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Abstract

The families of braid groups, surface braid groups, mapping class groups and loop braid
groups have a representation theory of “wild type”, so it is very useful to be able to construct
such representations topologically, so that they may be understood by topological or geomet-
ric methods. For the braid groups Bn, Lawrence and Bigelow have constructed families of
representations starting from actions of Bn on the twisted homology of configuration spaces.
These were then used by Bigelow and Krammer to prove that the braid groups are linear.

We develop a general underlying procedure to build homological representations of families
of groups, encompassing all of the above-mentioned families and in principle many more, such
as families of general motion groups. Moreover, these families of representations are coherent,
in the sense that they extend to a functor on a larger category, whose automorphism groups
are the family of groups under consideration and whose richer structure may be used (i) to
organise the representation theory of the family of groups and (ii) to prove twisted homological
stability results — both via the notion of polynomiality. We prove polynomiality for many such
homological functors, including those (which we construct) extending the Lawrence-Bigelow
representations.

This helps to unify previously-known constructions and to produce new families of repre-
sentations — we do this for the loop braid groups, surface braid groups and mapping class
groups. In particular, for the loop braid groups, we construct three analogues of the Lawrence-
Bigelow representations (of the classical braid groups), which appear to be new.

Contents

§1. Introduction 2
§2. The general construction 5

§2.1 Overview 5
§2.2 Twisted module homomorphisms and twisted homology 6
§2.3 Lifting actions to covering spaces 11
§2.4 The lifting functor 14
§2.5 Summary 15

§3. Categorical framework for families of groups 16
§3.1 Background on Quillen’s bracket construction 17
§3.2 A topological enrichment 19
§3.3 Semi-monoidal categories and semicategories 27
§3.4 The input categories 28

§4. Topological construction of representations 38
§4.1 Classical braid groups 39
§4.2 Surface braid groups 43
§4.3 Mapping class groups 47

2010 Mathematics Subject Classification: 57M07, 57N05, 57N65, 55R99, 55U99, 18B30, 18B40, 20C07.
Key words and phrases: Homological representations, mapping class groups, surface braid groups, loop braid groups,
configuration spaces, polynomial functors.

1

http://arxiv.org/abs/1910.13423v1


§4.4 Families of representations via topological categories of embeddings 50
§4.5 Loop braid groups 52

§5. Comparison with known representations 58
§5.1 For classical braid groups 58
§5.2 For surface braid groups 61
§5.3 For mapping class groups 61
§5.4 The Long-Moody constructions 62

§6. Free generating sets for representations 64
§6.1 A general lemma for Borel-Moore homology 64
§6.2 Applications 66

§7. Notions of polynomiality 69
§7.1 Strong and very strong polynomial functors 69
§7.2 Weak polynomial functors 70

§8. Polynomiality of some homological functors 72
§8.1 The Lawrence-Bigelow functors 72
§8.2 The Moriyama functors 77
§8.3 Applications 78

§9. Appendix: A relation in Borel-Moore homology 79
§9.1 Fundamental classes in Borel-Moore homology 80
§9.2 The relation. 80

§10.Appendix: Notations and tools 80
References 81

1 Introduction

Homological representations of families of groups.

A family of groups, namely a set of groups {Gn}n∈N equipped with injections

γn : Gn −֒→ Gn+1,

is said to have wild representation theory if the indecomposable representations occur in families
with at least two parameters. There is no classification schema in these cases. Such families of
groups naturally arise in many situations in connection with topology: for instance the families
of braid groups, mapping class groups and loop braid groups all have wild representation theory.
Finding geometric or topological constructions of linear representations for these groups thus helps
to understand and organise their representation theory, since one then has the tools of topology
and geometry available.

For the family of braid groups Bn (where the inclusions are induced by adding a strand on the left),
Lawrence [Law90] and Bigelow [Big01] constructed well-known families of linear representations,
called the Lawrence-Bigelow representations, following different methods. They may be defined
via actions on twisted homology groups of configuration spaces of unordered points in a punctured
2-disc. The most famous families among them are the family of (reduced) Burau representations
originally introduced in [Bur35] and the family of Lawrence-Bigelow representations that Bigelow
[Big01] and Krammer [Kra02] independently proved to be faithful (thus proving that the braid
groups are linear). The keystone for constructing the Lawrence-Bigelow representations is actually
based on a much more general underlying method. The first aim of this paper is to develop this
general method in a larger context, as a procedure for constructing homological representations for
any family of groups.

Coherent families of representations. A natural goal is to extend these constructions so as to
deal with representations satisfying some compatibility, or coherence, conditions. More precisely,
rather than considering a representation just for one group Gn, we are interested in collections of
linear representations

{̺n : Gn → GLR (Mn)}n∈N
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satisfying the compatibility condition that the restriction of ̺n+1 to Gn, with respect to some
preferred maps mn : Mn → Mn+1, is ̺n. Then we say that the representations {Mn}n∈N form a
family of linear representations of the groups {Gn}n∈N. This notion can be encoded in a functorial
way. Let G be the groupoid with objects indexed by natural numbers, with the groups {Gn}n∈N as
automorphism groups and with no morphisms between distinct objects. For instance, we consider
the braid groupoid β to deal with braid groups and the decorated surfaces groupoid M2 for the
mapping class groups of surfaces (see §3). We assume the existence of a category CG containing
G as its underlying groupoid and with a preferred morphism n → n + 1 for each object n. In all
the examples addressed in this paper, such a category CG is constructed through Quillen’s bracket
construction using a monoidal structure on the groupoid G (see §3). Then, denoting by R-Mod
the category of R-modules (for R a commutative ring), considering a functor from CG to R-Mod
is equivalent to considering a family of representations of the family of groups {Gn}n∈N.

Functorial homological constructions via topological categories. Our general procedure
for defining homological representations is summarised in the diagram below.

π0

CG

Ct
G CovQ Topk[Q] TopR R-Mod

F Lift ⊗M Hi

Li (F ;M)

(1.1)

The desired output is the diagonal functor CG → R-Mod, a (coherent) family of representations of
{Gn}n∈N. This is constructed in five steps:

• Constructing a topological category Ct
G whose π0 recovers CG . The category CG is typically

constructed via Quillen’s bracket construction from a braided monoidal groupoid, and we
explain in §3.2 how this construction may be lifted to topological categories to produce an
appropriate Ct

G . Its morphism spaces are typically embedding spaces between manifolds.
This makes the next step very natural to define:

• The key geometric input for the construction is a choice of functor F , defined on Ct
G and

taking values in CovQ, the category of topological spaces equipped with regular coverings
with fixed deck transformation group Q.

• The remaining steps encode in a general setting the idea of taking twisted homology of
covering spaces: the functor Lift takes a regular covering with deck transformation group
Q to the corresponding bundle of k[Q]-modules, the functor ⊗M takes the fibrewise tensor
product with a (k[Q], R)-bimodule M (“specialising the coefficients”), producing a bundle of
R-modules, and finally Hi is simply the twisted homology functor in degree i.

There are also variants of this construction for reduced homology (where we work with categories
of pairs of spaces) and for Borel-Moore homology (where we restrict to categories of spaces and
proper maps). In particular, using Borel-Moore homology is especially interesting when the image
of the functor F consists of configuration spaces of points in a surface: a general result then gives
free generating sets for the resulting twisted Borel-Moore homology groups and a fortiori a better
understanding of the constructed representations (see §6).

Many of these representations have been defined and studied before (at least at the level of indi-
vidual groups, i.e., when restricted to the individual automorphism groups of CG) — and indeed
one purpose of describing this general procedure for constructing homological representations is to
give a unified description for various different representations appearing in the literature, as well
as suggesting new constructions by comparing representations coming from different settings in
this unified context.

In §5 we discuss the representations that are recovered as part of this general homological con-
struction. This includes the Lawrence-Bigelow representations for braid groups, the Moriyama
representations [Mor07] of the mapping class groups of the smooth connected compact orientable
surface of genus g and with one boundary component {Σg,1}

g∈N, and the Long-Moody construction

[Lon94]. We prove:

Theorem 1.1 Let m > 1 be a fixed non-negative integer. There exist homological functors:
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• LBBM
m encoding the m-th Lawrence-Bigelow representations, defined on a category having β

as its underlying groupoid;
• Morm encoding the m-th Moriyama representations, defined on a category having M2 as its

underlying groupoid;
• encoding each generalised Long-Moody functor introduced in [Sou18].

We also construct new families of representations for the surface braid groups and the loop braid
groups analogous to those of Lawrence-Bigelow for classical braid groups, and new families of
representations of mapping class groups of surfaces (see §4). We highlight here three analogues of
the Lawrence-Bigelow representations for the loop braid groups (see §4.5 for more details).

Theorem 1.2 (see Theorems 4.24, 4.25 and 4.26) For any integers m > 1 and i > 0, we construct
homological functors

Li(F
α
m) : ULβ −→ Z[Qαm]−Mod,

Li(F
β
m) : U(Lβext) −→ Z[Qβm]−Mod,

Li(F
γ
m) : U(Lβ

ext) −→ Z[Qγm]−Mod,

defined over the group-rings of:

• Qα1 = Z, Qβ1 = (Z/2Z)2, Qγ1 = Z/2Z, and
• Qαm = Z2 ⊕ Z/2Z, Qβm = (Z/2Z)4, Qγm = Z ⊕ (Z/2Z)2, for m > 2.

In particular, these give coherent families of representations, over rings of Laurent polynomials, of
the loop braid groups {LBn}n>1 (for the first) and of the extended loop braid groups {LBext

n }n>1

(for the second and third).

Polynomiality. On another note, under some assumptions on CG , notions of polynomiality on
the objects in the category Fct (CG , R-Mod) are introduced and of particular importance. The
first notions of polynomial functors date back to Eilenberg and Mac Lane in [EM54]. Djament and
Vespa [DV19] introduce strong and weak polynomial functors for symmetric monoidal categories
in which the monoidal unit is initial. These definitions are extended to pre-braided monoidal
categories in which the monoidal unit is initial in [Sou19; Sou18] and the notion of very strong
polynomial functor in this context is introduced there. It is equivalent to the notion of coefficient
systems of finite degree of [RW17]. All these notions of polynomiality straightforwardly extend to
the slightly more general context of the present paper (see §7); various instances of these notions
are studied in [Pal17].

Applications. The main motivation for our interest in very strong polynomial functors is their
homological stability properties: Randal-Williams and Wahl [RW17] prove homological stability
results for certain families of groups with twisted coefficients given by very strong polynomial
functors (see §8.3.1). In particular their results hold for surface braid groups, mapping class
groups of surfaces and loop braid groups. On the other hand, a first matter of interest in weak
polynomial functors is that weak polynomiality reflects more accurately the stable behaviour of
a given functor, than (very strong polynomiality). Also, contrary to (very) strong polynomial
functors, weak polynomial functors of degree less or equal to some d ∈ N form a category Pold (CG)
that is localizing in Pold+1 (CG): this allows one to define quotient categories, which provide
an organizing tool for families of representations (see §8.3.2). The representation theories of the
families of groups that we study in this paper are wild and an active research topic (see for instance
[BB05, Section 4.6], [Fun99], [Kor02] or [MR12]). Therefore the strong, very strong and weak
polynomial functors associated with these groups are not well-understood. Hence, Theorem 1.3
offers a better understanding of these kinds functors and extends the scope of twisted homological
stability to more sophisticated sequences of representations.

Theorem 1.3 The m-th Lawrence-Bigelow functor LBBM
m is both very strong and weak polynomial

of degree m if m > 2, and LBBM
1 is strong polynomial of degree 2 but weak polynomial of degree 1.

The Moriyama functor Morm is both very strong and weak polynomial of degree m.
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Outline. The paper is organised as follows. In §2, we introduce in detail the various tools to
define homological functors, as summarised in Diagram (1.1). In §3, we recall Quillen’s bracket
construction, introduce its generalisation to deal with topological categories and then construct
the various categories associated with the families of groups which will be used to apply our
construction. We then apply the general construction of homological functors to the families of
classical and surface braid groups, mapping class groups of surfaces and loop braid groups in §4.
The next section §5 is devoted to recovering previously-known families of representations in the
literature from our homological construction. We then recall and slightly extend a key general
result for Borel-Moore homology of configuration spaces in §6. In §7 we introduce the notions
of strong, very strong and weak polynomial functors in the present framework. Finally, we prove
Theorem 1.3 and explain the applications of these polynomial properties in §8.

2 The general construction

2.1 Overview

The general construction of homological functors (also called homological representations when the
source is a group) that we explore in this paper can be summarised as follows:

C =π0(Ct)

Ct CovQ Topk[Q] TopR R-Mod,
F Lift ⊗M Hi

(2.1)

where C is the category on which we are interested in defining a representation and Ct is a topo-
logical category recovering C on π0. (See (2.26) in §2.5 for the full diagram.)

Categories: For a group Q, the objects of the category CovQ are based, path-connected spaces
X (admitting a universal cover) equipped with a surjection π1(X)։ Q, and morphisms are based
maps commuting with these quotients. For a ring R, TopR denotes the category of topological
spaces equipped with bundles of R-modules, and bundle maps. In each case, these are topological
categories, using the compact-open topology for the mapping spaces.

Functors: The continuous functor Lift takes an object (X,ϕ : π1(X)։ Q) to the regular covering
Xϕ → X to which it corresponds, viewed as a bundle of Q-sets, and then takes free k-modules
fibrewise, producing a bundle of k[Q]-modules over X . The functor ⊗M is given by fibrewise tensor
product with a (k[Q], R)-bimodule M and the right-hand functor is twisted homology in degree i.

The idea is that, in each case of interest, we may construct interesting representations of C by:

(a) choosing a topological category Ct with π0(Ct) = C and a continuous functor F : Ct → CovQ,
via some geometric construction,

(b) choosing “coefficients” (a ground ring k and a (k[Q], R)-bimodule M) and the degree i in
which to take twisted homology.

This concentrates the interesting geometrical part of the construction, and automates the construc-
tion of representations of C based on this, for any choice of coefficients and homological degree.

Twisted homomorphisms: In many interesting cases, there are interesting geometrically-defined

continuous functors of the form F : Ct → C̃ovQ, where C̃ovQ is the larger category whose objects
are (X,ϕ : π1(X)։ Q) as before, but whose morphisms (X,ϕ) → (Y, ψ) are based maps f : X → Y
satisfying the weaker condition that f∗(ker(ϕ)) ⊆ ker(ψ). We will also consider a more general
construction, taking as input such functors, and resulting in a representation of C on R-Modtw,
the category of R-modules and twisted homomorphisms (also called crossed homomorphisms).

Outline: In this section, we define precisely the (topological) categories and (continuous) functors

in diagram (2.1) and its enlargement involving C̃ovQ. This defines step (b) of the general procedure
outlined above. In more detail, in §2.2 we discuss categories of bundles of modules and twisted
bundle maps, and the fibrewise tensor product and twisted homology functors in this setting
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(for a brief summary of this structure, see Remark 2.5). In §2.3 we then describe carefully the
functor Lift : CovQ → Topk[Q] and its twisted version. In §3.4 and §4 we then perform the more
geometric step (a) in a variety of interesting examples, where C is a category corresponding to an
interesting family of groups, including surface braid groups, mapping class groups of surfaces and
loop braid groups. In §3.4 we construct the appropriate topological categories Ct, and in §4 we
construct, geometrically, the functors F : Ct → CovQ. Applying the above procedure, we therefore
obtain interesting “homological representations” of the categories C. In §5, we review the already
existing homological representations at the level of individual groups which are recovered using this
functorial approach. Therefore this general construction allows us to extend known representations
of a family of groups to a functor of an interesting category containing all of the groups in the
family. The polynomial properties of this functor are discussed in §8.

2.2 Twisted module homomorphisms and twisted homology

In this section, we define precisely the categories of “spaces equipped with bundles of modules
over bundles of algebras” that will appear in the intermediate steps of the more general version of
the construction (2.1) – see Definition 2.1. We fix a (unital, commutative) ground ring k (which
is typically Z in our applications) and use the viewpoint that bundles of k-modules over X are
functors from the fundamental groupoid of X to the category of k-modules.1

Categories and functors. Let us write SMCat for the category of symmetric monoidal functors,
and recall that we write Cat and Top for the categories of small categories and of topological spaces
respectively. Write

U : SMCat −→ Cat

for the obvious forgetful functor. For a fixed C ∈ Obj(SMCat) there is a functor

LocC : Topop −→ SMCat

given on objects by X 7→ Fct(Π1(X), C), where Π1(X) is the fundamental groupoid of a space X .
We think of this as the category of C-local sysetms on X . This is motivated by the fact, mentioned
in footnote 1 on page 6, that when C is the category of modules over a commutative ring k (with
monoidal structure given by the tensor product over k) and the path-components of X admit
universal covers, then the objects of LocC(X) are in natural bijection with bundles of k-modules
over X .

Monoid and module objects. Given a symmetric monoidal category C, objects in C equipped
with a certain structure, for example monoid objects, may be thought of as symmetric monoidal
functors into C from appropriate finitely-presented symmetric monoidal categories.

For example, consider the symmetric monoidal category Monoid defined by the following presen-
tation: it has one generating object a and two generating morphisms µ : a⊗ a → a and u : 1 → a,
where 1 denotes the empty monoidal product, with defining relations:

(id ⊗m) ◦m = (m⊗ id) ◦m m ◦ (id ⊗ u) = id m ◦ (u⊗ id) = id. (2.2)

There is then an endofunctor
Mon : SMCat −→ SMCat (2.3)

defined by C 7−→ Fct⊗(Monoid , C), where Fct⊗ denotes the category of strict symmetric monoidal
functors, which we think of as the “category of monoid objects in C”.

1 This can be taken as a definition of “bundles of k-modules”, and, when X is locally path-connected and semi-
locally simply-connected (i.e. when each path-component of X admits a univeral cover), it is equivalent to the more
usual geometric definition, via the correspondence that associates to a bundle of k-modules (in the usual sense) over
X the functor Π1(X) → k-Mod defined using unique path-lifting (which holds since a bundle of k-modules is in
particular a covering space).
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Similarly, we may consider the symmetric monoidal category Module with the following presen-
tation: it has two generating objects a and b and three generating morphisms l : a ⊗ b → b,
µ : a⊗ a → a and u : 1 → a, with defining relations (2.2) together with:

l ◦ (ida ⊗ l) = l ◦ (µ⊗ idb). (2.4)

There is then an endofunctor
Mod : SMCat −→ SMCat (2.5)

defined by C 7−→ Fct⊗(Module, C), which we think of as the “category of monoid objects in C
together with a module object”.

Categories of structured bundles. Denoting by Cat/C the slice category of Cat over C, recall
that the Grothendieck construction can be viewed as a functor

∫
: Fct(Cop,Cat) −→ Cat/C,

which, on objects, takes a functor F : Cop → Cat to the functor
∫
F → C, where

Obj(
∫
F ) = {(c, a) | c ∈ Obj(C), a ∈ Obj(F (c))}

and a morphism in
∫
F from (c, a) to (c′, a′) is a morphism f : c → c′ in C and a morphism

g : a → F (f)(a′) in F (c). The functor
∫
F → C simply takes (c, a) to c on objects and (f, g) to f

on morphisms.

Applying this to the functor
U ◦ Lock-Mod : Topop −→ Cat,

we obtain a category
∫
U ◦ Lock-Mod equipped with a forgetful functor to the category of topological

spaces – this may be thought of as the category of topological spaces equipped with a bundle of k-
modules.2

We may equally well apply this to the functor

U ◦ E ◦ Lock-Mod : Topop −→ Cat,

whereE is any endofunctor of SMCat. When E = Mon we obtain the category
∫
U ◦ Mon ◦ Lock-Mod

of topological spaces equipped with a bundle of k-algebras, and when E = Mod we instead obtain the
category

∫
U ◦ Mod ◦ Lock-Mod of topological spaces equipped with a bundle of k-algebras together

with a bundle of modules over this bundle of k-algebras. To be more concise, we abbreviate the
latter to topological spaces equipped with a bundle of twisted k-modules. These are each equipped
with a forgetful functor to Top that remembers just the underlying space of the bundle(s).

The constructions and discussion of this section so far may be summarised as follows.

Definition 2.1 (Categories of structured bundles.) Let Strc be a symmetric monoidal category
representing a certain structure (such as the finitely-presented Monoid or Module described above).
Then the Grothendieck construction

∫
U ◦ Fct⊗(Strc,−) ◦ Lock-Mod

is the category of topological spaces equipped with a bundle of k-modules equipped with the structure
Strc. In particular, for the structure Strc = Module we define

Top(k) :=
∫
U ◦ Mod ◦ Lock-Mod, (2.6)

and call this the category of topological spaces equipped with bundles of twisted k-modules. Ex-
panding the definition, this may also be written as

Top(k) =
∫

Fct⊗(Module,Fct(Π1(−), k-Mod)).

In particular, Top(Z) is the category of spaces equipped with bundles of twisted Z-modules, i.e. bun-
dles of rings together with bundles of modules over that ring-bundle.

2 When restricting to the subcategory of topological spaces whose path-components each admit a universal
cover, this is literally true. In general, we simply choose to view a bundle of k-modules over a space X as a functor
Π1(X) → k-Mod instead of its more usual definition. This is reasonable, since, in our applications, we will only
ever deal with spaces admitting universal covers.
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Restricted subcategories. The intermediate categories used in the construction of homologi-
cal functors will be certain subcategories of Top(k), in which we fix either an underlying space or
a trivial bundle of k-modules. In this subsection, we define these subcategories and discuss the
structures on these categories that we will use, namely a functor (twisted homology) to a cate-
gory of modules and a symmetric monoidal structure (fibrewise tensor product). The diagram of
subcategories is summarised in (2.7).

Definition 2.2 (Restricted categories of twisted k-modules.) We define subcategories of Top(k)

given (a) by fixing the underlying space, and considering pairs of bundles over a fixed space X , (b)
by fixing a k-algebra R and requiring the bundle of k-algebras to be the trivial bundle with fibre
R and (c) fixing both the space X and the k-algebra R and allowing only the bundle of R-modules
over X to vary.

(a) For any functor F : C → Cat and object c of C, there is a canonical inclusion of categories

F (c) −֒→
∫
F

given on objects by a 7→ (c, a). In the case of Top(k), this means that, for any space X , there is a
canonical inclusion of categories

Top(k);X := Mod(Lock-Mod(X)) −֒→ Top(k).

Note that Top(k);X is a symmetric monoidal category.

(b) To define the subcategory Top(k);R ⊂ Top(k) for a given k-algebraR, we first define a subfunctor
FR : Topop → SMCat of the functor Mod ◦ Lock-Mod, where by subfunctor we mean that FR(X)
is a subcategory of Mod(Lock-Mod(X)) for every space X and that FR(f) is the restriction of the
functor Mod(Lock-Mod(f)) to the subcategory FR(X) for every continuous map f : X → Y .

To define this, we need to choose a subcategory FR(X) of

Mod(Lock-Mod(X)) = Fct⊗(Module,Fct(Π1(X), k-Mod))

for each space X . We specify this category to be the full subcategory of those strict symmetric
monoidal functors Module → Fct(Π1(X), k-Mod) that take the object a of Module to the constant
functor Π1(X) → k-Mod at the k-module R. Note that:

• An object of FR(X) is a bundle of R-modules over X .
• A morphism of FR(X) from E1 to E2 is an endomorphism θ of R (as a k-module) together

with a morphism E1 → E2 of bundles of k-modules, that also respects the action of R on E1

and E2, modulo the endomorphism θ.
• The category of bundles of R-modules over X (and morphisms of bundles of R-modules) is

therefore the subcategory of FR(X) consisting of those morphisms for which θ = idR.

To make the last point precise, let TopX,R = Fct(Π1(X), R-Mod) be the category of bundles of R-
modules over the space X , and form the Grothendieck construction TopR =

∫
Fct(Π1(−), R-Mod)

to define the category of bundles of R-modules over spaces. Then TopX,R ⊂ FR(X) is the subcat-
egory described in the last point above.

We now define
Top(k);R :=

∫
U ◦ FR.

This contains TopR as the subcategory (on the same objects) of bundles of R-modules, with all
untwisted morphisms.

(c) Finally, we define
Top(k);X,R := FR(X).

This is by definition a subcategory of Top(k);X = Mod(Lock-Mod(X)), and it also has a canonical

embedding into Top(k);R =
∫
U ◦ FR, by the general properties of the Grothendieck construction

mentioned above. It also contains the subcategory TopX,R, as mentioned above.
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Summarising the constructions above, we have a diagram of subcategories:

Top(k) Top(k);R

Top(k);X Top(k);X,R

TopR

TopX,R

(2.7)

Remark 2.3 Intuitively, the objects of Top(k) may be thought of as “parametrised families of
modules over k-algebras”. The three subcategories in the left-hand square above correspond to
fixing either the k-algebra R, or the space X parametrising the family, or both. However, we
still allow all morphisms of Top(k) (they are full subcategories), so for example a morphism in
Top(k);R between families of R-modules may involve a non-identity k-linear endomorphism of R.
If we restrict this category further to allow only those morphisms that act by the identity on R,
we obtain the categories TopR and TopX,R on the right-hand side of the diagram above.

Remark 2.4 We also consider two variations of diagram (2.7).

(A) Each of the categories in the top row of the diagram is the Grothendieck construction of a
functor Topop → Cat. If we precompose each of these functors with the forgetful functor
(X,A) 7→ X from the category of pairs of spaces, we obtain categories of pairs (X,A) equipped
with bundles of twisted k-modules over X . We denote these categories as in (2.7), but with
a superscript ( )2. (The bottom row is unchanged.)

(B) We may also restrict each of the categories in (2.7) to their subcategories of spaces and proper
maps. In this case we add a superscript ( )pr to the notation.

Remark 2.5 (Twisted homology and fibrewise tensor product) The structure on these categories
that we use in the second and third steps of the general construction of homological functors is a
fibrewise tensor product and twisted homology. Twisted homology (in degree i, say) may be thought
of as a functor Top(k) → k-Mod, which, on the subcategory Top(k);R, may be upgraded to a twisted
homology functor taking values in R-Mod (related to the previous one via diagram (2.11) below).
We have a symmetric monoidal structure ⊗k on the category Top(k);X , which we think of as a
“fibrewise tensor product over k”. Moreover, for objects of the subcategory Top(k);X,R, we may
also take their fibrewise tensor product over R, and this operation in particular yields a functor

Top(k);X,R −→ Top(k);X,S

for each (R,S)-bimodule. We summarise this in more detail in the rest of this subsection, including
the corresponding functors for the variations of (2.7) described in Remark 2.4 (twisted homology
of pairs and twisted Borel-Moore homology respectively).

Fibrewise tensor product. By definition,

Top(k);X = Mod(Lock-Mod(X)) = Fct⊗(Module,Fct(Π1(X), k-Mod))

is a symmetric monoidal category, with the objectwise monoidal product induced by the tensor
product of k-modules in k-Mod. We write this as ⊗k and – using the viewpoint of objects of
Top(k);X as pairs of bundles of k-modules over X – we call this the fibrewise tensor product of
(pairs of) bundles of k-modules over X .

Remark 2.6 An alternative description of the fibrewise tensor product of two bundles of k-
modules, using the viewpoint of bundles of k-modules directly instead of interpreting them as
functors from the fundamental groupoid to the category of k-modules, is as follows. Let α : A → X
and β : B → X be two bundles of k-modules; in other words, α is a fibre bundle with fibre a
k-module M and structure group Autk(M) and β is a fibre bundle with fibre another k-module
N and structure group Autk(N). Their fibrewise tensor product should be a fibre bundle over
X with fibre M ⊗k N and structure group Autk(M ⊗k N). Let U be an open cover of X that
trivialises both α and β. The fibre bundle α is determined by a collection of continuous maps
σU,V : U ∩ V → Autk(M), as U and V vary over U , satisfying the cocycle condition on triple
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intersections. (Note that the maps σU,V are in fact locally constant, since their codomains are
discrete.) Similarly, β is determined by a collection of continuous maps τU,V : U ∩ V → Autk(N)
satisfying the cocycle condition on triple intersections. To define the fibrewise tensor product
α ⊗k β, it suffices to specify a collection of maps υU,V : U ∩ V → Autk(M ⊗k N) that satisfy the
cocycle condition on triple intersections. Now, the monoidal structure on k-Mod induces a natural
group homomorphism

ι : Autk(M) × Autk(N) −→ Autk(M ⊗k N),

and we may define υU,V (x) = ι(σU,V (x), τU,V (x)).

In general, this monoidal structure on Top(k);X does not restrict to a monoidal structure on the
subcategory Top(k);X,R, since the fibrewise tensor product (over k) of two R-modules is naturally
not an R-module, but an R⊗k R-module. On the other hand, there is of course another monoidal
structure defined on TopX,R = Fct(Π1(X), R-Mod), which we write as ⊗R, namely the objectwise
monoidal product induced by the tensor product of R-modules in R-Mod.

Remark 2.7 The relation between these two tensor products is as follows. Let M be a bundle of
R-modules. Then we have that

M ⊗RM = (M ⊗kM) ⊗Re R,

where Re = R⊗k R
op.

Moreover, for any (R,S)-bimodule M (for k-algebras R and S), there is a functor

− ⊗RM : R-Mod −→ S-Mod, (2.8)

which we may apply fibrewise to bundles of R-modules, and more generally to objects of Top(k);X,R.
Summarising and applying this, we have:

Proposition 2.8 For each k-module R, the monoidal structure ⊗R on TopX,R extends to one on
Top(k);X,R. The monoidal structure ⊗k on Top(k);X and these monoidal structures ⊗R on each
subcategory Top(k);X,R are related as described in Remark 2.7 above. For k-algebras R and S and
any (R,S)-bimodule M there is a functor

− ⊗RM : Top(k);X,R −→ Top(k);X,S , (2.9)

for each X, and these assemble to give a functor

− ⊗RM : Top(k);R −→ Top(k);S . (2.10)

Homology. Recall that homology with local coefficients (in a fixed degree i, over a ring R) is a
functor taking as input a space equipped with a bundle of R-modules and producing an R-module
as output. More precisely, it is a continuous functor Hi : TopR → R-Mod. (This is recalled in
more detail in [Pal18, §5.1], following [MS93].) We note here that it extends also to categories of
bundles of R-modules over bundles of k-algebras in a compatible way, as follows.

Proposition 2.9 For any k-module R, the continuous functor Hi : TopR → R-Mod extends to a
commutative diagram of continuous functors

Top(k) k-Mod

Top(k);R R-Modtw

TopR R-Mod,

Hi

Hi

Hi

(2.11)

where R-Modtw is the category of R-modules and twisted, or crossed, homomorphisms.
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Proof sketch. One first checks that the usual twisted homology functor Topk → k-Mod extends
to Top(k) (cf. . [Pal18, §5.1]). Unwinding the definitions, we then observe that, restricted to
Top(k);R, the homology retains its R-module structure (which is not used in the definition of the
ith homology k-module, but it is preserved at each step in the construction) – which gives us the
middle horizontal functor and the commutativity of the diagram.

Remark 2.10 (Relative homology) Exactly the same statement holds for the categories of pairs
of spaces equipped with twisted bundles of k-modules (variation (A) of Remark 2.4): there are
twisted relative homology functors fitting into a diagram like (2.11), with the superscript ( )2

added to each category in the left-hand column.

Borel-Moore homology. Recall that the ith Borel-Moore homology group of a locally compact
space Y with local coefficients L, thought of as a bundle of R-modules may be defined by the
following inverse limit of relative (ordinary) homology groups

HBM
i (Y,L) = lim

←−
A∈Cpt(Y )

Hi (Y, Y \A; L) , (2.12)

where Cpt (Y ) is the poset of all compact subsets of Y . Alternatively, it is the same as the homology
of locally finite chains on Y (with coefficients in L). Also, if Y is a non-compact Hausdorff
space, Borel-Moore homology groups can be defined via the relative homology of the one-point
compactification, in other words H∗ (Y +, ∗; L) where Y + denotes the one-point compactification
and ∗ the complement point of X . In particular if Y homeomorphic to the complement of a
closed subcomplex S in a finite CW -complex X , the Borel-Moore homology group HBM

∗ (Y,L) is
isomorphic to the relative homology HBM

∗ (X,S; L). We refer the reader to [Bre97, Chapter V] for
a detailed introduction to Borel-Moore homology. It forms a continuous functor

HBM
i : Toppr

R −→ R-Mod

defined on the subcategory Toppr
R ⊂ TopR of spaces equipped with bundles of R-modules and

morphisms of such whose underlying map of spaces is proper, i.e. where preimages of compact
sets are compact. Applying the construction (2.12) to the constructions above and using Remark
2.10, we obtain the following, where we recall that the superscript (−)pr denotes in each case the
subcategory on the same objects, restricting to those morphisms whose underlying map of spaces
is proper.

Proposition 2.11 For any k-module R, the continuous functor HBM
i : Toppr

R → R-Mod extends
to a commutative diagram of continuous functors

Toppr
(k) k-Mod

Toppr
(k);R R-Modtw

Toppr
R R-Mod.

HBM
i

HBM
i

HBM
i

(2.13)

2.3 Lifting actions to covering spaces

This section is an interlude on the general question of when a (continuous) group action on a space

X lifts to a given covering X̃ of X , and, if so, when the lifted action commutes with the action of
the deck transformation group. This will be encoded in §2.4 into a “lifting functor”.

The considered topological spaces: Let X be a path-connected, locally path-connected and
semi-locally simply connected topological space and let x0 ∈ X be a basepoint.
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Let G be a locally path-connected topological group. We recall that this means that G is a
topological space and an abstract group such that the multiplication operation · : G × G → G
and the inverse operation (−)

−1
: G → G are continuous with respect to the topology of G. We

denote by ToGr the category of topological groups and ToGrlpc its subcategory of locally path-
connected topological groups, both with continuous homomorphisms as its morphisms. The set of
path-components of a topological group inherits it a group structure and thus induces a functor:

π0 : ToGr → Gr.

Recall that any object of Gr can be considered as a topological group using the discrete topology.
Hence, sending a point of a (locally path-connected) topological group to the path component
that it lies in induces a functor π− : ToGrlpc → Gr, where πH : H → π0 (H) is a continuous
group homomorphism. Note that it is necessary to restrict to ToGrlpc, otherwise πH is not always
continuous and a fortiori π− is not well-defined on morphisms.

Finally, we recall the following fact:

Lemma 2.12 Let G′ be a discrete group ϕ ∈ HomToGr (G,G′). Then, ϕ = π0 (ϕ) ◦ πG : G →
π0 (G) → π0 (G′) = G′.

Proof. This follows from the definition of the functor π− and the fact that, as G′ is discrete,
πG′ : G′ → π0 (G′) = G′ is the identity.

Two particular group homomorphisms: First, let φ : π1 (X,x0) → Q be a surjective group
homomorphism. By [Hat02, Propositions 1.38 and 1.39], ker (φ) corresponds to a regular path-
connected covering space ξ : Xφ → X so that Im (ξ∗) = ker (φ) (where ξ∗ denotes the map
induced by ξ for the fundamental group) and with deck transformations group D (ξ) ∼= Q. For k a
natural number, this gives the homology group Hk

(
Xφ,Z

)
a Z [Q]-module structure. Recall that

if ker (φ) = 0, then Xφ is isomorphic to the universal covering X̃ of X .

Secondly, let θ : G → Homeox0 (X) be a continuous group homomorphism, where Homeox0 (X)
is given the subspace topology induced from the compact-open topology on Map (X,X). This
induces a group homomorphism θπ : G → Aut (π1 (X,x0)), defined by

θπ (g) ([γ]) = [θ (g) (γ)]

with g ∈ G and [γ] ∈ π1 (X,x0). Also, we make the following assumption:

Assumption 2.13 The group homomorphism θπ preserves the subgroup ker (φ).

