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2 M. PALMER & A. SOULIÉ

their actions on the twisted homology of associated spaces; these are known as homological
representations. Representations of this kind have proved themselves especially important for
the question of linearity, a key example being the family of topologically-defined representations
introduced by Lawrence and Bigelow, and used by Bigelow and Krammer to prove that braid
groups are linear. In this paper, we give a unified foundation for the construction of homological
representations using a functorial approach. Namely, we introduce homological representation
functors encoding a large class of homological representations, defined on categories containing
all mapping class groups and motion groups in a fixed dimension. These source categories are
defined using a topological enrichment of the Quillen bracket construction applied to categories
of decorated manifolds. This approach unifies many previously-known constructions, including
those of Lawrence-Bigelow, and yields many new representations.

Résumé. — Une source majeure de représentations intéressantes et grandement non-triviales
pour les groupes ayant une origine topologique, tels que les groupes de tresses et les groupes
de difféotopies, est donnée par leurs actions sur de l’homologie tordue d’espaces associés ;
celles-ci sont connues sous le nom de représentations homologiques. Les représentations de ce
type se sont montrées particulièrement importantes pour les questions de linéarité, un exemple
clef étant celui de la famille de représentations définies topologiquement par Lawrence et
Bigelow, et utilisée par Bigelow et Krammer pour démontrer que les groupes de tresses sont
linéaires. Dans cet article, nous établissons des fondations unifiées pour la construction de
représentations homologiques en utilisant des méthodes fonctorielles. Plus précisément, nous
introduisons des foncteurs de représentations homologiques, qui encodent de larges classes de
représentations homologiques, et qui sont définis sur des catégories contenant tous les groupes
de difféotopie et tous les groupes de mouvement pour une dimension fixée. Ces catégories
sources sont définies à partir d’un enrichissement topologique de la construction de support
due à Quillen, que l’on applique à des catégories de variétés décorées. Cette approche unifie de
nombreuses constructions déjà connues, y compris celles de Lawrence et Bigelow, et produit
beaucoup de nouvelles représentations.

Introduction

For a smooth manifold M with non-empty boundary and a closed submanifold Y
of its interior, the mapping class group MCG(M,Y ) is the group of isotopy classes
of diffeomorphisms of M fixing its boundary pointwise and fixing Y setwise. The
corresponding motion group MotY (M) is the fundamental group of the space of
embeddings of Y into the interior of M up to diffeomorphisms of Y . (When Y is
orientable, there is also an oriented variant Mot+

Y (M) of the motion group, for which
we require diffeomorphisms of Y to be orientation-preserving.) For example, if D2

denotes the closed unit 2-disc and n a set of n ⩾ 1 distinct points in its interior, the
classical braid group on n strands Bn is isomorphic both to the mapping class group
MCG(D2, n) and to the motion group Motn(D2).

The representation theory of mapping class groups and of motion groups is very
rich, and the subject of much active research – see Birman and Brendle’s survey
[BB05, §4] for braid groups or Margalit’s expository paper [Mar19] for more general
mapping class groups of surfaces. A reason for this is that representation theory
transforms abstract group theory problems into linear algebra questions, which are
generally more accessible. In particular, a group is said to be linear if it acts faithfully
on a finite-dimensional vector space. Whether or not a group satisfies this property
is a fundamental question: if it does, the group is isomorphic to a subgroup of
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Unified topological representations 3

a general linear group over a field and falls into the class of matrix groups, and
thus automatically satisfies many remarkable properties for free; see for instance
[Sup76]. Classical braid groups provide a famous positive answer to this question
by Bigelow and Krammer [Big01, Kra02], as well as the mapping class group of a
torus which is classically known to be isomorphic to the symplectic group Sp2(Z)
(see for example [FM12, Th. 2.5]), or the mapping class groups of a genus two
surface thanks to the work of Bigelow and Budney [BB01]. In contrast, there are
also families with a negative answer, such as automorphism groups of free groups —
which may be viewed as mapping class groups of certain 3-manifolds — by Formanek
and Procesi [FP92]. It is known by [But16] (see also [KLS19, Cor. 1.4(b)]) that any
faithful, finite-dimensional representation of mapping class groups of genus at least 3
must be in characteristic zero. However, in general, the question of linearity remains
a wide open fundamental problem for the vast majority of mapping class groups and
motion groups; see [BHT01] or [Mar19, §1].

