/2!)
=

r2−1∏
i=1

(Tγi)
ai! ∈

(
PMapc(S)

)ab
.

This is a finite product of Dehn twists, so it is the image of the corresponding element of PMapc(S)ab.
Restricting further, choose a compact subsurface S′ ⊂ S containing the curves γ1, . . . , γr2−1 in its interior
and having genus at least three. The element above is then the image of the corresponding element of
Map(S′)ab. But the mapping class group of any compact, orientable surface of genus at least three is
perfect [Bir70, Pow78], so Map(S′)ab = 0 and hence ϕ(1) = 2ϕ(1/2!). Continuing in the same way, we
construct a cube root of ϕ(1/2!), etc. Thus we have constructed a homomorphism ϕ from Q.

Recall that any homomorphism defined on Q is injective as long as its restriction to Z ⊂ Q is injective.
We observed above that ϕ(1) has infinite order; hence ϕ is injective. Finally, the formula for ϕ(1/n)
in the statement follows immediately from the construction, noting again that we may remove finitely
many terms from the infinite product without changing the element of the abelianisation. �

The following corollary is again implicit in [Dom22, §8.1.1], but we prefer to make the statement
and the details of the proof explicit. Let the surface S and the sequences {γi}i∈N and {ai}i∈N be as in
Corollary 3.8. For any infinite subset F ⊆ N, denote by

ϕF : Q ↪−→
(
PMapc(S)

)ab
the embedding obtained by applying Corollary 3.8 to the sequences {γi}i∈N and {ai}i∈N.

Corollary 3.9. Let F be a family of infinite subsets of N such that any two of them have finite inter-
section. Then the homomorphism

ΦF =
⊕
F∈F

ϕF :
⊕
F∈F

Q −→
(
PMapc(S)

)ab
is also injective.

Proof. Let (rF ) ∈ ker(ΦF ). Since the domain of ΦF is a direct sum, there are only finitely many F ∈ F
such that rF 6= 0; let us enumerate these as F1, . . . , Fs. Also choose n ≥ 1 so that mF := nrF ∈ Z. We
therefore have

0 = ΦF (n(rF )) = ΦF ((mF )) =
∏
i∈F1

(
(Tγi)

ai!
)mF1 · · ·

∏
i∈Fs

(
(Tγi)

ai!
)mFs .
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By Theorem 3.7, this product can only be zero if it is a finite product. But each F1, . . . , Fs is infinite.
Moreover, two terms of the product can only cancel if they are indexed by an element of one of the
pairwise intersections Fp ∩ Fq for p 6= q ∈ {1, . . . , s}, all of which are finite by assumption. Thus only
finitely many cancellations can occur, so the only possible way for this product to be zero is if s = 0,
which means that (rF ) = 0. Thus ΦF is injective. �

4. Proof of Theorem A

We are now ready to prove Theorem A. The tools of the previous section imply almost immediately
the following result.

Proposition 4.1. Let S be an infinite type surface of genus at least three with at least two ends. Then
there is an injective homomorphism of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(PMapc(S)).

Proof. Choose a well-spaced escaping sequence {γi}i∈N of simple closed curves on S (such a sequence
always exists by Remark 3.4) and set ai = i. Choose a family F of infinite subsets of N such that any two
of them have finite intersection, and such that the family F has the cardinality of the continuum. (For
example, we may identify N with Q and choose for each a ∈ R a sequence of distinct rationals converging
to a.) There is then a commutative diagram

(4.1)

⊕
F

Z PMapc(S)

⊕
F

Q
(
PMapc(S)

)ab
,

ΦF

where the bottom horizontal map ΦF is injective by Corollary 3.9 and its lift to PMapc(S) after restricting
to Z ⊂ Q in each summand is given by sending the generator 1 ∈ Z of the summand corresponding to
F ∈ F to the element ∏

i∈F
(Tγi)

i! ∈ PMapc(S).

The result then follows by an application of Lemma 3.2. �

Remark 4.2. Proposition 4.1 also holds without the assumption that S has genus at least 3. This
follows from an analogue of Corollary 3.8 that involves a sequence of pseudo-Anosov elements supported
on pairwise-disjoint compact subsurfaces of S instead of Dehn twists; see [Dom22, §8.1.2] for more details
of this construction. One then obtains a diagram of the form (4.1), where the horizontal maps are defined
using infinite products of powers of these pseudo-Anosov elements instead of Dehn twists, and the result
then follows from Lemma 3.2.