Therefore, there are well-defined actions θrπ : G → Aut (ker (φ)) and θ̄π : G → Aut (Q), such that:

θ̄π (g) ◦ φ = φ ◦ θπ (g)

for all g ∈ G. Also, we deduce that:

Proposition 2.14 Under Assumption 2.13, we have the following properties:

1. Let xφ0 ∈ Xφ such that p
(
xφ0

)
= x0. There is a unique group homomorphism θφ : G →

Homeo
x

φ
0

(
Xφ
)

such that ξ ◦ θφ (g) = θ (g) ◦ ξ for all g ∈ G.

2. For any deck transformation ψ ∈ D (ξ) ∼= Q we have θ̄π (g) (ψ) ◦ θφ (g) = θφ (g) ◦ ψ for all
g ∈ G.

Proof. As θπ preserves the subgroup Im (ξ∗), the existence of θφ is a consequence of [Hat02,
Propositions 1.33] and its unicity of [Hat02, Propositions 1.34].
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Note that

ξ
(
θ̄π (g) (ψ)

(
θφ (g) (y)

))
= θ (g) ◦ p (y)

= ξ
(
θφ (g) (ψ (y))

)
,

for all y ∈ Xφ. As Xφ is path-connected, it is enough to prove that the second equality is true
for one point of Xφ (see [Hat02, Proposition 1.34]). Let be a loop in X based at x0 such that

φ ([γ]) = ψ and we denote by γφ for a path based at xφ0 lifting γ in Xφ. On the one hand,

φ ([θ (g) (γ)])
(
xφ0

)
is the unique lift of xφ0 which is the endpoint of the lift in Xφ of the path

θ (g) (γ). On the other hand, θφ (g)
(
φ ([γ])

(
xφ0

))
is the unique lift of xφ0 given by the endpoint

of the path obtained applying θφ (g) to γφ: as ξ ◦ θφ (g) = θ (g) ◦ ξ, this is the same point as the
endpoint of the lift in Xφ of the path θ (g) (γ). We deduce that:

θ̄π (g) (ψ)
(
θφ (g)

(
xφ0

))
= φ ([θ (g) (γ)])

(
xφ0

)

= θφ (g)
(
φ ([γ])

(
xφ0

))

= θφ (g)
(
ψ
(
xφ0

))
.

The construction: Finally, we use ordinary homology and Borel-Moore homology to define lin-
ear representations of the groupG. Moreover, if the topological space X has boundary components,
we also use homology relative to the boundary and reduced homology (in other words, homology
relative to a point on the boundary) to construct linear representations of the group G.

Hence, using the induced action on homology, we obtain from the first point of Proposition 2.14 a
well-defined action of G on the homology groups of Xφ:

Definition 2.15 The morphisms θ : G → Homeox0 (X) and φ : π1 (X,x0) → Q induce represen-
tations

Lk(Fθ,φ) : G → Aut
(
Hk

(
Xφ,Z

))
and Lk(Fθ,φ)BM : G → Aut

(
HBM
k

(
Xφ,Z

))
.

If X has boundary ∂X or a basepoint, the morphisms θ and φ also induce representations

Lk(Fθ,φ)∂ : G → Aut
(
Hk

(
Xφ, ∂Xφ;Z

))
and Lk(Fθ,φ)red : G → Aut

(
Hred
k

(
Xφ,Z

))
.

In addition, let us now make the following assumption:

Assumption 2.16 The induced action θ̄π : G → Aut (Q) of G on Q is trivial.

Hence, by the second property of Proposition 2.14, θφ (g) commutes with all deck transformations
for all g ∈ G. A fortiori, the induced representations Lk(Fθ,φ) and Lk(Fθ,φ)BM commute with the
Z [Q]-module structure of the homology groups Hk

(
Xφ,Z

)
, HBM

k

(
Xφ,Z

)
, Hk

(
Xφ, ∂Xφ;Z

)
and

Hred
k

(
Xφ,Z

)

Furthermore, since G is locally path-connected, and since π1 (X,x0) and the automorphism groups
of the various homology groups are discrete, it follows from Lemma 2.12 that the induced actions
θπ and θφ factor through π0 (G). Note that it is a fortiori enough to check that Assumption 2.16
is satisfied just for one point in each path-component of G. We deduce that:

Definition 2.17 The representations Lk(Fθ,φ) etc. of G of Definition 2.15 induce representations

π0(Lk(Fθ,φ)) : π0(G) −→ AutZ[Q]

(
Hk

(
Xφ,Z

))
,

and similarly for the other 3 versions, called respectively the ordinary, Borel-Moore, relative to the
boundary and reduced homological representations of π0 (G) induced by θ : G → Homeox0 (X)
and φ : π1 (X,x0) → Q.
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2.4 The lifting functor

In this section we define a continuous functor

Lift : CovQ −→ Topk[Q], (2.14)

which encodes the key construction of lifting group actions to covering spaces, while commuting
with the action of the deck transformation group of the covering. In fact, we will extend this to a
functor

Lift : C̃ovQ −→ Top(k);k[Q], (2.15)

which encodes the construction of lifting (more general) group actions, while commuting with the
action of the deck transformation group only up to an induced action on the deck transformation
group itself.

Definition 2.18 If, in §2.2, we replace the symmetric monoidal category k-Mod with the sym-
metric monoidal category of sets and functions, under disjoint union, the constructions go through
identically, and yield a diagram

Top(·) Top(·);M

Top(·);X Top(·);X,M

TopM

TopX,M

(2.16)

analogous to (2.7), where the subscript ( )(·) is notation indicating that this is the non-linearised
version of the construction, and M is a monoid (playing a role analogous to that of the k-algebra R
in (2.7)). There is a morphism of diagrams of categories from (2.16) to (2.7) (with R = k[M ], the
monoid-k-algebra of M) given by (fibrewise) applying the free strict symmetric monoidal functor
Set → k-Mod.

We therefore just need to define a functor

Lift : C̃ovQ −→ Top(·);Q, (2.17)

for any group Q, which we will then compose with the functor (2.16) → (2.7) of Definition 2.18 in
the top-middle position of the diagram (with M = Q).

Definition 2.19 (The lifting functor) The lifting functor (2.17) is defined on objects as follows.

Let (X,x0, ϕ : π1(X,x0) → Q) be an object of C̃ovQ. The kernel of ϕ is a normal subgroup of
π1(X,x0), and therefore corresponds to a regular covering of X with deck transformation group
Q, which is in particular a bundle of Q-sets over X (whose fibres happen to all be isomorphic to
Q itself considered as a Q-set). To be slightly more careful (in order to specify a bundle of Q-sets,

and not just an isomorphism class of such), we take the universal cover X̃ of X (specifically, the

canonical model for X̃ consisting of endpoint-preserving homotopy classes of paths in X starting
at x0), which is equipped with an action of π1(X,x0), and then take its quotient by the action of
the subgroup ker(ϕ). Denote this covering by ξϕ : Xϕ → X . This defines (2.17) on objects:

Lift(X,x0, ϕ) = (X, ξϕ).

In order to define (2.17) on morphisms, we first note that, although we did not need it to define the
functor on objects, the bundle of Q-sets associated to (X,x0, ϕ) comes equipped with a particular
choice of basepoint, covering the basepoint x0 of X . This is because the standard construction of
the universal cover X̃ has a canonical basepoint (the constant path at x0), and therefore so does
its quotient Xϕ by the action of Q. Let us denote this basepoint by x̃0 ∈ Xϕ.

Suppose we are given a morphism (X,x0, ϕ) → (Y, y0, ψ) of C̃ovQ, that is, a continuous map

f : X −→ Y
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such that f(x0) = y0 and f∗(ker(ϕ)) ⊆ ker(ψ). By the basic theory of covering spaces, this implies
that, for each ỹ ∈ ξ−1

ψ (y0), there is a unique continuous map Xϕ → Y ψ that lifts the composition
f ◦ ξϕ : Xϕ → Y and that takes x̃0 to ỹ. We therefore obtain a uniquely-determined lift

f̃ : Xϕ −→ Y ψ

by requiring f̃(x̃0) = ỹ0. Now, the fact that f∗(ker(ϕ)) ⊆ ker(ψ) implies also that there is a unique
endomorphism fQ of the group Q such that

fQ ◦ ϕ = ψ ◦ f∗. (2.18)

One may now check (cf. the discussion of the previous subsection) that, for any point x̃ ∈ Xϕ and
any element q ∈ Q, we have that

(fQ(q))♯(f̃(x̃)) = f̃(q♯(x̃)),

where ( )♯ denotes the action of Q by deck transformations on Xϕ and on Y ψ .

The triple (f, f̃ , fQ) is therefore a morphism in Top(·);Q from (X, ξϕ) to (Y, ξψ), i.e. a morphism

Lift(X,x0, ϕ) −→ Lift(Y, y0, ψ),

namely a map of covering spaces (the pair (f, f̃)) together with an endomorphism fQ of Q, such

that the map f̃ commutes with bundle-of-Q-sets structure on Xϕ and Y ψ up to this endomorphism.
In other words, the triple (f, f̃ , fQ) is a twisted (or crossed) morphism of bundles of Q-sets. This
completes the definition of (2.17) on morphisms:

Lift(f) = (f, f̃ , fQ).

Finally, we compose (2.17) with the functor (2.16) → (2.7) of Definition 2.18 in the top-middle
position of the diagram (with M = Q), to obtain a functor

Lift : C̃ovQ −→ Top(k);k[Q], (2.19)

which is the promised functor (2.15).

Remark 2.20 In the above definition, if the morphism f has the stronger property that ψ◦f∗ = ϕ,
where f∗ denotes the induced homomorphism on π1 — in other words, if it lies in the subcategory

CovQ ⊆ C̃ovQ — then the unique endomorphism fQ satisfying (2.18) must necessarily be the

identity. The morphism (f, f̃ , fQ) = (f, f̃ , idQ) therefore lies in the subcategory TopQ ⊆ Top(·);Q.
Hence the functor (2.17) restricts to a functor

Lift : CovQ −→ TopQ. (2.20)

Composing this with the functor (2.16) → (2.7) of Definition 2.18 in the top-right position of the
diagram (with M = Q), we therefore obtain a functor

Lift : CovQ −→ Topk[Q], (2.21)

which is the promised functor (2.14).

2.5 Summary

Definition 2.21 (The homological representation construction, untwisted) Fix a topological cat-
egory Ct with π0(Ct) = C and a ground ring k. Assume that we have as input:

• A continuous functor F : Ct → CovQ, where Q is a group.
• A (k[Q], R)-bimodule M , where R is a k-algebra.
• A non-negative integer i.
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The corresponding homological representation of C is obtained as follows. We compose the con-
tinuous functors F , (2.21), (2.10) and (2.11) to obtain a functor Ct → R-Mod. Since R-Mod is a
discrete category, this factors (uniquely) through a functor

Li(F ;M) : C −→ R-Mod. (2.22)

This is the homological representation of C associated to the continuous functor F : Ct → CovQ, in
degree i and with coefficients M . In the case when we take R = k[Q] as a ring and M = k[Q] as a
bimodule over itself (i.e., when we do not twist the coefficients), we denote this simply as

Li(F ) : C −→ R-Mod. (2.23)

The definition of the twisted version of the homological representation construction follows Defini-
tion 2.21 almost verbatim:

Definition 2.22 (The homological representation construction, twisted) Fix a topological category
Ct with π0(Ct) = C and a ground ring k. Assume that we have as input:

• A continuous functor F : Ct → C̃ovQ, where Q is a group.
• A (k[Q], R)-bimodule M , where R is a k-algebra.
• A non-negative integer i.

The corresponding twisted homological representation of C is obtained as follows. We compose
the continuous functors F , (2.19), (2.10) and (2.11) to obtain a functor Ct → R-Modtw. Since
R-Modtw is a discrete category, this factors (uniquely) through a functor

L̃i(F ;M) : C −→ R-Modtw. (2.24)

This is the twisted homological representation of C associated to the continuous functor F : Ct →

C̃ovQ, in degree i and with coefficients M . Again, in the case when we take R = k[Q] as a ring
and M = k[Q] as a bimodule over itself (i.e., when we do not twist the coefficients), we denote this
simply as

L̃i(F ) : C −→ R-Modtw. (2.25)

The two constructions above may be summarised in the following extension of diagram (2.1).

C = π0(Ct)

Ct

CovQ Topk[Q] TopR R-Mod

C̃ovQ Top(k);k[Q] Top(k);R R-Modtw

F Lift − ⊗ M Hi

L̃i(F ; M)

Li(F ; M)

(2.26)

Remark 2.23 This construction may easily be adapted to deal with pairs of spaces and with Borel-
Moore homology (in the latter case we must restrict to categories of spaces and proper continuous
maps everywhere). The resulting homological representations are then denoted similarly, adding a
superscript ( )2 or ( )BM to the notation.

3 Categorical framework for families of groups

The aim of this section is to introduce the categorical framework that is central to this paper to
handle families of groups. We first recall notions and properties of Quillen’s bracket construc-
tion introduced in [Gra76, p.219] and pre-braided monoidal categories. Then we describe each
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categorical setting associated with the families of groups we deal with to apply the homological
representation constructions introduced in §2.

3.1 Background on Quillen’s bracket construction

Throughout this section, we fix a (small) strict monoidal groupoid (G, ♮, 0) and a (small)
left-module (M, ♮) over (G, ♮, 0). The following definition is a particular case of a more general
construction of [Gra76].

Definition 3.1 Quillen’s bracket construction 〈G,M〉 on the left-module (M, ♮) over the groupoid
(G, ♮, 0) is the category with the same objects as M and the morphisms are given by:

Hom〈G,M〉 (X,Y ) = colim
G

[HomM (−♮X, Y )] .

Thus, a morphism from X to Y in 〈G,M〉 is denoted by [A,ϕ] : X → Y : it is an equivalence
class of pairs (A,ϕ) where A is an object of G and ϕ : A♮X → Y is a morphism in M. Also,
for two morphisms [A,ϕ] : X → Y and [B,ψ] : Y → Z in 〈G,M〉, the composition is defined by
[B,ψ] ◦ [A,ϕ] = [B, Y ♮A, ψ ◦ (idB♮ϕ)].

Remark 3.2 Let φ be an element of HomM (X,Y ). Then, as an element of Hom〈G,M〉 (X,Y ),
we will abuse the notation and write φ for [0, φ]. This comes from the (faithful) canonical functor
C〈G,M〉 : M →֒ 〈G,M〉 defined as the identity on objects and sending φ ∈ HomM (X,Y ) to [0, φ].

Actually, for all the examples discussed in this paper, the category M is a groupoid (see §3.4).
Then, a natural question is the relationship between the automorphisms of the groupoid M and
those of its associated Quillen bracket construction 〈G,M〉. Recall that the monoidal groupoid
(G, ♮, 0) is said to have no zero divisors if, for all objects A and B of G, A♮B ∼= 0 if and only if
A ∼= B ∼= 0. Then, following mutatis mutandis from the proof of [RW17, Proposition 1.7], we prove
that:

Proposition 3.3 If the strict monoidal groupoid (G, ♮, 0) has no zero divisors, if AutG(0) = {id0}
and if M is a groupoid, then M = Gr (〈G,M〉).

Henceforth, we assume that M is a groupoid, that the strict monoidal groupoid (G, ♮, 0)
has no zero divisors and that AutG(0) = {id0}.

Remark 3.4 We say that G and M have the cancellation property if A♮X ∼= B♮X then A ∼= B
and the injection property if the morphism AutG (A) → AutM (A♮X) sending f ∈ AutG (A) to
f♮idX is injective, for all objects A and B of G and X of M. If the groupoids G and M sat-
isfy these two properties, then following [RW17, Theorem 1.10], for all objects A of G and X
of M, Hom〈G,M〉 (A,X) is a set on which the group AutM(X) acts by post-composition transi-
tively and the image of the map AutG (A) → AutM (A♮X) s sending f ∈ AutG (A) to f♮idX is
{φ ∈ AutM (A♮X) | φ ◦ (ιA♮idX) = ιA♮idX}. A fortiori, we deduce the set isomorphism

Hom〈G,M〉 (X,A♮X) ∼= AutM (A♮X) /AutG (A) .

A natural question is to wonder when an object of Fct (M, C) extends to an object of Fct (〈G,M〉 , C)
for a category C, which is the aim of the following lemma, which proof follows mutatis mutandis
from the one of [Sou18, Lemma 1.6]. Analogous statements can be found in [RW17, Proposition
2.4].

Lemma 3.5 Let C be a category and F an object of Fct (M, C). Assume that for all A ∈ Ob (G)
and X ∈ Ob (M), there exist assignments F ([A, idA♮X ]) : F (X) → F (A♮X) such that for all
B ∈ Ob (G):

F ([B, idB♮A♮X ]) ◦ F ([A, idA♮X ]) = F ([B♮A, idB♮A♮X ]) . (3.1)

Then, the assignments F ([A, γ]) = F (γ)◦F ([A, idA♮B]) for all [A, γ] ∈ Hom〈G,M〉 (X,A♮X) define
a functor F : 〈G,M〉 → C if and only if for all A ∈ Ob (G) and X ∈ Ob (M), for all γ′′ ∈ AutM (X)
and all γ′ ∈ AutG (A):

F ([A, idA♮X ]) ◦ F (γ′′) = F (γ′♮γ′′) ◦ F ([A, idA♮X ]) . (3.2)
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Similarly, we can find a criterion for extending a morphism in the category Fct (M, C) to a mor-
phism in the category Fct (〈G,M〉 , C), the proof being a slight mutatis mutandis adaptation of
the one of [Sou18, Lemma 1.7].

Lemma 3.6 Let C be a category, F and G be objects of Fct (〈G,M〉 , C) and η : F → G a
natural transformation in Fct (M, C). The restriction Fct (〈G,M〉 , C) → Fct (M, C) is obtained by
precomposing by the canonical inclusion C〈G,M〉 of Remark 3.2. Then, η is a natural transformation
in the category Fct (〈G,M〉 , C) if and only if for all X,Y ∈ Ob (M) such that Y ∼= A♮X with
A ∈ Ob (G):

ηY ◦ F ([A, idY ]) = G ([A, idY ]) ◦ ηX . (3.3)

Finally, if the strict monoidal groupoid (G, ♮, 0) is braided, Quillen’s bracket construction 〈G,M〉
inherits a monoidal product. Beforehand, we present the notion of a pre-braided monoidal category,
introduced in [RW17]. This is a generalisation of that of a braided monoidal category.

Definition 3.7 [RW17, Definition 1.5] Let (C, ♮, 0) be a strict monoidal category such that the
unit 0 is initial. Recall that ιX : 0 → B denotes the unique morphism from 0 to an object X of C.
We say that the monoidal category (C, ♮, 0) is pre-braided if its maximal subgroupoid Gr (C, ♮, 0) is
braided monoidal (the monoidal structure being induced by that of (C, ♮, 0)) and if the braiding
bCA,B : A♮B → B♮A satisfies bCA,B ◦ (idA♮ιB) = ιB♮idA : A → B♮A for all A,B ∈ Obj (C).

The following key property describes the application of Quillen’s bracket construction on a left-
module (M, ♮) over strict braided monoidal groupoid

(
G, ♮, 0, bG−,−

)
. It is a mutatis mutandis

generalisation of [RW17, Proposition 1.8], the proof being therefore omitted.

Proposition 3.8 If the groupoid (G, ♮, 0) is braided, then the definition of the monoidal product ♮
extends to 〈G,M〉 by letting for [X,ϕ] ∈ Hom〈G,M〉 (A,B) and [Y, ψ] ∈ Hom〈G,M〉 (C,D):

[X,ϕ] ♮ [Y, ψ] =

[
X♮Y, (ϕ♮ψ) ◦

(
idX♮

(
bGA,Y

)−1

♮idC

)]
.

Moreover, if we consider M = G, then the category (〈G,G〉 , ♮, 0) is pre-braided monoidal and
the unit 0 of the monoidal structure is an initial object in the category 〈G,G〉. If, in addition,(
G, ♮, 0, bG−,−

)
is symmetric monoidal, then the category

(
〈G,G〉 , ♮, 0, bG−,−

)
is symmetric monoidal.

Remark 3.9 If the category M is not a groupoid, then slightly more general analogous results as
those of Lemmas 3.5 and 3.6 and the first part of Proposition 3.8 could be stated. However, this
is not the kind of situation we deal with in this paper.

Induced framework for automorphism subgroups. For all A ∈ Obj (G), let HA be a sub-
group of the automorphism group AutG (A). We denote by G′ the subcategory of G with the same
objects and with morphisms

HomG′ (A,B) =

{
HA if A ∼= B in G;

∅ otherwise.

A natural question is to wonder when the monoidal structure of G restricts to G′: this is useful for
some situations of §3.4 to set a categorical framework for families of subgroups of automorphism
groups of some monoidal groupoid.

Lemma 3.10 The (strict) braided monoidal structure
(
G, ♮, 0, bG−,−

)
restricts to G′ if and only if,

for all A,A′ ∈ Obj (G), ϕ′♮ϕ ∈ HA′♮A for all ϕ′ ∈ HA′ and ϕ ∈ HA.

Proof. Note that the coherence conditions and the braiding of the induced braided monoidal struc-
ture for G′ automatically follow from those for G. Hence the monoidal product ♮ defines a (strict)
braided monoidal structure

(
G′, ♮, 0, bG−,−

)
if and only if it restricts to a bifunctor ♮ : G′ × G′ → G′:

this is equivalent to the fact that the monoidal structure ♮ defines group morphisms ♮ : HA′ ×HA →
HA′♮A for all A′, A ∈ Obj (G).
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3.2 A topological enrichment

Suppose now that G is a topological monoidal groupoid and M is a topological category with a
continuous left-action of G. (Recall that, by topological category, we mean a category enriched over
the symmetric monoidal category of topological spaces.) Definition 3.1 may be extended directly
to this setting, as follows.

Definition 3.11 The category 〈G,M〉 is defined to have the same objects as M, and for objects
X,Y of M, we define Hom〈G,M〉(X,Y ) to be the quotient space

[
⊔

A∈Ob(G)

HomM(A♮X, Y )

]
/∼,

where ∼ is the equivalence relation given by (A,ϕ) ∼ (A′, ϕ′) if and only if ϕ = ϕ′ ◦ (σ♮idX) for
some σ ∈ HomG(A,A′). Note that this may also be written as a colimit, as in Definition 3.1.

Remark 3.12 A topological version of Quillen’s bracket construction is mentioned briefly in Re-
mark 2.10 of [Kra17], although there the categories are topological in the sense of being categories
internal to the category of topological spaces, rather than topologically-enriched categories. Lemma
3.13 below is stated for topologically-enriched categories, but it is likely that it has an analogue
for categories internal to the category of topological spaces, in which case Lemma 2.11 of [Kra17]
would be a particular case of this analogue.

Lemma 3.13 Let G be a topological monoidal groupoid and M a topological category with a con-
tinuous left-action of G. Assume that, for each object A of G and each pair of objects X,Y of M,
the quotient map

HomM(A♮X, Y ) −→ HomM(A♮X, Y )/AutG(A) (3.4)

is a Serre fibration. Then there is a canonical isomorphism of categories

π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉. (3.5)

Proof. First note that π0(〈G,M〉) and 〈π0(G), π0(M)〉 have the same object set, by the definition
of the discrete and topologically-enriched Quillen bracket constructions, and the functor π0. Specif-
ically, their common object set is ob(M). It therefore remains to show that, for objects X and Y
of M, there is a natural bijection between π0(Hom〈G,M〉(X,Y )) and Hom〈π0(G),π0(M)〉(X,Y ). Set

Φ =
⊔

A∈ob(G)

HomM(A♮X, Y ).

Unravelling the definitions, what we need to prove is that there is a natural bijection

π0(Φ/∼t) ∼= π0(Φ)/∼h,

where ∼t is the equivalence relation given by (A,ϕ) ∼t (A′, ϕ′) if and only if there is a morphism
σ ∈ HomG(A,A′) such that ϕ = ϕ′ ◦ (σ♮id), and ∼h is the equivalence relation given by (A, [ϕ]) ∼h

(A′, [ϕ′]) if and only if there is a morphism σ ∈ HomG(A,A′) such that ϕ ≃ ϕ′ ◦ (σ♮id). Note that
the only difference between these definitions is that the equality is replaced by a homotopy in the
definition of ∼h.

As sets, these are both quotients of (the underlying set of) Φ, so we just need to show that, given
two elements (A,ϕ) and (A′, ϕ′) of Φ, they have the same image in π0(Φ/∼t) if and only if they
have the same image in π0(Φ)/∼h.

(a) Suppose first that (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ)/∼h. This means that there
is a morphism σ ∈ HomG(A,A′) and a path

γ : [0, 1] −→ HomM(A♮X, Y ) ⊆ Φ

with γ(0) = (A,ϕ) and γ(1) = (A,ϕ′ ◦ (σ♮id)). Composing with the projection Φ → Φ/∼t and
writing [−]t for the equivalence classes with respect to ∼t, we obtain a path in Φ/∼t from [(A,ϕ)]t
to [(A,ϕ′ ◦ (σ♮id))]t = [(A′, ϕ′)]t. Hence (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ/∼t).
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(b) To prove the converse, we first make an assumption, which we will justify later. Namely, we
assume that that quotient map

q : Φ −→ Φ/∼t

is a Serre fibration. Now assume that (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ/∼t), so there
is a path δ : [0, 1] → Φ/∼t with δ(0) = [(A,ϕ)]t and δ(1) = [(A′, ϕ′)]t. By our assumption that q is
a Serre fibration, we may lift this to a path ε : [0, 1] → Φ with ε(0) = (A,ϕ) and ε(1) ∼t (A′, ϕ′).
Its image ε([0, 1]) is path-connected, so it must lie in HomM(A♮X, Y ) ⊆ Φ. Hence we have a path

ε : [0, 1] −→ HomM(A♮X, Y )

with ε(0) = (A,ϕ) and ε(1) = (A,ϕ′′) ∼t (A′, ϕ′), for some ϕ′′ ∈ HomM(A♮X, Y ). The relation
(A,ϕ′′) ∼t (A′, ϕ′) means that there is a morphism σ ∈ HomG(A,A′) such that ϕ′′ = ϕ′ ◦ (σ♮id).
Hence ε is a homotopy witnessing that ϕ ≃ ϕ′ ◦(σ♮id), so we have shown that (A, [ϕ]) ∼h (A′, [ϕ′]),
in other words, (A,ϕ) and (A′, ϕ′) have the same image in π0(Φ)/∼h.

(c) It now just remains to prove our earlier assumption that q is a Serre fibration. Directly from
the definition, one may easily verify the following two facts:

•
⊔
i fi :

⊔
i Ei → B is a Serre fibration if and only if each fi : Ei → B is a Serre fibration.

• f : E → B is a Serre fibration if and only if (i) f(E) is a union of path-components of B and
(ii) f : E → f(E) is a Serre fibration.

It therefore suffices to prove that

(i) q(HomM(A♮X, Y )) is a union of path-components of Φ/∼t for each A ∈ ob(G),
(ii) HomM(A♮X, Y ) → q(HomM(A♮X, Y )) is a Serre fibration for each A ∈ ob(G).

Let us partition ob(G) into equivalence classes Oα, under the equivalence relation where two objects
A,A′ of G are equivalent if and only if there is a morphism A → A′ in G. (This is an equivalence
relation since G is a groupoid.) we may then write Φ =

⊔
α Φα, where

Φα =
⊔

A∈Oα

HomM(A♮X, Y ).

The equivalence relation ∼t on Φ clearly preserves the topological disjoint union
⊔
α Φα, so we

have
Φ/∼t =

⊔

α

(Φα/∼t).

Also note that, for any two objects A,A′ ∈ Oα (for fixed α), we have

q(HomM(A♮X, Y )) = q(HomM(A′♮X, Y )).

So, if we make a choice of object Aα ∈ Oα for each α, we have a decomposition of Φ/∼t as a
topological disjoint union:

Φ/∼t =
⊔

α

q(HomM(Aα♮X, Y )).

This immediately implies point (i) above.

For point (ii), note that two elements ϕ,ϕ′ ∈ HomM(A♮X, Y ) have the same image under q if and
only if they are ∼t-equivalent, which is equivalent to saying that they lie in the same orbit of the
AutG(A)-action on HomM(A♮X, Y ). Hence the map

qA : HomM(A♮X, Y ) −→ q(HomM(A♮X, Y )) (3.6)

is isomorphic to (3.4), at least on underlying sets. If we can show that they are isomorphic also
as continuous maps of spaces, then we will be done, since we know by hypothesis that (3.4) is a
Serre fibration. Since (3.4) and (3.6) are surjective continuous maps with the same domain and
the same point-fibres, and we know moreover that (3.4) is a quotient map, it will suffice to prove
that (3.6) is also a quotient map.

Let U ⊆ q(HomM(A♮X, Y )) be a subset such that q−1
A (U) is open in HomM(A♮X, Y ). We need

to show that U is open in q(HomM(A♮X, Y )). To see this, let A ∈ Oα and note that, by the fact
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discussed above that the equivalence relation ∼t preserves the decomposition of Φ into a topological
disjoint union, the restriction

qα = q|Φα
: Φα −→ q(Φα) = q(HomM(A♮X, Y ))

is a quotient map. So it will suffice to show that q−1
α (U) is open in Φα. Now, from the definitions,

we observe the following description of the subset

q−1
α (U) ⊆ Φα =

⊔

A′∈Oα

HomM(A′♮X, Y ).

For each object A′ ∈ Oα, choose an isomorphism σA′ : A′ → A in G. This induces a homeomorphism

ΥA′ = − ◦ (σA′♮id) : HomM(A♮X, Y ) −→ HomM(A′♮X, Y ).

Then we have
q−1
α (U) =

⊔

A′∈Oα

ΥA′(q−1
A (U)).

Since q−1
A (U) is open in HomM(A♮X, Y ), it follows that ΥA′(q−1

A (U)) is open in HomM(A′♮X, Y )
for each A′ ∈ Oα. Thus q−1

α (U) is open in Φα, as required.

Verifying the condition. In order to verify the condition (3.4) in each of our examples in §3.4
below, we will use the following proposition. Let L and M be smooth, connected d-manifolds,
each equipped with a distinguished boundary-component, denoted ∂0L resp. ∂0M , and let L♮M be
their boundary connected sum, which then also has an obvious distinguished boundary-component
∂0(L♮M). Let A ⊂ L be a (possibly empty) closed submanifold of the interior of L and let B ⊂ M
be a (possibly empty) closed submanifold of the interior of M .

Definition 3.14 Define
Diff∂0 (L♮M ;A ⊔B)

to be the group of diffeomorphisms of L♮M that fix A⊔B as a subset and that restrict to the identity
on a neighbourhood of ∂0(L♮M). We define Diff∂0 (L;A) and Diff∂0 (M ;B) similarly. However, for
simplicity of notation, we will henceforth drop the A and B and write simply Diff∂0 (L♮M), etc.,
unless there is any ambiguity about what the submanifolds A and B could be.

These groups are topologised as follows (we describe this explicitly for Diff∂0 (L), and for the other
two cases it is exactly analogous). Let C be a closed neighbourhood of ∂0L in L and let DiffC(L)
be the subgroup of Diff∂0 (L) consisting of diffeomorphisms that restrict to the identity on C.
We then give Diff(L) the Whitney topology, each DiffC(L) the subspace topology inherited from
the Whitney topology on Diff(L), and we give Diff∂0 (L) the final topology with respect to the
collection of subsets DiffC(L) as C varies. Namely, a subset U of Diff∂0 (L) is open if and only if its
intersection with DiffC(L) is open in DiffC(L) for all C. In other words, we are viewing Diff∂0 (L)
as the colimit

Diff∂0 (L) = colimC(DiffC(L)).

Note that this may differ from the subspace topology that Diff∂0 (L) inherits directly from the
Whitney topology on Diff(L) (the colimit topology may be finer). However, these two topologies
on Diff∂0 (L) are weakly equivalent. In particular, they have the same π0.

We have a quotient map

Ψ: Diff∂0 (L♮M) −→ Diff∂0 (L♮M)/Diff∂0 (L). (3.7)

since Diff∂0 (L) acts on Diff∂0 (L♮M) on the right by ϕ · ψ = ϕ ◦ (ψ♮idM ).

Proposition 3.15 The quotient map (3.7) is a Serre fibration.
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Remark 3.16 This is related to results of Cerf [Cer61, Corollaire 2, §II.2.2.2, page 294], Palais
[Pal60, Theorem B] and Lima [Lim63], but we were not able to find an instance of their results
that covers the setting that we require here. We therefore give a complete proof of Proposition
3.15, using key results of Cerf [Cer61, Lemme II.2.1.2, page 291] and of Palais [Pal60, Theorem A]
as an input.

Proof of Proposition 3.15. First of all, we smoothly construct the boundary connected sum L♮M .
To do this, choose an embedding e : Dd−1 × [−1, 0] →֒ L such that

• e−1(∂L) = (∂Dd−1 × [−1, 0]) ∪ (Dd−1 × {0}),
• this intersection with ∂L is contained in the distinguished boundary-component of L,
• the image of e is disjoint from the submanifold A ⊂ int(L),
• e is a smooth embedding away from ∂Dd−1 × {0}.3

Similarly, choose an embedding f : Dd−1 × [0, 1] →֒ M satisfying similar conditions, in particular

• f−1(∂M) = (∂Dd−1 × [0, 1]) ∪ (Dd−1 × {0}).

We then define:
L♮M := L ∪e (Dd−1 × [−1, 1]) ∪f M,

which has an obvious induced smooth structure. For − 1
2 6 t < 0, define Mt = (Dd−1 × [t, 1])∪fM ,

a submanifold-with-corners of L♮M . Choose an embedding

c : ∂0(L♮M) × [0, 1
2 ] −֒→ L♮M

such that

• c(x, 0) = x for all x ∈ ∂0(L♮M),
• c(x, t) = ((1 − t)y, s) for all x = (y, s) ∈ ∂Dd−1 × [−1, 1] and t ∈ [0, 1

2 ],
• the image of c is disjoint from the submanifold A ⊔B ⊂ int(L♮M).

This is all illustrated in Figure 3.1.

For each 0 < ǫ 6 1
2 , the image Cǫ = c(∂0(L♮M) × [0, ǫ]) is a closed neighbourhood of ∂0(L♮M)

in L♮M . Recall from Definition 3.14 above that DiffCǫ
(L♮M) is the group of diffeomorphisms ϕ

of L♮M such that ϕ(x) = x for all x ∈ Cǫ and ϕ(A ⊔ B) = A ⊔ B, equipped with the Whitney
topology. Since the collection {Cǫ} is cofinal in the directed set of all closed neighbourhoods of
∂0(L♮M), it follows from our definition of the topology on Diff∂0 (L♮M) that:

Diff∂0 (L♮M) ∼= colim
ǫ→0

(DiffCǫ
(L♮M)). (3.8)

We also define DiffCǫ
(L♮M ;Mt) to be the group of diffeomorphisms ϕ of L♮M such that ϕ(x) = x

for all x ∈ Cǫ ∪Mt and ϕ(A ⊔B) = A ⊔B, equipped with the Whitney topology.

For each − 1
2 6 t < 0 and 0 < ǫ 6 1

2 we have a quotient map

Ψǫ,t : DiffCǫ
(L♮M) −→ DiffCǫ

(L♮M)/DiffCǫ
(L♮M ;Mt).