Homological representations. In order to understand the representation theory
of mapping class groups and motion groups, we view them not just as abstract groups,
but use their geometric and topological structures. Combining this philosophy (of
studying these groups via their topology) with the philosophy of representation theory
itself (of studying groups via linear algebra), one is led naturally to homology. More
precisely, the idea consists in constructing representations of these groups via their
actions on the homology of some topological spaces naturally associated to them.
Such representations are said to be homological.

As an archetypal example, for each braid group Bn, Lawrence [Law90] and Bigelow
[Big01] constructed a by now well-known representation LBk(n) for each k ⩾ 1,
called the k-th Lawrence-Bigelow representation, defined as follows. Let Dn be the
n-punctured disc and Ck(Dn) the configuration space of k unordered points in Dn.
Lawrence [Law90, §2] and Bigelow [Big01, §1.2] define via a geometrical method
regular covering spaces Ck(Dn)ϕk of Ck(Dn), with deck transformation group Qk = Z
if k = 1 and Z2 if k ⩾ 2; see §3.2.1 for more details. The representation LBk(n) is
then defined by the natural action of Bn on the homology group Hk(Ck(Dn)ϕk ;Z).
In particular, LB1(n) is the reduced Burau representation originally introduced by
Burau [Bur35], while LB2(n) corresponds to the Lawrence-Krammer-Bigelow repre-
sentation, which Bigelow [Big01] and Krammer [Kra02] independently proved to be
faithful. Moreover, the representations used to prove the linearity of the mapping
class groups of a torus and of a genus two surface are also homological; see [FM12,
Th. 2.5] and [BB01, §3]. In particular, the representations that have thus far provided
positive answers for the linearity question have all been homological representations.
This suggests that a systematic treatment of constructing homological representa-
tions that works for all motion groups and all mapping class groups is an important
and natural avenue of investigation related to the linearity question for these families
of groups.

A functorial approach. In parallel, another point of view adopted in this pa-
per is to treat mapping class groups and motion groups simultaneously in fami-
lies. A family of groups means a collection of groups Gn indexed by the natural
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4 M. PALMER & A. SOULIÉ

numbers N equipped with morphisms Gn → Gn+1. Typically, we consider a set of
geometrically-consistent manifolds {Mn}n∈N in order to construct a family of map-
ping class groups MCG(Mn) → MCG(Mn+1), or a set of geometrically-consistent
submanifolds {Yn}n∈N of a fixed manifold M to construct a family of motion groups
MotYn(M) → MotYn+1(M). For example, we consider braid groups as a family thanks
to the inclusions Bn ↪→ Bn+1 induced by adding a strand on the left. The purpose of
considering groups in families is to require representations to respect the coherences
that naturally arise between the different groups in the family. More precisely, for a
family of groups {gn : Gn → Gn+1}n∈N and an associative, unital ring R, a collection
of representations {ρn : Gn → AutR(Vn)}n∈N is coherent if it comes equipped with
module homomorphisms vn : Vn → Vn+1 such that vn is equivariant with respect to
gn, meaning that for all g ∈ Gn and x ∈ Vn we have vn(g.x) = gn(g).vn(x).

Furthermore, we consider a slightly larger notion of representation than the classical
one of a group homomorphism ρn : Gn → AutR(Vn): we generally allow ρn to take
values in the larger group AutZ(Vn) ⊇ AutR(Vn) and assume that it comes equipped
with an action rn : Gn → AutRings(R) encoding its failure to respect the R-module
structure of Vn; see Definition 2.3. The representation ρn is then said to be twisted;
if rn is trivial, then we recover the classical notion, and ρn is said to be genuine or
untwisted.