We next deduce the analogue of Theorem B for the Loch Ness monster surface L and the surface L′

obtained by removing one puncture from L.

Proposition 4.3. The graded abelian groups H∗(Map(L′)) and H∗(Map(L)) each contain an embedded
copy of the exterior algebra Λ∗

(⊕
c Z
)
.

Proof. Since L′ has at most one non-planar end, [PV18, Theorem 4] implies that PMapc(L
′) = PMap(L′).

We also have PMap(L′) = Map(L′) since L′ has only two punctures, which cannot be interchanged by a
homeomorphism of L′ since exactly one of them is non-planar. Thus the result for L′ is a special case of
Proposition 4.1. In this case, the sequence of simple closed curves γi may be taken to be those illustrated
in Figure 3.1 (see Example 3.5).

In order to deduce the result for L, we use the Birman exact sequence, which takes the form

(4.2) 1→ π1(L) −→ Map(L′) −→ Map(L)→ 1.
9



Since abelianisation is a right-exact functor, it follows that the kernel of H1(Map(L′)) → H1(Map(L))
is a quotient of H1(L); in particular it is countable. Consider the diagram

(4.3)

⊕
F

Z Map(L′) Map(L)

⊕
F

Q (Map(L′))ab (Map(L))ab
ΦF (∗)

where the left-hand square is (4.1) in the case S = L′ and the right-hand square is induced by (4.2). We
know that (∗) has countable kernel by the discussion above, so Lemma A.2 implies that, after removing
countably many terms from the direct sum on the left-hand side, the composition across the bottom of
(4.3) is also injective. We therefore obtain a diagram

(4.4)

⊕
c

Z Map(L)

⊕
c

Q (Map(L))ab,
(∗)′

where (∗)′ is injective and the direct sums on the left-hand side are still indexed by a set with the
cardinality of the continuum. The result for L thus follows from Lemma 3.2. �

Remark 4.4. We noted in Remark 4.2 that Proposition 4.1 holds without the assumption on the genus
of S, i.e. it holds for any infinite type surface S with at least two ends. On the other hand, if S is an
infinite type surface with at most one end, it must be the Loch Ness monster surface S = L, and the
result then follows from Proposition 4.3 (see also [Dom22, Appendix]). Thus, in fact, Proposition 4.1
holds for any infinite type surface S. This is the first part of Theorem A:

Corollary 4.5. Let S be an infinite-type surface. Then the graded abelian group H∗(PMapc(S)) contains

an embedded copy of the exterior algebra Λ∗
(⊕

c Z
)
, induced by an embedding

⊕
c Z ↪→ PMapc(S).

Remark 4.6. There are two points where this proof is not entirely constructive. The first is the choice
of the family F = {Λa | a ∈ R} of infinite subsets of N. However, this may easily be made explicit by
choosing an explicit bijection between N and Q and then letting Λa ⊆ Q, for a ∈ R, be the sequence
of rational numbers converging to a ∈ R given by truncating the binary expansion of a. The second
point where it is non-constructive is in passing from diagram (4.3) to diagram (4.4) by throwing away
countably many real numbers indexing the direct sum on the left-hand side. However, looking carefully
at the proof of Lemma A.2, one may make this step constructive too.

Remark 4.7. When S has at most one non-planar end, the pure mapping class group PMap(S) coincides

with PMapc(S), by [PV18, Theorem 4]. Thus Corollary 4.5 says that H∗(PMap(S)) is uncountable in
every positive degree when S has at most one non-planar end. This statement also holds when S has
infinitely many non-planar ends. Indeed, by [APV20, Corollary 6], we have in this case that

PMap(S) ∼= PMapc(S) o ZN.

In particular, ZN is a retract of PMap(S), so the natural induced map Hi(ZN)→ Hi(PMap(S)) is split-
injective in every degree. The fact that that H∗(PMap(S)) is uncountable in every positive degree in
this case is therefore an immediate corollary of the following lemma.

Lemma 4.8. The homology group Hi(ZN) contains a direct summand isomorphic to ZN in every degree
i > 0. Hence it contains a subgroup isomorphic to

⊕
c Z in every degree i > 0.