For any − 1
2 6 t 6 t

′ < 0 and 0 < ǫ′ 6 ǫ 6 1
2 there are natural maps

DiffCǫ
(L♮M)/DiffCǫ

(L♮M ;Mt) −→ DiffCǫ′ (L♮M)/DiffCǫ′ (L♮M ;Mt′),

so we may take the directed colimit of the maps Ψǫ,t to obtain

colim
ǫ,t→0

(Ψǫ,t) : Diff∂0 (L♮M) −→ colim
ǫ,t→0

(DiffCǫ
(L♮M)/DiffCǫ

(L♮M ;Mt)),

where we have used the identification (3.8) for the domain. Since each Ψǫ,t is a quotient map, it
follows from general facts about colimits in the category of topological spaces that colim

ǫ,t→0
(Ψǫ,t) is

also a quotient map. The map

Ψ: Diff∂0 (L♮M) −→ Diff∂0 (L♮M)/Diff∂0 (L),

3 On ∂Dd−1 ×{0}, it cannot be smooth, since this is a codimension-2 face of the cylinder Dd−1 × [−1, 0], whereas
L has only codimension-0 faces (its interior) and codimension-1 faces (its boundary).
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= L

= M
= ∂0(L♮M)

= L ∩ im(c)

= M ∩ im(c)

im(e) im(f)

−1 t 0 1

Mt

Dd−1 × [−1, 1]

Figure 3.1 The construction of L♮M , the submanifold Mt and the collar neighbourhood c of ∂0(L♮M).

i.e., the map (3.7) that we would like to show is a Serre fibration, is also a quotient map, with the
same domain. Observe that {(Cǫ∪Mt)∩L} is cofinal in the directed set of all closed neighbourhoods
of ∂0L in L. This means that two diffeomorphisms of Diff∂0 (L♮M) have the same image under Ψ
if and only if they have the same image under colim

ǫ,t→0
(Ψǫ,t). As they are quotient maps of the same

space, it follows that Ψ ∼= colim
ǫ,t→0

(Ψǫ,t).

We will prove below that each Ψǫ,t is a fibre bundle (and hence a Serre fibration), and then deduce
that Ψ is a Serre fibration using the following general fact.

(∗) Any filtered colimit of based Serre fibrations between compactly-generated weak-Hausdorff
spaces is again a Serre fibration.

For a reference for this fact, see Proposition 1.2.3.5(1) of [TV08], which states that a filtered
colimit of fibrations is a fibration in any compactly generated model category. The classical model
category of based compactly-generated weak-Hausdorff spaces, with its Quillen model structure in
which the fibrations are the Serre fibrations, is compactly generated (see for example Proposition
6.3 of [MMSS01]).

To apply (∗) in our situation, first note that we are taking a directed colimit, which is in particular
a filtered colimit. We then need to check that the diffeomorphism groups DiffCǫ

(L♮M) and their
quotients are compactly-generated weak-Hausdorff spaces. Diffeomorphism groups of manifolds, in
the Whitney topology, are always first-countable and Hausdorff, and thus compactly-generated and
weak-Hausdorff. Moreover, the property of being compactly-generated is preserved when taking
quotients. The property of being weak Hausdorff is not preserved when taking quotients; however,
in the process of proving that each Ψǫ,t is a fibre bundle below, we will also show that its target
space DiffCǫ

(L♮M)/DiffCǫ
(L♮M ;Mt) is Hausdorff.

It therefore remains to show that each Ψǫ,t is a fibre bundle (and its target space is Hausdorff).
Write

EmbCǫ
(Mt, L♮M)

for the space of smooth embeddings ϕ : Mt → L♮M such that ϕ(x) = x for all x ∈ Cǫ ∩ Mt and
ϕ(B) ⊆ A ⊔B. There is a restriction map

Φǫ,t : DiffCǫ
(L♮M) −→ EmbCǫ

(Mt, L♮M),

which is equivariant with respect to the left-action of DiffCǫ
(L♮M) by post-composition. Note that

this factors through the quotient map Ψǫ,t, so we have an induced map
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DiffCǫ
(L♮M)/DiffCǫ

(L♮M ;Mt)

DiffCǫ
(L♮M) EmbCǫ

(Mt, L♮M).

Ψǫ,t

Φǫ,t

Φ̂ǫ,t

Moreover, if two diffeomorphisms of DiffCǫ
(L♮M) have the same image under Φǫ,t, their difference

lies in DiffCǫ
(L♮M ;Mt), so the induced map Φ̂ǫ,t is injective. We will prove in the next paragraphs

that, after restricting its codomain EmbCǫ
(Mt, L♮M) to its image, the map Φǫ,t is a fibre bundle.

Hence, restricting EmbCǫ
(Mt, L♮M) to im(Φǫ,t) in the above diagram, we obtain a diagram

DiffCǫ
(L♮M)/DiffCǫ

(L♮M ;Mt)

DiffCǫ
(L♮M) im(Φǫ,t)

Ψǫ,t

Φǫ,t

Φ̂ǫ,t

in which the vertical and horizontal maps are quotient maps (since surjective fibre bundles are

always quotient maps) and the diagonal map Φ̂ǫ,t is a bijection. This implies that Φ̂ǫ,t is in fact a

homeomorphism, and hence Ψǫ,t = Φ̂−1
ǫ,t ◦ Φǫ,t is a fibre bundle, as required. Moreover, the target

space of Ψǫ,t is homeomorphic to a subspace of EmbCǫ
(Mt, L♮M), which is Hausdorff, so we have

also incidentally shown that the target space of Ψǫ,t is Hausdorff.

It finally remains to prove that Φǫ,t : DiffCǫ
(L♮M) → im(Φǫ,t) ⊆ EmbCǫ

(Mt, L♮M) is a fibre bundle.
Since it is equivariant with respect to the left-action of DiffCǫ

(L♮M), it will suffice to prove that
the action of DiffCǫ

(L♮M) on im(Φǫ,t) is locally retractile (≡ admits local cross-sections). This is
because, by [Pal60, Theorem A], any G-equivariant map into a G-locally retractile space is a fibre
bundle.

Thus, we have to prove the following statement: given an embedding e ∈ im(Φǫ,t) ⊆ EmbCǫ
(Mt, L♮M),

we may find an open neighbourhood U of e and a continuous map γ : U → DiffCǫ
(L♮M) such that

γ(e) = id and γ(f) ◦ e = f for any f ∈ U . Since DiffCǫ
(L♮M) acts transitively on im(Φǫ,t), it will

suffice to prove this for just one such e, which we take to be the inclusion Mt →֒ L♮M .

To prove this, we apply a result of Cerf [Cer61, Lemme II.2.1.2, page 291], which we first recall.
Let X be a manifold-with-corners. This means in particular that X has a stratification into faces
(for example, if X is a connected manifold with boundary, but no higher-codimension corners, then
its set of faces is π0(∂X) ⊔ {X}). Each point x ∈ X may lie in many faces, but it has a unique
smallest face (according to inclusion) in which it lies, which we denote by FX(x). Now if Y is any
submanifold-with-corners of X , we define

C∞face(Y,X) = {smooth maps ϕ : Y → X such that FX(ϕ(x)) = FX(x) for each x ∈ Y },

equipped with the Whitney topology. The Extension Lemma II.2.1.2 of [Cer61] says that, if Y is
closed in X and V is any neighbourhood of Y in X , then the restriction map

C∞face(X,X) −→ C∞face(Y,X)

admits a section s defined on an open neighbourhood V of the inclusion in C∞face(Y,X), such that
s(incl) = id and s(f)(x) = x for all f ∈ V and x ∈ X r V .

Step 1. Note that, since each embedding f ∈ im(Φǫ,t) extends to a diffeomorphism of L♮M , it
restricts to an embedding of ∂M r ∂0M into (∂M r ∂0M) ⊔ (∂Lr ∂0L), and hence it induces an
injection f∂ : π0(∂M r ∂0M) → π0(∂M r ∂0M) ⊔ π0(∂L r ∂0L). By definition of the embedding
space EmbCǫ

(Mt, L♮M), f also sends B into A ⊔ B, so it also induces an injection f♯ : π0(B) →
π0(B) ⊔ π0(A). The function f 7→ (f∂ , f♯) is locally constant, so its fibres are open. Let U ′ be the
open subset of im(Φǫ,t) consisting of all f such that f∂ is the inclusion and f♯(π0(B)) = π0(B).
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= Lt r Cǫ

= Lt ∩ Cǫ
= Mt

Lt := L r (Dd−1 × (t, 0])

−1 t 0 1

Figure 3.2 Extending an embedding from Mt to Mt ∪ Cǫ and then to all of L♮M .

Note that the second condition implies that f(B) = B, since f is an embedding and B is a closed
manifold.

Step 2. Each embedding f ∈ U ′ restricts to the identity on Mt ∩ Cǫ, so we may extend it to a
smooth map from the manifold-with-corners Mt ∪ Cǫ into L♮M by defining it to be the identity
also on the rest of Cǫ. (See Figure 3.2 for a schematic picture.) This extension is continuous in the
input f , meaning that we have defined a continuous map γ′ : U ′ → C∞(Mt ∪Cǫ, L♮M). Moreover,
for each f ∈ U ′, the extension γ′(f) lies in the subspace C∞face(Mt ∪Cǫ, L♮M), since it sends points
of int(L♮M) into int(L♮M) and, for any boundary-component P of L♮M lying in Mt ∪Cǫ, it sends
P into itself (this is because f∂ = incl). Thus, we have a continuous map

γ′ : U ′ −→ C∞face(Mt ∪Cǫ, L♮M)

such that γ′(incl) = incl and γ′(f)|Mt
= f for all f ∈ U ′.

Step 3. Now set X = L♮M and Y = Mt∪Cǫ in the Extension Lemma of Cerf above, and choose V
to be any open neighbourhood of Mt∪Cǫ in L♮M that is disjoint from the submanifold A ⊂ int(L).
Composing the local section s obtained from the Extension Lemma with γ′, we have a continuous
map

γ′′ = s ◦ γ′ : U ′′ = (γ′)−1(V) −→ C∞face(L♮M,L♮M)

such that γ′′(incl) = id and for any f ∈ U ′′ we have γ′′(f)|Mt
= f and γ′′(f)(A) = A. Moreover,

by construction, we also know that γ′′(f)(x) = x for all x ∈ Cǫ and γ′′(f)(B) = B.

Step 4. Finally, note that Diff(L♮M) is open in C∞(L♮M,L♮M), so

U = (γ′′)−1(C∞face(L♮M,L♮M) ∩ Diff(L♮M))

is an open neighbourhood of the inclusion in im(Φǫ,t). For each f ∈ U , the diffeomorphism γ′′(f)
of L♮M fixes each point of Cǫ and sends A ⊔B onto itself, so it is an element of DiffCǫ

(L♮M). So
we have a continuous map

γ = γ′′|U : U −→ DiffCǫ
(L♮M)

such that γ(incl) = id and, for all f ∈ U , we have γ(f) ◦ incl = f . This completes the proof.

For future convenience, we record a useful corollary of the proof of Proposition 3.15.

Definition 3.17 Let N be a smooth, connected d-manifold with non-empty boundary and let T be
a compact, connected, proper4 (d− 1)-submanifold of N with non-empty boundary ∂T contained
in a single boundary-component ∂0N of N . Assume that N r T has two components and denote
their closures by N1 and N2, which are manifolds with corners.

4 In this context, proper means that the interior of T lies in the interior of N , the boundary of T lies in the
boundary of N and, moreover, near the boundary, T ⊂ N is modelled on Rd−2 × {0} × [0, ∞) ⊂ Rd−1 × [0, ∞).
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Note that N = N1 ∪N2 and T = N1 ∩N2. The prototypical example of this setting is N = L♮M
and T = Dd−1 × {0} (see Figure 3.1), with N1 = L and N2 = M . Define

EmbDiff
∂0

(N1, N)

to be the set of smooth embeddings ϕ : N1 → N , equipped with a germ of an extension ϕ̄ to some
neighbourhood of N1 in N , such that

• there exists some neighbourhood U of ∂0N such that ϕ̄(x) = x for all x ∈ U ∩ domain(ϕ̄),
• there exists an extension of ϕ̄ to a diffeomorphism of N that acts by the identity on U .

This is topologised as follows. Let U be a neighbourhood of ∂0N in N and let V be a neighbourhood
of N1 in N . Let EmbDiff

U (V,N) be the set of smooth embeddings ϕ : V → N such that ϕ(x) = x
for all x ∈ U ∩ V and there exists an extension of ϕ to a diffeomorphism of N that acts by the
identity on U . This is given the subspace topology induced by the Whitney topology on the space
of smooth maps C∞(V,N). Note that, if U ′ ⊆ U and V ′ ⊆ V are neighbourhoods as above, there
are continuous restriction maps

EmbDiff
U (V,N) −→ EmbDiff

U ′ (V ′, N).

The set EmbDiff
∂0

(N1, N) is the colimit of the underlying sets of this diagram of spaces, so we may
topologise it by defining

EmbDiff
∂0

(N1, N) = colim
U,V

(EmbDiff
U (V,N)).

Lemma 3.18 Under the conditions of Proposition 3.15, there is a natural homeomorphism

Diff∂0 (L♮M)/Diff∂0 (L) ∼= EmbDiff
∂0

(M,L♮M).

Proof. This follows from the sequence of homeomorphisms:

Diff∂0 (L♮M)/Diff∂0 (L) ∼= colim
ǫ,t→0

(DiffCǫ
(L♮M)/DiffCǫ

(L♮M ;Mt))

∼= colim
ǫ,t→0

(EmbDiff
Cǫ

(Mt, L♮M))

∼= EmbDiff
∂0

(M,L♮M).

The first homeomorphism comes from the fact that we showed, during the proof of Proposition
3.15, that the maps Ψ and colim

ǫ,t→0
(Ψǫ,t) are homeomorphic, so in particular their target spaces are

homeomorphic.

The second homeomorphism is the homeomorphism Φ̂ǫ,t from the proof of Proposition 3.15. The

third homeomorphism is by definition of the topology on EmbDiff
∂0

(M,L♮M) and the facts that {Cǫ}
is a cofinal family of neighbourhoods playing the role of U in the definition and {Mt} is a cofinal
family of neighbourhoods playing the role of V .

A variant for decorated manifolds. In practice, we will mainly use a slight variant of this
setup, where diffeomorphisms are only assumed to be the identity on a neighbourhood of two
disjoint discs in the boundary.

Definition 3.19 (Decorated manifolds and their boundary connected sum) First, let us say that a
boundary-cylinder for a smooth d-manifold M is a map

e : Dd−1 × [0, 1] −→ M

such that e−1(∂M) = (∂Dd−1 × [0, 1]) ∪ (Dd−1 × {0}) and e is a smooth embedding away from
the sphere ∂Dd−1 × {0}. A decorated manifold is then a smooth d-manifold M , equipped with
a closed submanifold A ⊂ int(M) and an ordered pair (e1, e2) of disjoint boundary-cylinders for
M r A. Given two decorated manifolds, one may form their boundary connected sum, as in the
beginning of the proof of Proposition 3.15, by gluing image(e2) of the first manifold to image(e1)
of the second manifold.
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Definition 3.20 (Diffeomorphisms and embeddings of decorated manifolds) For any decorated
manifold (M,A, e1, e2), we define

Diffdec(M)

to be the group of diffeomorphisms of M that send A onto itself and restrict to the identity on some
neighbourhood of e1(Dd−1 × {0}) ⊔ e2(Dd−1 × {0}). This is topologised as in Definition 3.14, as a
colimit of Whitney topologies. Note that, for a pair of decorated manifold L and M , the topological
group Diffdec(L) may be viewed as a subgroup of Diffdec(L♮M), by extending diffeomorphisms by
the identity on M .

Similarly, if (L,A, e1, e2) and (M,B, f1, f2) are two decorated manifolds, we define

EmbDiff
dec (M,L♮M)

to be the set of smooth embeddings ϕ : M → L♮M , equipped with a germ ϕ̄ of an extension of
ϕ to a neighbourhood of M in L♮M , such that ϕ restricts to the identity on a neighbourhood
of f2(Dd−1 × {0}) and ϕ̄ extends to a diffeomorphism of L♮M that restricts to the identity on a
neighbourhood of e1(Dd−1 × {0}). This is also topologised as a colimit of Whitney topologies, as
in Definition 3.17.

The proofs of Proposition 3.15 and Lemma 3.18 may easily be adapted to prove the following
analogue.

Proposition 3.21 For any two decorated manifolds L and M , the quotient map

Diffdec(L♮M) −→ Diffdec(L♮M)/Diffdec(L) (3.9)

is a Serre fibration and its target space is homeomorphic to EmbDiff
dec (M,L♮M).

Remark 3.22 We note that all of the above may be adapted to the setting where the closed
submanifolds A ⊂ int(L) and B ⊂ int(M) are equipped with orientations, and all diffeomorphisms
and embeddings in Definitions 3.14 and 3.17 are required to preserve these orientations. Proposition
3.15, Lemma 3.18 and Proposition 3.21 generalise immediately to this setting.

3.3 Semi-monoidal categories and semicategories

All of the examples of categories C for which we would like topologically to construct representations
will be of the form 〈G,M〉, where G is a braided monoidal category and M is a left-module of
G. We therefore need to find a topological monoidal groupoid Gt and a topological category Mt

with a left-action of Gt, satisfying condition (3.4) of Lemma 3.13 and such that π0(Gt) ∼= G and

π0(Mt) ∼= M. Given this, a continuous functor 〈G,M〉 → C̃ovQ will induce a functor

C = 〈G,M〉 ∼= π0(〈Gt,Mt〉) = π0(Ct) −→ R-Modtw,

via the construction summarised in the diagram (2.26). Note that there is no need for Gt to
be braided, since this structure is not needed in order to form the topological Quillen bracket
construction, or for Lemma 3.13. In fact, it will be convenient for our examples to drop even more
structure from G, and assume only that it is a semi-monoidal category. (Recall that this is defined
analogously to a monoidal category, but without any of the structure or conditions involving left
or right units.) This is because it will typically be easy to lift the monoidal structure of G to an
associative binary operation on Gt,5 but it is often not possible to make this lifted operation unital
in a natural way.

Remark 3.23 If G is a topological semi-monoidal groupoid and M is a topological category with
a continuous left-action of G, then Definition 3.11 generalises directly to this setting, and produces
a semicategory 〈G,M〉. (The associator of G is used to define composition in 〈G,M〉 and the
pentagon condition for the associator implies associativity of this composition.) Moreover, Lemma
3.13 also generalises to this setting, and implies, under the same hypotheses, that there is an
isomorphism of semicategories π0(〈G,M〉) ∼= 〈π0(G), π0(M)〉.

5 More precisely, a binary operation admitting an associator that satisfies the pentagon condition.
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Using this remark, it will suffice, in our examples, to find a topological semi-monoidal groupoid
Gt, such that π0(Gt) ∼= G as semi-monoidal groupoids and which satisfies condition (3.4) of Lemma
3.13. Then 〈Gt,Mt〉 is a topological semicategory, and the input for the topological construction

will be a continuous semifunctor 〈Gt,Mt〉 → C̃ovQ. Via Lemma 3.13, Remark 3.23 and diagram
(2.26) we then obtain a semifunctor 〈G,M〉 → R-Modtw. However, the source and target of
this semifunctor are both categories (since G is a monoidal category, not just a semi-monoidal
category), and so we may ask whether this semifunctor is in fact a functor. The final (small) step
of the topological construction will then be to verify that it does in fact preserve identities, and is
therefore a functor.

Remark 3.24 In practice, in our examples that we construct in §§4.4 and 4.5 using this framework,
we will ignore this issue of a lack of identities in 〈Gt,Mt〉, and proceed as if it were a topological
category (with identities), to avoid unnecessary extra complications. However, formally, one should
modify that procedure as described in the paragraph above.

3.4 The input categories

The families of groups for which it is natural to define the first homological functors are the braid
groups of surfaces, mapping class groups of surfaces and loop-braid groups. Before doing this
(in §4), we first introduce the suitable categorical framework to deal with the application of the
construction of §2 to these families of groups.

In this section, we first recollect the various definitions and properties of these families of groups.
Then we present an appropriate groupoid encoding the considered family of groups in each situa-
tion. These groupoids will systematically be braided monoidal or modules over a braided monoidal
category: this allows one to apply Quillen’s bracket construction (see §3.1) in each case, the result-
ing category being “richer” in the sense that it has more morphisms. This is done in §§3.4.1–3.4.3
for (surface) braid groups and mapping class groups of surfaces, and in §3.4.4 for the loop-braid
groups.

In §3.4.5, we construct topological versions of all of these groupoids, recovering each of the discrete
groupoids — and hence their Quillen bracket constructions (using the results of §3.2) — after
taking π0.

3.4.1 Classical braid groups

We recall that the (classical) braid group on n > 2 strings denoted by Bn is the group generated by
σ1, ..., σn−1 satisfying the relations σiσi+1σi = σi+1σiσi+1 for all i ∈ {1, . . . , n− 2} and σiσj = σjσi
for all i, j ∈ {1, . . . , n− 1} such that | i− j |> 2. B0 and B1 both are the trivial group. The family
of braid groups is associated with the braid groupoid β, with objects the natural numbers n ∈ N
and morphisms (for n,m ∈ N):

Homβ (n,m) =

{
Bn if n = m

∅ if n 6= m.

The composition of morphisms ◦ in the groupoid β corresponds to the group operation of the braid
groups. So we identify the composition in σ ◦σ′ with the group multiplication σσ′ in Bn (with the
convention that we read from the right to the left for the group operation).

We recall from [Mac98, Chapter XI, Section 4] that a monoidal product ♮ : β × β → β is defined
by the usual addition for the objects and laying two braids side by side for the morphisms. The
object 0 is the unit of this monoidal product. The strict monoidal groupoid (β, ♮, 0) is braided:
the braiding is defined for all natural numbers n and m such that n+m > 2 by

bβ
n,m = (σm ◦ · · · ◦ σ2 ◦ σ1) ◦ · · · ◦ (σn+m−2 ◦ · · · ◦ σn ◦ σn−1) ◦ (σn+m−1 ◦ · · · ◦ σn+1 ◦ σn)

where {σi}i∈{1,...,n+m−1} denote the Artin generators of the braid group Bn+m.
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3.4.2 Mapping class groups of surfaces

The following suitable category to consider the mapping class groups of surfaces for our work is
introduced in [RW17, Section 5.6]. The decorated surfaces groupoid M2 is defined by:

• Objects: decorated surfaces (S, I), where S is a smooth, connected, compact surface with
at least one boundary component, together with a parametrised interval I : [−1, 1] →֒ ∂0S
in the boundary. Hence there is a distinguished boundary component decorated by I and
denoted by ∂0S. When there is no ambiguity, we omit the parametrised interval I from the
notation.

• Morphisms: isotopy classes of diffeomorphisms of surfaces which restrict to the identity on a
neighbourhood of their parametrised intervals I. Note that the non-distinguished boundary
components may be freely moved by the mapping classes. The automorphism group of S
forms the mapping class group of S which is denoted by π0DiffeoI (S).

Recall that a diffeomorphism of a surface which fixes an interval in a boundary component is
isotopic to a diffeomorphism which fixes pointwise the boundary component ∂0S of the surface.
When the surface S is orientable, the orientation on S is induced by the orientation of I. The
isotopy classes of diffeomorphisms then automatically preserve that orientation as they restrict to
the identity on a neighbourhood of I.

Remark 3.25 Instead of boundary components, we could have equivalently considered surfaces
with punctures. Namely, for each object S of M2 we associate S̄ the surface obtained by gluing a
disc with one puncture on all the boundary components but ∂0S. We denote by P the corresponding
finite set of punctures. Let DiffI (S,P) the group of diffeomorphisms of S̄ including points filling
in the punctures (called marked points), which restrict to the identity on a neighbourhood of the
parametrised interval I and which send the set P of marked points to itself (i.e. permuting the
marked points). When P is the empty set, we omit it from the notation. We denote by M̄2 the
category associated with this alternative. Since π0 (DiffI (S)) ∼= π0DiffI

(
S̄,P

)
, the categories M̄2

and M2 are equivalent. Also the mapping class group of S identifies with the group of isotopy
classes of homeomorphisms of S (see for example [FM12, Section 1.4.2]). Hence we represent
mapping classes using diffeomorphisms of surfaces with boundaries, but sometimes we consider
homeomorphisms instead of diffeomorphisms and punctures instead of boundaries when they are
more convenient to consider.

We denote by D2 the unit 2-disc. Let Σ1
0,1 denote the cylinder S1 × [0, 1] (which can be thought

of as the disc D2 with a smaller disc is the interior which is removed), Σ1,1 denote the torus with
one boundary component

(
S1 × S1 \ Int

(
D2
))

and N1,1 denote a Möbius band. For S an object
of the groupoid M2, by the classification of surfaces, there exist g, s, c ∈ N such that there is a
diffeomorphism:

S ≃

(
♮
s
Σ1

0,1

)
♮

(
♮
g
Σ1,1

)
♮

(
♮
c
N1,1

)
.

Notation 3.26 If c = 0, then g and s are unique, we denote by Σsg,1 the boundary connected sum
(
Σ1

0,1

)♮s
♮Σ♮g1,1 and by Γsg,1 the mapping class group π0DiffI

(
Σsg,1

)
. If g = 0, we denote by Nsc,1 the

boundary connected sum
(
Σ1

0,1

)♮s
♮N♮c1,1 and by N

s
c,1 the mapping class group π0DiffI

(
Nsc,1

)
. In

both cases, when s = 0, we omit it most of the time from the notation.

If c = g = 0, then the boundary connected sum
(
Σ1

0,1

)♮s
is diffeomorphic to the unit 2-disc where

n interior discs are removed Ds = D2 \ {p1, . . . , ps}: we will abuse the notation and denote these
two objects in the same way.

The groupoid M2 has a monoidal structure induced by gluing; for completeness, the definition is
outlined below (see [RW17, Section 5.6.1] for technical details). For two decorated surfaces (S1, I1)
and (S2, I2), the boundary connected sum (S1, I1) ♮ (S2, I2) = (S1♮S2, I1♮I2) is defined with S1♮S2

the surface obtained from gluing S1 and S2 along the half-interval I+
1 and the half-interval I−2 , and
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I1♮I2 = I−1
⋃
I+

2 . The diffeomorphisms being the identity on a neighbourhood of the parametrised
intervals I1 and I2, we canonically extend the diffeomorphisms of S1 and S2 to S1♮S2. The braiding
of the monoidal structure bM2

(S1,I1),(S2,I2) : (S1, I1) ♮ (S2, I2) → (S2, I2) ♮ (S1, I1) is given by doing half

a Dehn twist in a pair of pants neighbourhood of ∂S1 and ∂S2. By [RW17, Proposition 5.18], the

boundary connected sum ♮ induces a strict braided monoidal structure
(

M2, ♮,
(
D2, I

)
, bM2
−,−

)
.

There are no zero divisors in the category M2 and AutM2

(
D2
)

= {idD2 } by Alexander’s trick.

Let M+
2 (respectively M−

2 ) be the full subgroupoids of M2 with objects the orientable surfaces
(respectively the non-orientable or genus 0 surfaces). The monoidal structure (M2, ♮, 0) restricts
to a braided monoidal structure both on the subgroupoids M+

2 and M−
2 , denoted in the same way(

M+
2 , ♮, 0

)
and

(
M−

2 , ♮, 0
)
.

Torelli groups: Let M+,gen
2 be the full subgroupoid of M+

2 with objects the orientable surfaces
such that ∂S = ∂0S. The monoidal product ♮ restricts to a braided monoidal structure on M+,gen

2 .
We denote by ab the category of finitely generated abelian groups. The direct sum ⊕ induces
a strict symmetric monoidal structure (ab,⊕, 0Gr), the symmetry being given by the canonical
permutation of the free product.

Recall that the isotopy classes of the diffeomorphisms of an object Σg,1 of M+,gen
2 act naturally

on its first homology group H1 (Σg,1,Z): the first homology groups H1 (−,Z) thus define a functor
from the category M2 to the category ab. Using Van Kampen’s theorem, this functor is strong
monoidal with respect to the structures

(
M+,gen

2 , ♮, 0
)

and (ab,⊕, 0Gr). We recall that the Torelli
group Ig,1 of the surface Σg,1 is the kernel of the action Γg,1 → Aut (H1 (Σg,1;Z)). Let MI

2 be
the subcategory of M+,gen

2 with the same objects and restricting to the Torelli groups for the
automorphism groups.

For g and g′ two natural numbers, let ϕ be an element of Ig,1 and ϕ′ be an element of Ig′,1. Since
the first homology functor H1 (−,Z) : MI

2 → ab is strong monoidal, it follows from the universal
property of the kernel that ϕ♮ϕ′ belongs to Ig′+g,1. By Lemma 3.10, the boundary connected sum
induces a strict braided monoidal structure

(
MI

2 , ♮,D
2
)
.

3.4.3 Surface braid groups

There are several ways to introduce the surface braid groups: first, they can be defined as the
fundamental groups of some configuration spaces on surfaces; secondly, there are also explicit pre-
sentations of these groups by generators and relations; finally, they can be seen as normal subgroups
of the mapping class groups of surfaces with punctures. For completeness, these definitions are out-
lined below and we refer the reader to [Bel04] and [GJ15] for a detailed and complete introduction
to these groups.

Surface braid groups as configuration spaces. Let S be an object of the decorated surfaces
groupoid M2. Let Fn (S) be the configuration spaces of n ordered points in S:

Fn (S) :=
{

(x1, . . . , xn) ∈ S×n | xi 6= xj if i 6= j
}
.

Let Cn (S) be the configuration spaces of n unordered points in S, induced by the natural action
by permutation of coordinates of the symmetric group Sn on Fn (S):

Cn (S) :=
{

(x1, . . . , xn) ∈ S×n | xi 6= xj if i 6= j
}
/Sn.

The braid group on the surface S on n strings is the fundamental group of this unordered con-
figuration space Bn (S) = π1 (Cn (S) , c0), where c0 = (z1, . . . , zn) with zi pairwise-distinct points
on the boundary component ∂0S for each i ∈ {1, . . . , n}. We recall that the braid groups on the
2-disc D2 are the classical braid groups of §3.4.1 and we therefore omit D2 from the notations in
this situation.

Moreover, for another natural number m, the preimage of the product Sm×Sn under the canonical
projection Bm+n (S) ։ Sm+n is called the intertwining (m,n)-braid group Bm,n (S). Namely, it
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is the fundamental group of the configuration space Fm+n (S) / (Sm × Sn). In addition, the map
Fm+n (S) / (Sm × Sn) → Fn (S) / (Sn) defined by forgetting the first m coordinates is a locally

trivial fibration with fibre Fm
(
S(n)

)
/ (Sm), where S(n) denotes the surface

(
Σ1

0,1

)♮n
♮S. The long

exact sequence in homotopy of this fibration gives the following split short exact sequence:

1 // Bm

(
S(n)

)
// Bm,n (S)

ΛS
m,n

// Bn (S) // 1 . (3.10)

The splitting Bn (S) →֒ Bm,n (S) is the map induced by the inclusion Fn (S) →֒ Fm+n

(
D2♮S

)

defined by arbitrary fixing m points p1, . . . , pm in the interior of D2 and sending (x1, . . . , xn) to
(p1, . . . , pm, x1, . . . , xn). Therefore the intertwining braid group Bm,n (S) is isomorphic to the
semidirect product Bm

(
S(n)

)
⋊ Bn (S): in particular, the natural action of Bn (S) on Bm

(
S(n)

)

is thus equivalent to the conjugate action in Bm,n (S) if we regard these two groups as subgroups
of Bm,n (S). We refer the reader to [GJ15, Section 3.1] for further details.

Presentations of surface braid groups. [Bel04] gives a presentation by generators and rela-
tions of surface braid groups. As of now, we fix three natural numbers s > 0, g > 1 and c > 2,
and consider the surfaces Σsg,1 and Nsc,1 described in §3.4.2. Throughout this work, we use the
following presentation:

Proposition 3.27 ([Bel04, Theorems 1.1 and A.2]) The braid group on n points on the orientable
surface Σsg,1, denoted by Bn

(
Σsg,1

)
with g > 1, admits the following presentation:

• Generators: S = {σi}i∈{1,...,n−1}, A = {ai}i∈{1,...,g}, B = {bi}i∈{1,...,g} and X = {ξi}i∈{1,...,s};

• Relations:

– Braid relations: σiσi+1σi = σi+1σiσi+1 and σkσj = σjσk for all i, k, j ∈ {1, . . . , n− 1}
so that |k − j| > 2;

– Mixed relations:
(R1) cσi = σic and [cσn−1c, σn−1] = 1 for all c ∈ A ∪B ∪X and i ∈ {1, . . . , n− 2};
(R2) ajσn−1bj = σn−1bjσn−1ajσn−1,

[
σ−1
n−1akσn−1, al

]
= 1,

[
σ−1
n−1bkσn−1, bl

]
= 1,[

σ−1
n−1akσn−1, bl

]
= 1,

[
σ−1
n−1bkσn−1, al

]
= 1 for all j, k, l ∈ {1, . . . , g} so that k < l;

(R3)
[
σ−1
n−1ξjσn−1, c

]
= 1 and

[
σ−1
n−1ξkσn−1, ξl

]
= 1 for all c ∈ A ∪ B and j, k, l ∈

{1, . . . , s} so that k < l.

The braid group on n points on the non-orientable surface Nsc,1, denoted by Bn

(
Nsc,1

)
with c > 2,

admits the following presentation:

• Generators: S = {σi}i∈{1,...,n−1}, C = {ci}i∈{1,...,c} and X = {ξi}i∈{1,...,s};

• Relations:

– Braid relations: σiσi+1σi = σi+1σiσi+1 and σkσj = σjσk for all i, k, j ∈ {1, . . . , n− 1}
so that |k − j| > 2;

– Mixed relations:
(R1) eσi = σie for all e ∈ C ∪X and i ∈ {1, . . . , n− 2};
(R2) σn−1cjσn−1cjσn−1 = cjσn−1cj,

[
σ−1
n−1ckσn−1, cl

]
= 1 for all j, k, l ∈ {1, . . . , c} so

that k < l;
(R3)

[
σ−1
n−1ξjσn−1, e

]
= 1,

[
σ−1
n−1xσ

−1
n−1, x

]
= 1 and

[
σ−1
n−1ξkσn−1, ξl

]
= 1 for all e ∈ C,

x ∈ X and j, k, l ∈ {1, . . . , s} so that k < l.

Remark 3.28 In each case, the generators of the sets A, B, C and X are actually given by the
generators of the fundamental group of the considered surface. Also, we use an opposite convention
to the one of [Bel04]: namely our numbering is the converse of the one chosen there so that the
respective roles σ1 and σn−1 in the mixed relations in the above presentation are switched compared
to those of [Bel04].
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Surface braid groups as mapping classes. Finally the surface braid groups Bn (Σg,1) and
Bn (Nc,1) are respectively isomorphic to the kernels of the homomorphisms fΓ

g,n : Γng,1 → Γg,1 and

fN
c,n : N

n
c,1 → N c,1, induced by the map which glues a disc on all the boundary components which

are freely moved. Namely, we have the following short exact sequences

1 // Bn (Σg,1) // Γng,1
fΓ

g,n
// Γg,1 // 1 (3.11)

1 // Bn (Nc,1) // N
n
c,1

fN
c,n

// N c,1
// 1. (3.12)

They are constructed as follows: the parametrized isotopy extension theorem of [Cer61, II, 2.2.2
Corollaire 2] provides the locally-trivial fibre bundles DiffI

(
Σng,1

)
→ DiffI (Σg,1) → Cn (Σg,1) and

DiffI
(
Nnc,1

)
→ DiffI (Nc,1) → Cn (Nc,1), where the left hand maps are defined by gluing a disc on

all the boundary components of S but ∂0S; then we consider the associated long exact sequence
of homotopy groups and use contractibility results of [Gra73, Théorème 1] for the component of
the diffeomorphism groups. We refer the reader to [Bir74] or [GJ15, Section 2.4] for more details.
This last point of view is the most convenient for the categorical framework we intend to set up.

Let B2 be the subgroupoid of M2 with the same objects and with morphisms those of M2 that
become trivial after capping the non-parametrised boundary components. The monoidal structure
(M2, ♮, 0) restricts to a braided monoidal structure on the subgroupoid B2, denoted in the same
way (B2, ♮, 0). We refer the reader to [RW17, Section 5.6.1] for further technical details.