Now, the notion of coherent (twisted or genuine) representations of a family of
groups can be encoded in a functorial way as follows. We denote by ModR the
category of right R-modules. We introduce the larger category ModR ⊆ Modtw

R in
which morphisms are permitted to act on the underlying ring R; we call this the
category of twisted right R-modules; see Definition 2.3. Let G be the groupoid with
objects indexed by non-negative integers, with the groups {Gn}n∈N as automorphism
groups and with no morphisms between distinct objects. Let us tentatively assume
that there exists a category ⟨G◦,M◦⟩ containing G as its underlying groupoid and
with a preferred morphism ιn : n → n+1 for each object n, satisfying ιn◦g = gn(g)◦ιn
for each g ∈ Gn. Then, functors

(0.1) ⟨G◦,M◦⟩ −→ Modtw
R and ⟨G◦,M◦⟩ −→ ModR

give us coherent representations of {Gn}n∈N, which are respectively twisted and
untwisted over R. It is an important question whether or not our representations
take values in the untwisted subcategory ModR ⊆ Modtw

R . Indeed, if this is not the
case, the encoded representations are not genuine representations of the family of
groups, since the groups also act on the ground ring R. Although one may always
find a subring R′ ⊂ R over which the representations become genuine (i.e. unwisted),
the representations typically also become infinite-dimensional as R′-modules. See
[BPS21, PS23] for examples of such situations, where the representations are finitely
generated as R-modules with R = Z[Q] for Q an infinite group, while R′ = Z.
We introduce a general criterion for the representations that we construct to be
untwisted in §2.2.3.

The category ⟨G◦,M◦⟩ is defined by the Quillen bracket construction ⟨−,−⟩, in-
troduced in [Gra76, p.219], applied to a monoidal groupoid G◦ and a G◦-module
groupoid M◦. That there exist such groupoids G◦ and M◦ such that the category
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Unified topological representations 5

⟨G◦,M◦⟩ contains the groupoid G as its underlying groupoid is a mild assump-
tion, naturally satisfied in all of our examples. For instance, we consider the braid
groupoid β (see [ML98, Chap. XI, §4]) and take G◦ = M◦ = G = β to deal with the
braid groups; see §3.1.2. We provisionally defer the treatment of this question until
after Theorem B. For now, we assume that this category exists and mention that,
for the purpose of constructing homological representations, we first introduce a
topologically-enriched semicategory ⟨G◦,M◦⟩t, and define ⟨G◦,M◦⟩ := π0(⟨G◦,M◦⟩t)
by taking path-components of all morphism spaces (this is a priori just a sem-
icategory, but turns out to be a category). From now on, we consider a family
{gn : Gn → Gn+1}n∈N of mapping class groups or motion groups in a fixed dimension
d, contained in a category ⟨G◦,M◦⟩ = π0(⟨G◦,M◦⟩t) as above.

In addition, thanks to our functorial point of view, notions of polynomiality may
be introduced for functors of the form (0.1). We refer the reader to [RWW17, §4.1]
or [PS23, §4.1] for a detailed introduction to this notion. In particular, a signifi-
cant application of polynomiality is homological stability with twisted coefficients
for several families of mapping class groups and motion groups: see the work of
Randal-Williams and Wahl [RWW17, Theorems D, 5.26 and I]; this was also proven
earlier by Ivanov [Iva93] and Boldsen [Bol12] for mapping class groups of orientable
surfaces. Also, certain notions of polynomiality offer a classifying tool for functors
(see [DV19, §1.3] for instance), while the representation theory of mapping class
groups and motion groups is known to be wild (for example, this is proven by Erd-
mann and Nakano [EN02] for braid groups on n ⩾ 6 strands). This is therefore
another argument supporting our functorial approach to representations. The study
of polynomiality for homological representation functors of certain mapping class
groups and motion groups is the central topic of the sequel paper [PS23].

In summary, our goal is to develop functorial constructions of homological repre-
sentations that:

• apply naturally to all mapping class groups and motion groups in a fixed
dimension (globality),

• respect the natural coherences between these groups (functoriality),
• produce a wide range of new, interesting and highly non-trivial representa-

tions (richness), for the purpose of studying questions of linearity and of
polynomiality.