Proof. The first statement follows from the Künneth theorem applied to the decomposition ZN ∼= ZN×Zi.
The second statement then follows from the fact that ZN contains free abelian groups of rank c. To see
this, choose a family F , of cardinality |F| = c, of infinite subsets of N such that any pair have finite
intersection. (For example, as in the proof of Proposition 4.1, we may identify N with Q and choose for
each a ∈ R a sequence of distinct rationals converging to a.) It is then easy to check that the collection

{χF ∈ ZN | F ∈ F},
10



Figure 4.1. A surface with n non-planar ends e1, . . . , en for 2 ≤ n <∞. The top and
bottom edges are identified to obtain a sphere, then the points e1, . . . , en (together with
a set of planar ends, which is not pictured) are removed, then we take a connected sum
with a torus along each of the (infinitely many) small grey discs. The planar ends (not
pictured) may have some or all of the non-planar ends e1, . . . , en as limit points, but
in any case lie outside of the subsurfaces Y1, . . . , Yn−1, which support the handle shifts
h1, . . . , hn−1. The curves γ1, γ2, γ3, . . . are chosen as illustrated such that the handle
shift h1 sends γi to γi+1 (up to isotopy).

where χF : N→ {0, 1} ⊂ Z denotes the indicator function of F ⊆ N, is Z-linearly independent and hence
generates a subgroup of ZN isomorphic to

⊕
c Z. �

Remark 4.9. When S has n non-planar ends with 1 < n <∞, by [APV20, Corollary 6] we have:

(4.5) PMap(S) ∼= PMapc(S) o Zn−1,

where Zn−1 is freely generated by n− 1 handle shifts h1, . . . , hn−1. As indicated in the proof of [APV20,
Theorem 5], one may choose the handle shifts hj to have pairwise disjoint support. Let Yj be the support
of hj . Recall that each Yj is a subsurface homeomorphic to the result of gluing handles onto R × [0, 1]
periodically with respect to the transformation (x, y) 7→ (x+1, y). For convenience, we shall require that
the i-th handle is attached to [i, i+ 1]× [0, 1] and that hj maps the i-th handle to the (i+ 1)-st handle.
See Figure 4.1 for an illustration. The semi-direct product decomposition (4.5) implies that

(4.6) H1(PMap(S)) ∼= H1(PMapc(S))Zn−1 ⊕ Zn−1,

where (−)Zn−1 denotes the coinvariants under the action of the handle shifts. By Theorem 3.7, choosing
the sequence of curves γi as illustrated in Figure 4.1 and any unbounded sequence of positive integers
ai, the infinite product of Dehn twists f =

∏∞
i=1(Tγi)

ai ∈ PMapc(S) represents a non-trivial element in

the abelianisation H1(PMapc(S)). But it vanishes in H1(PMap(S)) – in other words, in the coinvariants
under the action of the handle shifts – since [f ] = [g]− [h1gh

−1
1 ], where g =

∏∞
i=1(Tγi)

bi , bi = Σij=1aj .

Recall that the Torelli group T (S) is the kernel of the natural homomorphism Map(S)→ Aut(H1(S)).

Theorem 4.10. Let S be an infinite-type surface. The integral homology group Hi(T (S)) is uncountable
for every i ≥ 1. In fact it contains an embedded copy of

⊕
c Z in every positive degree.

Proof. By Corollary 4.5, there is an embedding

(4.7)
⊕

c Z ↪−→ PMapc(S)

that induces on homology an embedding of Λ∗
(⊕

c Z
)

into H∗(PMapc(S)). It will therefore suffice to
show that (4.7) factors through the Torelli group T (S).

We first note that the Torelli group is contained in PMapc(S) ⊂ Map(S): it clearly lies in PMap(S)
since any non-trivial action on the space of ends of S implies a non-trivial action on H1(S); then the fact

that it lies in PMapc(S) follows from [APV20, Corollary 6], which decomposes PMap(S) as a semi-direct

product of PMapc(S) and a direct product of copies of Z generated by handle shifts, together with the
fact that handle shifts act non-trivially on H1(S).

Finally, we just have to note that the elements of PMapc(S) used to define the homomorphism (4.7)
actually lie in T (S). When the genus of S is at least 3, these elements are infinite products of Dehn
twists around (pairwise disjoint) separating curves; hence they act trivially on H1(S). When the genus
is at most 2, we instead use infinite products of (pairwise disjointly-supported) pseudo-Anosov elements,
as explained in Remark 4.2. These elements are of the form T 2

αT
2
βT
−2
α T−2

β for a pair of separating curves

α, β that fill a finite-type subsurface of S, as explained in [Dom22, p. 715], and they also act trivially on
H1(S). �

Remark 4.11. In degree one, H1(T (S)) contains an embedded copy of
⊕

c Q, by [Dom22, Theorem 9.1].
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Figure 5.1. The branched double covering (5.1). After removing the subset marked in
red (which includes the branch points), this restricts to the (genuine) double covering
(5.2).