Let Bg,+2 and Bc,−2 be the full subcategories of B2 on the objects
{

Σng,1
}
n∈N

and
{
Nnc,1

}
n∈N

respec-

tively. Note that B0,+
2 and B0,−

2 both are equivalent to the braid groupoid β introduced in §3.4.1.
Moreover, in this case, the braided monoidal structure ♮ of B2 restricts to the braided monoidal
structure of the braid groupoid (β, ♮, 0) described in §3.4.1.

Then, the monoidal structure of B2 induces left β-module structures on the groupoids Bg,+2 and
Bc,−2 . More precisely, the associative unital functors ♮ : β × Bg,+2 → Bg,+2 and ♮ : β × Bc,−2 → Bc,−2

are defined by the restriction of the monoidal product ♮ : B2 × B2 → B2 to the subcategories
β × Bg,+2 and β × Bc,−2 . Hence we may apply Quillen’s bracket construction and define

〈
β,Bg,+2

〉

and
〈
β,Bc,−2

〉
.

3.4.4 Loop braid groups

We now focus on (extended and non-extended) loop braid groups. We review in this section various
ways to define these groups and refer to [Dam17] for a complete and unified presentation of the
various definitions of these groups.

Loop braid groups as mapping class groups. Loop braid groups may be defined in terms
of motion groups of circles in a 3-disc. This is the setting that we shall use to construct suitable
topological categories for the loop braid groups. We denote by D3 the unit 3-disc. Let C(n) :=
C1 ∐ · · · ∐Cn be a collection of n disjoint, unknotted, oriented circles, that form a trivial link of n
components in the interior of D3. Let Diff∂

(
D3, C(n)

)
be the group of self-diffeomorphisms of D3

that that fix ∂D3 pointwise and fix C(n) as a subset. We denote by Diff∂
(
D3, C+

(n)

)
the subgroup

of Diff∂
(
D3, C(n)

)
of elements that also preserve the orientation of C(n).

The extended loop braid group LBext
n is the group of isotopy classes of Diff∂

(
D3, C(n)

)
. The (non-

extended) loop braid group LBn is the group of isotopy classes of Diff∂
(
D3, C+

(n)

)
.

Remark 3.29 The usual definition of loop braid groups as isotopy classes is in terms of self-
homeomorphisms instead of self-diffeomorphisms. However, as pointed out in [Dam17, Remark
3.7], it follows from [Wat72, Lemma 1.4 and Lemma 2.4] that the two definitions coincide.

Loop braid groups via configuration spaces. Let CnS1

(
D3
)

be the space of configurations
of n unordered, disjoint, unlinked circles S1 in D3. The extended loop braid group on n circles
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LBext
n is the fundamental group of CnS1

(
D3
)
. In other words, denoting by Emb(nS1,D3) the space

of embeddings of n disjoint circles S1 into the 3-disc D3, LBext
n is the fundamental group of the

path-component of the quotient Emb(nS1,D3)/Diff(nS1) consisting of unlinks.

Denote by Diff+(nS1) the subgroup of Diff(nS1) of those diffeomorphisms that preserve the orien-
tation of each circle. Analogously, the (non-extended) loop braid group LBn is the fundamental
group of the path-component of the quotient Emb(nS1,D3)/Diff+(nS1) consisting of oriented un-
links.

Alternative definitions. There are several other ways to define loop braid groups: we briefly
review two equivalent definitions of these groups that will be useful for our work. First, we have
explicit presentations of extended and non-extended loop braid groups by generators and relations.
Namely, the loop braid group LBn admits a presentation given by generators

{σi, τi | i ∈ {1, . . . , n− 1}} ;

the generators {σi | i ∈ {1, . . . , n− 1}} satisfy the relations of the classical braid group Bn (see
§3.4.1), the generators {τi | i ∈ {1, . . . , n− 1}} satisfy the relations of the symmetric group Sn and
we have three additional mixed relations (see [Dam17, Proposition 3.14]). In other words,

LBn
∼= (Bn × Sn) / (Mixed relations) .

The extended loop braid group LBext
n admits a presentation given by generators

{σi, τi | i ∈ {1, . . . , n− 1}} ⊔ {ρi | i ∈ {1, . . . , n}} ;

the generators {σi | i ∈ {1, . . . , n− 1}} satisfy the relations of the classical braid group Bn (see
§3.4.1), the generators {τi | i ∈ {1, . . . , n− 1}} satisfy the relations of the symmetric group Sn,
the generators {ρi | i ∈ {1, . . . , n}} satisfy the relations of the abelian group (Z/2Z)n and we have
eight additional mixed relations (see [Dam17, Proposition 3.16]). In summary, we have:

LBext
n

∼= (Bn × Sn × (Z/2Z)n) / (Mixed relations) .

The original reference for these presentations is [BH13].

Also we can identify loop braid groups as particular subgroups of the automorphisms of free groups.
We denote by Fn = 〈x1, . . . , xn〉 the free group on n ∈ N generators. Then the group LBn identifies
with the subgroup of the automorphism group Aut (Fn) of the automorphisms which map each
generator of Fn = 〈x1, . . . , xn〉 to a conjugate of some generator, and LBext

n with those which can
also be mapped to an inverse of some generator:

LBn =
{
ϕ ∈ Aut (Fn) | ∀i ∈ {1, . . . , n} , ∃s ∈ Sn, ∃wi ∈ Fn, ϕ (xi) = w−1

i xs(i)wi
}

;

LBext
n =

{
ϕ ∈ Aut (Fn) | ∀i ∈ {1, . . . , n} , ∃s ∈ Sn, ∃wi ∈ Fn, ϕ (xi) = w−1

i x±1
s(i)wi

}
.

3.4.5 Topological groupoids of diffeomorphisms

We now construct topological lifts of all of the monoidal groupoids constructed in this section. Via
Lemma 3.13, Proposition 3.15 and Proposition 3.21, we will also obtain topological lifts of each
of the various categories that we constructed using the Quillen bracket construction, and we will
describe their morphism spaces in terms of spaces of embeddings.

Fix an integer d > 2. We will first construct a topological semi-monoidal groupoid Dd of diffeo-
morphisms of d-manifolds. Then we will show that π0(D2) contains M2 as a sub-(semi-monoidal
groupoid), and hence also all of its subgroupoids described above. Then we will use D3 and an
oriented version D+

3 in an analogous way for the (extended) loop braid groups.
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Definition 3.30 Let Dd be the topological groupoid defined as follows. Its objects are all decorated
manifolds (M,A, e1, e2) of dimension d, as in Definition 3.19. A morphism in Dd from (M,A, e1, e2)
to (M ′, A′, e′1, e

′
2) is a diffeomorphism ϕ : M → M ′ such that ϕ(A) = A′ and

ϕ(ei(x, t)) = e′i(x, t)

for all (x, t) ∈ Dd−1 × [0, ǫ] and i ∈ {1, 2}, for some ǫ > 0. These sets of morphisms are topologised
as colimits of Whitney topologies, as in Definition 3.14; composition is continuous with this topol-
ogy, since composition of smooth, proper functions is continuous in the Whitney topology (and
diffeomorphisms are proper). Hence Dd is a topological groupoid.

Definition 3.31 (Boundary connected sum) The boundary connected sum of two decorated d-
manifolds was described already in Definition 3.19; we now recall this and make all of the details
explicit. Let (L,A, e1, e2) and (M,B, f1, f2) be two decorated d-manifolds and define

L♮M = (L ⊔M)/∼,

where ∼ is the equivalence relation generated by e2(x, 0) ∼ f1(x, 0) for all x ∈ Dd−1. We give this
a smooth structure as follows. There are obvious topological embeddings

L −֒→ L♮M and M −֒→ L♮M,

and another topological embedding

Dd−1 × [−1, 1] −֒→ L♮M

given by (x, t) 7→ e2(x,−t) for t 6 0 and (x, t) 7→ f1(x, t) for t > 0. We define a smooth structure
on L♮M by declaring that these are all smooth embeddings. Finally, we define

(L,A, e1, e2) ♮ (M,B, f1, f2) = (L♮M,A ⊔B, e1, f2).

Definition 3.32 (Semi-monoidal structure) We define the functor

♮ : Dd × Dd −→ Dd

on objects via the boundary connected sum of Definition 3.31. Now suppose we have morphisms
ϕ : (L,A, e1, e2) → (L′, A′, e′1, e

′
2) and ψ : (M,B, f1, f2) → (M ′, B′, f ′1, f

′
2) in Dd. Recall that these

are just diffeomorphisms ϕ : L → L′ and ψ : M → M ′ satisfying a certain property. This property
implies that ϕ and ψ glue to a well-defined diffeomorphism L♮M → L′♮M ′, which is moreover a
morphism

(L,A, e1, e2) ♮ (M,B, f1, f2) −→ (L′, A′, e′1, e
′
2) ♮ (M ′, B′, f ′1, f

′
2).

It is then easily checked that this gives Dd the structure of a topological semi-monoidal groupoid.

Definition 3.33 Let D+
d be the topological groupoid whose objects are decorated d-manifolds

(M,A, e1, e2) together with an orientation of A ⊂ int(M), and whose morphisms are diffeomor-
phisms ϕ as in Definition 3.30 such that the restriction ϕ|A : A → A′ is orientation-preserving. The
boundary connected sum for such decorated d-manifolds is defined exactly as in Definition 3.31,
with the orientation for A⊔B being induced from those of A and B. This then extends, just as in
Definition 3.32, to a structure of a topological semi-monoidal groupoid on D+

d .

Lemma 3.34 Let G be any sub-(semi-monoidal groupoid) of Dd and let M be any sub-groupoid of
Dd that is preserved under the left-action of G. Then the Serre fibration condition (3.4) of Lemma
3.13 is satisfied for this G and M. The same holds when Dd is replaced by D+

d .

Proof. This follows directly from Proposition 3.21 for Dd, together with Remark 3.22 for D+
d .

34



Recovering the decorated surfaces groupoid. Let Mt
2 be the full subgroupoid of D2 on those

decorated surfaces (S,A, e1, e2) where S is compact and connected, the intervals e1(D1 × {0}) and
e2(D1 × {0}) lie on the same boundary-component of S and A = ∅. This inherits a topological
semi-monoidal structure from D2. It is not hard to check that

π0(Mt
2) ∼= M2

as semi-monoidal groupoids, since, for diffeomorphisms of surfaces, the condition of fixing (a neigh-
bourhood of) an interval in a boundary-component is equivalent to the condition of fixing two
(neighbourhoods of) intervals in that boundary-component. By Lemmas 3.34 and 3.13 (together
with Remark 3.23), we deduce that

π0(UMt
2) ∼= UM2

as semicategories, where UG = 〈G,G〉 for a (topological) semi-monoidal groupoid G.

We now describe the morphism spaces of UMt
2 in terms of embedding spaces. Let S and S′ be

two objects of Mt
2, i.e., compact, connected, smooth surfaces, each equipped with an ordered pair

of boundary-cylinders on the same boundary-component.

Lemma 3.35 There is a homeomorphism

UMt
2(S, S′) ∼=

{
EmbDiff

dec (S, S♮T ) if there exists an object T of Mt
2 such that S♮T ∼= S′

∅ otherwise.

Proof. The space UMt
2(S, S′) is the space Hom〈G,M〉(X,Y ) of Definition 3.11, where we write

G = M = Mt
2, X = S and Y = S′. In the notation of the proof of Lemma 3.13, this is the quotient

space Φ/∼t. In that proof, it is shown (a) that this splits as the topological disjoint union of certain
spaces denoted q(HomM(A♮X, Y )), asA runs over representatives of isomorphism classes of objects,
and (b) that this space is homeomorphic to the quotient space HomM(A♮X, Y )/AutG(A). In our
case, M = G is a groupoid, so this quotient space is either empty (if A♮X 6∼= Y ) or homeomorphic to
the quotient space AutG(A♮X)/AutG(A) (if A♮X ∼= Y ). Since the collection of objects of Mt

2 under
♮ satisfies cancellation, there is at most one isomorphism class of objects A such that A♮X ∼= Y .
Putting this all together, we have shown that there is a homeomorphism

UMt
2(S, S′) ∼=

{
Diffdec(S♮T )/Diffdec(T ) if there exists an object T of Mt

2 such that S♮T ∼= S′

∅ otherwise.

Applying the second part of Proposition 3.21 completes the proof.

Remark 3.36 (Subgroupoids of M2) This construction may be carried out just as easily for
subgroupoids of M2. Let G be any sub-(monoidal groupoid) of M2 and let M be any subgroupoid
of M2 that is preserved under the left-action of G. Write Gt for the preimage of G under the
projection

Mt
2 −→ π0(Mt

2) ∼= M2,

and similarly Mt. Applying Lemmas 3.34 and 3.13 (together with Remark 3.23), we deduce that

π0(〈Gt,Mt〉) ∼= 〈G,M〉

as semicategories. One may then find similar descriptions of the morphism spaces of the topological
semicategory 〈Gt,Mt〉 as in Lemma 3.35.

Example 3.37 (The braid groupoid β) For example, β is the full subgroupoid of M2 whose objects
are decorated surfaces that are diffeomorphic to a punctured 2-disc, i.e., D2 minus a finite collection
of open subdiscs whose closures are pairwise disjoint. From Remark 3.36, we obtain a topological
semi-monoidal groupoid βt such that π0(βt) ∼= β and π0(Uβt) ∼= Uβ, and the morphism spaces
of Uβt may be described as follows. Let Dm and Dn be an m-punctured disc and an n-punctured
disc respectively. Then

Uβt(Dm,Dn) ∼=

{
EmbDiff

dec (Dm,Dn) if m 6 n

∅ if m > n,
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where EmbDiff
dec (Dm,Dn) is the space of embeddings Dm → Dn fixing a neighbourhood of two disjoint

intervals in ∂D2 and that may be extended to a diffeomorphism of Dn.

Remark 3.38 (The partial and injective braid categories) There are alternative categories to
Uβ = 〈β,β〉 for encoding the family of braid groups. First let B

(
R2
)

be the category with the
non-negative integers as its objects, and a morphism m → n is a choice of k 6 min{m,n} and a
path in the the (unordered) configuration space Cn

(
R2
)

from a k-element subset of {x1, . . . , xm}
to a k-element subset of {x1, . . . , xn} up to endpoint-preserving homotopy. Composition of two
morphisms is defined by concatenating paths and deleting configuration points for which the con-
catenated path is defined only half-way and the identity is given by a constant path. This is called
the partial braid category. This category is used, for example, in [Pal18] to organise representations
of braid groups for twisted homological stability results.

Then the injective braid category Bf
(
R2
)

is the subcategory of B
(
R2
)

on the same objects but
whose morphisms m → n are those where k = m. We have a (faithful) inclusion functor

Bf
(
R2
)

−֒→ B
(
R2
)
.

There is also a full functor
〈β,β〉 −→ Bf

(
R2
)

(3.13)

defined by the identity on objects and sending a morphism [m− n, σ] to the concatenation of the
trivial braid starting from m points and ending at n points (where all the additional n−m points
are on the same side) followed by the geometric braid corresponding to σ. Note that (3.13) is
not faithful: indeed HomBf (R2) (1, 3) has three elements whereas Hom〈β,β〉 (1, 3) is isomorphic to
B3/B2 as a set, and therefore has infinitely many elements given by the pure braid group PB2.

Example 3.39 (The setting for surface braid groups) As another example, let Bg,+2 and Bc,−2 be the
subgroupoids of M2 defined in §3.4.3, whose objects are the collection of surfaces Σng,1 respectively
Nnc,1 for all n ∈ N, and whose morphisms are isotopy classes of embeddings that become isotopic to
the identity if we fill in the non-parametrised boundary-components with discs. (Recall that one
boundary-component is equipped a parametrised interval; the others are called non-parametrised.)

Applying Remark 3.36, we obtain topological groupoids (Bg,+2 )t and (Bc,−2 )t, each equipped with
a continuous left-action of β

t, such that π0((Bg,+2 )t) ∼= Bg,+2 and π0((Bc,−2 )t) ∼= Bc,−2 , and moreover

π0(〈βt, (Bg,+2 )t〉) ∼= 〈β,Bg,+2 〉 and π0(〈βt, (Bc,−2 )t〉) ∼= 〈β,Bc,−2 〉.

The morphism spaces of 〈βt, (Bg,+2 )t〉 may be described as follows (there is an analogous description
of the morphism spaces of 〈βt, (Bc,−2 )t〉):

〈βt, (Bg,+2 )t〉(Σmg,1,Σ
n
g,1) ∼=

{
EmbDiff,id

dec (Σmg,1,Σ
n
g,1) if m 6 n

∅ if m > n,

where EmbDiff,id
dec (Σmg,1,Σ

n
g,1) denotes the subspace of EmbDiff

dec (Σmg,1,Σ
n
g,1) of all (decorated) embed-

dings Σmg,1 →֒ Σng,1 that admit an extension to a diffeomorphism of Σng,1 that becomes isotopic to
the identity after including Σng,1 ⊂ Σg,1. One may see this exactly as in the proof of Lemma 3.35:
we first see that the morphism space is empty if m > n, and if m 6 n it is homeomorphic to the
quotient

Aut(Bg,+
2 )t(Σng,1)/Autβ(Dn−m) ∼= Diff id

dec(Σ
n
g,1)/Diffdec(Dn−m),

where Diff id
dec(Σ

n
g,1) is the group of all (decorated) diffeomorphisms of Σng,1 that become isotopic to

the identity after including Σng,1 ⊂ Σg,1. (Recall that β is a full subgroupoid of M2 — so βt is a

full subgroupoid of D2 —, whereas (Bg,+2 )t is not, which is why we have a smaller diffeomorphism
group of Σng,1.) By Proposition 3.21, this is a subspace of

Diffdec(Σ
n
g,1)/Diffdec(Dn−m) ∼= EmbDiff

dec (Σmg,1,Σ
n
g,1),

which one may easily check to be the subspace EmbDiff,id
dec (Σmg,1,Σ

n
g,1) described above.
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Topological groupoids for the loop braid groups.

Definition 3.40 (The loop braid groupoids) We define

(Lβext)t ⊂ D3

to be the full subgroupoid on the collection of all decorated 3-manifolds (M,A, e1, e2) where M
is diffeomorphic to the 3-disc and A is diffeomorphic to the disjoint union of a finite collection of
circles, forming an unlink in M . Similarly, we define

Lβt ⊂ D+
3

to be the full subgroupoid on the collection of all decorated 3-manifolds (M,A, e1, e2) where M
is diffeomorphic to the 3-disc and A is diffeomorphic to the disjoint union of a finite collection
of oriented circles, forming an oriented unlink in M . These are the (extended and non-extended)
topological loop braid groupoids. We define their discrete versions simply by:

Lβext = π0((Lβext)t) and Lβ = π0(Lβt).

The topological groupoids (Lβext)t and Lβt inherit semi-monoidal structures from D3 and D+
3

respectively. Hence Lβext and Lβ are (discrete) semi-monoidal groupoids.

Remark 3.41 The semi-monoidal groupoids Lβext and Lβ are in fact monoidal (a unit is given
by (D3,∅, e1, e2)), and moreover symmetric. Hence the monoidal categories ULβext and ULβ are

also symmetric. More generally, let us write Dsph
d for the full subgroupoid of Dd on all decorated

d-manifolds M whose two boundary-cylinders lie on the same boundary-component ∂0M ∼= Sd−1.
This inherits a topological semi-monoidal structure from Dd. Then π0(Dsph

d ) is a braided monoidal

groupoid for d = 2 and a symmetric monoidal groupoid for d > 3. Hence U(π0(Dsph
d )) is pre-braided

for d = 2 and symmetric for d > 3. The same statements hold for the analogous subgroupoid Dsph,+
d

of D+
d .

Remark 3.42 Applying Lemmas 3.34 and 3.13 (and Remark 3.23), we see that

π0(U(Lβext)t) ∼= ULβext and π0(ULβt) ∼= ULβ.

Similarly to Lemma 3.35, the morphism spaces of U(Lβext)t and ULβt may be described as follows:

U(Lβext)t(D3
m,D

3
n) ∼=

{
EmbDiff

dec (D3
m,D

3
n) if m 6 n

∅ if m > n,

ULβt(D3
m,D

3
n) ∼=

{
EmbDiff,+

dec (D3
m,D

3
n) if m 6 n

∅ if m > n,

where D3
m denotes the decorated 3-manifold given by an oriented unlink with m components in

the 3-disc and EmbDiff
dec (D3

m,D
3
n) is defined as in Definition 3.20 (roughly, this means: embeddings

D3 → D3 that fix a 2-disc in the boundary of D3, send the embedded m-component unlink into the
embedded n-component unlink, and that may be extended to a self-diffeomorphism of D3 that fixes
the n-component unlink as a subset). Then EmbDiff,+

dec (D3
m,D

3
n) is its subspace where embeddings

must also preserve the given orientations of the unlinks.

Finally, we justify the name loop braid groupoid.

Lemma 3.43 There are isomorphisms

AutLβext(D3
n) ∼= LBext

n and AutLβ(D3
n) ∼= LBn.

Proof. By definition, the automorphism group of D3
n in Lβext is

π0(Diffdec(D
3
n)),
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where Diffdec(D3
n) is the topological group of diffeomorphisms of D3 that send the embedded n-

component unlink onto itself and that restrict to the identity on a neighbourhood of two disjoint
2-discs in ∂D3. (See Definition 3.20.) By definition (cf. Remark 3.29), LBext

n is π0 of the topological
group of diffeomorphisms of D3 that send the embedded n-component unlink onto itself and that
restrict to the identity on ∂D3. It therefore suffices to show that, for isotopy classes of diffeomor-
phisms of 3-manifolds M with a spherical boundary-component ∂0M , fixing two disjoint 2-discs in
∂0M is equivalent to fixing all of ∂0M .6 This is similar to the fact that we used for surfaces: that
fixing one interval in a boundary-component is equivalent, for isotopy classes of diffeomorphisms,
to fixing two disjoint intervals in that boundary-component. However, for 3-manifolds it is a less
trivial fact. To see this, we argue as follows. Let Diff(M,∂0M) be the group of diffeomorphisms
of M that send ∂0M to itself. The restriction map

Diff(M,∂0M) −→ Diff(∂0M) = Diff(S2)

is a fibre bundle, by [Cer61, Corollaire 2, §II.2.2.2, page 294], and hence its restriction

DiffD2⊔D2(M) −→ DiffD2⊔D2 (S2) = Diff∂C(C)

is also a fibre bundle, where the subscript D2⊔D2 means that diffeomorphisms must restrict to the
identity on a given pair of disjoint discs in ∂0M = S2, and C is the 2-dimensional cylinder S1×[0, 1].
The fibre is Diff∂0M (M) and we obtain an exact sequence

· · · → π1(Diff∂C(C)) −→ π0(Diff∂0M (M))
(∗)

−−−→ π0(DiffD2⊔D2 (M)) −→ π0(Diff∂C(C)).

Our aim is to show that (∗) is a bijection, so it suffices to know that π0 and π1 of Diff∂C(C) are
trivial. But in fact Diff∂C(C) is contractible, by a theorem of Gramain [Gra73, Théorème 1].

Remark 3.44 A similar fact (to the one used in the proof of Lemma 3.43) holds also for a
single 2-disc in a spherical boundary-component of a 3-manifold. Namely, for isotopy classes of
diffeomorphisms of a 3-manifold M with a spherical boundary-component ∂0M , fixing a 2-disc in
∂0M is equivalent to fixing the whole of ∂0M . This follows, via a similar argument as in Lemma
3.43, using the fact (due to Smale [Sma59]) that Diff∂D2(D2) is contractible. The same statement
is in fact true for isotopy classes of diffeomorphisms of 4-manifolds with a spherical boundary-
component, since Diff∂D3 (D3) is also contractible ([Hat83]). However, in higher dimensions this
does not continue to hold: π0(Diff∂Dd−1(Dd−1)) is isomorphic to the group of exotic d-spheres,
which is very often non-trivial in higher dimensions. Also, π1(Diff∂D4 (D4)) has recently been
shown to be non-trivial [Wat18].

4 Topological construction of representations

This section is devoted to the application of the general construction of §2 to the families of groups
introduced in §3.4. In §§4.1–4.3, we apply the lifting construction of §2.3 to obtain representations
of (surface) braid groups and mapping class groups. In each case, we also extend these to functors
defined on categories of the form 〈G,M〉 (whose automorphism groups are one of the families
of groups in question), where 〈−,−〉 is the Quillen bracket construction of §3.1. We do this by
explicitly writing down an extension to certain “generating” morphisms of this category, and then
verifying that conditions (3.1) and (3.2) of Lemma 3.5 are satisfied.

In §4.4 we then reinterpret the constructions of §§4.1–4.3 using the functorial version of the lifting
construction, summarised in §2.5. Using this construction, together with the topological categories
constructed in §3.4, we recover each of the functors of §§4.1–4.3, each being induced a certain
continuous functor defined on one of the topological categories of §3.4.

Then, in §4.5, we directly apply the functorial version of the lifting construction to construct
families of representations of the (extended and non-extended) loop braid groups. These appear
to be new, and are analogues of the reduced Burau and Lawrence-Bigelow representations of the
classical braid groups.

6 Note that the condition of fixing a neighbourhood of two discs in the boundary is clearly homotopy equivalent
to fixing just the two discs.
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The tools for §§4.1–4.3. We briefly review the tools, steps and spirit of the construction used
for §§4.1–4.3. (The more functorial version of the construction used in §§4.4–4.5 is summarised in
detail in §2.5.) For a locally path-connected topological group G, we consider a space X on which
G acts through a continuous group homomorphism

θ : G −→ Homeox0 (X)

where x0 ∈ X . In order to use covering space theory, we assume that X is path-connected, locally
path-connected and semi-locally simply connected, so that it admits a universal cover. Moreover,
we consider a surjective group homomorphism φ : π1 (X,x0)։ Q so that the induced action θπ of
G on the fundamental group of X satisfies Assumption 2.13. These two morphisms θ and φ define a

functor Fθ,φ : G → C̃ovQ. (The category C̃ovQ is defined in §2.1.) Then we define a representation
Lk (Fθ,φ) of π0(G) using the k-th integral homology group of the regular path-connected covering
space of X associated with φ, denoted Xφ:

Lk (Fθ,φ) : π0 (G) −→ AutZ
(
Hk

(
Xφ;Z

))
.

If, in addition, the action θπ of G on π1 (X,x0) satisfies Assumption 2.16, the action defined by
Lk (Fθ,φ) commutes with the Z[Q]-module structure of Hk

(
Xφ;Z

)
:

Lk (Fθ,φ) : π0 (G) −→ AutZ[Q]

(
Hk

(
Xφ;Z

))
.

4.1 Classical braid groups

This first application of the general construction of §2 relies on considering the total number of
half-twists and the total winding number for an ordered configuration space of points. As proved in
§5.1, it allows one to recover the well-known families of Lawrence-Bigelow representations originally
introduced by Ruth Lawrence [Law90].

We fix m and n two natural numbers such that m > 1 and n > 0. We recall that Dn is the surface
D2 r {d1, . . . , dn}, for {di}i∈{1,...,n} a collection of pairwise disjoint open discs in the interior of the

closed unit 2-disc D2 and that Cm (Dn) is the configuration space of m unordered points in Dn.
We consider the topological group Diff∂0 (Dn) of self-diffeomorphisms of Dn which restrict to the
identity on the boundary of D2. We fix m distinct points {zi}i∈{1,...,m} in the boundary of D2 and

take the configuration c0 = {z1, . . . , zm} as the basepoint of Cm (Dn).

Let θm,n : Diff∂0 (Dn) → Homeoc0 (Cm (Dn)) be the continuous group morphism giving the natural
action of Diff∂0 (Dn) on the coordinates of the configuration space Cm (Dn), i.e. defined by

ϕ 7−→ ({x1, . . . , xm} 7−→ {ϕ (x1) , . . . , ϕ (xm)}) .

In particular, θm,n(ϕ) preserves the basepoint c0 since ϕ fixes pointwise the boundary of D2.

The choice of the quotient of the fundamental group π1 (Cm (Dn) , c0) depends on m. Beforehand,
we recall from §3.4.3 that π1 (Cm (Dn) , c0) identifies with the surface braid group Bm (Dn) and
that γ2 denotes the abelianisation map of a group G.

For m = 1: Let Σ : Zn → Z be the sum map (a1, . . . , an) 7→
∑

i∈{1,...,n}

ai. Then if m = 1 we

consider the composite

φ = φ1,n : B1(Dn)
γ2

−−−→→ Zn
Σ

−−−→→ Z.

For m > 2: We first have to introduce two new homomorphisms. The inclusion of Dn in D2 by
gluing a disc on all the interior boundary components induces an inclusion map i : Cm (Dn) →֒
Cm

(
D2
)
: a configuration in Dn is in particular a configuration in D2. We denote by i∗ the induced

surjective homomorphism on π1 and consider the composite with the abelianisation map

T : Bm(Dn)
i∗−−−→→ Bm

γ2
−−−→→ Z.
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We may have the following geometrical interpretation of this morphism: for γ ∈ π1 (Cm (Dn) , c0)
and cγ a simple closed curve in Cm (Dn) representative of γ, one can think of T (γ) as counting
the total number of half-twists that occur in the path cγ of configurations of m points in D2. Here
a half-twist means doing half a Dehn twist in a tubular neighbourhood along the path cγ : namely
this is something like one of the standard generators of the braid group (consisting of a pair of
adjacent strands crossing each other, and no other crossings). This assumes an orientation on the
curve cγ and a fortiori half-twists with the opposite orientation count negatively.

Furthermore, let j : Cm (Dn) →֒ Cm+n

(
D2
)

be the map defined by

{x1, . . . , xm} 7−→ {x1, . . . , xm, p1, . . . , pn},

which glues a disc with a marked point pi onto each interior boundary component ∂di of Dn.
The new points are thus considered as coordinates of the configuration space. We denote by
j∗ : Bm (Dn) →֒ Bm+n the induced injective homomorphism on π1 and consider the composite
with the abelianisation map

R : Bm(Dn)
j∗

−֒−−→ Bm+n
γ2

−−−→→ Z.

This morphism can geometrically be interpreted in the following way: for γ ∈ π1 (Cm (Dn) , c0)
and cγ as above, R (γ) counts the total number of half-twists that occur in a path cγ , and also
between configuration points and the additional marked points {p1, . . . , pn}. In principle, it also
counts half-twists between pairs of marked points, but of course these remain fixed, so there are
zero of these. Hence R (γ)−T (γ) is the total number (counted with signs) of half-twists that occur
between configuration points and the marked points in the path cγ of configurations. This is twice
the total number of times that a configuration point winds around a marked point: R (γ) − T (γ)
is thus always even and corresponds to twice the total winding number of cγ . Hence we may
define W : Bm (Dn) ։ Z to be the surjective morphism defined by the total winding number,
i.e. γ 7−→ 1

2 (R (γ) − T (γ)). These descriptions of the homomorphisms T , R and W come from
[Bud05, Section 2].

Finally we choose the product (T ×W ) ◦ ∆: Bm (Dn) −→→ Z2, defined by γ 7−→ (T (γ) ,W (γ)), for
the choice φ = φm,n of the quotient of the fundamental group. In addition, we have the following
property:

Lemma 4.1 For each m > 1, the homomorphism φm,n is invariant under the action (θm,n)π of
Diff∂0 (Dn).

Proof. First, note that this statement is equivalent to saying that φm,n is invariant under the action
π0((θm,n)

π
) of π0(Diff∂0 (Dn)) ∼= Bn.

For m = 1, the morphism π0

(
(θ1,n)

π

)
corresponds to the Artin representation an : Bn → Aut (Fn):

for each elementary braid σi, the automorphism an (σi) sends the generator gj to gi+1 if j = i, to
g−1
i+1gigi+1 if j = i+ 1 and to gj if j /∈ {i, i+ 1}. The result thus follows from the fact that φ1,n is

the composite of the abelianisation by the sum map.

For m > 2, the result is a consequence of the more general facts that i∗ and R are invariant
under the action of π0

(
(θm,n)

π

)
. Indeed, let g′ be an extension of an element g of Diff∂0 (Dn) to

Diff∂0

(
D2
)
. Then g′ is isotopic to idD2 , since the space Diff∂0

(
D2
)

is path-connected (see [Mun60,
Theorem 1.3], or [Sma59, Theorem B] for the stronger fact that it is contractible) and it makes
the following diagrams commutative:

Cm (Dn)
i //

θm,n(g)

��

Cm
(
D2
)

θm,0(g′)
��

Cm (Dn)
j

//

θm,n(g)

��

Cm+n

(
D2
)

θm+n,0(g′)
��

Cm (Dn)
i // Cm

(
D2
)

Cm (Dn)
j

// Cm+n

(
D2
)
.

Let Hg′ be an isotopy of D2 from g′ to idD2 . Taking the product of m times Hg′ thus induces a
homotopy of Cm

(
D2
)
. We deduce that i∗ ◦ (θm,n)

π
(g) = i∗ and a fortiori T ◦ (θm,n)

π
(g) = T . On
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the other hand, we claim that the action of (θm+n,0)
π

(g′) on Bm+n corresponds (up to isotopy)
to conjugation by some element σ ∈ Bn →֒ Bm+n. Therefore γ2 ◦ (θm+n,0)

π
(g′) = γ2 and a fortori

R ◦ (θm,n)
π

(g) = R. The result thus follows from the definition of φm,n.

It remains to verify our claim that (θm+n,0)
π

(g′) acts on Bm+n by conjugation by an element of
Bn ⊂ Bm+n. To see this, let b be a geometric braid in D2 × [1, 2] on m+ n strands, where m of
them begin and end at a configuration in ∂D2 and n of them begin and end at a configuration in
the interior of D2. Extend this to a geometric braid in D2 × [0, 3] by gluing two trivial (m + n)-
strand braids to the top and bottom. Then (θm+n,0)

π
(g′) ([b]) is represented by the geometric

braid G(b), where G is the self-homeomorphism of D2 × [0, 3] given by G(x, h) = (g′(x), h). Recall
that we have an isotopy Hg′ of self-diffeomorphisms of D2 fixing ∂D2 pointwise, with Hg′ (0) = g′

and Hg′(1) = idD2 . Using this, we define a homotopy K of self-homeomorphisms of D2 × [0, 3] by

K(t)(x, h) =





(Hg′ (ht)(x), h) if h ∈ [0, 1]

(Hg′ (t)(x), h) if h ∈ [1, 2]

(Hg′ ((3 − h)t)(x), h) if h ∈ [2, 3]

This induces a homotopy of geometric braids from G(b) = K(0)(b) to K(1)(b), since, at all times t,
the self-homeomorphism acts on the top and bottom discs (corresponding to h = 0, 3) by g′, which
fixes the endpoints of b (setwise) by construction. Now note that the geometric braid K(1)(b) is
equal to b in the middle section D2 ×[1, 2]. Moreover, the top section of K(1)(b) (i.e. its intersection
with D2 × [2, 3]) is the inverse of the bottom section of K(1)(b) (i.e. its intersection with D2 × [0, 1]).
Let σ denote the braid represented by the geometric braid K(1)(b) ∩ (D2 × [0, 1]). We have shown
that

(θm+n,0)
π

(g′) ([b]) = [G(b)] = [K(1)(b)] = σ ◦ [b] ◦ σ−1.

Finally, we need to check that σ lies in the subgroup Bn ⊂ Bm+n. But this is immediate from the
construction, since K(1) fixes ∂D2 × [0, 3] pointwise, and the trivial (m + n)-strand braid has m
of its strands lying in the boundary of D2.

Therefore, the morphisms θm,n and φm,n satisfy Assumptions 2.13 and 2.16, for all natural numbers
m. Following Definition 2.17, we thus define the representations

Lk
(
Fθm,n,φm,n

)
: Bn −→ AutR

(
Hk

(
(Cm (Dn))φm,n ;Z

))

for all integers m > 1 and k, n > 0, where R = Z[Z] when m = 1 and R = Z[Z2] when m > 2.