Functorial constructions of homological representations. Our first main
result is Theorem A below, which introduces functorial constructions of coherent
representations for the family of groups {gn : Gn → Gn+1}n∈N. They depend on the
following parameters:

• the dimension d of the family of mapping class groups or motion groups,
which we assume from now on to be different from 4. The reason for this
restriction is related to establishing the existence of a certain decomposition
of embedding spaces; see Lemma 1.53 and Remark 1.54;

• a closed submanifold Z ⊂ Rd;
• an open subgroup G of the group Diff(Z) of diffeomorphisms of Z;
• an integer ℓ ⩾ 1, indexing the ℓ-th lower central series functor Γℓ : Grp → Grp

defined by sending a group G to Γℓ(G), see Example 2.23;
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6 M. PALMER & A. SOULIÉ

• a non-negative integer i ⩾ 0, indexing the degree of the twisted homology
functor Hi, see Proposition 2.14.

Theorem A (Theorems 2.19, 2.28 and 2.62). — For a fixed set of parame-
ters {i, Z,G, ℓ} as described above, the action of the family of groups {gn : Gn →
Gn+1}n∈N on the twisted homology of certain embedding spaces determines functors
(0.2)
Li(F(Z,G,ℓ)) : ⟨G◦,M◦⟩ −→ Modtw

Z[Q] and Li(F(Z,G,ℓ)) : ⟨G◦,M◦⟩ −→ Modtw
Z[Q],

where Q denotes a group built out of the deck transformation groups of the regular
covering spaces corresponding to the coefficients in the twisted homology. In partic-
ular, the functors (0.2) encode coherent homological representations of the family of
groups {gn : Gn → Gn+1}n∈N. They are thus called homological representation
functors.

Additionally, there exists a universal quotient Qu of the group Q, together with
variants of the homological representation functors (0.2), such that the encoded
representations of the family of groups {gn : Gn → Gn+1}n∈N are untwisted over the
ground ring Z[Qu]:
(0.3)
Li(Fu

(Z,G,ℓ)) : ⟨G◦,M◦⟩ −→ ModZ[Qu] and Li(Fu
(Z,G,ℓ)) : ⟨G◦,M◦⟩ −→ ModZ[Qu].

These alternative homological representation functors are therefore called untwisted.

We note that one could simply replace Q with the trivial group, in which case
the functors (0.2) would already be untwisted (since Z has no non-trivial ring auto-
morphisms). However, this would multiply the dimensions of all of the underlying
modules of (0.2) by |Q|, which is typically infinite, and for applications – especially
to questions of linearity – one would like to have finite-dimensional representations.

The main geometric input in the construction of the homological representation
functors (0.2) and (0.3) is contained in the construction of two continuous semifunc-
tors
(0.4) F(Z,G,ℓ) : ⟨G◦,M◦⟩t −→ Cov• and F(Z,G,ℓ) : ⟨G◦,M◦⟩t −→ Cov•

as well as their untwisted variants Fu
(Z,G,ℓ) and Fu

(Z,G,ℓ). We emphasise that these are
semifunctors, not genuine functors: this is because their source is the topological
lift ⟨G◦,M◦⟩t of the category ⟨G◦,M◦⟩, which is a topologically-enriched semicate-
gory, not a genuine category; see Theorem B. We also use a topologically-enriched
category Cov• of topological spaces equipped with regular coverings (introduced in
Definition 2.2). The idea to construct the semifunctors (0.4) consists in defining
regular coverings of certain embedding spaces depending on the manifold Z and
the group G, induced by the lower central series Γℓ via the commutative diagrams
(2.24) and (2.32) respectively. As one may see from these diagrams, the fundamental
difference between the two constructions lies in the fact that the regular coverings for
F(Z,G,ℓ) are induced by the actions of some motion groups, whereas they are induced
by the actions of some mapping class groups for F(Z,G,ℓ). See §2.2 for the detailed
construction of F(Z,G,ℓ) and Fu

(Z,G,ℓ), and §2.3 for that of F(Z,G,ℓ) and Fu
(Z,G,ℓ).

Having constructed the continuous semifunctors (0.4), the overall procedure of
Theorem A to define the homological representation functors (0.2) and (0.3) is
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Unified topological representations 7

summarised in the commutative diagram (0.5) below. We consider any one of the
semifunctors (0.4) or their untwisted variants, which we denote by F(Z,G,ℓ).