5. Descending along double branched covers

In this section we generalise techniques of Malestein and Tao [MT] — who proved uncountability of
homology in degree 1 for the mapping class group of R2rN — to higher degrees and to the more general
class of surfaces from Theorem B, completing the proof of that theorem.

To begin with, we will put stronger assumptions on the surface S: we assume that it has genus 0, empty
boundary and that its space of ends is of the form Υ+(E),1 where E has a topologically distinguished
point. This means that S may be written as R(S2 rE), where R(Σ) denotes the ray surface associated
to a surface Σ:

Definition 5.1. Let Σ be any connected surface without boundary and write Σ1 (respectively Σ2) for
the surface obtained by removing one (respectively two disjoint) open discs from Σ. The ray surface
R(Σ) is the surface obtained by gluing together infinitely many copies of Σ2 and “capping off” in one
direction with a single copy of Σ1. See the top half of Figure 5.1 for an example where Σ = T 2 is the
torus; thus R(T 2) is the Loch Ness monster surface.

Remark 5.2. This is the same as the surface denoted by L(Σ) in [PW] with its boundary capped off
by a disc.

Denote by L the Loch Ness monster surface and consider its branched double covering L → R2

depicted in Figure 5.1. This may also be written as

(5.1) L ∼= S2]R(T 2) −→ S2]R(S2) ∼= R2.

This decomposition corresponds to cutting along the curves depicted in the figure, together with an
additional curve γ0 or α0, which is not depicted. Notice that there are exactly two branch points (of
order 2) in each copy of S2 in R(S2) and one additional branch point in the copy of S2 in the extra
connected summand. Let us now choose once and for all a topologically distinguished point x ∈ E (this
exists by hypothesis) and embed pairwise disjoint copies of E into S2]R(S2) so that:

• each copy of E lies entirely in one of the copies of S2,
• the point x ∈ E is sent to a branch point of (5.1),
• each branch point of (5.1) is in the image of one of the embeddings of E.

1Recall that the notation Υ+(−) was defined in Definition 0.3.
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We denote by X the complement of these embedded copies of E and we denote by Y ⊂ S2]R(T 2) the
pre-image of X ⊂ S2]R(S2) under (5.1). Notice that:

Y ∼= (S2 r V )]R(T 2 r (V t V ))

X ∼= (S2 r E)]R(S2 r (E t E)) ∼= R(S2 r E) ∼= S,

where V denotes the wedge sum of two copies of E at the basepoint x. Since we have in particular
removed all branch points of the branched double covering, we obtain by restriction a (genuine) double
covering

(5.2) Y −→ X

depicted in Figure 5.1.
We fix compatible basepoints on X and Y and denote by H the index-2 subgroup of π1(X) corre-

sponding to this double covering. We also write Map∗(X) and Map∗(Y ) for the based mapping class
groups of X and Y , given by isotopy classes of self-homeomorphisms that fix the basepoint.

Lemma 5.3. The action of Homeo∗(X) on π1(X) preserves the subgroup H.

Proof. We first describe the subgroup H ⊂ π1(X) intrinsically. A based loop γ in X lies in H if and only
if its lift to Y is a closed loop. This occurs if and only if the sum of its winding numbers around all branch
points of the branched double covering (5.1) is even. We therefore have to show that if the sum of these
winding numbers is even for γ, then the same is true for ϕ◦γ, where ϕ is any based self-homeomorphism
of X.

A subtle point here is the meaning of winding number (which we only need to define mod 2): a simple
loop in the surface X has winding number ±1 around an end e 6= ∞ if it separates X into two pieces,
one containing e and the other containing the end ∞. Here ∞ denotes the end corresponding to going
off to infinity to the right in Figure 5.1. More precisely, recall that the end space of X is the one-point
compactification Υ+(E) = Eω + 1 of a countably infinite disjoint union of copies of E and ∞ denotes
the point at infinity of this one-point compactification. By Corollary 2.7 and our assumption that E has
a topologically distinguished point, the point ∞ ∈ Eω + 1 is also topologically distinguished. Thus any
self-homeomorphism ϕ of X fixes ∞, meaning that the notion of “winding number” is preserved by ϕ.