Functoriality. We fix a natural number m. All the homological representations Lm
(
Fθm,n,φm,n

)

assemble to define a functor β → Z [Am] -Mod where A1 = Z and Am>2 = Z2. We denote this
functor by LBm. The reason for this notation will be explained in §5.1.

Actually, this functor extends to Quillen’s bracket construction: by Lemma 3.5, it is enough to
define properly LBm on the morphisms [n′ − n, idn′ ] for all objects n and n′ of β so that n′ > n.

Recall that the boundary connected sum ♮ defines an embedding ιD1♮idDn
: Dn →֒ D1♮Dn for all

natural numbers n, adding an interior boundary component in Dn. This embedding induces maps
for the configuration spaces em,n : Cm (Dn) → Cm (D1+n), which itself induces an injective mor-
phism for the fundamental groups π1 (em,n) : Bm (Dn) →֒ Bm (D1+n). We denote the composite
em,n′−1 ◦ · · · ◦ em,1+n ◦ em,n by em,n→n′ : Cm (Dn) → Cm (Dn′). From the functoriality of the
fundamental groups with respect to the category of based topological spaces, the induced mor-
phism for the fundamental groups π1 (em,n→n′) : Bm (Dn) →֒ Bm (Dn′) is equal to the composite
π1 (em,n′−1) ◦ · · · ◦ π1 (em,1+n) ◦ π1 (em,n).

It follows from the above definitions that the restriction of the morphism φm,n′ to the braid
group Bm (Dn) along π1 (em,n→n′) is the morphism φm,n: in other words, the following diagram is
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commutative

π1 (Cm (Dn) , c0)
� �

π1(em,n→n′)
//

φm,n
''◆

◆◆
◆◆

◆◆
◆◆

◆◆
π1 (Cm (Dn′) , c0)

φm,n′
ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

Am.

Hence there exists a unique based lift eφm,n→n′ : Cm (Dn)
φ → Cm (Dn′)

φ
so that the following

diagram is commutative

Cm (Dn)
φm,n

e
φ

m,n→n′
//

ξm,n

��

Cm (Dn′)
φm,n′

ξm,n′

��

Cm (Dn)
em,n→n′

// Cm (Dn′) .

All these lifts are the key maps to define the functor LBm on the morphisms of the category 〈β,β〉:

Definition 4.2 For every natural numbers n and n′ so that n > n′, let LBm ([n′ − n, idn′ ]) be

the homomorphism induced by the lift eφm,n→n′ for the standard homology.

Proposition 4.3 The functor LBm extends to define objects of Fct (〈β,β〉 ,Z [Am] -Mod).

Proof. First of all it follows from the above definitions that

LBm ([n′ − n, idn′ ]) = LBm ([n′, idn′−1]) ◦ · · · ◦ LBm ([1, id1+n]) .

Following Lemma 3.5, we only have to check that Relation (3.2) is satisfied. For all σ ∈ Bn and
all σ′ ∈ Bn′ , by the definition of θm,n, the action of π0((θm,n′+n)π) (σ′♮σ) ∈ Bn′+n on the n last
points of Cm (Dn′+n) is completely induced by σ since σ′ is the identity on these n last points.
Hence, the following diagram is commutative:

Cm (Dn)
em,n→n′

//

π0(θm,n)(σ)

��

Cm (Dn′+n)

π0(θm,n)(σ′♮σ)
��

Cm (Dn)
em,n→n′

// Cm (Dn′+n) .

The unicity of the lifts with respect to the covering spaces
{
Cm (Di)

φm,i

}
i∈N

induced by the

morphisms {φm,i}i∈N implies that

eφm,n→n′ ◦
(
π0

(
θφm,n

)
(σ)
)

=
(
π0

(
θφm,n

)
(σ′♮σ)

)
◦ eφm,n→n′ .

The result thus follows from the assignments for LBm, given by the maps for the standard and
Borel-Moore homology (see (2.12)) induced by these lifts.

Alternative using the abelianisation of mixed braid groups. As pointed out in [BGG17],
the morphisms φm,n can be introduced using kernels of the abelianisation of some mixed braid
groups. We assume that n > 2. Recall that we denote by γ2 (Bm,n) and γ2 (Bn) the respec-
tive canonical abelianisation morphisms of Bm,n and Bn, and that we omit the groups from the
notations where there is no ambiguity.

They canonically induce a morphism Λ
D

2

m,n so that Λ
D

2

m,n ◦ γ2 (Bm,n) = γ2 (Bn) ◦ ΛD
2

m,n, where

ΛD
2

m,n : Bm,n

(
D2
)
։ Bn

(
D2
)

is the morphism introduced in §3.4.3 induced by forgetting the first

m coordinates. We consider the kernel of Λ
D

2

m,n, which depends only on m since

Bm,n

(
D2
)
/Γ2

(
Bm,n

(
D2
))

∼=

{
Z⊕2 if m = 1;

Z⊕3 if m > 2.
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Hence ker

(
Λ
D

2

m,n

)
∼= Am. Then φm,n is the unique surjective morphism (given by the universal

property of the kernel) so that the following diagram is commutative (and where the two lines are
exact):

1 // Bm (Dn) //

φm,n

����

Bm,n

(
D2
) ΛD

2

m,n
//

γ2

����

Bn

(
D2
)

//

γ2

����

1

1 // Am // Bm,n

(
D2
)
/Γ2

(
Bm,n

(
D2
)) Λ

D
2

m,n
// Z // 1.

An interesting application of this eqivalent definition of the morphisms φm,n is the following alter-
native purely algebraic proof of Lemma 4.1.

Proof of Lemma 4.1. We fix ψ ∈ Bn, x ∈ Am and x̃ ∈ Bm (Dn) so that φ2,m (x̃) = x. Recall that

the map ΛD
2

m,n admits a left inverse and therefore the upper short exact sequence of the above
diagram is split. Note that, by the multiplication rule of a semidirect product, the action of ψ on
x is induced by the conjugation seen as elements of the mixed braid group: (θm,n (ψ) (x) , 1Bn

) =(
1Bm(Dn), ψ

−1
)

(x̃, 1Bn
)
(
1Bm(Dn), ψ

)
which proves that Assumption 2.13 is satisfied. We deduce

that γ2

(
ψ−1x̃ψ

)
= γ2 (x̃). Then it follows from the commutativity of the above diagram that

φm,n (x̃) = x = ψ−1xψ, which corresponds to the proof of Assumption 2.16.

Remark 4.4 A natural idea would be to apply the same principle using the further lower central
quotient groups Bm,n

(
D2
)
/Γk

(
Bm,n

(
D2
))

for k > 3. However [BGG17, Corollary 3.8] proves

that Γ2

(
Bm,n

(
D2
))

= Γ3

(
Bm,n

(
D2
))

if m,n > 3, hence this idea is not relevant. It might
potentially be relevant for m = 1 or m = 2, but in this case the lower central quotients are not yet
well-understood.

4.2 Surface braid groups

Taking inspiration from the situation for classical braid groups described in §4.1, the main idea to
construct homological representations for the surface braid groups consists in using the quotients
defined by the lower central series of some mixed surface braid groups. As for the classical braid
groups, the abelianisation gives an interesting family of representations (see §4.2.1) which, as far
as the authors are aware, does not appear in the literature. However, in contrast to classical braid
groups, it is relevant to consider the further lower central quotients. In particular the third lower
central quotients represent an interesting case and this case is detailed in §4.2.2. For orientable
surfaces, this option is actually a reinterpretation of Bellingeri, Godelle and Guaschi in [BGG17]
of the work by An and Ko [AK10] to extend some homological representations from the classical
braid groups to the surface braid groups (see §5.2 for further details on this point).

For the remainder of §4.2, we fix two natural numbers g > 1 and c > 2 and consider a surface S
which is either the orientable surface Σg,1 or the non-orientable surface Nc,1, as denoted in §3.4.2.

For all natural numbers n, we denote by S(n) the surface
(
Σ1

0,1

)♮n
♮S obtained using the boundary

connected sum.

Let n > 0 and m > 1 be two natural numbers. Let BrDiffI
(
S(n)

)
be the topological group

of diffeomorphisms of S(n) that fix a given interval I ⊂ ∂S pointwise and that become isotopic
to the identity (fixing I throughout the isotopy) after capping the non-parametrised boundary-
components of ∂S(n) (i.e. the n boundary-components corresponding to the n copies of ∂Σ1

0,1).

Note that π0

(
BrDiffI

(
S(n)

))
is the automorphism group of S(n) in the groupoid B2 introduced in

§3.4.3. In particular,

π0

(
BrDiffI

(
S(n)

))
∼= Bn (S)

is the n-th surface braid group of S. We now fix m distinct points {zi}i∈{1,...,m} in the parametrised

interval I in the boundary of S and choose the configuration c0 = {z1, . . . , zm} as the basepoint of
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Cm
(
S(n)

)
.

Let θm
(
S(n)

)
: BrDiffI

(
S(n)

)
→ Homeoc0

(
Cm

(
S(n)

))
be the continuous group morphism giving

the natural action of BrDiffI
(
S(n)

)
on the coordinates of the configuration space Cm

(
S(n)

)
, i.e.

defined by
ϕ 7−→ ({x1, . . . , xm} 7−→ {ϕ (x1) , . . . , ϕ (xm)}) .

In particular, θm
(
S(n)

)
(ϕ) preserves the basepoint c0 since ϕ fixes pointwise the interval I con-

taining c0.

Remark 4.5 In the general construction recalled at the beginning of this section, we are taking
G = BrDiffI

(
S(n)

)
and X = Cm(S(n)). Note that π1(Cm(S(n)), c0) ∼= Bm(S(n)). To complete the

construction, we now define the relevant quotient of Bm(S(n)).

We recall from §3.4.3 that ΛSm,n : Bm,n (S) ։ Bn (S) denotes the split surjective morphism

induced by forgetting the first m coordinates and that Bm,n (S) ∼= Bm

(
S(n)

)
⋊Bn (S). Hence the

natural action of Bn (S) on Bm

(
S(n)

)
induced by θm

(
S(n)

)
is equivalent to the conjugate action

in Bm,n (S), if we regard these two groups as subgroups of Bm,n (S).

Recall that we denote by γl (Bm,n (S)) and γl (Bn (S)) the respective canonical projections on the
quotient by the lth term of the lower central series of Bm,n (S) and Bn (S), and that we omit
the groups from the notations where there is no ambiguity. They canonically induce a morphism

Λ
S

l,m,n so that Λ
S

l,m,n ◦ γl (Bm,n (S)) = γl (Bn (S)) ◦ ΛSm,n.

We consider the kernel of Λ
S

l,m,n. By the universal property of the kernel, there exists a unique

surjective morphism that we denote by φSl,m,n, so that the following diagram is commutative (and
where the two lines are exact):

1 // Bm

(
S(n)

)
//

φS
l,m,n

����

Bm,n (S)
ΛS

m,n
//

γl

����

Bn (S) //

γl

����

1

1 // ker
(

Λ
S

l,m,n

)
// Bm,n (S) /Γl (Bm,n (S))

Λ
S

l,m,n
// Bn (S) /Γl (Bn (S)) // 1.

(4.1)

Then, we have the following key property.

Proposition 4.6 For all integers m > 1, ker
(
φSl,m,n

)
is preserved by the action π0

((
θm
(
S(n)

))
π

)

of Bn (S) on Bm

(
S(n)

)
.

Proof. We consider ψ ∈ Bn (S) and x ∈ ker
(
φSl,m,n

)
. As elements of Bm,n (S), the action of ψ

on x is defined by
(
θm,n (ψ) (x) , 1Bn(S)

)
=
(

1
Bm(S(n)), ψ

−1
) (
x, 1Bn(S)

) (
1

Bm(S(n)), ψ
)

. By the

universal property of the kernel, there exists a unique morphism ker
(
φSl,m,n

)
→ Γl (Bm,n (S)) such

that the following square is commutative

ker
(
φSl,m,n

)
//

� _

��

Γl (Bm,n (S))
� _

��

Bm

(
S(n)

)
� � // Bm,n (S) .

Therefore
(
x, 1Bn(S)

)
∈ Γl (Bm,n (S)). Since Γl (Bm,n (S)) is a normal subgroup of Bm,n (S),

it follows from the commutativity of the left-hand square of the diagram (4.1) that ψ−1xψ ∈

ker
(
φSl,m,n

)
.
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Remark 4.7 In the current situation, we are only able to deduce Assumption 2.13 and not also
Assumption 2.16, as we could in the proof of Lemma 4.1 above. Indeed the conjugation action
automatically becomes trivial only for the abelianisation and not for the further lower central
quotients.

Hence Assumption 2.13 is satisfied and then Definition 2.15 gives a homological representation, for
all index k > 0:

Lk

(
Fθm,φ

S
l,m,n

)
: Bn (S) −→ AutZ

(
Hk

((
Cm

(
S(n)

))φS
l,m,n

;Z

))
.

4.2.1 Case of the abelianisation

Using the abelianisation of a mixed surface braid group Bm,n (S), the constructed homological

representation Lk

(
Fθm,φ

S
2,m,n

)
satisfies two additional interesting properties. First, the following

lemma shows that the quotient groups Λ
S

2,m,n does not depend on n if n > 2. Such property is
inter alia crucial for stating some polynomiality results in §8.

Lemma 4.8 For all m > 1 and n > 2, there is an isomorphism ker
(

Λ
S

2,m,n

)
∼= ker

(
Λ
S

2,m,n+1

)
.

Proof. Either if S = Σg,1 or if S = Nc,1, we recall from §3.4.3 that the subgroup Bm,n (S) of
Bm+n (S) is isomorphic the semidirect product of Bm

(
S(n)

)
⋊ Bn (S). We also recall that the

presentations of the surface braid groups are detailed in Proposition 3.27. Since we have the relation
σiσi+1σi = σi+1σiσi+1 for the braid generators of Bn (S), we deduce that γ2 (σi) = γ2 (σi+1) for
all i ∈ {1, . . . , n}.

Furthermore, it is a standard observation that the conjugation action by the braid generators
{σi}i∈{1,...,n−1} of Bn (S) on the generators X = {ξj}j∈{1,...,n} of Bm

(
S(n)

)
is the same as the

action of the braid group Bn on the fundamental group π1 (Dn, p0). More precisely, using the
identification

ξj =

{
σ2

1 if j = 1

σ−1
1 ◦ σ−1

2 ◦ · · · ◦ σ−1
i−1 ◦ σ2

i ◦ σi−1 ◦ · · · ◦ σ2 ◦ σ1 if j ∈ {2, . . . , n},

it follows from the presentation of Bm+n (S) that

σ−1
i ξjσi =





ξi+1 if j = i;

ξ−1
i+1ξiξi+1 if j = i+ 1;

ξj if j /∈ {i, i+ 1}.

Hence γ2 (ξi) = γ2 (ξi+1) and we deduce from the presentations of Bm

(
S(n)

)
and Bn (S) that the

numbers of generators of Bm,n (S) /Γ2 (Bm,n (S)) is fixed when n varies.

Moreover, a straightforward computation from their presentations shows that

Bn (Σg,1) /Γ2 (Bn (Σg,1)) ∼= Z2g ⊕ Z/2Z and Bn (Nc,1) /Γ2 (Bn (Nc,1)) ∼= Zg ⊕ Z

and are thus independent of n. A fortiori ker
(

Λ
S

2,m,n

)
and ker

(
Λ
S

2,m,n+1

)
are isomorphic.

Remark 4.9 For the orientable case, [BGG17, Proposition 3.3] shows that

Bm,n (Σg,1) /Γ2 (Bm,n (Σg,1)) ∼= Z4g ⊕ (Z/2Z)
dm,n

where dm,n =





0 if n = m = 1;

1 if m = 1 and n > 2 or m > 2 and n = 1;

2 if m > 2 and n > 2.
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Notation 4.10 We denote ker
(

Λ
S

2,m,n

)
by A2,m (S) and φS2,m,n by φS2,m for all natural numbers

n. This notation is consistent for n > 2 by Lemma 4.8. Although for n = 0 and n = 1 the kernels
are not isomorphic to the others, we use this slight abuse of notations for simplicity.

Furthermore, Assumption 2.16 is satisfied using the morphism θm
(
S(n)

)
and the quotient group

A2,m (S). Indeed, we have the following key property.

Proposition 4.11 For all natural numbers m > 1, the action of Bn (S) on the group A2,m (S) is
trivial.

Proof. We consider ψ ∈ Bn (S) and x ∈ A2,m (S). We fix x̃ ∈ Bm

(
S(n)

)
so that φS2,m (x̃) =

x. Recall that the action of ψ on x is induced by the conjugation as elements of Bm,n (S):(
θm,n (ψ) (x) , 1Bn(S)

)
=
(

1
Bm(S(n)), ψ

−1
) (
x̃, 1Bn(S)

) (
1

Bm(S(n)), ψ
)

. Therefore γ2

(
ψ−1x̃ψ

)
=

γ2 (x̃). Then it follows from the commutativity of the diagram (4.1) that φS2,m (x̃) = x = ψ−1xψ.

4.2.2 Case of the third lower central quotients

Contrary to classical braid groups (see Remark 4.4), another possibility to build representations for
the surface braid groups is to consider the third lower central quotients of the mixed braid groups,
which are generally speaking different from the second ones in this case. As for the situation of

§4.2.1, the following lemma shows that the quotient groups Λ
S

3,m,n do not depend on n if n > 2.
Again such a property will be used to prove some polynomiality results in §8.

Lemma 4.12 For all m > 1 and n > 2, there is an isomorphism ker
(

Λ
S

3,m,n

)
∼= ker

(
Λ
S

3,m,n+1

)
.

Proof. Recall the group Bm,n (S) is isomorphic the semidirect product of Bm

(
S(n)

)
⋊ Bn (S).

Recall that we have the relation σiσi+1σi = σi+1σiσi+1 for the braid generators of Bn (S) by
Proposition 3.27. Since γ3 ([σi, [σi+1, σi]]) is trivial, we deduce that γ3 (σi) = γ3 (σi+1) for all
i ∈ {1, . . . , n} in the metabelian quotients Bm,n (S) /Γ3 (Bm,n (S)) and Bn (S) /Γ3 (Bn (S)).

Furthermore, it follows from the presentation of Bm+n (S) that the conjugation action by the braid
generators {σi}i∈{1,...,n−1} of Bn (S) on the generators {ξj}j∈{1,...,n} of Bm

(
S(n)

)
is defined by

σ−1
i ξjσi =





ξi+1 if j = i;

ξ−1
i+1ξiξi+1 if j = i+ 1;

ξj if j /∈ {i, i+ 1}.

We deduce from the relation γ3 ([ξi+1, [σi, ξi+1]]) = 1Bm,n(S) that γ3 (ξi) = γ3 (ξi+1). Then, using
the fact that γ3 (σi) = γ3 (σi+1), we obtain

γ3 (ξi+1) = γ3

(
σ−1
i ξiσi

)
= γ3

(
σ−1
i+1ξiσi+1

)
= γ3

(
ξ−1
i+1ξiξi+1

)
= γ3 (ξi) .

The numbers of generators of Bm,n (S) /Γ3 (Bm,n (S)) does not depend on n because of the pre-
sentations of Bm

(
S(n)

)
and Bn (S) (see Proposition 3.27) and the semidirect product structure.

Moreover, the metabelian quotient Bn (S) /Γ3 (Bn (S)) is also independent of n. Hence ker
(

Λ
S

m,n

)

and ker
(

Λ
S

m,n+1

)
are isomorphic.

Remark 4.13 For the orientable case, [BGG17, Corollary 3.9] proves that for m,n > 3 and g > 1

Bm,n (Σg,1) /Γ3 (Bm,n (Σg,1)) ∼=
(
Z3 × Z2g

)
⋊ Z2g.

Notation 4.14 For simplicity, we denote ker
(

Λ
S

3,m,n

)
by A3,m (S) for all natural numbers n.
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4.3 Mapping class groups

The use of configuration spaces to construct homological representations for the surface braid
groups in §4.2 can be repeated for mapping class groups of surfaces. Indeed the quotients given
by the lower central series associated with some ordered and unordered configuration spaces give
rise to interesting families of homological representations of these groups. We will see in §5.3 that
the Magnus representations and those introduced by [Mor07] are particular cases of homological
representations. For the remainder of §4.3, we fix two natural numbers g > 1 and c > 2 and
consider a surface S which is either the orientable surface Σg,1 or the non-orientable surface Nc,1,
as denoted in §3.4.2.

4.3.1 Using ordered configuration spaces

A first idea to construct homological representations for the mapping class groups of surfaces
makes use of ordered configuration spaces. We fix a natural number m > 1. Recall from §3.4.3
that Fm (S) denotes the ordered configuration space of m points on the surface S. Considering the
following subspace of S×m

Dm (S) :=
{

(x1, . . . , xm) ∈ S×m | xi = xj for some i 6= j
}
,

then Fm (S) = S×m \ Dm (S). We fix m distinct points {zi}i∈{1,...,m} in the preferred boundary-
component of S, and another point p0 in the same boundary-component, distinct from all zi. We
choose the configuration c0 = (z1, . . . , zm) as the basepoint of Fm (S).

Each diffeomorphism ϕ of S that fixes the preferred boundary-component of S also fixes c0 and the
diagonal action of ϕ on S×m preserves the subspace Dm (S). Hence the natural action of Diff∂0 (S)
on the coordinates of the configuration space Fm (S) defines a continuous group morphism

θFm(S) : Diff∂0 (S) −→ Homeoc0 (Fm (S)) .

We consider the canonical projection on the quotient by the lth term of the lower central series of
π1 (Fm (S) , c0), denoted by γl. Assumption 2.13 is automatically satisfied since Γl (π1 (Fm (S) , c0))
is a characteristic subgroup of π1 (Fm (S) , c0). Then Definition 2.15 gives a representation, for all
index k > 0:

Lk
(
FθFm(S),γl

)
: π0Diff∂0 (S) −→ AutZ (Hk ((Fm (S))

γl ;Z)) .

An interesting modification of this construction consists in removing the basepoint p0 from the con-
figuration space: the version with Borel-Moore homology of this alternative is then endowed with a
natural free generating set (see §6) and recovers Moriyama representations (see §5.3.2). We denote
the surface S \ {p0} by S•. Namely, we consider now the configuration space Fm (S•) = S×m \
(Dm (S) ∪ Am (S, p0)) where Am (S, p0) is the space {(x1, . . . , xm) ∈ S×m | xi = p0 for some i}.

Again, any diffeomorphism ϕ of S that fixes the preferred boundary-component of S also fixes
c0 and the diagonal action of ϕ on S×m preserves the subsets Dm (S) and Am (S, p0). Hence
the natural action of Diff∂0 (S) on the coordinates of the configuration space Fm (S•) defines
a continuous group morphism θFm(S•) : Diff∂0 (S) → Homeoc0 (Fm (S•)). Assumption 2.13 being
again satisfied since Γl (π1 (Fm (S•) , c0)) is a characteristic subgroup of π1 (Fm (S•) , c0), Definition
2.15 gives a representation, for all index k > 0:

Lk

(
FθFm(S•),γl

)
: π0Diff∂0 (S) −→ AutZ (Hk (Fm (S•)

γl ;Z)) .

4.3.2 Using unordered configuration spaces

Another natural idea to apply the general construction of §2 for mapping class groups of surfaces
is to consider the lower central quotient groups of unordered configuration spaces.

We fix a natural numberm > 0. Recall from §3.4.3 that Cm (S) denotes the unordered configuration
space of m points on the surface S. Using the space Dm (S) introduced in §4.3.1, Cm (S) can be
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viewed as the space (S×m \ Dm (S)) /Sm. We fix m distinct points {zi}i∈{1,...,n} in the boundary

S. We choose the configuration c0 = {z1, . . . , zm} as the basepoint of Cm (S). Recall from §3.4.3
that the braid group Bm (S) is the fundamental group of the configuration space π1 (Cm (S) , c0).

The action by permutation of coordinates of the symmetric group Sn on Fm (S) commutes with
the action of any diffeomorphism ϕ of S on the coordinates of the elements of Fm (S). This induces
a canonical surjective continuous group morphism Homeoc0 (Fm (S)) ։ Homeoc0 (Cm (S)). The
composite of the continuous group morphism θFm(S) defined in §4.3.1 by this canonical surjection
gives the natural action of Diff∂0 (S) on the coordinates of the configuration space Cm (S) defining
a continuous group morphism:

θCm(S) : Diff∂0 (S) → Homeoc0 (Cm (S)) .

Again, we consider the canonical projection on the quotient by the lth term of the lower cen-
tral series of π1 (Cm (S) , c0), denoted by γl. Assumption 2.13 is automatically satisfied since
Γl (π1 (Cm (S) , c0)) is a characteristic subgroup of π1 (Cm (S) , c0). Therefore, Definition 2.15 gives
a representation, for all index k > 0:

Lk
(
FθCm(S),γl

)
: π0Diff∂0 (S) −→ AutZ (Hk ((Cm (S))γl ;Z)) .

Additional properties for orientable surfaces: The lower central series and quotients for
the surface braid groups for an orientable surface S = Σg,1 have already been the subject of an
intensive study in the literature. This allows us to give additional properties on the homological
representations in this situation.

Taking m = 1, the first homology group is the only one which produces a non-trivial homological
representation L1 (FθS ,γl

) for any l. Since the lower central series of a free group on two or more
generators does not stabilise, i.e. Γl (F2g) 6= Γl+1 (F2g) for all l > 1 and g > 1, the study of the
lower central quotient of the fundamental group of the surface Σg,1 is an active research topic. We
refer the reader to [MKS04] for further details on this question. For l = 0, the action corresponds
to the natural action on the first homology group of the surface and its kernel is the Torelli group.
For convenience we denote it by ag : Γg,1 → AutZ (H1 (Σg,1,Z)).

Surface braid groups on m = 2 strands represent a more difficult situation. For instance, for the
torus with one boundary component Σ1,1, [BGG08, Section 4] proves that the lower central series
does not stabilise: Γl (B2 (Σ1,1)) 6= Γl+1 (B2 (Σ1,1)) for all l > 1. Actually the question of whether
surface braid group B2 (Σg,1) for any g > 1 is residually nilpotent is still open.

We now fix m > 3. [BGG08] and [BGG17] give a complete study of the lower central quotient
groups of Bm (Σg,1). In particular they show that the lower central series stabilises, namely that
Γ3 (Bm (Σg,1)) = Γ4 (Bm (Σg,1)). Therefore it is relevant to define the constructed representations

Lk

(
Fθ

Cm(Σg,1),γl

)
only for l 6 3. Moreover, they prove the following key results:

Proposition 4.15 ([BGG08, Theorem 1] [BGG17, Corollary 3.12]) The abelianisation of Bm (Σg,1)
is isomorphic to the product Z2g×Z/2Z. The third lower central quotient Bm (Σg,1) /Γ3 (Bm (Σg,1))
is isomorphic to the semidirect product

(Z × Zg) ⋊ Zg.

More precisely, recalling the presentation of Proposition 3.27, the first factor Z is central and
is generated by σ := γ3 (σi) for all i ∈ {1, . . . ,m− 1}, the second factor Zg is generated by
{ai := γ3 (ai)}i∈{1,...,g}, and the third factor Zg is generated by {bi := γ3 (bi)}i∈{1,...,g}; for all

j ∈ {1, . . . , g}, the generator bj acts trivially on ai for i ∈ {1, . . . , g} \ {j} and ajbj = σ2bjaj.

The result on the third lower central quotient allows us to obtain an additional property for
the associated homological representation: we can find the best subgroup of the mapping class
groups Γg,1 which acts on Hm (Cm (Σg,1)γ3 ,Z) as a Bm (Σg,1) /Γ3 (Bm (Σg,1))-module, i.e. so
that Assumption 2.16 is satisfied. Beforehand, we have to refine the result of Proposition 4.15.
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According to the unpublished work [BGG11], the ideas developed below were already explored by
Christian Blanchet but have not yet been published.

Let {αi, βi}i∈{1,...,g} be loops in Σg,1 based at p0 that form a system of meridians and parallels
of the surface: αi and βi respectively encircle the meridian and the parallel of the ith handle.
They give a free generating set {[αi] , [βi]}i∈{1,...,n} for the fundamental group π1 (Σg,1, p0). We
also assume that these loops are such that the product of commutators is a positively oriented
loop around the boundary component. The abelianisation γ2 thus induces a symplectic basis
{Ai, Bi}i∈{1,...,n} for the first homology group of the surface Hg := H1 (Σg,1;Z) with respect to
the algebraic intersection form ωg : Hg ×Hg → Z. Moreover, the operation

(k, c) · (k, c) = (k + k′ + ωg (c, c′) , c+ c′)

for all k, k′ ∈ Z and c, c′ ∈ Hg defines a group structure on the set Z ×Hg: we denote by Z ×
ωg

Hg

this central extension. Then:

Lemma 4.16 The third lower central quotient Bm (Σg,1) /Γ3 (Bm (Σg,1)) is isomorphic to the
central extension Z ×

ωg

Hg. Moreover the action of the mapping class group Γg,1 on the quotient

Bm (Σg,1) /Γ3 (Bm (Σg,1))։ Hg is the natural action ag.

Proof. The isomorphism is given by sending σ to the generator of Z in the central extension, ai
to Ai and bi to Bi for all i ∈ {1, . . . , g}. The relation ajbj = σ2bjaj is preserved through this
morphism by the definition of the intersection form (up to the sign convention).
As recalled in Remark 3.28, the generators {ai, bi}i∈{1,...,g} define a generating set for the funda-
mental group of Σg,1: the action of Γg,1 induced by θCm(Σg,1) on the image of these generators in
the quotient Hg is thus exactly the symplectic representation of the mapping class group.

Hence Lemma 4.16 shows that we must restrict to a subgroup of the Torelli group Ig,1 to obtain
a trivial action on the third lower central quotient. Since AutZ (Z) ∼= Z/2Z, there exists a map
k : Γg,1 → Hom (Hg,Z) so that the homological representation is defined by

Lm

(
FθCm(Σg,1),γ3

)
=

[
±IdZ k

0 ag

]
.

The following result shows that this map k is related to the well-known Chillingworth homomor-
phism Chill introduced in [Chi72] which describes the action of the Torelli group Ig,1 on the winding
numbers of the curves of Σg,1.

Lemma 4.17 The map k is a crossed homomorphism and its kernel coincides with the kernel of
Chillingworth homomorphism.

Proof. Since Lm

(
Fθ

Cm(Σg,1),γ3

)
is a morphism, we deduce that that k (ϕ ◦ ψ) = k (ψ)+k (ϕ) ag (ψ)

for all ϕ, ψ ∈ Γg,1: this proves that k is a crossed homomorphism. Moreover [Mor89] proves that
H1 (Γg,1, Hg) ∼= Z. Hence k = λ ·Chill+c where λ ∈ Z and c is a principal crossed homomorphism:
restricting to the Torelli group, we deduce that ker (k) = ker (Chill).

Hence the homological representationLm

(
Fθ

Cm(Σg,1),γ3

)
acts on the homologyHm ((Cm (Σg,1))

γ3 ,Z)

as a

(
Z ×
ωg

Hg

)
-module if we restrict to any subgroup of the (index-1 or index-2) subgroup of the

kernel of the Chillingworth homomorphism so that the sign of the ±IdZ is positive. For in-
stance, [Joh83] proves that the Johnson subgroup Kg,1, which is the kernel of the natural map
Γg,1 → AutZ (π1 (Σg,1, p0) /Γ3 (π1 (Σg,1, p0))), is a subgroup of ker (Chill).

Remark 4.18 If we assume that g > 3, then it follows from [BGP14] that every proper subgroup
of the mapping class group Γg,1 has index at least 28: a fortiori there are no non-trivial morphisms
Γg,1 → Z/2Z in this case. Thus the subgroup of the kernel of the Chillingworth homomorphism
mentioned above is of index 1 (i.e., equal to it). So it suffices to restrict to any subgroup the kernel of
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the Chillingworth homomorphism in order that the homological representation Lm

(
Fθ

Cm(Σg,1),γ3

)

acts on the homology Hm ((Cm (Σg,1))
γ3 ,Z) as a

(
Z ×
ωg

Hg

)
-module if g > 3.

4.4 Families of representations via topological categories of embeddings

In this subsection, we reinterpret some of the constructions of sections 4.1–4.3 using the general
procedure summarised in §2.5. In each case, this amounts to defining a continuous functor

Ct −→ CovQ or Ct −→ C̃ovQ,

where Ct is an appropriate topological category (obtained by applying the topological version of
Quillen’s bracket construction, as described in §3.4.5), and Q is a group. In each of our examples for
§§4.1–4.3, objects of Ct are surfaces and morphism spaces are spaces of embeddings. The general
pattern of the construction is as follows: we send each object (surface) to a configuration space
on that surface, equipped with a choice of quotient of its fundamental group onto Q. Embeddings
between surfaces clearly induce maps of configuration spaces, and we then check that either (a) the
induced homomorphisms of fundamental groups commute with the chosen quotients to Q, in which
case we obtain a functor Ct → CovQ, or (b) the weaker property that the induced homomorphisms
of fundamental groups at least preserve the kernels of these quotients, in which case we obtain a

functor Ct → C̃ovQ.

4.4.1 Classical braid groups

Let us fix an integer m > 1 and set Q = Am = Z ⊕ Bab
m , which is Z for m = 1 and Z2 for m > 2.

Let Uβt be the topological category defined in Example 3.37 and let Uβt>1 be its full subcategory
on all objects except the zero-punctured disc D0 = D2. We define a continuous functor

F : Uβt>1 −→ CovAm
(4.2)

as follows. For an object (i.e., a punctured disc) Dn of Uβt>1 we define F (Dn) to be the unordered
configuration space Cm(Dn), based at a fixed configuration c0 contained in ∂D2, and we choose
the quotient

π1(Cm(Dn), c0) −→→ Am = Z ⊕ Bab
m

to be the homomorphism φm,n constructed in §4.1. Morphisms of Uβt>1 are certain embeddings
ϕ : Dn → Dn′ (see Example 3.37 for a precise description), and induce maps of configuration spaces
Cm(ϕ) : Cm(Dn) → Cm(Dn′), so we may set F (ϕ) = Cm(ϕ). This clearly defines a continuous
functor if one ignores the condition that Cm(ϕ)∗ must commute with the quotients φm,n and φm,n′ ,
so it remains to check this condition. Now, all morphisms of Uβ

t
>1 may be written as a composition

of a “standard embedding” Dn → Dn′ followed by an automorphism of Dn′ . This is because, as
explained in Example 3.37, the morphism space Uβt(Dn,Dn′) consists of embeddings that may
be extended to a diffeomorphism of Dn′ . Hence it suffices to check the commutativity condition
for ϕ either a standard embedding or an automorphism. For automorphisms, this is exactly the
content of Lemma 4.1, and for standard embeddings, this is what was checked explicitly just above
Definition 4.2. Thus we have a well-defined continuous functor F .

This gives us the first input of Definition 2.21, with Ct = Uβt>1. Taking the ground ring k to be Z
and defining R = M = Z[Am] (i.e., not twisting the coefficients), we therefore obtain a functor

Li(F ) : π0

(
Uβt>1

)
= Uβ>1 −→ Z[Am]−Mod,

for any i > 0. Since Uβ is equivalent to Uβ>1 with an initial object adjoined, we may extend this
to a functor

Li(F ) : Uβ −→ Z[Am]−Mod

by sending the initial object of Uβ (the zero-punctured disc) to the initial object of Z[Am]−Mod
(the trivial Z[Am]-module). This is exactly the functor LBm of Proposition 4.3.

We summarise this discussion as:
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Proposition 4.19 The continuous functor (4.2) determines, through the construction of §2.5, the
functor

LBm : Uβ −→ Z[Am]−Mod

of Proposition 4.3, and hence in particular a family of representations of the classical braid groups.