⟨G◦,M◦⟩t

⟨G◦,M◦⟩

Toptw
Z[Q] Modtw

Z[Q]

F̃(Z,G,ℓ) Hi

π0

Li(F(Z,G,ℓ))

(0.5)

We first promote the semifunctor F(Z,G,ℓ) to a semifunctor F̃(Z,G,ℓ) : ⟨G◦,M◦⟩t →
Toptw

Z[Q]. Here, Toptw
Z[Q] denotes the topologically-enriched category of topological

spaces equipped with twisted bundles of Z[Q]-bimodules (i.e. the morphisms are
permitted to act on the ground ring Z[Q]); see Definition 2.7. More precisely, the
semifunctor F̃(Z,G,ℓ) is defined from F(Z,G,ℓ) via a procedure that involves a linearisation
of F(Z,G,ℓ) (see §2.1.2) followed by its fibrewise tensor product (see §2.1.3) with
an associated colimit coefficient system (see §2.2.3). In particular, the group Q
corresponds to a colimit of the deck transformation groups of the covering spaces
defining the semifunctor F(Z,G,ℓ); see Notation 2.53. The second step simply consists
in applying the twisted homology functor Hi (see §2.1.4). Finally, the composite
Hi◦F̃(Z,G,ℓ) factors uniquely through the projection functor π0 : ⟨G◦,M◦⟩t ↠ ⟨G◦,M◦⟩
given by taking path-components of morphism spaces; see Lemma 2.16. The desired
output is the functor Li(F(Z,G,ℓ)) : ⟨G◦,M◦⟩ → Modtw

Z[Q]; this is a coherent family of
(possibly twisted) representations of {Gn}n∈N. A more elaborate version of diagram
(0.5), allowing one to take fibrewise tensor products with different coefficient systems
V , is described in diagram (2.12) and Definition 2.20, but the underlying ideas are
the same. We refer the reader to §2.1.5 for the detailed procedure defining diagram
(0.5) and its elaboration (2.12).

Categorical framework. Let us now tackle the question of defining the topologically-
enriched semicategory ⟨G◦,M◦⟩t, which is a topological lift of the Quillen bracket
category ⟨G◦,M◦⟩. This is essentially solved by introducing a certain topologically-
enriched semicategory ⟨Dd,Dd⟩ as follows.

For each fixed dimension d ⩾ 2, we construct a semi-monoidal topologically-
enriched groupoid (Dd, ♮), called the decorated d-manifolds groupoid; see Defini-
tion 1.16. The objects of Dd are pairs (M,A) with M a smooth d-manifold and A
a closed submanifold embedded in the interior of M (together with some auxiliary
data needed to construct boundary connected sums); see Definition 1.11. Its mor-
phism spaces consist of decorated diffeomorphisms, namely diffeomorphisms of pairs
of manifolds compatible with the auxiliary data; see Definitions 1.12 and 1.14. The
semi-monoidal structure ♮ is given by the boundary connected sum of manifolds; see
Proposition 1.22. See also Remark 1.23 for an explanation of why ♮ is only a semi-
monoidal structure; this is also why ⟨Dd,Dd⟩ is only a semicategory. Furthermore,
we introduce in §1.4.1 a topological enrichment of the Quillen bracket construction
⟨−,−⟩ [Gra76, p.219]; see Proposition 1.60. The topologically-enriched semicategory
⟨Dd,Dd⟩ is then constructed by applying the topologically-enriched Quillen bracket
construction to the semi-monoidal topologically-enriched groupoid (Dd, ♮).
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8 M. PALMER & A. SOULIÉ

Our second main result establishes crucial properties of the semicategory ⟨Dd,Dd⟩,
by giving a geometric description of its morphism spaces and by describing its
interaction with the path-component functor π0:

Theorem B (Corollary 1.80). — For d ̸= 4, the morphism spaces ⟨Dd,Dd⟩(M,N)
of the topologically-enriched semicategory ⟨Dd,Dd⟩ may be identified with the spaces
Embdec(M,N) of decorated embeddings introduced in Definition 1.49.

Applying the path-component functor π0 to all morphism spaces, there is an
isomorphism of categories:

(0.6) π0(⟨Dd,Dd⟩) ∼= ⟨π0(Dd), π0(Dd)⟩.

Moreover, π0(Dd) is the underlying groupoid of π0(⟨Dd,Dd⟩).