Let us now show that if the sum of the winding numbers of γ around all branch points of X is even,
then the same is true for ϕ◦γ. The end space Eω+1 of X has a topologically distinguished subset {x}ω
given by the copy of the topologically distinguished point x in each copy of E. But this is precisely the
set of branch point of the branched double covering (5.1). Thus the self-homeomorphism ϕ must send
each end of X corresponding to a branch point to another end of X corresponding to a branch point. Its
effect on winding numbers around branch points is therefore simply to permute them; so in particular
their sum is preserved. Hence if the sum of winding numbers around branch points is even for γ, then
the sum of winding numbers around branch points will also be even for ϕ ◦ γ. �

Remark 5.4. The proof of Lemma 5.3 is where our assumption that the space E has a topologically
distinguished point is used decisively. The lemma would be false without this assumption. See also
Remark 5.5.

We may now complete the proof of Theorem B under the stronger assumptions that we are currently
making (we explain how to remove these assumptions at the end of this section).

Proof of Theorem B under additional assumptions. It follows from Lemma 5.3 that each based homeo-
morphism of X lifts uniquely to a based homeomorphism of Y , giving us a continuous map Homeo∗(X)→
Homeo∗(Y ), which on π0 induces

(5.3) Map∗(X) −→ Map∗(Y ).

Filling in all planar ends of a surface is a functorial operation on the category of surfaces, so by filling
in all planar ends of Y we obtain a continuous map Homeo∗(Y )→ Homeo∗(L), which on π0 induces

(5.4) Map∗(Y ) −→ Map∗(L).

Composing (5.3) and (5.4) with the forgetful map Map∗(L)→ Map(L), we obtain

(5.5) Map∗(X) −→ Map(L).

Let α1, α2, . . . be the collection of simple closed curves on X depicted in Figure 5.1. Since γi is a double
covering of αi, we see that

(Tαi
)2 7−→ Tγi
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under (5.5). Now recall that in §4 (see diagram (4.4)) we factored the inclusion
⊕

c Z ⊂
⊕

c Q through
a map

⊕
c Z → Map(L) that sends the generator 1 ∈ Z of each summand to a certain infinite product

of Dehn twists around the curves γi from the top of Figure 5.1. Replacing each Tγi with (Tαi)
2 in this

infinite product, we obtain a map
⊕

c Z→ Map∗(X) making the following triangle commute:

(5.6)

⊕
c

Z

Map∗(X) Map(L),
(5.5)

where the right-hand diagonal map is part of a factorisation
⊕

c Z → Map(L) →
⊕

c Q of the standard
inclusion. We have therefore shown that the standard inclusion of

⊕
c Z into

⊕
c Q also factors through

Map∗(X). Now consider the diagram

(5.7)

⊕
c Z Map∗(X)

⊕
c Q

Map(X),

ϕ

where the middle vertical map forgets the basepoint. This is part of the Birman exact sequence for X,
and its kernel is π1(X), which is in particular countable. Let us denote this kernel by K and consider its
image ϕ(K) ⊂

⊕
c Q. Since ϕ(K) is countable and each of its elements has only finitely many non-zero

coordinates in
⊕

c Q (because it is a direct sum), it is contained in the subgroup of
⊕

c Q given by the
direct sum of only countably many of the copies of Q. If we take the quotient by this subgroup, the
resulting group is again isomorphic to

⊕
c Q and the homomorphism ϕ now descends to Map(X). On

the left-hand side of (5.7), we may compose with the inclusion of the corresponding sub-direct-summand
of
⊕

c Z (which is again isomorphic to
⊕

c Z); this ensures that the composition across the top row of
the following diagram is still the standard inclusion of

⊕
c Z into

⊕
c Q:

(5.8)

⊕
c Z

⊕
c Z Map∗(X)

⊕
c Q

⊕
c Q

Map(X)

ϕ

Thus we have shown that the standard inclusion of
⊕

c Z into
⊕

c Q factors through Map(X). This
standard inclusion induces an injection on homology in all degrees, by Lemma A.3 and the fact that
H∗(A) = Λ∗(A) for torsion-free abelian groups A, so it follows that we have an injection

Λ∗
(⊕

c

Z
)

= H∗

(⊕
c

Z
)
↪−→ H∗(Map(X)) = H∗(Map(S)).

This completes the proof of Theorem B under the additional assumptions on the surface S. �

We finish this section by showing how to modify the argument above to allow the more general surfaces
S considered in the theorem.

Proof of Theorem B in general. The proof follows exactly the same strategy as the proof in the special
case above, so we just explain the steps that differ slightly.

In general, the surface S is of the form pictured at the bottom of Figure 5.2, where we have taken a
connected sum of the surface considered previously with another surface of finite genus having finitely
many boundary components, such that none of the points of its end space are similar to the topologically
distinguished point x ∈ E. We may correspondingly modify the total space of the double covering by
taking two connected sums with this surface (no new branch points are introduced).