4.4.2 Surface braid groups

Now let us fix a surface S = Σg,1 or Nc,1, an integer m > 1 and l ∈ {2, 3}. Recall that the group

ker
(

Λ
S

l,m,n

)
is defined in diagram (4.1); it is the subgroup

ker
(

Λ
S

l,m,n

)
= Bm(S(n)) ∩ Γl(Bm,n(S))

of the surface braid group Bm(S(n)), where S(n) = Dn♮S. According to Lemmas 4.8 and 4.12, it
is independent of n for n > 2, so we may define Al,m(S) to be this group for any n > 2.

We set Q = Al,m(S) and let 〈βt,B2(S)t〉 be the topological category defined in Example 3.39,
where B2(S) = Bg,+2 if S = Σg,1 and B2(S) = Bc,−2 if S = Nc,1. Let 〈βt,B2(S)t〉>2 denote its
subcategory on all objects of the form S(n) = Dn♮S for n > 2. We define continuous functors

G2 : 〈βt,B2(S)t〉>2 −→ CovA2,m(S)

G3 : 〈βt,B2(S)t〉>2 −→ C̃ovA3,m(S)

(4.3)

as follows. We send an object S(n) to the unordered configuration space Cm(S(n)), based at a
configuration c0 contained in the parametrised interval I ⊂ ∂S, and we choose the quotient

π1(Cm(S(n)), c0) = Bm(S(n)) −→→ Al,m(S)

to be the quotient map φSl,m,n constructed in §4.2 (see in particular diagram (4.1)).

Morphisms of 〈βt,B2(S)t〉>2 are certain embeddings ϕ : S(n) → S(n′) for 2 6 n 6 n′ (see Example
3.39 for a precise description). Hence they induce maps of configuration spaces Cm(ϕ) : Cm(S(n)) →
Cm(S(n′)), so we may set Gl(ϕ) = Cm(ϕ). This clearly defines a continuous functor, if we ignore
the condition that Cm(ϕ)∗ must commute with the quotients φSl,m,n and φSl,m,n′ (in the case l = 2)
or simply preserve the kernels of these quotients (in the case l = 3), so it remains to check these
conditions. As in the case of Uβt, all morphisms of 〈βt,B2(S)t〉 may be written as a composition
of the “standard inclusion” S(n) = Dn♮S → Dn′♮S = S(n′) followed by an automorphism of Dn′ ,
due to the fact that the morphism space of 〈βt,B2(S)t〉(S(n), S(n′)) consists of embeddings that
may be extended to diffeomorphisms of S(n′), as explained in Example 3.39. Hence it suffices to
check the conditions on π1 for ϕ either a standard inclusion or an automorphism. For l = 2, the
fact that the induced map Cm(ϕ)∗ on π1 commutes with the quotients φS2,m,n and φS2,m,n′ follows
from Lemma 4.8 when ϕ is a standard inclusion and from the combination of Propositions 4.6 and
4.11 when ϕ is an automorphism. For l = 3, the fact that Cm(ϕ)∗ sends the kernel of φS3,m,n to the

kernel of φS3,m,n′ follows from Lemma 4.12 when ϕ is a standard inclusion,7 and from Proposition
4.6 when ϕ is an automorphism. Thus we have well-defined continuous functors G2 and G3.

This gives us the first input of Definition 2.21 (for l = 2) or Definition 2.22 (for l = 3), with
Ct = 〈βt,B2(S)t〉>2. Taking the ground ring k to be Z and defining R = M = Z[Al,m(S)] (i.e.,
not twisting the coefficients), we therefore obtain functors

Li(G2) : π0(〈βt,B2(S)t〉>2) = 〈β,B2(S)〉>2 −→ Z[A2,m(S)]−Mod

Li(G3) : π0(〈βt,B2(S)t〉>2) = 〈β,B2(S)〉>2 −→ Z[A3,m(S)]−Modtw,
(4.4)

for any i > 0. This extends functorially the families of homological representations constructed in
§4.2, for any m > 1 and for l ∈ {2, 3}. We summarise this discussion as:

7 In fact, when ϕ is a standard inclusion, Lemma 4.12 actually shows that Cm(ϕ)∗ commutes with the quotients
φS

3,m,n and φS
3,m,n′ .
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Proposition 4.20 For any m > 1, the continuous functors (4.3) determine, via the construction
of §2.5, functors of the form (4.4) that extend the families of representations defined in §4.2 for the
surface braid groups Bn(S) for S any compact, connected surface with one boundary-component.

Remark 4.21 We do not have analogous functorial extensions, in the setting of §2.5, of the
representations constructed in §4.3 of mapping class groups of surfaces S. This is because the
quotient groups Q in those constructions are typically not independent of the surface S. For
example, in §4.3.2 we constructed representations of π0Diff∂0 (S) using Q = Bm(S)/Γl(Bm(S)),
but this depends non-trivially on S for any m > 3 and l ∈ {2, 3} by Proposition 4.15. By contrast,
for example, the quotient groups Q that we used in the case of the classical braid groups Bn are
all isomorphic to Z (for m = 1) or Z2 (for m > 2). This allowed us, for fixed m > 1, to construct
a functor out of Uβ using the category CovZ (for m = 1) or CovZ2 (for m > 2).

4.5 Loop braid groups

We first describe certain spaces of unlinks, which will be used in our construction of functorial
homological representations of (extended and non-extended) loop braid groups. First, recall from
above that there are (at least) two interpretations of loop braid groups LBn, as follows:

• LBn
∼= π0(Diff+

2D(D3, L)),

where L is an n-component unlink in the interior of the unit 3-disc D3 that diffeomorphisms are
assumed to fix as a subset, the subscript “2D” indicates that diffeomorphisms are assumed to fix
pointwise a neighbourhood of a chosen pair of disjoint 2-discs in ∂D3 and the superscript “+”
indicates that diffeomorphisms are assumed to preserve the orientation of L (see Lemma 3.43).
Secondly:

• LBn
∼= π1(U+

n ),8

where U+
n denotes the space of oriented n-component unlinks in D3, topologised as a subspace of

Emb(nS1,D3)/Diff+(nS1), where nS1 is the disjoint union of n copies of the circle (see §3.4.4). We
similarly have two interpretations of the extended loop braid groups LBext

n , as follows:

• LBext
n

∼= π0(Diff2D(D3, L)),
• LBext

n
∼= π1(Un),

where, in the first interpretation, we have dropped the condition that diffeomorphisms preserve
the orientation of L, and the space Un denotes the space of unoriented n-component unlinks in
D3, topologised as a subspace of Emb(nS1,D3)/Diff(nS1).

Recall (cf. §3.4.4) that LBn is generated by two finite families of elements: certain elements τi that
each correspond to a loop in U+

n that interchanges two unknots without either of them passing
through the other, and certain elements σi that each correspond to a loop in U+

n that interchanges
two unknots, while one passes through the other. The extended version LBext

n is generated by
these elements together with certain elements ρi that each correspond to a loop in Un that rotates
a single circle by 180 degrees. See Figure 1 of [BH13] for a picture (note that our notation differs
from theirs by a cyclic permutation of the letters τ 7→ σ 7→ ρ 7→ τ). Using the presentations of
LBn and LBext

n calculated in §3 of [BH13] (Proposition 3.3 for URn ∼= LBn and Proposition 3.7
for Rn ∼= LBext

n ), we see that:

• The abelianisation of LBn is isomorphic to Z ⊕ Z/2Z for n > 2 and trivial for n = 1, where
the Z summand is generated by an element σ, which is the image of all generators of the
form σi, and the Z/2Z summand is generated by an element τ , which is the image of all
generators of the form τi.

• The abelianisation of LBext
n is isomorphic to (Z/2Z)3 for n > 2 and Z/2Z for n = 1, where the

three summands are generated by elements σ, τ and ρ, which are the images of all generators
of the form σi, τi and ρi respectively, and the summand generated by ρ is the one present
also in the n = 1 case.

8 See Remark 4.23 below for a discussion of issues related to choosing basepoints.
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Definition 4.22 For an n-component unlink L in the interior of D3 and m > 1, we define

Xm(L) = {oriented m-component links L′ in D3, disjoint from L, so that L ⊔ L′ is an unlink},

Ym(L) = {unoriented m-component links L′ in D3, disjoint from L, so that L ⊔ L′ is an unlink},

topologised as subspaces of Emb(mS1,D3)/Diff+(mS1) and Emb(mS1,D3)/Diff(mS1) respectively.

We now construct certain quotients of π1(Xm(L)) and π1(Ym(L)).

The alpha quotient. First, note that we have natural inclusions

i : Xm(L) −֒→ U+
m and j : Xm(L) −֒→ U+

m+n,

given respectively by forgetting the unlink L or adjoining it to the given m-component unlink.
Here, n denotes the number of components of L. Note that j depends a choice of orientation of L
(but i does not, of course). Taking induced maps on π1 and abelianising, we obtain a map

αm(L) : π1(Xm(L)) −→

{
Z ⊕ Z/2Z for m = 1,

(Z ⊕ Z/2Z) ⊕ (Z ⊕ Z/2Z) for m > 2
(4.5)

defined by αm(L) = ((ab ◦ i∗) × (ab ◦ j∗)) ◦ ∆. This is not surjective, but it is an easy exercise to
calculate its image. When m = 1, its image is spanned by the element στ , which has infinite order.
When m > 2, its image is spanned by the elements (1, στ), (στ, στ) and (τ, τ), which generate
a subgroup isomorphic to Z ⊕ Z ⊕ Z/2Z. Writing α̂m(L) for the map αm(L) after restricting its
codomain to its image, we have therefore constructed a quotient map

α̂m(L) : π1(Xm(L)) −→→

{
Z for m = 1,

Z ⊕ Z ⊕ Z/2Z for m > 2,
(4.6)

depending on a choice of orientation of the unlink L.

Remark 4.23 There is a subtlety related to basepoints that arises in the above construction. For
each r > 1 let us choose an r-component unlink cr contained in ∂D3. We also fix an orientation of
D3, which therefore induces an orientation of ∂D3 and hence an orientation of each cr, so we may
think of cr as an element of U+

r , and also of Xr(L) for any unlink L in the interior of D3. To make
precise the identification of LBn with π1(U+

n ) above, we choose an isomorphism LBn
∼= π1(U+

n , cn).
Now, the inclusion i sends cm to itself, so it induces a homomorphism

i∗ : π1(Xm(L), cm) −→ π1(U+
m, cm) ∼= LBm

using the chosen identification with LBm. We may then compose this with the abelianisation map
of LBm to obtain the first component of the map αm(L). On the other hand, the inclusion j sends
cm to cm⊔L 6= cm+n. We therefore choose some path cm⊔L cm+n in U+

m+n and use this choice
to identify the target of j∗ with LBm+n:

j∗ : π1(Xm(L), cm) −→ π1(U+
m+n, cm ⊔ L) ∼= π1(U+

m+n, cm+n) ∼= LBm+n.

Composing this with the abelianisation map LBm+n, we obtain a map

ab × j∗ : π1(Xm(L), cm) −→ Z ⊕ Z/2Z,

which (a priori) depends on the choice of path cm ⊔L cm+n. Modifying this choice corresponds
to inserting a conjugation automorphism of π1(U+

m+n, cm+n) into the composition. However, since
the target of the homomorphism is abelian, this does not actually change anything, and so the
map ab × j∗ is in fact well-defined, independent of the choice of path cm ⊔ L cm+n.

A similar issue arises in the next construction, which is resolved in the same way.
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L

+

L

−
Figure 4.1 The sign convention for the geometric description of (one summand of) the quotient α̂m(L).

The beta quotient. In the unoriented case, we may perform a similar construction. We have
natural inclusions

i : Ym(L) −֒→ Um and j : Ym(L) −֒→ Um+n,

given respectively by forgetting the unlink L or adjoining it to the given m-component unlink.
This time both i and j are independent of any choice of orientation of L. Taking induced maps on
π1 and abelianising, we obtain a map

βm(L) : π1(Ym(L)) −→

{
(Z/2Z) ⊕ (Z/2Z)3 for m = 1,

(Z/2Z)3 ⊕ (Z/2Z)3 for m > 2
(4.7)

defined by βm(L) = ((ab ◦ i∗) × (ab ◦ j∗)) ◦ ∆. This is again not surjective, but it is an easy
exercise to calculate its image. When m = 1, its image is spanned by the two elements (ρ, ρ) and
(1, στ), which generate a subgroup isomorphic to (Z/2Z)2. When m > 2, its image is spanned by
these elements together with (τ, τ) and (στ, στ), which generate a subgroup isomorphic to (Z/2Z)4.

Writing β̂m(L) for the map βm(L) after restricting its codomain to its image, we have therefore
constructed a quotient map

β̂m(L) : π1(Ym(L)) −→→

{
(Z/2Z)2 for m = 1,

(Z/2Z)4 for m > 2.
(4.8)

Note that this quotient does not depend on a choice of orientation of the unlink L.

The gamma quotient. Finally, it will be useful to construct a further quotient of α̂m(L) that is
independent of an orientation of the unlink L. Recall that the image of α̂m(L) is generated by the
element στ of LBab

>2 when m = 1 and by the elements (1, στ), (στ, στ) and (τ, τ) of LBab
>2 ⊕ LBab

>2

when m > 2. Geometrically, the summand generated by στ when m = 1 and by (1, στ) when
m > 2 counts the number of times that a component of the m-component unlink passes through
one of the components of the fixed n-component unlink L. This is counted with sign, as depicted
in Figure 4.1: note that the orientation of L is important to determine this sign, whereas the
orientation of the component that is passing through it does not matter. Thus, reversing the
orientation of L changes the sign of this count. On the other hand, the other two summands (when
m > 2), generated by (στ, στ) and (τ, τ), count certain motions of the m-component unlink that
do not involve L, so reversing the orientation of L does not affect these counts. If we write −L for
the unlink L with the opposite orientation, this discussion implies that the two quotients α̂m(L)
and α̂m(−L) differ by the automorphism of their target given by x 7→ −x (in the case m = 1)
respectively (x, y, z) 7→ (−x, y, z) (in the case m > 2). Thus, to obtain a further quotient of α̂m(L)
that is independent of the choice of orientation of L, we simply need to quotient one Z summand
of its image to a Z/2Z summand. In summary, we have constructed a quotient map

γm(L) : π1(Xm(L)) −→→

{
Z/2Z for m = 1,

Z/2Z ⊕ Z ⊕ Z/2Z for m > 2,
(4.9)

which is independent of any choice of orientation of the unlink L.

We now apply these quotients and the construction of §2.5 to produce functorial homological
representations of the (extended and non-extended) loop braid groups.
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The alpha representations of the non-extended loop braid groups. Fix an integer m > 1
and set Q to be the group Z if m = 1 and Z ⊕ Z ⊕ Z/2Z if m > 2. Let ULβt be the topological
category described in Remark 3.42: its objects are oriented unlinks in the interior of D3 and its
morphisms from L to L′ are embeddings ϕ : D3 → D3 fixing pointwise a disc in ∂D3, sending L into
L′ preserving their orientations, and which admit an extension to a diffeomorphism D3♮D3 ∼= D3

taking L⊔L′′ onto L′, where L′′ is some oriented unlink in the second copy of D3 in the boundary
connected sum. Note that this last condition implies that the preimage of L′ under ϕ must be
equal to L (and not larger). See Remark 3.42 for the precise details of these morphism spaces.
Let ULβt>1 be the full subcategory on all objects except the empty unlink. We define a continuous
functor

Fαm : ULβt>1 −→ CovQ (4.10)

as follows. For an object (i.e., an oriented unlink) L of ULβt>1 we define Fαm(L) to be the space
Xm(L) equipped with the quotient α̂m(L) of its fundamental group. Given a morphism ϕ : D3 → D3

from L to L′, we claim first of all that it induces a well-defined map Xm(ϕ) : Xm(L) → Xm(L′),
i.e., that it sends a link L′′ in D3 r L such that L ⊔ L′′ is an unlink to a link ϕ(L′′) in D3 r L′

such that L′ ⊔ ϕ(L′′) is an unlink. The fact that ϕ(L′′) is disjoint from L′ follows from the fact
that ϕ−1(L′) = L, as noted above. To see that L′ ⊔ϕ(L′′) is an unlink, note that L⊔L′′ bounds a
disjoint union of 2-discs in D3, since it is an unlink, so ϕ(L)⊔ϕ(L′′) also bounds a disjoint union of
2-discs, so it is an unlink, and hence so is its sub-link L′ ⊔ ϕ(L′′). Hence setting Fαm(ϕ) = Xm(ϕ)
defines a continuous functor, if we ignore the condition that the induced map Xm(ϕ)∗ on π1 must
commute with the quotients α̂m(L) and α̂m(L′), so it remains to check this condition.

All morphisms of ULβt>1 may be written as a composition of a “standard inclusion” (D3, L) →
(D3, L′) followed by an automorphism of (D3, L′), due to the fact, recalled above, that morphisms
are certain embeddings that admit an extension to a diffeomorphism. Hence it suffices to check the
commutativity condition for Xm(ϕ)∗ when ϕ is either a standard inclusion or an automorphism.
Now, the commutativity condition says geometrically that the map

Xm(ϕ)∗ : π1(Xm(L)) −→ π1(Xm(L′))

must preserve certain invariants of loops of m-component unlinks. If m = 1, there is just one
invariant, which is the number of times (with sign determined by Figure 4.1) that a component of
the m-component unlink passes through a component of the fixed link (namely L or L′). If m > 2,
there are two further invariants, which count (a) the number of times that one component of the
m-component unlink passes through another of its components (with sign), and (b) the number of
times (mod 2) that two of its components are interchanged (without passing through each other).
It is clear that standard inclusions preserve all of these invariants of loops. We therefore just have
to check that Xm(ϕ)∗ preserves these invariants when ϕ is an automorphism of L = L′ in ULβ

t
>1,

which corresponds (on π0) to an element of LBn, where n is the number of components of L. First
of all, we may assume that this diffeomorphism of D3 is supported in a small disc neighbourhood
of L, and so it clearly does not affect the invariants (a) and (b), since these involve loops of m-
component unlinks that do not interact with L (they may be isotoped to be disjoint from the
small disc neighbourhood of L). So we just need to show that [ϕ] ∈ LBn preserves the invariant
that counts the number of times that a component of the m-component unlink passes through a
component of L. It suffices to check this for [ϕ] = τi and [ϕ] = σi generators of LBn. This may
easily be checked on a case-by-case basis, drawing a picture of the effects that τi and σi ∈ LBn

have on a simple loop of m-component unlinks in D3rL, where m−1 of the components are fixed,
far away from L, and the remaining component passes once through one of the components of L.

Thus we have a well-defined continuous functor Fαm as above. This gives us the first input of
Definition 2.21, with Ct = ULβt>1. Taking the ground ring k to be Z and defining R = M = Z[Q]
(i.e., not twisting the coefficients), we therefore obtain a functor

Li(F
α
m) : π0(ULβt>1) = ULβ>1 −→ Z[Q]−Mod,

for any i > 0. Since ULβ is equivalent to ULβ>1 with an initial object adjoined, we may extend
this to a functor

Li(F
α
m) : ULβ −→ Z[Q]−Mod
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by sending the initial object of ULβ (the empty unlink) to the initial object of Z[Q]−Mod (the
trivial module). We summarise this construction as:

Theorem 4.24 For any m > 1 and i > 0, the continuous functor (4.10) determines, through the
construction of §2.5, a functor

Li(F
α
m) : ULβ −→ Z[Q]−Mod, (4.11)

where Q = Z when m = 1 and Q = Z ⊕ Z ⊕ Z/2Z when m > 2. In particular, this gives coherent
families of representations of the loop braid groups {LBn}n>1 defined over the Laurent polynomial
rings

Z[Z] = Z[x±]

when m = 1 and defined over

Z[Z ⊕ Z ⊕ Z/2Z] = Z[x±, y±, z±]/(z2)

when m > 2.

The beta representations of the extended loop braid groups. Fix an integer m > 1 and
set Q to be the group (Z/2Z)2 if m = 1 and (Z/2Z)4 if m > 2. Let U(Lβ

ext)t be the category
described in Remark 3.42: its objects are unoriented unlinks in the interior of D3 and its morphisms
from L to L′ are embeddings ϕ : D3 → D3, defined exactly as described for ULβt above, but without
the orientation-preserving condition. Let U(Lβext)t>1 be its subcategory on all objects except the
empty unlink. We define a continuous functor

F βm : U(Lβext)t>1 −→ CovQ (4.12)

as follows. For an object (i.e., a non-empty unlink) L of U(Lβext)t>1, we define F βm(L) to be the

space Ym(L) equipped with the quotient β̂m(L) of its fundamental group. A morphism ϕ : D3 → D3

of U(Lβ
ext)t>1 from L to L′ induces a map Ym(ϕ) : Ym(L) → Ym(L′), which one may see is well-

defined by exactly the same argument as above (for the functor Fαm). Hence setting F βm(ϕ) = Ym(ϕ)
defines a continuous functor, if we ignore the condition that the induced map Ym(ϕ)∗ on π1 must

commute with the quotients β̂m(L) and β̂m(L′), so it remains to check this condition, which says
geometrically that the map

Ym(ϕ)∗ : π1(Ym(L)) −→ π1(Ym(L′))

must preserve certain invariants of loops of m-component unlinks. As before, it is enough to check
this condition when ϕ is either a standard inclusion (in which case it is clear) or an automorphism
of L = L′ in U(Lβext)t>1, which corresponds (on π0) to an element of LBext

n , where n is the number
of components of L. As in the previous setting, all but one of these invariants count certain motions
of m-component unlinks that do not interact with L (in the sense that they are supported away
from a small disc neighbourhood of L), so they are clearly preserved, since we may ensure by an
isotopy that ϕ is supported only on a small disc neighbourhood of L. The last invariant that we
must check is preserved by [ϕ] ∈ LBext

n , is the number (mod 2) of times that a component of
the m-component unlink passes through a component of L. It suffices to check this for [ϕ] = τi,
[ϕ] = σi and [ϕ] = ρi generators of LBext

n . As in the previous setting, this may easily be checked
on a case-by-case basis. In fact, the generators τi and σi preserve this invariant as an integer (not
just mod 2),9 whereas the generator ρi preserves it only mod 2, since it reverses the orientation of
one component of L.

Thus we have a well-defined continuous functor F βm as above. This gives us the first input of
Definition 2.21, with Ct = U(Lβext)t>1. Taking the ground ring k to be Z and defining R = M =
Z[Q] (i.e., not twisting the coefficients), we therefore obtain a functor

Li(F
β
m) : π0(U(Lβext)t>1) = U(Lβext)>1 −→ Z[Q]−Mod,

9 Although, of course, this integer depends on an arbitrary choice of orientation of L (since L is not equipped
with one), and it is only independent of this choice mod 2.
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for any i > 0. Since U(Lβext) is equivalent to U(Lβext)>1 with an initial object adjoined, we may
extend this to a functor

Li(F
β
m) : U(Lβext) −→ Z[Q]−Mod

by sending the initial object of U(Lβext) (the empty unlink) to the initial object of Z[Q]−Mod (the
trivial module). We summarise this construction as:

Theorem 4.25 For any m > 1 and i > 0, the continuous functor (4.12) determines, through the
construction of §2.5, a functor

Li(F
β
m) : U(Lβext) −→ Z[Q]−Mod, (4.13)

where Q = (Z/2Z)2 when m = 1 and Q = (Z/2Z)4 when m > 2. In particular, this gives coherent
families of representations of the extended loop braid groups {LBext

n }n>1 defined over the Laurent
polynomial rings

Z[(Z/2Z)2] = Z[x±, y±]/(x2, y2)

when m = 1 and defined over

Z[(Z/2Z)4] = Z[x±, y±, z±, w±]/(x2, y2, z2, w2)

when m > 2.

The gamma representations of the extended loop braid groups. Clearly the beta repre-
sentations of the extended loop braid groups constructed in Theorem 4.25 restrict to representa-
tions of the non-extended loop braid groups, since these are subgroups of the extended loop braid
groups (and indeed ULβ is a subcategory of U(Lβext)). Conversely, one may wonder whether the
alpha representations of the non-extended loop braid groups constructed in Theorem 4.24 may be
extended to representations of the extended loop braid groups. Functorially, this is the question of
whether the functors Li(F

α
m) defined on ULβ may be extended to U(Lβext). In fact, they may not,

but our next construction shows that, after changing the ring over which we define this functor —
specifically, dividing the Laurent polynomial rings of Theorem 4.24 by the ideal (x2) — they may
be so extended, using the further quotients γm(L) of the quotients α̂m(L) constructed above.

Fix an integer m > 1 and set Q to be the group Z/2Z if m = 1 and Z ⊕ (Z/2Z)2 if m > 2. We
define a continuous functor

F γm : U(Lβext)t>1 −→ CovQ (4.14)

as follows. We send the object (i.e., unoriented unlink) L of U(Lβext)t>1 to the space Xm(L)
equipped with the quotient γm(L) of its fundamental group. Note that this is valid since we
ensured that γm(L) does not depend on a choice of orientation of L. A morphism ϕ : D3 → D3 of
U(Lβext)t>1 from L to L′ induces a well-defined map Xm(ϕ) : Xm(L) → Xm(L′). This was shown
above (in the construction of Fαm) when ϕ satisfied the additional assumption that its restriction
to a map L → L′ was orientation-preserving. However, this fact was not used in that argument,
so it applies equally well to this more general setting. Hence setting F γm(ϕ) = Xm(ϕ) defines a
continuous functor, if we ignore the condition that the induced map

Xm(ϕ)∗ : π1(Xm(L)) −→ π1(Xm(L′))

must commute with the quotients γm(L) and γm(L′), so it remains to check this condition. If ϕ is
a morphism of

ULβt>1 ⊂ U(Lβext)t>1,

then we have already checked, during the construction of Fαm, that Xm(ϕ)∗ commutes with the
quotients α̂m(L) and α̂m(L′). Since γm(L) factors through α̂m(L), this means that Xm(ϕ)∗ also
commutes with the quotients γm(L) and γm(L′). Any morphism of U(Lβext)t>1 may be written as

a composition of a morphism of ULβt>1 together with an automorphism of L = L′ in U(Lβext)t>1

that corresponds, on π0, to a generator of LBext
n (where n is the number of components of L)

of the form ρi, which rotates one component of L by 180 degrees. It therefore remains to check
that Xm(ϕ)∗ commutes with the quotients γm(L) and γm(L′) when [ϕ] = ρi. This corresponds to
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checking thatXm(ρi)∗ preserves (mod 2) the number (counted with sign) of times that a component
of the m-component unlink passes through a component of L. Let us consider a simple loop θ of
m-component unlinks in D3rL, where m−1 of the components are fixed, far away from L, and the
remaining component passes once through the j-th component of L. Let us say that an orientation
of L has been chosen such that the number of passes of θ through L is +1.10 Then, for i 6= j,
the number of passes of Xm(ρi)∗(θ) through L is also +1, and for i = j, the number of passes of
Xm(ρi)∗(θ) through L is −1. But −1 ≡ +1 (mod 2).

Thus we have a well-defined continuous functor F γm as above. This gives us the first input of
Definition 2.21, with Ct = U(Lβext)t>1. Taking the ground ring k to be Z and defining R = M =
Z[Q] (i.e., not twisting the coefficients), we therefore obtain a functor

Li(F
γ
m) : π0(U(Lβext)t>1) = U(Lβext)>1 −→ Z[Q]−Mod,

for any i > 0. Since U(Lβext) is equivalent to U(Lβext)>1 with an initial object adjoined, we may
extend this to a functor

Li(F
γ
m) : U(Lβext) −→ Z[Q]−Mod

by sending the initial object of U(Lβext) (the empty unlink) to the initial object of Z[Q]−Mod (the
trivial module). We summarise this construction as:

Theorem 4.26 For any m > 1 and i > 0, the continuous functor (4.14) determines, through the
construction of §2.5, a functor

Li(F
γ
m) : U(Lβext) −→ Z[Q]−Mod, (4.15)

where Q = Z/2Z when m = 1 and Q = Z⊕ (Z/2Z)2 when m > 2. In particular, this gives coherent
families of representations of the extended loop braid groups {LBext

n }n>1 defined over the Laurent
polynomial rings

Z[Z/2Z] = Z[x±]/(x2)

when m = 1 and defined over

Z[Z/2Z ⊕ Z ⊕ Z/2Z] = Z[x±, y±, z±]/(x2, z2)

when m > 2. These are extensions of the representations of {LBn}n>1 constructed in Theorem
4.24, after dividing the Laurent polynomial rings by the ideal (x2).

5 Comparison with known representations

In this section, we present the various already existing families of representations that can be
recovered as particular homological representations. Indeed for several families of groups such
mapping class groups or classical and surface braid groups, many families of representations happen
to be more or less explicitly applications of the general procedure encoded by the homological
functors described in §2 for several families of groups such mapping class groups or classical and
surfaces braid groups. Furthermore, we exhibit in §5.4 a connection between the construction
of linear representations introduced in [Lon94] and generalised in [Sou18], called the Long-Moody
construction, and a one of the homological functors of §2.

5.1 For classical braid groups

In [Big04a], Bigelow introduces a general method to construct a representation of the braid group
Bn from a representation of the braid group Bm for two integers m and n. It builds the so-called
families of Lawrence-Bigelow representations, first introduced by Lawrence [Law90] in a different

10 Note that the unlink L does not come with an orientation, so this choice is purely arbitrary; however, we
showed earlier (in the construction of the gamma quotients) that the resulting count (with sign) of passes through
L is independent of this choice mod 2.
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way to here, namely as representations of Hecke algebras. The most famous family among them
is the one known as the Lawrence-Krammer-Bigelow representations that Bigelow [Big01] and
Krammer [Kra02] independently proved to be faithful. We review here this construction and then
show that the representations constructed in §4.1 are the Lawrence-Bigelow representations.

Bigelow’s construction: Introducing Bigelow’s construction requires the following tools. We
recall that Dn denotes the unit 2-disc where n distinct smaller 2-discs are removed from the interior
and that Cm (Dn) is the configuration space of m unordered points in Dn. We fix m distinct points
{zi}i∈{1,...,m} in the boundary of Dn and the configuration c0 = (z1, . . . , zm) as the basepoint of

Cm (Dn) and assume that D2 is the unit disc in the complex plane centered at 0.

Let f : Cm (Dn) → C∗ be the map defined by

(x1, . . . , xm) 7−→
∏

i∈{1,...,m}

∏

j∈{1,...,n}

(xi − pj)

and recall that W : π1 (Cm (Dn) , c0) → Z is the map induced by sending a loop γ to the winding
number of f ◦ γ around 0. Finally, recall that the inclusion Dn →֒ D2 defined by gluing discs on
all the interior boundary components induces an inclusion map i : Cm (Dn) →֒ Cm

(
D2
)
, which

induces surjective homomorphism in homotopy i∗ : π1 (Cm (Dn) , c0) → Bm.

Bigelow’s construction starts with a representation ρ : Bm = Cm (D) → GLK (V ) where K is an
integral domain and we fix q a unit in K. The first key point of Bigelow’s construction is to consider
the following deformation of ρ.

Definition 5.1 Let ρ′q,n : π1 (Cm (Dn) , c0) → GLK (V ) be the representation defined by

ρ′q,n (g) (v) = qw(g)ρ (i∗ (g)) (v)

for all g ∈ π1 (Cm (Dn) , c0) and all v ∈ V .

We denote by ˜Cm (Dn) the universal covering space of Cm (Dn). We consider the quotient space

Lρ :=
(

˜Cm (Dn) × V
)
/π1 (Cm (Dn) , c0) ,

where the diagonal action of π1 (Cm (Dn) , c0) on ˜Cm (Dn) is given by deck transformations and the
one on V is given by ρ′q,n. It is the canonical bundle (also known as Borel construction) associated
with the action ρ′q,n of Cm (Dn) on V .

Then, Bigelow’s construction consists in the natural action of the braid group on the (ordinary)
homology group H∗ (Cm (Dn) ,Lρ) or the Borel-Moore homology group HBM

∗ (Cm (Dn) ,Lρ) of the
configuration space Cm (Dn) with local coefficients Lρ:

Theorem 5.2 [Big04a, Section 2] From a representation ρ : Bm = Cm (D) → GLK (V ), the braid
group Bn acts on H∗ (Cm (Dn) ,Lρ) and HBM

∗ (Cm (Dn) ,Lρ), thus defining Bigk,n (ρ) : Bn →

Hk (Cm (Dn) ,Lρ) and BigBMk,n (ρ) : Bn → HBM
k (Cm (Dn) ,Lρ) for all natural numbers k and n.

They are called Bigelow’s representation and Borel-Moore Bigelow’s representation.

Proof. Any f ∈ Diff (Dn) that acts as the identity on the boundary defines an element of Diffc0 (Cm (Dn))
and then induces an automorphism f∗ of π1 (Cm (Dn) , c0). Since f fixes the m points in Cm (Dn),
we deduce that f∗ (g) = g for all g ∈ π1 (Cm (Dn) , c0). Then, there exists a unique lift f̃∗ : Lρ → Lρ
of f∗ acting as the identity on the fiber over c0, which depends only on the homotopy class of f :
this induces the action of Bn on the homology groups.

Lawrence-Bigelow representations: Using the previous notations, we assign V = K = Z [Am]
where A1 =

〈
q±1
〉

and Am =
〈
q±1, t±1

〉
if m > 2. Let Xm : Bm → K∗ be the morphism defined by

sending each Artin generator σi to the multiplication by t if m > 2 and the trivial representation
if m = 1. The Lawrence-Bigelow representations of braid groups are the applications of Bigelow’s
construction to these representations:
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Definition 5.3 For all natural numbers n, Bigm,n (Xm) and BigBMm,n (Xm) are respectively called
Lawrence-Bigelow representations and Borel-Moore Lawrence-Bigelow representations.

Remark 5.4 For m = 1 and each natural number n, Big1,n (X1) and BigBM1,n (X1) both are
the well-known reduced Burau representation (see [KT08, Section 3.3] for more details about the
associated family of representations). Also, for m = 2 and each natural number n, Big2,n (X2) and

BigBM2,n (X2) both are the Lawrence-Krammer-Bigelow representation [Big03; Big01] introduced to
prove that braid groups are linear. In addition, using [PP02, Theorem 1.2], the tensor product with
the field of fractions Big2,n (X2)⊗ZQ (q, t) is isomorphic to the Lawrence-Krammer representation
[Kra02] for all natural numbers n.

Recovering: The representations which form the functors constructed in §4.1 are actually equiv-
alent to the Lawrence-Bigelow representations:

Proposition 5.5 As representations of the braid group Bn, Lm
(
Fθm,φm,n

)
and LBMm (Fθ,φ)

n
are

respectively equivalent to Bigm,n (Xm) and BigBMm,n (Xm).

Proof. Recall that the local coefficient system LXm
is the canonical fiber bundle

(
˜Cm (Dn) × Z [Am]

)
/π1 (Cm (Dn) , c0)

ξ
−→ Cm (Dn)

so that ξ−1 (c) ∼= Z [Am] for all c ∈ Cm (Dn). Denoting C• (X) the singular chain complex of the
topological space X , there is an isomorphism of abelian groups:

Hm (Cm (Dn) ,LXm
) ∼= Hm

(
C•

(
˜Cm (Dn)

)
⊗

Z[π1(Cm(Dn),c0)]
ξ−1 (c)

)
.