The above description of the morphism spaces of ⟨Dd,Dd⟩ as decorated embedding
spaces (see Proposition 1.76), as well as the isomorphism (0.6) (see Proposition 1.66),
crucially require a technical Serre fibration result for decorated diffeomorphism
groups given in Theorem 1.55.

The topologically-enriched groupoid Dd contains, by construction, all diffeomor-
phism groups of d-manifolds equipped with configurations of submanifolds. It there-
fore follows that its groupoid of path-components π0(Dd), and hence also the cate-
gory π0(⟨Dd,Dd⟩) of which π0(Dd) is the underlying groupoid, contains all mapping
class groups of d-manifolds, as well as all d-dimensional motion groups as normal
subgroups; see Remark 1.43. We may thus realise the aforementioned topologically-
enriched semicategory ⟨G◦,M◦⟩t as a certain subsemicategory ⟨G,M⟩ of ⟨Dd,Dd⟩;
see Construction 3.1. In brief, we consider subgroupoids G and M of Dd, to which
we apply the topologically-enriched Quillen bracket construction of §1.4.1, and The-
orem B repeats verbatim for ⟨G,M⟩ ⊆ ⟨Dd,Dd⟩; see Corollary 1.80. The category
⟨G◦,M◦⟩ is then defined to be π0(⟨G,M⟩) ∼= ⟨π0(G), π0(M)⟩. (More precisely, it is a
certain skeleton of this category; see §1.4.4.) In particular, our mild assumption on
each family of groups {gn : Gn → Gn+1}n∈N is to require that the groups {Gn}n∈N are
the automorphism groups of a category of the form ⟨π0(G), π0(M)⟩, which also con-
tains the maps {gn}n∈N. See Construction 3.1 for more details and §3.1 for concrete
examples.

Applications. Finally, we survey the representations generated by the construc-
tions of Theorem A for some illustrative examples introduced in §3.1.1–§3.1.3, which
represent the archetypal examples of mapping class groups and motion groups. First,
let us indicate which parameters (Z,G, ℓ) we use to apply Theorem A in these ex-
amples. From now on, we fix an integer k ⩾ 1 and a partition λ ⊢ k. We generically
denote by k ⊂ R2 a closed submanifold consisting of k distinct points, and by
kS1 ⊂ R3 a closed submanifold consisting of a collection of disjoint circles forming a
trivial link of k components. We delineate our results for each family of groups in
the paragraphs below; they are also summarised in Table 0.1.

Classical braid groups: the relevant functors of Theorem A to consider for the
groups Bn = MCG(D2, n) = Motn(D2) are those of the form Li(F(Z,G,ℓ)) with d = 2,
Z := k, G := Sλ, ℓ ⩾ 1 and i ⩾ 0; see (3.2).
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Unified topological representations 9

Theorem C (Theorem 3.5, §3.2.1). — For λ = {k} the trivial partition, ℓ = 2
and i = k, the functor Lk(F(k,Sk,2)) recovers the aforementioned family LBk(n) of
Lawrence-Bigelow representations [Law90, Big01] of the braid groups.

Otherwise, the Bn-representations encoded by the functors Li(F(k,Sλ,ℓ)) appear to
be new.

Surface braid groups: we denote by Σg,1 (respectively Nh,1) a compact, connected,
smooth, orientable (resp. non-orientable) surface of genus g (resp. h) and with one
boundary component. The relevant functors of Theorem A to consider for the surface
braid groups Bn(Σg,1) = Motn(Σg,1) and Bn(Nh,1) = Motn(Nh,1) are those of the
form Li(F(Z,G,ℓ)) with d = 2, Z := k, G := Sλ, ℓ ⩾ 1 and i ⩾ 0; see (3.3).

Theorem D (Example 3.6, §3.2.1). — For λ = {k} the trivial partition, ℓ = 3
and i = k, the variant using Borel-Moore homology of the functor Lk(F(k,Sk,3))
recovers the family of An-Ko representations [AK10] of the surface braid groups
Bn(Σg,1).

Otherwise, the representations of the groups Bn(Σg,1) and Bn(Nh,1) encoded by
the functors Li(F(k,Sλ,ℓ)) appear to be new.