Lemma 5.3 generalises directly to this setting, giving us a homomorphism that lifts (based) mapping
classes up the double covering. Filling in all planar ends upstairs, as well as the finitely many boundary
components, we obtain (as before) the Loch Ness monster surface L. With these modifications, the rest
of the proof is identical to the proof in the special case given above, using the constructions of §4. �
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Figure 5.2. A modification of the branched double covering depicted in Figure 5.1.

Remark 5.5. It is essential to assume in Theorem B that E2 has a topologically distinguished point.
Indeed, if we do not assume this, then the theorem is false. For example, without this assumption, the
theorem would assert that the homology of Map(S2 r C) is uncountable in all positive degrees, since
Υ+(C) ∼= C. However, the first and second homology groups of Map(S2 r C) are known to be 0 and Z/2
respectively [CC21].

6. Torsion elements

We prove in this section that, whenever S has genus 2, both H1(PMap(S)) and H1(Map(S)) contain
an element of order 10 that generates a direct summand. We first recall that, for compact surfaces
of genus 2, the first homology of their mapping class groups is precisely Z/10. Denote by Sg,b the
connected, compact, orientable surface of genus g with b ≥ 1 boundary components. When g = 2, we
have the following.

Theorem 6.1 ([Kor02, §5]; see also [Mum67]). For any b ≥ 0, we have H1(Map(S2,b)) ∼= Z/10, generated
by [Tα], where α is any non-separating simple closed curve in S2,b.

Proof of Theorem C. If S has genus 2, there is an embedding S2,1 ⊆ S. Also, filling in the ends of S
(all of which are planar since it has finite genus) to construct its Freudenthal compactification results in
the compact surface S2,b, where b ≥ 0 is the number of boundary components of S. We therefore have
homomorphisms

(6.1) Map(S2,1) −→ PMap(S) ⊆ Map(S) −→ Map(S2,b),

where the first is given by extending homeomorphisms of S2,1 by the identity on SrS2,1 and the second
is given by the unique extension of homeomorphisms to the Freudenthal compactification. Let α be
a non-separating simple closed curve in S2,1. By Theorem 6.1, the composition across (6.1) induces a
map Z/10→ Z/10 on first homology. Moreover, it clearly sends [Tα] to itself, so it sends a generator of
the first Z/10 to a generator of the second Z/10; thus it is an isomorphism. Since we have factored an
isomorphism of Z/10 through H1(PMap(S)) and H1(Map(S)), it follows that these groups both contain
Z/10 as a direct summand. �
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We record here a related general fact that (for example) allows one to embed torsion elements of
mapping class groups of compact surfaces into mapping class groups of surfaces of infinite type.

Lemma 6.2. Let S and S′ be two surfaces with non-empty (compact) boundary and assume that S′ is
planar. Then there are embeddings of direct summands

(6.2) H∗(PMap(S)) ↪−→ H∗(PMap(S\S′)) and H∗(Map(S)) ↪−→ H∗(Map(S\S′)),

where \ denotes boundary connected sum.

Proof. Since S′ is planar, it must be of the form S′ = S0,brE, where b ≥ 1 is the number of its boundary
components and E is its space of ends. We therefore have homomorphisms

(6.3) PMap(S) −→ PMap(S\S′) −→ PMap(S\S0,b) −→ PMap(S\S0,1) ∼= PMap(S),

where the first is given by extending homeomorphisms by the identity on S′, the second is given by
the unique extension of homeomorphisms to the Freudenthal compactification and the third is given
by filling in all boundary components of S0,b with discs, except the one along which we have taken
the boundary connected sum, and extending homeomorphisms by the identity on these new discs. The
isomorphism on the right-hand side is induced by a homeomorphism S\S0,1

∼= S given by pushing the
disc S0,1 into a collar neighbourhood of the boundary of S. The composition across (6.3) is given by
extending homeomorphisms of S by the identity on S0,1 and then conjugating by the homeomorphism
S\S0,1

∼= S. This is clearly isotopic to the identity, so, applying H∗, we have factored the identity map
of H∗(PMap(S)) through H∗(PMap(S\S′)), which provides the first embedding of (6.2). The second
embedding follows by an identical argument, replacing PMap(−) with Map(−) everywhere. �

7. Some open problems

In this section we propose some open questions, in addition to Questions 0.6, 0.11 and 0.12 discussed
in the introduction. We divide them into §7.1 on homology and §7.2 on cohomology.