Recall that φ1,n is the composite γ2 ◦ Σ (where γ2 : Fn → Zn is the abelianisation map and Σ is
the sum map) and that, for m > 2, φm,n : π1 (Cm (Dn) , c0) → Z2 is defined by γ 7→ (T (γ) ,W (γ)),
where T (γ) counts the total number of half-twists for a curve representing γ. In any case, the
morphism φm,n induces a representation

π1 (Cm (Dn) , c0)
φm,n

// Am
� � // AutZ[Am] (Z [Am])

where the second arrow is the morphism induced by the multiplication by the elements of Am:
this is exactly the morphism (Xm)

′
q of Definition 5.1 induced by Xm. Using Shapiro’s lemma, we

deduce that as abelian groups:

Hm (Cm (Dn) ,LXm
) ∼= Hm

(
Cm (Dn)

φm,n ,Z
)

and the action of Bigm,n (Xm) for an element σ of Bn onH∗

(
Cm (Dn)φm,n ,Z

)
through this isomor-

phism is given by the unique lift of σ for the covering space Cm (Dn)
φm,n . Hence, Lm

(
Fθm,φm,n

)
∼=

Bigm,n (Xm) as representations of Bn.

The proof that LBMm (Fθ,φ)
n

∼= BigBMm,n (Xm) follows repeating mutatis mutandis the previous one,
using Borel-Moore homology instead of standard homology.

Proposition 5.5 justifies the notation LBm for the functor defined by the representationsLm
(
Fθm,φm,n

)
:

this functor actually encodes the Lawrence-Bigelow representations.

Remark 5.6 In [Sou19, Section 1.2], it is proved that the family of reduced Burau and Lawrence-
Krammer representations define functors over the category 〈β,β〉. More precisely, they respectively
form functors Bur : 〈β,β〉 → C

[
t±1
]

-Mod and LK : 〈β,β〉 → C
[
t±1, q±1

]
-Mod. By Remark 5.4,

these functors are actually respectively equivalent to the functors LB1 and LB2 tensored (and
their respective alternative using Borel-Moore homology) by C.
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5.2 For surface braid groups

The application of the general construction of homological representations to surface braid groups
in §4.2.2 provides several families of representations of these groups. Actually one of them is
already defined by An and Ko in [AK10], where they describe an extension of homological repre-
sentations from the classical braid groups to the surface braid groups. Some of the technical key
tools of their construction are reinterpreted by Bellingeri, Godelle and Guaschi in [BGG17] using
metabelian quotients of the surface braid groups. We review here the An-Ko representations with
this approach.

We use the framework and notations of §4.2.2 where we introduced the representation

Lm

(
F
θm,φ

Σg,1
3,m,n

)
: Bn (Σg,1) −→ AutZ

(
Hk

(
Cm

(
Σ

(n)
g,1

)φΣg,1
3,m,n

,Z

))
.

Furthermore, any morphism ψQm,n
: Bm,n (Σg,1) /Γ3 (Bm,n (Σg,1)) → Qm,n induces a Bn (Σg,1) -A3,m,n-

bimodule structure. We denote by ψQn the action of Bn (Σg,1) on Z [Qm,n] induced by the mul-
tiplication. Since the space of the representation is naturally endowed with a Z [A3,m,n]-module

structure, then the tensor product of ψQn and Lm

(
F
θm,φ

Σg,1
3,m,n

)
defines a morphism

Bn (Σg,1) // AutZ[Qm,n]

(
Z [Qm,n] ⊗

Z[A3,m,n]
Hk

(
Cm

(
Σ

(n)
g,1

)φΣg,1
3,m,n

,Z

))

In [AK10], the authors introduce a particular HΣ in an had hoc way. [BGG17, Section 4] actually
prove that HΣ is a quotient of the third lower central quotient group Bm,n (Σg,1) /Γ3 (Bm,n (Σg,1)).

Then the An-Ko representations are ψHΣ
n ⊗

Z[A3,m,n]
Lm

(
F
θm,φ

Σg,1
3,m,n

)
.

Remark 5.7 The groups A3,m,n and HΣ are defined abstractly in [AK10] in terms of group
presentation to satisfy certain technical homological constraints, without any connection to the
third lower central quotient. The method applied in §4.2.2 underlines the mainspring of these
groups. Also the use of the third lower central quotient is a valuable tool to define the homological
representations: as it is done in Proposition 4.6, it allows to straightforwardly prove that the key
Assumption 2.13 is satisfied. Hence it gives an alternative to the ad hoc technical [AK10, Lemma
3.1].

5.3 For mapping class groups

Some of the homological representations for mapping class groups of §4.3 have already been in-
troduced in a different way and studied. We review here these cases. Recall that, for g a natural
number, we consider the mapping class group Γg,1 of the compact surface Σg,1 and that p0 is a
basepoint on the boundary of Σg,1.

5.3.1 The Magnus representations for surfaces

The Magnus representations of mapping class groups compact of connected oriented smooth sur-
faces and have been a fundamental tool in combinatorial group theory for many years. They were
originally defined using the Fox free differential calculus. We refer the reader to [Bir74; Sak12] for
further details on this definition. However, Suzuki [Suz05] introduced an equivalent topological
definition that we present in this section: this interpretation shows that Magnus representations
are a particular case of homological representations introduced in §4.3.2.

Recall that γ2 denotes the abelianisation of π1 (Σg,1, p0). Let ξγ2 : Σγ2

g,1 → Σg,1 regular covering

space associated with the abelianisation and we fix a lift pγ2

0 ∈ ξ−1
γ2

(p0) in Σγ2

g,1. Since the commu-
tator subgroup [π1 (Σg,1, p0) , π1 (Σg,1, p0)] is a characteristic subgroup of the fundamental group,
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Assumption 2.13 is satisfied. Therefore, it follows from Proposition 2.14 that there is a well-defined
action of the mapping class group on the reduced homology groups on the covering Σγ2

g,1: this is
the Magnus representation of the mapping class group

MagΓ (g) : Γg,1 → Aut
(
H1

(
Σγ2 , ξ−1

γ2
(p0) ;Z

))
.

Note that Assumption 2.16 is satisfied if and only if we restrict Mag
Γ

to the Torelli group of the
surface. This restriction defines the Magnus representation of the Torelli group

MagI (g) : Ig,1 → AutZ[H1(Σg,1;Z)]

(
H1

(
Σγ2 , ξ−1

γ2
(p0) ;Z

))
.

5.3.2 The Moriyama representations

In [Mor07], Moriyama studies the natural action of the mapping class group Γg,1 of the surface
Σg,1 on some relative homology groups of the configuration spaces of n-points on a surface Σg,1.
The main result of his work is that the kernel of the action of Γg,1 coincides with the kernel of the
natural action on the nth lower central quotient group of the fundamental group of Σg,1. We prove
here that this family of representations is a particular case of the general construction introduced
in §2.

For any diffeomorphim ϕ of Σg,1 which fixes pointwise the boundary component, the diagonal
action of ϕ on Σ×mg,1 preserves the subsets Dm (Σg,1) and Am (Σg,1, p0) (introduced in §4.3.1) of

Σ×mg,1 . Then the relative homology group

Hm

(
Σ×mg,1 , (Dm (Σg,1) ∪ Am (Σg,1, p0)) ;Z

)

is equipped with a Γg,1-module structure induced from the diagonal action. We call this structure
the mth Moriyama representation of Γg,1 and denote it by Morm (g). Let M+,gen

2 be the full
subcategory of M+

2 of the orientable surface with no marked points. The monoidal structure(
M+

2 , ♮, 0
)

restricts to a braided monoidal structure both on the subgroupoids M+
2 . Hence the

representations considered in [Mor07] define a functor Morm : M+,gen
2 → Z-Mod.

Recall that Fm
(
Σ′g,1

)
denotes the ordered configuration space of m points on the surface Σg,1\{p0}.

Note that Fm
(
Σ′g,1

)
is homeomorphic to the complement of the set (Dm (Σg,1) ∪ Am (Σg,1, p0)) in

Σ×mg,1 . Hence, as the Γg,1-module structure is induced from the diagonal action in both situations,
it follows from the definition of Borel-Moore homology that we have the following Γg,1-modules
isomorphism

HBM
m

(
Fm
(
Σ′g,1

)
,Z
)

∼= Morm (g)

for all natural numbers m and g. Hence the representation Lm (Fθ,γ0)
n

introduced in 4.3.1 as-
sociated with the universal covering induced by γ0 = id

π1(Fm(Σ′
g,1),c0) is equivalent to the mth

Moriyama representation.

5.4 The Long-Moody constructions

In [Lon94], Long and Moody consider in a very general recipee for constructing homological rep-
resentations for braid groups. This method and its variants have been studied with a functorial
point of view in [Sou19] and then generalised in [Sou18] for general families of groups. We first
review here these construction and then gives their connections to the homological functors of §2.

Let (G, ♮, 0) be a strict monoidal groupoid and (M, ♮) be a left-module over G. We consider a
functor A : 〈G,M〉 → Gr. We also assume that Obj (G) and Obj (M) are both isomorphic to the
natural numbers N and that there exist two objects 1 ∈ Obj (G) and 0̂ ∈ Obj (G) so that any object
X of M is isomorphic to the monoidal product n := 1♮n♮0. We denote by Gn the isomorphism
group Iso〈G,M〉 (n).

For R a commutative ring, let R-Alg be the category of unital R-algebras. For all groups G, the
group rings R [G] and the augmentation ideals IR[G] respectively assemble to define the group
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algebra functor R [−] : Gr → R-Alg and the augmentation ideal functor IR[−] : Gr → R-Alg. We
respectively denote by R [A] and IA the composite functors R [−] ◦ A and IR[−] ◦ A.

Then R [A] is a monoid object in Fct (〈G,M〉 , R-Mod). Hence pointwise tensor product of functors
automatically induce the tensor product functor over R [A] (see [Sou18, Definition 2.1])

− ⊗
R[A]

− : Mod-R [A] ×R [A] -Mod → Fct (〈G,M〉 , R-Mod)

where R [A] -Mod and Mod-R [A] respectively denote the categories of left and right modules R [A].
Moreover IA is a right R [A]-module and therefore defines a functor IA ⊗R[A] − : R [A] -Mod →
Fct (〈G,M〉 , R-Mod).

Recall from [MM94, Chapter 1, Section 5] that the Grothendieck construction over A denoted
by
∫

A, is the category of pairs (·c, c), where c ∈ Obj (M) and ·c is a group a group (viewed
as a category with one object); a morphism in Hom∫

A
((·c, c) , (·c′ , c′)) is a pair (α, f), where

f ∈ Hom〈G,M〉 (c, c
′) and α ∈ ·c′ . For (α, f) : (·c, c) → (·c′ , c′) and (β, g) : (·c′ , c′) → (·c′′ , c′′),

the composition is defined by (β, g) ◦ (α, f) = (β ◦ F (g) (α) , g ◦ f). Note that this definition is
dual to the one used in §2.2 for a contravariant functor. There is a canonical projection functor∫

A → 〈G,M〉, given by sending an object (·c, c) to c. A section sA : 〈G,M〉 =
∫

0 →֒
∫

A to this
projection functor is induced by the trivial natural transformation 0 → A (where 0 is the trivial
functor 〈G,M〉 → Gr). We recall from [Sou18, Proposition 2.4] that the precomposition by sA
defines a natural equivalence Fct

(∫
A, R-Mod

)
∼= R [A] -Mod.

Finally the key to define a functor which describes a Long-Moody construction is to consider a
functor ς :

∫
A → 〈G,M〉, so that the following diagram is commutative:

〈G,M〉 �
� sA //

1♮−
%%❏

❏❏
❏❏

❏❏
❏❏

❏

∫
A

ς

��

〈G,M〉 ,

where 1♮− : 〈G,M〉 → 〈G,M〉 denotes the functor defined by (1♮−) (X) = 1♮X for allX ∈ Obj (M)
and (1♮−) (φ) = id1♮φ for all morphisms φ of 〈G,M〉.

Definition 5.8 [Sou18, Section 2] The Long-Moody functor LMA,ς associated with the functors
A and ς is the

Fct (〈G,M〉, R-Mod)
s

∗
A◦ς

∗

// R [A] -Mod

IA ⊗
R[A]

−

// Fct (〈G,M〉 , R-Mod) ,

where s∗A and ς∗ respectively denote the precomposition functors sA and ς.

The appropriate data A and ς naturally arise for many families of groups in connection with topol-
ogy. We refer the reader to [Sou18, Section 3] for the introduction of non-trivial and natural such
functors for the families of braid groups{Bn}n∈N, surface braid groups {Bn (Σg,1)}n∈N, mapping

class groups {Γn,1}
n∈N and

{
Γng,1

}
n∈N

.

Recovering: We assume that there exists a topological category 〈G,M〉t
so that π0 〈G,M〉t

=
〈G,M〉 (which is the case for all the aforementioned examples). To recover the Long-Moody
constructions encoded by the functors, we restrict to the full subcategory 〈G,M〉 on the objects
isomorphic to n for some natural number n. We denote it by ·n since its skeleton is the group
Gn viewed as a category, and by An the restriction of A to ·n. We pick a topological lift of ·n

in 〈G,M〉t
, denoted by Xn. Recall from §2 the category C̃ovQ of based path-connected spaces X

with a surjection π1 (X)։ Q. Hence C̃ovπ1(Xn) encodes the universal cover of π1 (Xn). We denote

by U : C̃ovπ1(Xn) → Top∗ the functor which forgets the surjections. We require the following mild
property:
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Assumption 5.9 There exists a functor Ân : Xn → C̃ovQ which image is a topological space with
a boundary component and so that the following diagram is commutative

Xn
Ân //

π0

��

C̃ovπ1(Xn)
U // Top∗

π1

��

·n
An // Gr.

In all the examples of [Sou18], the various functors A for braid groups and mapping class groups
are induced by a geomtrical construction and a fortiori Assumption 5.9 is satisfied. We abuse the
notation LMA,ς to denote the restriction of a Long-Moody functor to the category Fct

(
·n, R-Mod

)
.

Then:

Proposition 5.10 Let M be a R-module and ρ : Gn+1 → GLR (M) be a representation. Then

there is an equivalence of representations LMA,ς (ρ) ∼= Lr1

(
Ân;M

)
.

Proof. For the topological space, we denote by C• (X, ∗) the singular chain complex of X relative

to a point p on the boundary and by ̂̃An (Xn) the universal cover of Ân (Xn). Note that the

functor ς induces the
(
R
[
π1

(
Ãn (Xn)

)]
, R
)

-bimodule structure of M . There is an isomorphism

of abelian groups:

H1


C•

(
̂̃An (Xn), p̃

)
⊗

π1

(
Ãn(Xn)

)M


 ∼= IAn

⊗
π1

(
Ãn(Xn)

)M.

The result then follows directly from the fact that the actions of both representations on the left
hand sides are induced by An and the ones on M are defined by ρ.

6 Free generating sets for representations

Most of the homological representations described in the previous sections are defined via actions
on the homology of some configuration spaces of points of a topological space. Instead of using
ordinary homology, we may instead use Borel-Moore homology of these configuration spaces. These
alternative homology groups have useful properties (see §6.1) which allow one to compute free
generating sets of the representations under consideration. We formulate this property in §6.1 and
discuss applications in §6.2.

6.1 A general lemma for Borel-Moore homology

The following lemma gives a criterion for an inclusion of spaces to induce isomorphisms on the
(possibly twisted) Borel-Moore homology of their unordered configuration spaces. It abstracts the
essential ideas of Lemma 3.1 of [Big04b] and Lemma 3.3 of [AK10].

Lemma 6.1 Let M be a compact metric space, and let

∅ 6= P ⊆ Γ ⊆ M

be subspaces, where P is finite and Γ is closed. Assume also that M and Γ are locally compact.
Then the following conditions ensure that, for all k ∈ N, the inclusion

Ck(Γ r P ) −֒→ Ck(M r P )

induces isomorphisms on Borel-Moore homology with any twisted coefficients.
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• There is a retraction π : M → Γ.
• There is a continuous map h : [0,∞) → Embne

π (M,M), where Embne
π (M,M) is the space,

with the compact-open topology, of self-embeddings of M that commute with the projection π
and are non-expanding, i.e. do not increase distances between points, such that:
◦ h0 = id,
◦ ht fixes Γ pointwise,
◦ for all s and t, we have hs(ht(M)) ⊆ ht(M),
◦ for all t, the subset ht(M) contains a neighbourhood of P ,
◦ for all sufficiently small ǫ > 0 there is a value of t such that the fibres of the projection

πt = π|ht(M) : ht(M) −→ Γ

have diameter smaller than ǫ. Moreover, its restriction to

π◦t = π|ht(M)∩π−1(ΓrP ) : ht(M) ∩ π−1(Γ r P ) −→ Γ r P

is non-expanding and admits a homotopy incl◦π◦t ≃ idht(M)∩π−1(ΓrP ) through non-expanding
maps that preserve the fibres of π◦t .

Sketch of proof. Consider the following commutative diagram of inclusions:

C̄ Ĉt Ct C

C̄ rAǫ,t Ĉt rAǫ,t Ct rAǫ,t C rAǫ,t

(B) (C) (A) (6.1)

where:

• C = Ck(M r P ),
• C̄ = Ck(Γ r P ),
• Ct = Ck(ht(M) r P ),
• Ĉt ⊆ Ct is the subset of those configurations {x1, . . . , xk} such that π(xi) 6∈ P for all i and
π(xi) 6= π(xj) for all i 6= j,

• Aǫ,t ⊆ C is the subset of those {x1, . . . , xk} ∈ C such that d(xi, xj) > ǫ for all i 6= j and, for
each i, we have either xi 6∈ ht(M) or d(π(xi), P ) > ǫ.

It suffices to show that the inclusion of pairs

(C̄, C̄ rAǫ,t) −֒→ (C,C rAǫ,t)

induces isomorphisms on twisted relative homology, for all sufficiently small ǫ > 0 and sufficiently
large t (where the lower bound on “sufficiently large t” is permitted to depend on ǫ), since the
conditions imply that the map on twisted Borel-Moore homology induced by C̄ →֒ C is the inverse
limit of these maps. One sees this as follows:

(A) The horizontal inclusions in square (A) of (6.1) are homotopy equivalences, for all t and ǫ.
This uses the homotopy given by h.

(B) For given ǫ, we may choose t sufficiently large such that the horizontal inclusions in square
(B) of (6.1) are also homotopy equivalences. This uses the homotopy from incl ◦ π◦t to the
identity assumed in the last property of the hypotheses.

(C) For given ǫ, we may choose t sufficiently large such that square (C) of (6.1) is excisive. The
non-trivial thing to check for this is that Ct ∩Aǫ,t ⊆ Ĉt, which is ensured by our assumption
about the diameter of the fibres of πt.

Remark 6.2 If M is a connected, compact surface with one boundary-component and P is a finite
subset of its interior, we may take Γ to be an embedded, connected graph in the interior of M , with
P = {p1, . . . , pn} as its vertices, with n−1 edges between pi and pi+1 for i ∈ {1, . . . , n−1} and with
1 − χ(M) edges from p1 to itself that generate H1(M). We thus see that the twisted Borel-Moore
homology of unordered configuration spaces on the punctured surface M r P is isomorphic to the
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Borel-Moore homology of unordered configuration spaces on a disjoint union of n − χ(M) open
intervals, which is free and concentrated in degree k, if we are considering the configuration space
of k unordered points. Its dimension is:

(
n+ k − χ(M) − 1

k

)
.

Thus we recover Lemma 3.1 of [Big04b] and Lemma 3.3 of [AK10].11 One may also deduce similar
results if some of the points of P lie on the boundary of the surface M , again taking Γ to be an
embedded, connected graph. See also §6.2, where some of these cases are discussed in more detail,
considering also the induced actions of the braid group resp. mapping class group. One can also
consider higher-dimensional applications of Lemma 6.1. Let W1 = (Sn × Sn) r int(D2n) and take
M = Wg = W1♮ · · · ♮W1 the g-fold boundary connected sum, for g > 1, and P a finite subset of its
interior. We may then take Γ to be an embedded CW-complex whose 0-cells are P = {p1, . . . , pn}
and which has n− 1 one-cells joining pi to pi+1 for i ∈ {1, . . . , n− 1} and 2g distinct n-cells, each
attached trivially to p1. We then deduce that the twisted Borel-Moore homology of unordered
configuration spaces on the punctured manifold Wg r P is isomorphic to the twisted Borel-Moore
homology of unordered configuration spaces on a disjoint union of n − 1 open intervals together
with 2g open n-discs.

6.2 Applications

The key result of Lemma 6.1 allows one to prove further properties for the Borel-Moore version of
the Lawrence-Bigelow representations and the Moriyama representations. More precisely, we gain
an explicit description of the spaces of representations and prove that these families of representa-
tions form functors over appropriate source categories.

6.2.1 Action the homological functors on morphisms

The isomorphism of Lemma 6.1 introduces a convenient free generating set for Borel-Moore homol-
ogy of configuration spaces. In particular, this gives a useful description and additional properties
of the Lawrence-Bigelow functors (see §4.1). This new description is a key point to prove the
polynomiality results of §8.1.

We fix two natural numbers n > 0 and m > 1. Let Pm (n) be the set of partitions of m into n
numbers:

Pm (n) =



(ω1, . . . , ωn) | ωi ∈ N and

∑

16i6n

ωi = m



 if n > 1 and Pm (0) = ∅.

Considering the mth Lawrence-Bigelow functor using Borel-Moore homology LBBM
m , we denote

by (pi, pi+1) the open interval joining the punctures pi and pi+1 for all i ∈ {1, . . . , n− 1}. The
disjoint union

In :=
∐

16i6n−1

(pi, pi+1) if n > 1 and I0 = I1 = ∅

is the convenient subset of the punctured disc Dn to apply Lemma 6.1. We represent this subset
by the following picture:

p1 p2 p3 p4 pn−1 pn
· · · .

Then the configuration space Cm (In) is homeomorphic to a disjoint union of
(
m+ n− 2

m

)
= Card (Pm (n− 1))

11 There is a small typo in the statement of Lemma 3.1 of [Big04b]: the top line of the binomial coefficient should
be n + m − 2 rather than n + m − 1.
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open m-balls which are parameterised by (n− 1)-tuples (ω1, . . . , ωn−1) of natural numbers so that
the i-th interval (pi, pi+1) contains ωi points from the configuration and ω1 +ω2 + · · ·+ωn−1 = m.
We deduce that we have an isomorphism of Z [Am]-modules

LBBM
m (n) ∼=

⊕

ω∈Pm(n−1)

Z [Am]ω (6.2)

if n > 1 and LBBM
m (0) = 0.

Moreover, the restriction to these subsets allows to fully understand the action of the morphisms
of 〈β,β〉 on the configuration spaces given by the Lawrence-Bigelow functors. Recall that the
morphisms of the category 〈β,β〉 are composite of automorphisms and some injections: it is thus
enough to consider the action of the generators of the braid groups and the injection [1, id1+n] to
fully describe the Lawrence-Bigelow functors on morphisms.

First, for each the Artin generator σi with i ∈ {1, . . . , n− 1}, the action of σi on each interval
(pi, pi+1) is defined by the classical action of the braid group (seen as a mapping class group) on
the fundamental group of the n-punctured disc. Hence this action is described for the whole subset
In by the following picture.

σi
p1 pi−1 pi pi+1 pi+2 pn

· · · · · ·
p1 pi−1

pi

pi+1

pi+2

pn
· · · · · ·

Let θm,n (σi) be the induced homeomorphism of the configuration space Cm (In). Then LBBM
m (σi)

is the morphism on Borel-Moore homology induced by the unique lift of this homeomorphism.
Therefore the action of LBBM

m (σi) on each Borel-Moore homology class can be represented by the
previous picture of the action of σi on the set In where each interval is labelled with the number
of configurations points which sit inside.

On the other hand, the morphism LBBM
m ([1, idn+1]) is the induced morphism on Borel-Moore

homology of the unique lift eφm,n of the configuration space map em,n : Cm (Dn) → Cm (D1+n)
defined by adding a puncture on the left to the n-punctured surface Dn. By Lemma 6.1, this is
equivalent to the morphism on Borel-Moore homology induced by the embedding of In into I1+n

as the n − 1 last intervals, i.e. sending the interval (pi, pi+1) of In to the interval (pi+1, pi+2) of
In+1 for each i ∈ {1, . . . , n− 1}.

[1, idn+1]p1 p2 p3 pn−1 pn
· · ·

p1 p2 p3 p4 pn pn+1
· · ·

At the level of the sets of partitions, the map em,n induces the injective map Pm (em,n) : Pm (n− 1) →֒
Pm (n) sending (ω1, . . . , ωn−1) to (0, ω1, . . . , ωn−1) for n > 2, and the trivial set maps Pm (em,0) :
∅ → ∅ and Pm (em,1) : ∅ → Pm (1) = {(m)}. These induce injective morphisms (which is trivial
for n = 0) ⊕

ω∈Pm(n−1)

Z [Am]ω →֒
⊕

ω∈Pm(n)

Z [Am]ω

that we denote by ιPm(n)\Pm(n−1)⊕idPm(n−1) for simplicity. Hence LBBM
m ([1, id1+n]) is equivalent

to this injection and its action on each Borel-Moore homology class can be represented by the
above picture of the embedding of In in In+1 where each interval is labelled with the number of
configurations points which sit inside (0 being automatically the one of the interval (p1, p2) of the
picture on the right-hand side).

6.2.2 Recovering of some results of [Mor07]:

Recall from §5.3.2 the representation Morm (g) with fixed g > 1 of the mapping class group Γg,1
introduced by Moriyama [Mor07] is isomorphic to an homological representation of §4.3.1 which
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representation space is HBM
m

(
Fm
(
Σ′g,1

)
,Z
)
, and defines a functor Morm : M+,gen

2 → Z-Mod
with m > 1 a natural number. Lemma 6.1 then implies additional properties on the space of this
representation. For n > 0 a natural number, let Qm (n) be the set of arrangements of m into 2n
numbers:

Qm (n) = Sm × Pm (2n) .

Note that m! ·

(
m+ n− 1

m

)
= Card (Qm (n)).

Lemma 6.3 For all natural numbers m and k, there is an abelian group isomorphism

HBM
k

(
Fm
(
Σ′g,1

)
,Z
)

∼=





0 if k 6= m;
⊕

ω∈Qm(g)

Zω = Z⊕
(2g+m−1)!

(2g−1)! if k = m.

Proof. First of all, we recall that for X a topological space homeomorphic to the complement of
a closed subcomplex S in a finite CW -complex Y , the Borel-Moore homology group HBM

∗ (X,L)
with local coefficient L is equivalent to the relative homology HBM

∗ (Y, S; L). The quotient map
Σ×mg,1 → Σ×mg,1 /Sm defines a regular cover of Σ×mg,1 /Sm path connected space. Hence it induces

the locally trivial fibration Sm → Σ×mg,1 → Σ×mg,1 /Sm, together with the compatible locally trivial
fibration of subspaces Sm → Dm (Σg,1) ∪ Am (Σg,1, p0) → Dm (Σg,1) ∪ Am (Σg,1, p0) /Sm. Then
the associated Serre spectral sequence for relative homology (see for instance [DK01, Theorem
9.33]) has only one non-trivial row. Hence, for all natural numbers p > 0, we obtain the following
isomorphism:

HBM
p

(
Fm
(
Σ′g,1

)
,Z
)

∼= HBM
p

(
Cm

(
Σ′g,1

)
;Z [Sm]

)
.

Let W2g be the wedge of 2g copies of the oriented circle S1 with the base point p0 which define
a free generating set of the fundamental group of Σg,1. Then applying Lemma 6.1 to the subset
W2g \ {p0} of Σ′g,1 (which is homeomorphic to the disjoint union of 2g open intervals), we have:

Hm

(
Cm

(
Σ′g,1

)
,Z
)

∼= ⊕
ω∈Pm(n)

Z [Sm]ω
∼=

⊕

ω∈Qm(g)

Zω.

This result recovers [Mor07, Proposition 3.3, 4.2 and 4.3] using the Γg,1-modules isomorphism
HBM
m

(
Fm
(
Σ′g,1

)
,Z
)

∼= Morm (g), the techniques used in [Mor07] being different from the ones
presented here. This isomorphism is crucial to prove the polynomiality results of §8.2.

Remark 6.4 For each natural number m and g, the homology groups HBM
m

(
Fm
(
Σ′g,1

)
/Sm,Z

)

is isomorphic to Symn (H1 (Σg,1,Z)) where Symn denotes the nth symmetric tensor power.

Finally, Lemma 6.3 allows us to prove that the functor Morm lifts to the category
〈
M+,gen

2 ,M+,gen
2

〉
:

Lemma 6.5 The functor Morm extends to Morm :
〈
M+,gen

2 ,M+,gen
2

〉
→ Z-Mod by assigning for

all Σg,1,Σg′,1 ∈ Obj
(
M+,gen

2

)
:

Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
= ι

Z
⊕(Qm(g′+g)\Qm(g)) ⊕ idZ⊕Qm(g) .

Proof. Relation (3.1) of Lemma 3.5 is trivially satisfied from the definition of Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
.

We consider ϕ ∈ Γg,1 and ϕ′ ∈ Γg′,1. It follows from Lemma 6.3 that Morm (ϕ) is an automor-

phism of Z⊕Qm(g) in Z⊕(Qm(g′+g)\Qm(g)) ⊕ Z⊕Qm(g) ∼= Z⊕Qm(g′+g) and that Morm

(
idΣg′,1

♮ϕ
)

=

id
Z

⊕(Qm(g′+g)\Qm(g)) ⊕ Morm (ϕ). Hence

Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
◦ Morm (ϕ) = Morm

(
idΣg′,1

♮ϕ
)

◦ Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
.

68



Also, it follows from Lemma 6.3 that Morm
(
ϕ′♮idΣg,1

)
is an automorphism of Z⊕Qm(g′) →֒

Z⊕(Qm(g′+g)\Qm(g)) in Z⊕(Qm(g′+g)\Qm(g)) ⊕ Z⊕Qm(g) = Z⊕Qm(g′+g). In particular, it follows
from the definition of ι

Z
⊕(Qm(g′+g)\Qm(g)) that

Morm
(
ϕ′♮idΣg,1

)
◦ Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
= Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
.

Hence, we deduce that

Morm (ϕ′♮ϕ) ◦ Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
= Morm

([
Σg′,1, idΣg′,1♮Σg,1

])
◦ Morm (ϕ) .

Hence Relation (3.2) of Lemma 3.5 is satisfied, which implies the desired result.

7 Notions of polynomiality

In this section, we review the notions of (very) strong and weak polynomial functors with respect
to the framework of the present paper. In [DV19, Section 1], Djament and Vespa introduce these
notions in the context of a functor category Fct (M,A), where M is a for symmetric monoidal
(small) categories where the unit is an initial object and A is a Grothendieck category. They define
strong polynomial functors to extend the classical concept of polynomial functors, which were first
defined using cross effects by Eilenberg and Mac Lane in [EM54] for functors on module categories.
In particular, one reason for interesting in strong polynomial functors is their homological stability
properties studied in [RW17]. Furthermore, the notion of weak polynomial functor is first intro-
duced in [DV19, Section 1] and happens to be more appropriate to study the stable behavior for
objects of the category Fct (M,A) (see [DV19, Section 5] and [Dja17]) and give a new tool for
classifying the families of representations of families of groups (see §7.2 and §8.3.2). Then, the
notions of strong and weak polynomial functors are extended in [Sou18, Section 4] to the larger
setting where M is a full subcategory of a pre-braided monoidal category where the unit is an
initial object. We also refer to [Pal17] for a comparison of the various instances of the notions of
twisted coefficient system and polynomial functor.

This section thus recollects the definitions and properties of [Sou19, Section 3] and [Sou18, Section
4] to the present slightly larger framework, the various proofs being mutatis mutandis generalisa-
tions of these previous works.

For the remainder of §7, we fix a left-module (M, ♮) over strict monoidal groupoid
(G, ♮, 0), where we assume that M is a groupoid, (G, ♮, 0) has no zero divisors and
AutG(0) = {id0}. We also fix a Grothendieck category A. We recall that therefore the
functor category Fct (M,A) is a Grothendieck category.

7.1 Strong and very strong polynomial functors

Let X be an object of G. Let τX : Fct (〈G,M〉 ,A) → Fct (〈G,M〉 ,A) be the functor defined by
τX (F ) = F (n♮−). It is called the translation functor. Let iX : Id → τX be the natural transforma-
tion of Fct (M,A) induced by precomposition with the morphisms {[X, idX♮A] : 0♮Y → X♮A}

A∈Ob(M).

We define δX = coker (iX), called the difference functor, and κX = ker (iX), called the evanes-
cence functor. We recall the following elementary properties of the translation, evanescence and
difference functors:

Proposition 7.1 The translation functor τX is exact and induces the following exact sequence of
endofunctors of Fct (〈G,M〉 ,A):

0 −→ κX
ΩX−→ Id

iX−→ τX
∆X−→ δX −→ 0. (7.1)

Moreover, for a short exact sequence 0 −→ F −→ G −→ H −→ 0 in the category Fct (〈G,M〉 ,A),
there is a natural exact sequence in the category Fct (〈G,M〉 ,A):

0 −→ κX (F ) −→ κX (G) −→ κX (H) −→ δX (F ) −→ δX (G) −→ δX (H) −→ 0. (7.2)

69



In addition, for Y another object of G, the functors τX and τY commute up to natural isomorphism
and they commute with limits and colimits; the difference functors δX and δY commute up to
natural isomorphism and they commute with colimits; the functors κX and κY commute up to
natural isomorphism and they commute with limits; the functor τX commute with the functors δX
and κX up to natural isomorphism.

Notation 7.2 We respectively denote the iterations τX · · · τXτX︸ ︷︷ ︸
k times

and δX · · · δXδX︸ ︷︷ ︸
k times

by τkX and δkX .

Then, we can define the notions of strong and very strong polynomial functors using Proposition
7.1. Namely:

Definition 7.3 We recursively define on d ∈ N the categories of strong polynomial functors
Polstrd (〈G,M〉 ,A) and very strong polynomial functors VPold (〈G,M〉 ,A), both of degree less
than or equal to d, to be the full subcategories of Fct (〈G,M〉 ,A) as follows:

1. If d < 0, Polstrongd (〈G,M〉 ,A) = VPold (〈G,M〉 ,A) = {0};

2. if d > 0, the objects of Polstrd (〈G,M〉 ,A) are the functors F such that the functor δX (F )
is an object of Polstrongd−1 (〈G,M〉 ,A); the objects of VPold (〈G,M〉 ,A) are the objects F of
Pold (〈G,M〉 ,A) such that κ1 (F ) = 0 and the functor δ1 (F ) is an object of VPold−1 (〈G,M〉 ,A).

For an object F of Fct (〈G,M〉 ,A) which is strong (respectively very strong) polynomial of degree
less than or equal to n ∈ N, the smallest natural number d 6 n for which F is an object of
Polstrd (〈G,M〉 ,A) (respectively VPold (〈G,M〉 ,A)) is called the strong (respectively very strong)
degree of F .

Very strong polynomial functors turn out to be very useful for homological stability problems: for
instance Randal-Williams and Wahl [RW17] prove homological stability results for several families
of groups, including surface braid groups, loop braid groups and mapping class groups of surfaces,
given by very strong polynomial functors. We develop this point in §8.3.1.

Finally, we recall useful properties of the categories associated with strong and very strong poly-
nomial functors.

Proposition 7.4 Let d be a natural number. The category Polstrd (〈G,M〉 ,A) is closed un-
der the translation functor, under quotient, under extension and under colimits. The category
VPold (〈G,M〉 ,A) is closed under the translation functor, under normal subobjects and under
extension.

Let F be an object of Fct (〈G,M〉 ,A). Then, F is an object of Polstrong0 (〈G,M〉 ,A) if and
only if it is the quotient of a constant object of Fct (〈G,M〉 ,A). Moreover, F is an object of
VPol0 (〈G,M〉 ,A) if and only if it is isomorphic to a constant object of Fct (〈G,M〉 ,A).