Loop braid groups: for the extended and non-extended loop braid groups LB′
n and

LBn (see §3.1.3 for their definitions), the relevant functors of Theorem A to consider
are those of the form Li(F(Z,G,ℓ)) with d = 3, ℓ ⩾ 1 and i ⩾ 0, and:

• either Z := k together with G := Sλ, see (3.4);
• or else Z := kS1 together with G := Diff+(λS1) or Diff(λS1), see (3.5), (3.6).

Theorem E (Example 3.7, §3.2.1). — For k = 1 and λ = {1} its trivial par-
tition, ℓ = 2 and i = 1, the functor L1(F(1,0,2)) recovers the family of loop Burau
representations [PS22a] of the of extended and non-extended loop braid groups.

Otherwise, the representations of the groups LB′
n and LBn defined by the functors

Li(F(k,Sλ,ℓ)), Li(F(kS1,Diff+(λS1),ℓ)) and Li(F(kS1,Diff(λS1),ℓ)) appear to be new.
Mapping class groups of surfaces: for the groups Γg,1 = MCG(Σg,1) and N h,1 =

MCG(Nh,1), we consider the homological representation functors Li(F(Z,G,ℓ)) and
Li(F(Z,G,ℓ)) of Theorem A with d = 2, Z := k, G := Sλ, ℓ ⩾ 1 and i ⩾ 0; see (3.7)
and (3.8).

Theorem F (Proposition 3.9, §3.2.2). — For λ = {1k} the discrete partition of k,
ℓ = 1 and i = k, the variant using Borel-Moore homology of the functor Lk(F(k,0,1))
encodes the family of Moriyama representations [Mor07] of the mapping class groups
Γg,1.

Otherwise, the representations of the groups Γg,1 and N h,1 encoded by the functors
Li(F(k,Sλ,ℓ)) and Li(F(k,Sλ,ℓ)) appear to be new.

Unified foundations. As detailed above, several examples of the representations
arising from the construction of Theorem A (see Theorems C–F and Table 0.1)
have previously been defined and studied in the literature, at least at the level of
individual groups, i.e. when restricted to the automorphism groups of ⟨G◦,M◦⟩. One
purpose of setting up the general procedure for constructing homological represen-
tations in this paper is to give a unified foundation that encompasses all known
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Thm. Family of groups Parameters Family of Reference
d Z G ℓ i representations

C Bn 2 k Sk 2 k Lawrence-Bigelow [Law90, Big01]
D Bn(Σg,1) (g fixed) 2 k Sk 3 k An-Ko [AK10]
E LB′

n and LBn 3 1 {id} 2 1 Loop Burau [PS22a]
F Γg,1 2 k {id} 1 k Moriyama [Mor07]

Table 0.1. A summary of Theorems C–F, describing the special cases of our
construction that recover previously-known homological representations.

homological representations, amongst many others, and that inspires the discovery
of new representations by applying this unified context to novel settings. Regarding
this last point, we mention that the examples described in Theorems C–F represent
only a small fragment of the potential of the general construction of Theorem A.

Perspectives on the construction. Although we do not discuss it in more
detail in this paper, one may equally well consider examples analogous to those
of Theorems C–F, given by the homological representation functors of Theorem A
on subcategories of UD2 and UD3 (or UDd for d ⩾ 5) relevant for automorphism
groups of free groups, Torelli groups, handlebody mapping class groups, pure braid
groups, as well as higher-dimensional mapping class groups and motion groups. In
addition, there are several natural variations of our constructions of Theorem A.
First, one may change the “flavour” of (twisted) homology that we use: notably
Borel-Moore homology rather than ordinary homology (see Theorem 2.19). Second,
we may naturally package together the homological representation functors (0.3)
by fixing the parameters (Z,G), and by considering simultaneously all the lower
central series parameters {ℓ ⩾ 1}, which control the ground ring over which the
representation is defined (for each ℓ, it is the group-ring of a group of nilpotency
class at most ℓ − 1). More precisely, these functors fit together into a tower that
may be thought of as a single pro-nilpotent (functorial) representation, which may
be truncated to recover the representation corresponding to each level ℓ; see [PS22b,
§1]. In particular, there are many interesting cases where we obtain in this way an
infinite tower of distinct representations as ℓ → ∞; see [PS22b, §4–§6].