7.1. Homology. So far, our calculations suggest the answer to the following question could be positive.

Question 7.1. Let S be an infinite-type surface. Suppose that, for some i ≥ 1, the group Hi(Map(S))
is countable. Is Hi(Map(S)) finitely generated for all i?

This would imply a dichotomy between those S for which Hi(Map(S)) is finitely generated for all
i ≥ 1 and those S for which Hi(Map(S)) is uncountable for all i ≥ 1.

Question 7.2. Let Sg,1 be the connected, compact, orientable surface of genus g and with one boundary
component. Does the forgetful map Map(Sg,1 rC)→ Map(Sg,1) induce isomorphisms on homology in all
degrees?

Remark 7.3. When g = 0, a positive answer follows from [PW, Theorem B]. The answer in degree one
(and for any g) has been proven to be positive in [CC22, Theorem 2.3]. On the other hand, the answer
would be negative if we considered the sphere instead of Sg,1, since H2(Map(S2 r C)) ∼= Z/2 by [CC21,
Theorem A.2]. It would also be negative if we took the plane instead of Sg,1, since Hi(Map(R2 rC)) ∼= Z
for all even i by [PW, Theorem A].

By [PW, Theorem C], the mapping class groups of 1-holed binary tree surfaces are acyclic. One may
wonder whether these are the only acyclic mapping class groups of infinite-type surfaces with connected
boundary:

Question 7.4. Let S be an infinite-type surface with a single boundary component and suppose that its
mapping class group Map(S) is acyclic. Is S necessarily a 1-holed binary tree surface?

7.2. Cohomology. Most of the results of this paper may be summarised as follows. For any infinite-type
surface S, the natural inclusion

⊕
c Z ⊂

⊕
c Q factors as

(7.1)
⊕
c

Z −→ T (S) ⊆ PMapc(S) −→
⊕
c

Q

and similarly for the full mapping class group Map(S) if S satisfies the conditions of Theorem B or if
it is the Loch Ness monster surface (Proposition 4.3). Our results about integral homology then follow
from the fact that the natural inclusion

⊕
c Z ⊂

⊕
c Q induces an injective homomorphism of exterior

algebras Λ∗(
⊕

c Z) ⊂ Λ∗(
⊕

c Q) on homology (Lemma A.3). It is therefore natural to consider also
the effect of the factorisation (7.1) on integral cohomology. However, this factorisation does not tell us
anything about cohomology, since the composition across (7.1) induces the zero map on cohomology:
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Lemma 7.5. For each i ≥ 1, we have:

Hi
(⊕

c

Z
)
∼=
∏
c

Z

Hi
(⊕

c

Q
)
∼=

{
0 if i = 1⊕

2c Q if i ≥ 2.

In particular, the inclusion
⊕

c Z ⊂
⊕

c Q induces the zero map on Hi.

Proof. The last statement follows from the two calculations, since the induced map on Hi has a rational
vector space as its domain, which is a divisible group. Its image must therefore also be divisible, but the
only divisible subgroup of

∏
c Z is the trivial group.

It therefore remains to check the two calculations. The first one follows from the fact that Hi(
⊕

c Z) ∼=⊕
c Z for all i ≥ 1, the universal coefficient theorem, the fact that HomZ(−,−) and ExtZ(−,−) take direct

sums to products in the first variable and HomZ(Z,Z) ∼= Z and ExtZ(Z,Z) = 0.
For the second calculation, we again use the universal coefficient theorem, where this time we use the

facts that HomZ(Q,Z) = 0 and that ExtZ(Q,Z) is a rational vector space of dimension c (see for example
[Wie69]). Thus for i ≥ 2 we have Hi(

⊕
c Q) ∼=

∏
c(
⊕

c Q), which is a divisible and torsion-free abelian
group, hence a rational vector space, of cardinality (and hence also dimension) cc = 2c. �

Since the composition across (7.1) induces the zero map on cohomology, we cannot deduce anything

about H∗(PMapc(S)) from this. However, we wonder whether the right-hand map of (7.1) is nevertheless
injective on cohomology. If it is, it would positively answer the first part of the following question.

Question 7.6. Let S be an infinite-type surface and i ≥ 2. Do the groups Hi(PMapc(S)) or Hi(PMap(S))
contain a rational vector space of dimension 2c?