Finally, we assume that there exists a finite set E of objects of the category 〈G,M〉 such that for
all objects m of 〈G,M〉, m is isomorphic to a finite monoidal product of objects of E. Then, an
object F of Fct (〈G,M〉 ,A) belongs to Polstrd (〈G,M〉 ,A) (respectively to VPold (〈G,M〉 ,A)) if
and only if δe (F ) is an object of Polstrongd−1 (〈G,M〉 ,A) (respectively κe (F ) = 0 and δe (F ) is an
object of VPoln−1 (〈G,M〉 ,A)), for all objects e of E.

7.2 Weak polynomial functors

We deal here with the concept of weak polynomial functor, introduced in [DV19, Section 2] for
the category Fct (S,A) where S is a symmetric monoidal category where the unit is an initial
object and A is a Grothendieck category, and extended in [Sou18, Section 4] when S is pre-braided
monoidal. We review the definition and properties of weak polynomial functors, which extends
verbatim to the present larger setting from those of [Sou18, Section 4].

Let F be an object of Fct (〈G,M〉 ,A). The subfunctor
∑

n∈Ob(β)

κXF of F is denoted by κ (F ). Let

S (〈G,M〉 ,A) be the full subcategory of Fct (〈G,M〉 ,A) of the objects F such that κ (F ) = F .
We have the following fundamental properties:
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Proposition 7.5 The category S (〈G,M〉 ,A) is a thick subcategory of Fct (〈G,M〉 ,A) and it is
closed under colimits.

The thickness property of Proposition 7.5 ensures that we can consider:

Definition 7.6 Let St (〈G,M〉 ,A) be the quotient category

Fct (〈G,M〉 ,A) /S (〈G,M〉 ,A) .

The canonical functor associated with this quotient is denoted by π〈G,M〉 : Fct (〈G,M〉 ,A) →
Fct (〈G,M〉 ,A) /S (〈G,M〉 ,A), it is exact, essentially surjective and commutes with all colimits
(see [Gab62, Chapter 3]). The right adjoint functor of π〈G,M〉 is denoted by

s〈G,M〉 : Fct (〈G,M〉 ,A) /S (〈G,M〉 ,A) → Fct (〈G,M〉 ,A)

and called the section functor (see [Gab62, Section 3.1]).

The following proposition recalls the induced translation and difference functors on the category
St (〈G,M〉 ,A).

Proposition 7.7 Let x be an object of X. The translation functor τX and the difference functor
δX of Fct (〈G,M〉 ,A) respectively induce an exact endofunctor of St (〈G,M〉 ,A) which commute
with colimits, respectively again called the translation functor τX and the difference functor δX . In
addition:

1. The following relations hold: δX ◦ π〈G,M〉 = π〈G,M〉 ◦ δX and τX ◦ π〈G,M〉 = π〈G,M〉 ◦ τX .

2. The exact sequence ( (7.1)) induces a short exact sequence of endofunctors of St (〈G,M〉 ,A):

0 −→ Id
iX−→ τX

∆n−→ δX −→ 0. (7.3)

3. For another object X ′, the endofunctors δX , δX′ , τX and τX′ of St (〈G,M〉 ,A) pairwise
commute up to natural isomorphism.

Definition 7.8 We recursively define on d ∈ N the category of polynomial functors of degree less
than or equal to d, denoted by Pold (〈G,M〉 ,A), to be the full subcategory of St (〈G,M〉 ,A) as
follows:

1. If d < 0, Pold (〈G,M〉 ,A) = {0};

2. if d > 0, the objects of Pold (〈G,M〉 ,A) are the functors F such that the functor δ1 (F ) is
an object of Pold−1 (〈G,M〉 ,A).

For an object F of St (〈G,M〉 ,A) which is polynomial of degree less than or equal to d ∈ N, the
smallest natural number n 6 d for which F is an object of Pold (〈G,M〉 ,A) is called the degree of
F . An object F of Fct (〈G,M〉 ,A) is weak polynomial of degree at most d if its image π〈G,M〉 (F )
is an object of Pold (〈G,M〉 ,A). The degree of polynomiality of π〈G,M〉 (F ) is called the (weak)
degree of F .

Finally, let us recall some useful properties of the categories of weak polynomial functors.

Proposition 7.9 Let d be a natural number. As a subcategory of St (〈G,M〉 ,A), the category
Pold (〈G,M〉 ,A) is thick and closed under limits and colimits. Furthermore, there is an equivalence
of categories A ≃ Pol0 (〈G,M〉 ,A).

Finally, we assume that there exists a finite set E of objects of the category 〈G,M〉 such that for
all objects m of 〈G,M〉, m is isomorphic to a finite monoidal product of objects of E. Let F be an
object of St (〈G,M〉 ,A). Then, the functor F is an object of Pold (〈G,M〉 ,A) if and only if the
functor δe (F ) is an object of Pold−1 (〈G,M〉 ,A) for all objects e of E.
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Quotient categories: A fundamental reason for the notion of of weak polynomial functors to
be introduced in [DV19] is that, contrary to the category Polstrongd (〈G,M〉 ,A), the category
Pold (〈G,M〉 ,A) is localizing. This allows to define the quotient categories

Pold+1 (〈G,M〉 ,A) /Pold (〈G,M〉 ,A) .

A refined description of the category Polstrongd (〈G,M〉 ,A) is out of reach generally speaking even
for small d. On the contrary, understanding the quotient categories Pold+1 (〈G,M〉 ,A) /Pold (〈G,M〉 ,A)
is more attainable: for example, when G = M = FB (the category of finite sets and bijections)
[DV19, Proposition 5.9] gives a general equivalence of these quotients in terms of module categories.

Hence these quotients provide a new classifying tool to study polynomial functors and therefore
representations of families of groups: this will be illustrated in §8.3.2.

8 Polynomiality of some homological functors

In this section, we study the (very) strong and weak polynomiality of some homological func-
tors. Indeed, we prove that the Lawrence-Bigelow functors introduced in §4.1 and the Moriyama
functors defined in §4.3.2 are both very strong and weak polynomial. The use of Borel-Moore
homology and of the free generating sets studied in §6 are fundamental tools to establish these
properties. Consequently, we prove homological stability results for braid groups with coefficients
in the Lawrence-Bigelow representations and for mapping class groups with coefficients in the
Moriyama representations. Also we gain a better understanding of the quotient categories for
weak polynomial functors associated to these families of groups.

8.1 The Lawrence-Bigelow functors

The construction of §4.1 and identifications of §5.1 introduced the mth Borel-Moore Lawrence-
Bigelow functor

LBBM
m : 〈β,β〉 → Z [Am] -Mod

for each natural numbers m > 1, where A1 = Z and Am = Z2 if m > 2. This functor encodes the
Lawrence-Bigelow representations (using Borel-Moore homology) of the braid groups {Bn}n∈N.
For the remainder of §8.1, we fix the natural numbers m > 1. The aim of this section is
to prove the following polynomiality results for this functor.

Theorem 8.1 The Lawrence-Bigelow functor LBBM
1 : 〈β,β〉 → Z [A1] -Mod is strong polynomial

of degree 2 and weak polynomial of degree 1. If m > 2 then the Lawrence-Bigelow functor LBBM
m :

〈β,β〉 → Z [Am] -Mod is both very strong and weak polynomial of degree m.

Remark 8.2 Recall from Remark 5.6 that LBBM
1 ⊗C is the reduced Burau functor Bur and that

LBBM
2 ⊗ C is the Lawrence-Krammer functor LK. Hence the result of Theorem 8.1 for strong

polynomiality recovers those of [Sou19, Section 3.3], i.e. that Bur is strong polynomial of degree
2 and Lawrence-Krammer is very strong polynomial of degree 1.

The monoidal product ♮ : β × β → β being defined by the usual addition for the objects, any
object of braid groupoid β is isomorphic to a finite sum of 1. Hence by Propositions 7.4 and 7.9,
it is enough to study the natural transformation i1 to prove the polynomiality results. Our goal is
to study the kernel and cokernel of the natural transformation i1LB

BM
m .

Following Proposition 7.1, the natural transformation i1LB
BM
m is defined for all natural numbers

n by the morphism
(
i1LB

BM
m

)
n

= LBBM
m (ι1♮idn) = LBBM

m ([1, idn+1]) ,

and fits into the following exact sequence in the category Fct (〈β,β〉 ,Z [Am] -Mod):

0 // κ1LB
BM
m

// LBBM
m

i1LB
BM
m // τ1LB

BM
m

∆1LB
BM
m // δ1LB

BM
m

// 0 . (8.1)
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Following §6.2, the use of Borel-Moore homology allows to describe the morphism LBBM
m ([1, idn+1])

in terms of sets of partitions of copies of the group ring Z [Am]. More precisely, recall from §6.2.1
that for all natural numbers n > 1

LBBM
m (n) ∼=

⊕

ω∈Pm(n−1)

Z [Am]ω and LBBM
m (0) = 0

and therefore that the morphism LBBM
m ([1, idn+1]) is equivalent to the injection of Z [Am]-modules

ιPm(n)\Pm(n−1) ⊕ idPm(n−1) :
⊕

ω∈Pm(n−1)

Z [Am]ω →֒
⊕

ω∈Pm(n)

Z [Am]ω .

induced by the injective map Pm (n− 1) →֒ Pm (n) sending (ω1, . . . , ωn−1) to (0, ω1, . . . , ωn−1) if
n > 2 and the trivial morphism if n = 0 and n = 1.

There are then two possible recursive ways to prove Theorem 8.1: either we can work on the
dimensions of the difference functor with respect to the sets of partitions as detailed in §8.1.1, or
we can establish a key original relation between the difference functor of the mth Lawrence-Bigelow
functor and a translation of the (m− 1)th one as shown in §8.1.2.

8.1.1 First proof: dimensional argument on the sets of partitions

This first proof consists in studying the partitions subsets which index the number of copies of
Z [Am] in the direct sum of the successive difference functors of LBBM

m . Let k be a natural number.
For each natural number n, we consider the set

Pδk

m (n) := {(ω1, . . . , ωk+n−1) ∈ Pm (k + n− 1) | ∀i ∈ {1, . . . , k} , 1 6 ωi 6 m} ,

with the convention that it is the empty set if n + k 6 1. Then there is a canonical injection

Pδk

m (n) →֒ Pδk

m (n+ 1) defined by sending (ω1, . . . , ωk+n−1) to (0, ω1, . . . , ωk+n−1) which induces a
canonical bijection

Pδk+1

m (n) ∼= Pδk

m (n+ 1) \ Pδk

m (n) . (8.2)

This injective set map also defines an injective Z [Am]-module morphism

Pk
m,n :

⊕

ω∈Pδk
m (n)

Z [Am]ω →֒
⊕

ω∈Pδk
m (n+1)

Z [Am]ω

for n > 1 and the trivial morphism Pk
m,0. These sets describe the successive difference functors of

the mth Lawrence-Bigelow functor:

Proposition 8.3 For all natural numbers n, there is an isomorphism of Z [Am]-modules

δk1LB
BM
m (n) ∼=

⊕

ω ∈ Pδk

m (n)

Z [Am]ω

and the morphism
(
i1

(
δk−1

1 LBBM
m

))
n

is equivalent to the injection Pk−1
m,n for all natural numbers

1 6 k 6 m+ 1 if m > 2 and for k = 1 if m = 1.

Proof. We proceed by induction on k. For k = 1, we already know from §6.2.1 that
(
i1LB

BM
m

)
n

is equivalent to the injection P0
m,n and it follows from the universal property of the cokernel that

δ1LB
BM
m (n) ∼=

⊕

ω ∈ Pδ1

m (n)

Z [Am]ω .

Now we assume that the results of Proposition 8.3 are true for some fixed k > 1. Recall from

Proposition 7.1 that, by the definition of the difference functor, the morphism
(
i1

(
δk1LB

BM
m

))
n

is

73



canonically induced by the morphism τ1δ
k−1
1 LBBM

m ([1, id1+n]). The inductive hypothesis gives the
equivalence between δk−1

1 LBBM
m ([1, id1+n]) and Pk−1

m,n . Using the bijection (8.2), the image of Pk−1
m,n

induced by the canonical surjections Pδk−1

m (n+ 1) ։ Pδk

m (n) and Pδk−1

m (n+ 2) ։ Pδk

m (n+ 1) is

the morphism Pk
m,n: hence

(
i1

(
δk1LB

BM
m

))
n

is equivalent to the injection Pk
m,n.

Then the following diagram is commutative:

κ1δ
k
1LB

BM
m (n) �

�
// δk1LB

BM
m (n)

(i1(δk
1LB

BM
m ))

n //

∼

��

τ1δ
k
1LB

BM
m (n)

∼

��

// // δk+1
1 LBBM

m (n) .

⊕
ω∈Pδk

m (n)

Z [Am]ω
� �

Pk
m,n

//
⊕

ω∈Pδk
m (n+1)

Z [Am]ω

We deduce that
δk+1

1 LBBM
m (n) ∼=

⊕

ω ∈ Pδk+1

m (n)

Z [Am]ω

using the universal property of the cokernel and the bijection (8.2).

We are now ready to prove Theorem 8.1. First we deduce from Proposition 8.3 that δ1LB
BM
1 (n) =

Z [A1] for all n > 1 and δ1LB
BM
1 (0) = 0: a fortiori δ2

1LB
BM
1 (n) = 0 for all n > 1 and

δ2
1LB

BM
1 (0) = Z [A1]. Hence: δ3

1LB
BM
1 = 0 and therefore LBBM

1 is strong polynomial of de-
gree two; δ2

1LB
BM
1 is a stably null object of the category Fct (〈β,β〉 ,Z [A1] -Mod) and a fortiori

LBBM
1 is weak polynomial of degree one since δ1 ◦ π〈β,β〉 = π〈β,β〉 ◦ δ1 by Proposition 7.7.

Let us now fix m > 2. We deduce from Proposition 8.3 that the morphisms
(
i1

(
δm1 LBBM

m

))
n

is equivalent to the injection Pm
m,n for all natural numbers n. Note that the sets Pδm

m (n) and

Pδm

m (n+ 1) are actually isomorphic: the injection Pm
m,n is therefore a bijection. Hence the natural

transformation i1

(
δm1 LBBM

m

)
is a natural equivalence between non-null objects. Again the fact

that δ1 ◦ π〈β,β〉 = π〈β,β〉 ◦ δ1 implies that the functor LBBM
m : 〈β,β〉 → Z [Am] -Mod is weak

polynomial of degree m. Also, for all natural numbers k such that 1 6 k 6 m, the evanescence

functor κ1δ
k
1LB

BM
m is null since

(
i1

(
δk1LB

BM
m

))
n

is an injection by Proposition 8.3. Then the

functor δk1LB
BM
m is very strong polynomial polynomial of degree m− k which ends the proof.

8.1.2 Second proof: a key relation between Lawrence-Bigelow functors

The key of this second method is the result of Theorem 8.5: the difference functor of the mth
Lawrence-Bigelow functor is isomorphic a translation of the (m− 1)th one. The proof ot Theorem
8.1 is then a straightforward induction on the degree of polynomiality. In addition this isomorphism
gives an original relation between two different Lawrence-Bigelow functors.

Using the relations on Borel-Moore homology classes detailed in §9, we have

m

=

m∑

k=0 k m − k
(8.3)

For all natural numbers n > 1, we define pm (n) : Pδ1

m (n) ∼= Pm−1 (n) to be the set isomorphism

(ω1, . . . , ωn) 7−→ (ω1 − 1, . . . , ωn)

and (pm)0 to be the trivial set map.
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Notation 8.4 For consistency of the exposition we denote by LBBM
0 : 〈β,β〉 → Z [A1] -Mod the

subobject of the constant functor at Z [A1] such that LBBM
0 (0) = LBBM

0 (1) = 0. For convenience,
we abuse the notation and write τ1LB

BM
i for the functor τ1LB

BM
i ⊗

Z[A1]
Z [A2] for i = 0, 1.

It follows from §6.2.1 that the morphisms {pm (n)}n∈N induce Z [Am]-modules isomorphisms

{
p̂m (n) : δ1LB

BM
m (n)

∼
→ τ1LB

BM
m−1 (n)

}
n∈N

.

induced by forgetting a point of the configuration space in the first interval of I1+n. These iso-
morphisms allow to uncover the following key relation between the difference functor of the mth
Lawrence-Bigelow functor and the (m− 1)th Lawrence-Bigelow functor.

Theorem 8.5 The isomorphisms
{
p̂m (n)

}
n∈N

define an isomorphism p̂m : δ1LB
BM
m

∼
→ τ1LB

BM
m−1

in the category Fct (〈β,β〉 ,Z [Am] -Mod).

Proof. First, we prove that the morphisms
{
p̂m (n)

}
n∈N

define an isomorphism in the category

Fct (β,Z [Am] -Mod). Recall from Proposition 7.1 that the definition of the difference functor
δ1LB

BM
m on the morphisms of 〈β,β〉 of is formally induced by τ1LB

BM
m . We fix a natural number

n > 2 (the proof being trivial for n = 0 and n = 1). We consider the Artin generator σi of Bn

for some i ∈ {1, . . . , n− 1}. Using the work of §6.2.1, the morphism τ1LB
BM
m (σi) (and a fortiori

δ1LB
BM
m (σi)) is the morphism in Borel-Moore homology induced by the action of σi+1 on the

union of intervals I1+n. Hence it is enough to prove that forgetting a point of the configuration
in the first interval (p1, p2) before or after the twisting by σi+1 is exactly the same operation at
the level of the Borel-Moore homology classes. Actually, a quick investigation shows that the only
non-trivial case is for i = 1: the property is indeed clear if i > 2 since σi+1 acts trivially on (p1, p2)
in this case. The pictures of Figure 8.1 represent the action of σ2 by the Lawrence-Bigelow functor
on a Borel-Moore homology class on the covering of Cm (I1+n) for those on the left-hand side and
of Cm−1 (I1+n) for those on the right-hand side. The red cross in the first interval denotes an
additional configuration point of the first interval in Cm (Dn+1) compared to Cm−1 (Dn+1): the
morphism p̂m (n) corresponds to forgetting this additional point. It follows from Relation (8.3)
that the diagram of Figure 8.1 is commutative (note that one of the partitions (corresponding to
k = 0) misses since we are in δ1). Hence p̂m (n) ◦ δ1LB

BM
m (σi) = τ1LB

BM
m−1 (σi) ◦ p̂m (n) for all

i ∈ {1, . . . , n− 1}.

Now we prove that p̂m is a natural transformation in Fct (〈β,β〉 ,Z [Am] -Mod) by using Lemma
3.6. We fix a natural number n > 1 (the proof being trivial for n = 0) and recall that

τ1LB
BM
m ([1, idn+1]) = LBBM

m

(
σ−1

1

)
◦ LBBM

m ([1, idn+2]) .

Recall from §6.2.1 that LBBM
m ([1, idn+2]) is the morphism on Borel-Moore homology induced by

the embedding of I1+n into I2+n as the n − 1 last intervals: this amounts to sending the interval
(pi, pi+1) of In+1 to the interval (pi+1, pi+2) of In+2 for each i ∈ {1, . . . , n}. Therefore there is
no configuration point on the first interval (p1, p2) of the image of LBBM

m ([1, idn+2]). Moreover,
LBBM

m

(
σ−1

1

)
is the morphism in Borel-Moore homology induced by the action of σ2 on I2+n. The

pictures of Figure 8.2 represent the composite of these two morphisms by the Lawrence-Bigelow
functor on a Borel-Moore homology class on the covering of Cm (I1+n) for those on the left-hand
side and of Cm−1 (I1+n) for those on the right-hand side. Again the red cross denotes an additional
configuration point, the morphism p̂m (n) corresponding to forgetting it. Then we have to prove
that the composite LBBM

m

(
σ−1

1

)
◦LBBM

m ([1, idn+2]) commutes with the operation of forgetting a
point of the configuration space in the interval (p1, p2) at the level of the Borel-Moore homology
classes. Again Relation (8.3) gives the commutativity of the diagram of Figure 8.2 (note again that
one of the partitions (corresponding to k = 0) misses since we are in δ1). Hence a straightforward
induction on the natural number k > 1 gives that

p̂m (n) ◦ δ1LB
BM
m ([k, idn+1]) = τ1LB

BM
m−1 ([k, idn+1]) ◦ p̂m (n) .

Hence Relation (3.3) of Lemma 3.6 is satisfied for all natural numbers n: this ends the proof.
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p̂m (n)

δ1LB
BM
m (σ1) τ1LB

BM
m−1(σ1)

p̂m (n)

p1 p2 p3 p4 pn pn+1
· · ·

p1 p2 p3 p4 pn pn+1
· · ·

p1

p2

p3

p4

pn pn+1
· · ·

p1

p2

p3

p4

pn pn+1
· · ·

p1 p2
p3

p4

pn pn+1
· · ·

k m− k

p1 p2
p3

p4

pn pn+1
· · ·

k − 1 m− k

m∑

k=1

m∑

k=1

Figure 8.1

p̂m (n)

LBBM
m ([1, idn+2]) LBBM

m−1([1, idn+2])

LBBM
m (σ−1

1 ) LBBM
m−1(σ−1

1 )

p̂m (n)

p1 p2 p3 p4 pn pn+1
· · ·

p1 p2 p3 p4 pn pn+1
· · ·

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

k m− k

p1 p2 p3 p4 p5 pn+1 pn+2
· · ·

k − 1m− k

m∑

k=1

m∑

k=1

Figure 8.2
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Let us now prove Theorem 8.1. Using the commutation property of δ1 and τ1 of Proposition 7.1,
we deduce from Theorem 8.5 that for all natural numbers 0 6 k 6 m

δk1

(
LBBM

m

)
∼= τk1

(
LBBM

m−k

)
. (8.4)

For m = 1, note that τ1LB
BM
0 is the subobject of the constant functor at Z [A1] such that

τ1LB
BM
0 (0) = 0. Hence LBBM

1 is weak polynomial of degree 1 and δ2
1LB

BM
1 is the functor which

unique non-null value is δ2
1LB

BM
1 (0) = Z [A1]. A fortiori LBBM

1 is strong polynomial of degree 2.

For m > 2, first note that for all natural numbers l > 2, τ2
1LB

BM
0 = τ l1LB

BM
0 is a constant

functor. It thus follows from the isomorphism (8.4) with k = m that LBBM
m is both strong and

weak polynomial of degree m.

From the definition of the morphisms LBBM
m ([1, idn+1]) for all natural numbers n, we know that

κ1

((
LBBM

m

))
= 0. Using the isomorphism (8.4), the commutation property of κ1 and τ1 of

Proposition 7.1 implies that κ1

(
δk1

(
LBBM

m

))
= 0 for all natural numbers 1 6 k 6 m: this proves

that LBBM
m is very strong polynomial of degree m.

8.2 The Moriyama functors

We recall that the construction of §4.3.2, identification of §5.3.2 and properties of §6.2.2 prove that
the representations of the mapping class groups considered in [Mor07] define the mth Moriyama
functor

Morm :
〈
M+,gen

2 ,M+,gen
2

〉
→ Z-Mod.

for each natural numbers m > 1. For the remainder of §8.2, we fix the natural numbers
m > 1. We prove in this section that this functor satisfies polynomial properties.

Let k be a natural number. For each natural number g, we consider the set

Qδk

m (g) := Sm × {(ω1, . . . , ω2k+2g−1) ∈ Pm (2k + 2g − 1) | ∀i ∈ {1, . . . , k} , (ω2i−1, ω2i) 6= (0, 0)} ,

with the convention that it is the empty set if 2k + 2g 6 1. Then there is a canonical injection

Qδk

m (g) →֒ Qδk

m (g + 1) defined by sending (ω1, ω2, . . . , ω2k+2g−1) to (0, 0, ω1, ω2, . . . , ωk+n−1). It
induces a canonical bijection

Qδk+1

m (g) ∼= Qδk

m (g + 1) \ Qδk

m (g) . (8.5)

This injective set map also defines an injective Z-module morphism

Qk
m,g :

⊕

ω∈Qδk
m (g)

Zω →֒
⊕

ω∈Qδk
m (g+1)

Zω

for g > 1 and the trivial morphism Qk
m,0. These sets describe the successive difference functors of

the mth Moriyama functor:

Proposition 8.6 For all natural numbers g, there is an isomorphism of Z-modules

δk1Morm (g) ∼=
⊕

ω ∈ Qδk

m (g)

Zω

and the morphism
(
i1
(
δk−1

1 Morm
))
n

is equivalent to the injection Qk−1
m,n for all natural numbers

1 6 k 6 m+ 1.

Proof. We proceed by induction on k. For k = 1, we already know from §6.2.2 that (i1Morm)g is

equivalent to the injection Q0
m,g and it follows from the universal property of the cokernel that

δ1Morm (g) ∼=
⊕

ω ∈ Qδ1

m (g)

Zω.
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Now we assume that the results of Proposition 8.6 are true for some fixed k > 1. Recall from
Proposition 7.1 that, by the definition of the difference functor, the morphism

(
i1
(
δk1Morm

))
g

is

canonically induced by the morphism τ1δ
k−1
1 Morm ([1, id1+g]). The inductive hypothesis gives the

equivalence between δk−1
1 Morm ([1, id1+g]) and Qk−1

m,g . Using the bijection (8.5), the image of Qk−1
m,g

induced by the canonical surjections Qδk−1

m (g + 1) ։ Qδk

m (g) and Qδk−1

m (g + 2) ։ Qδk

m (g + 1) is
the morphism Qk

m,g: hence
(
i1
(
δk1Morm

))
g

is equivalent to the injection Qk
m,g.

Then the following diagram is commutative:

κ1δ
k
1Morm (g) �

�
// δk1Morm (g)

(i1(δk
1Morm))

g
//

∼

��

τ1δ
k
1Morm (g)

∼

��

// // δk+1
1 Morm (g) .

⊕
ω∈Qδk

m (g)

Zω
� �

Qk
m,g

//
⊕

ω∈Qδk
m (g+1)

Zω

We deduce that
δk+1

1 Morm (g) ∼=
⊕

ω ∈ Qδk+1

m (g)

Zω

using the universal property of the cokernel and the bijection (8.5).

From the previous properties, we deduce the following polynomiality results for the Moriyama
functors:

Theorem 8.7 The Moriyama functor Morm :
〈
M+,gen

2 ,M+,gen
2

〉
→ Z-Mod is both very strong

and weak polynomial of degree m.

Proof. Note that the sets Qδm

m (n) and Qδm

m (n+ 1) are isomorphic: then it from Proposition 8.6
that the morphisms (i1 (δm1 Morm))n is a bijection. Hence the natural transformation i1 (δm1 Morm)
is a natural equivalence between non-null objects. Since δ1 ◦ π〈M+,gen

2 ,M+,gen

2 〉 = π〈β,β〉 ◦ δ1, we

deduce that the functor Morm :
〈
M+,gen

2 ,M+,gen
2

〉
→ Z-Mod is weak polynomial of degree m.

Also, for all natural numbers k such that 1 6 k 6 m, the evanescence functor κ1δ
k
1Morm is null

since
(
i1
(
δk1Morm

))
n

is an injection by Proposition 8.6. Then the functor δk1Morm is very strong
polynomial polynomial of degree m− k which ends the proof.

8.3 Applications

Finally, we detail here some uses of the polynomiality results stated in §8.1 and §8.2.

8.3.1 Homological stability

A first application of the previous polynomial results is their homological stability properties.
Indeed Randal-Williams and Wahl [RW17] prove homological stability for several families of groups
(including in particular most of those considered in §3.4) with twisted coefficients given by very
strong polynomial functors. Namely, fixing a strict monoidal groupoid (G, ♮, 0), an object X of G,
a left-module (M, ♮), an object A of M, we denote by 〈G,M〉X,A the full subcategory of 〈G,M〉

with objects
{
X♮n♮A

}
n∈N

. We also denote by Gn the automorphism group Aut〈G,M〉
(
X♮n♮A

)
for

all natural numbers n. Then:

Definition 8.8 The family of groups {Gn}n∈N is said to satisfy homological stability (with twisted
coefficients) if for any very strong polynomial functor F : 〈G,M〉X,A → Z-Mod of degree d, the
natural maps

H∗
(
Gn, F

(
X♮n♮A

))
→ H∗

(
Gn, F

(
X♮1+n♮A

))

are isomorphisms for N (∗, d) 6 n with N (∗, d) ∈ N depending on ∗ and d.
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Theorem 8.9 [RW17, Theorem A] Homological stability with twisted coefficients is satisfied for:

• Classical braid groups of surfaces {Bn}n∈N using G = M = β;

• Braid groups on surfaces {Bn (Σg,1)}n∈N and {Bn (Nc,1)}n∈N, using G = β and respectively

M = Bg,+2 and M = Bc,−2 ;

• Mapping class groups {Γn,1}
n∈N and {N c,1}

n∈N, using G = M = M+
2 and G = M = M−

2

respectively;

• Extended and non-extended loop braid groups
{

LBext

n

}
n∈N

and {LBn}n∈N, using G = M =

Lβext and G = M = Lβ respectively.

The above framework is generalised in [Kra17] to a topological setting: more precisely, the ho-
mological stability results of [RW17] are extended to families of spaces that are not necessarily
classifying spaces of discrete groups. [Pal18] also proves homological stability stability for configu-
ration spaces of path-connected subspaces on an open connected manifold, with twisted coefficients
given by polynomial-type functors. Homological stability is thus satisfied by the Lawrence-Bigelow
functors and Moriyama functors by Theorem 8.9. As the representation theory of braid groups
and mapping class groups of surfaces is wild and an active research topic (see for example [BB05],
[FLM01], [Fun99], [Kor02], [Mas08] or [MR12]), there are very few known examples of very strong
polynomial functors over the asssociated categories. Hence the result of §8.1 and §8.2 allow to
gain a better understanding of polynomial functors for braid groups of surfaces and mapping class
groups, and therefore extends the scope of twisted homological stability to more sophisticated
sequences of representations.

8.3.2 Classification

A first matter of interest in the notion of weak polynomiality is that it reflects more accurately than
the strong polynomiality the behaviour of functors for large values. As Theorem 8.1 shows, the first
Lawrence-Bigelow functor LBBM

1 is strong polynomial of degree two whereas it is weak polynomial
of degree one. On the contrary the further Lawrence-Bigelow functors LBBM

m are strong and weak
polynomial of degree m. We also refer the reader to [DV19, Section 6] and [Dja17] for examples of
such phenomena.

Also, the quotient categories for weak polynomial functors shed a light onto what is going on
with the successive Lawrence-Bigelow functors (see §7.2). Indeed, denoting for convenience the
category of weak polynomial functors Pold (〈β,β〉 ,Z-Mod) by Pold (β), we have as a consequence
of Theorem 8.1:

Corollary 8.10 The sequence of the quotient categories induced by the difference functors:

· · · Polm (β) /Polm−1 (β)
δ1oo Polm+1 (β) /Polm (β)

δ1oo · · ·
δ1oo

gives a classification of the family of Lawrence-Bigelow functors
{
LBBM

m

}
m>1

and the connection

between two functors of this family.

Proof. Each Lawrence-Bigelow functor LBBM
m is both weak polynomial and very strong polynomial

of degree d. Therefore LBBM
m

∼= τ1LB
BM
m in the quotient categories.

9 Appendix: A relation in Borel-Moore homology

In this appendix, we give a quick proof of the relation (8.3) among Borel-Moore homology classes.
In §9.1 we recall the basic facts about fundamental classes in Borel-Moore homology, and we use
this in §9.2 to prove the relation (8.3).
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9.1 Fundamental classes in Borel-Moore homology

Let X be a manifold (possibly with boundary) and let M be an orientable k-manifold, without
boundary and with finitely many components. Then any proper embedding

e : M −֒→ X (9.1)

determines an element [e] ∈ HBM
k (X). More precisely: the homology group HBM

k (M) is Zr, where
r is the number of components of M . An orientation of M is a choice of generator for the summand
corresponding to each component, which determines a fundamental class

[M ] ∈ HBM
k (M).

Borel-Moore homology is functorial with respect to proper embeddings, so the image of this class is
the element [e] mentioned above. So we should say more precisely that an oriented k-manifold M
(without boundary and with finitely many components) and a proper embedding (9.1) determine
an element [e] ∈ HBM

k (X). This is additive for finite disjoint unions, i.e., if M is the disjoint union
of M1, . . . ,Mj, then

[e] =

j∑

i=1

[e|Mi
]

in the group HBM
k (X).

Now let N be an oriented (k + 1)-manifold with finitely many boundary-components and let

f : N −֒→ X

be a proper embedding. Then we have the relation

[f |∂N ] = 0 (9.2)

in the group HBM
k (X).

9.2 The relation.

By §9.1, we simply need to exhibit an oriented manifold with boundary, embedded in the (cover of
the) m-point configuration space, such that the image of its boundary (considered with its induced
orientation) is the difference of the two sides of the relation (8.3). We may define such a manifold
as follows:

m

This is the space of unordered configurations of m points in the plane, such that all m points lie
on one of the lines depicted in the closed half-disc above, and do not intersect any of the three
punctures. In particular, note that, if they lie on the top (straight) line, they must be partitioned
into two subsets of size k and m− k by the two little intervals between the three punctures. It is
then not hard to see that this has the desired (oriented) boundary.

Remark 9.1 We note that [Ito13, Section 4] and [Ike18, Section 3.4] prove analogous relations
among Borel-Moore homology classes.

10 Appendix: Notations and tools

We take the convention that the set of natural numbers N is the set of non-negative integers
{0, 1, 2, . . .}.
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We denote by Gr the category of groups and by ∗ the coproduct in this category. The trivial
group is denoted by 0Gr. For a group G, the lower central series of G is the descending chain
of subgroups {Γl (G)}l>0 defined by Γ0 (G) := 0Gr, Γ1 (G) := G and Γl+1 (G) := [G,Γl (G)] the

subgroup of G generated by all commutators [x, y] := xyx−1y−1 with x in G and y in Γl (G).
The induced canonical projection on the quotient by the lth lower central term is denoted by
γl (G) : G։ G/Γl (G). In particular γ2 (G) denotes the abelianisation map of the group G. When
there is no ambiguity, we omit G from the notations.

For a (commutative) ring R, we denote by R-Mod the category of R-modules. For M a G-module,
we denote by AutG (M) the group of G-module automorphisms of M . If G = Z, the we omit it
from the notation if there is no ambiguity.

We denote by Top the category of topological spaces and by Top∗ the category of based topological
spaces with based maps. For X a topological space, we denote by Homeo (X) the group of self-
homeomorphisms of X . If X is a differentiable manifold, then we denote by Diff (X) the self-
diffeomorphism group of X .

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation
Ob (C) to denote the set of objects of C. If there exists an initial object Ø in the category C, then
we denote by ιA : Ø → A the unique morphism from Ø to A. If T is a terminal object in the
category C, then we denote by tA : A → T the unique morphism from A to T . Let Grpd denote
the subcategory of Cat of small groupoids. The maximal subgroupoid Gr (C) is the subcategory of
C which has the same objects as C and of which the morphisms are the isomorphisms of C. We
denote by Gr : Cat → Grpd the functor which associates to a category its maximal subgroupoid.
For D a category and C a small category, we denote by Fct (C,D) the category of functors from C
to D.

We take this opportunity to recall some terminology about (strict) monoidal categories and modules
over them. We refer to [Mac98] for a complete introduction to these notions. A strict monoidal
category (C, ♮, 0), where C is a category, ♮ is the monoidal product and 0 is the monoidal unit. If
it is braided, then its braiding is denoted by bCA,B : A♮B

∼
→ B♮A for all objects A and B of C.

A left-module (M, ♯) over a (strict) monoidal category (C, ♮, 0) is a category M with a functor
♯ : C × M → M that is unital (i.e. ♯ ◦ (ιC × idM) = idM where ιC : 0Cat → C takes the trivial
category 0Cat to the unit object 0 of C) and associative (i.e. ♯ ◦ (idC × ♯) = ♯ ◦ (♯× idM)). For
instance, a monoidal category (C, ♮, 0) is automatically equipped with a left-module structure over
itself, induced by the monoidal product ♮ : C × C → C.
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