The second part of this question is motivated by the observation that, in the case when S has infinitely
many non-planar ends, the answer is yes. In fact, we have:

Proposition 7.7. Let S be a surface with infinitely many non-planar ends and let i ≥ 2. Then there is
an embedding ⊕

2c

Q⊕
⊕
2c

Q/Z ↪−→ Hi(PMap(S)).

Proof. By [APV20, Corollary 6], PMap(S) admits a split-surjection onto the Baer-Specker group ZN,
so Hi(ZN) is a summand of Hi(PMap(S)). By the universal coefficient theorem, Hi(ZN) has a direct
summand of the form ExtZ(Hi−1(ZN),Z) and we know by Lemma 4.8 that Hi−1(ZN) contains a direct
summand isomorphic to ZN. Putting this together, it follows that Hi(PMap(S)) has a direct summand
isomorphic to ExtZ(ZN,Z). This group is isomorphic to

⊕
2c Q⊕

⊕
2c Q/Z, by [Nun61, Theorem 5] (see

also [Fuc73, Exercise 2 of §99]). �

A. Abelian groups

We collect here a few facts about abelian groups that are needed in our proofs. For a comprehensive
treatment of the theory of abelian groups, we refer to [Fuc70].

Recall that an abelian group A is called divisible if for each element a ∈ A and positive integer n, there
is another element b ∈ A such that a = nb. An abelian group A is called injective if for every injective
homomorphism of abelian groups ι : B → C and homomorphism f : B → A, there is a homomorphism
g : C → A such that g ◦ ι = f . By [Fuc70, Theorems 21.1 and 24.5], an abelian group is divisible if and
only if it is injective. In particular:

Lemma A.1. Every injective homomorphism from a divisible abelian group to another abelian group
admits a retraction.

Proof. Let A be a divisible abelian group and let ι : A → C be an injective homomorphism. Since A is
injective, taking B = A and f = id above, we obtain a retraction of ι. �

Lemma A.2. Suppose that we have homomorphisms of abelian groups⊕
c

Q A B
f g

where f is injective and g has countable kernel. Then, after restricting the direct sum on the left to a
subcollection of the same cardinality, the composition g ◦ f is also injective.

17



Proof. Consider the subgroup K := ker(g ◦ f) = f−1(ker(g)) ⊂
⊕

c Q. Since ker(g) is countable and
f is injective, K is a countable subgroup of

⊕
c Q. Each element of K has only finitely many non-zero

coordinates in the direct sum and K has countably many elements; thus K is contained in the sub-direct-
sum given by countably many Q summands. After removing these summands from the direct sum, the
composition g ◦ f is injective. �

Lemma A.3. For any set I, the canonical inclusion
⊕

I Z ↪→
⊕

I Q induces an injective map of graded
abelian groups

(A.1) Λ∗
(⊕

I

Z
)
↪−→ Λ∗

(⊕
I

Q
)
.

To prove this, we first recall the following basic calculation:

Lemma A.4. Λ∗(Z) ∼= Z[0]⊕ Z[1] and Λ∗(Q) ∼= Q[0]⊕Q[1].

Proof. The only non-obvious statement is that Λi(Q) = 0 for i ≥ 2. To see this, first recall that

(A.2) Q⊗Z Q⊗Z · · · ⊗Z Q ∼= Q
via an isomorphism that sends a1 ⊗ a2 ⊗ · · · ⊗ ai 7→ a1a2 · · · ai. The Z-module Λi(Q) is the quotient of
this tensor power by the sub-Z-module generated by all elements a1 ⊗ a2 ⊗ · · · ⊗ ai with aj = ak for
some j 6= k. Thus to prove that Λi(Q) = 0 we have to show that every rational number is a Z-linear
combination of rational numbers of the form b2a3 · · · ai. For i ≥ 3 this is obvious. For i = 2 it follows
from Lagrange’s four-square theorem. �

Proof of Lemma A.3. By [Bro82, §V.6.2, V.6.3], for any abelian group A we have

(A.3) Λ∗
(⊕

I

A
)
∼= Λ∗

(
colim
J⊆I

⊕
J

A
)
∼= colim

J⊆I
Λ∗
(⊕

J

A
)
∼= colim

J⊆I

⊗
J

Λ∗(A),

where the colimit is taken over finite subsets J of I. For any finite set J , the canonical map⊗
J

Λ∗(Z) −→
⊗
J

Λ∗(Q)

is injective by Lemma A.4 and the natural isomorphisms (A.2). Thus (A.1) is also injective since the
colimit on the right-hand side of (A.3), for A = Z or A = Q, is taken over a direct system in which all
maps are inclusions of direct summands. �
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