Outline. The aim of §1 is to set up the source categories for homological rep-
resentation functors. Namely, we define the topologically-enriched groupoids Dd of
decorated manifolds in §1.1. Then, we prove some fundamental properties of deco-
rated diffeomorphisms and embeddings of manifolds: in §1.2 we exhibit several split
short exact sequences associated to these topological groups, which are crucial for the
construction of homological representation functors in §2, and then we prove in §1.3
that certain quotients of decorated diffeomorphism groups are Serre fibrations (see
Theorem 1.55); these are decisive in the proof of Theorem B. Finally, we introduce
the topological enrichment of the Quillen bracket construction in §1.4.1 and then in
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§1.4.2 we apply it to categories of decorated manifolds and study its main properties,
in particular proving Theorem B.

In §2, we introduce the various tools and topological constructions to define ho-
mological representation functors, which between them imply Theorem A. In more
detail, we present in §2.1 the different ingredients and steps of the construction
illustrated in diagram (0.5), considering an abstract continuous semifunctor of the
form (0.4); see Theorem 2.19. We then construct the two continuous semifunctors
F(Z,G,ℓ) and F(Z,G,ℓ) of (0.4) in §2.2 and §2.3 respectively (see Theorems 2.28 and
2.62), thus completing the proof of Theorem A.

We finally apply our constructions of homological representation functors to the
four different families of groups of Theorems C–F in §3. Namely, we first describe
(specialising §1 to each case) the appropriate categorical framework encoding these
families of groups in §3.1. We deal with the applications for the families of motion
groups in §3.2.1, proving Theorems C, D and E, and we treat the case of the mapping
class groups in §3.2.2, proving Theorem F.

General notation. For a category C, we use the abbreviation ob(C) to denote its
class of objects. We recall that semicategories and semifunctors between them are
defined in the exact same way as (genuine) categories and functors by relaxing all
structures or conditions that involve identity morphisms of objects. Throughout the
paper, the word ring always refers to an associative, unital ring and we assume that
ring homomorphisms preserve units. For a ring R, we denote by ModR the category
of (right) R-modules. For an R-module M , we denote by AutR(M) the group of
R-module automorphisms of M . When R = Z, we omit it from the notation as long
as there is no ambiguity.

For a manifold X, we denote by Diff(X) its group of diffeomorphisms. If X is
orientable, we denote by Diff+(X) the subgroup of orientation-preserving diffeomor-
phisms. If X has non-empty boundary, X̊ denotes its interior. For each d ⩾ 1, we
denote by Sd the d-sphere.

We denote by Sn the symmetric group on a set of n elements. For an integer
n ⩾ 1, an ordered partition of n means an ordered r-tuple n = {n1, . . . , nr} of
integers ni ⩾ 1 (for some r ⩾ 1 called the length of n) such that n = ∑

1⩽i⩽r ni

(and without the condition ni ⩾ ni+1). We recall that the lower central series of a
group G is the descending chain of subgroups {Γℓ(G)}ℓ⩾1 defined by Γ1(G) := G and
Γℓ+1(G) := [G,Γℓ(G)], the subgroup of G generated by the commutators [g, h] for
g ∈ G and h ∈ Γℓ(G). For the sake of simplicity, each quotient G/Γℓ(G) is denoted
by G/Γℓ.
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1. Categories of decorated manifolds and their embeddings
In this section, we define the categories that will serve as the domain of the

homological representation functors that we will construct in §2. They are obtained
from certain monoidal groupoids by the Quillen bracket construction, an operation
that enlarges a given monoidal groupoid to a category having the original monoidal
groupoid as its underlying groupoid.

More precisely, we will start with certain topologically-enriched monoidal groupoids,
so we describe, in §1.4.1, a topological enrichment of the Quillen bracket construction
and show – subject to a Serre fibration condition – that it behaves well with respect to
the functor π0 that replaces all morphism spaces with their sets of path-components.
In §1.1, we define the topologically-enriched monoidal groupoids that we wish to
consider, and prove in §1.3 that they satisfy this Serre fibration condition.

Informally, the idea is that the domain category, for a given dimension d ⩾ 2, will
be a topologically-enriched category UDd having the property that the automorphism
groups of π0(UDd) contain all mapping class groups and motion groups in dimension
d. To construct this, we define in §1.1 a topologically-enriched groupoid Dd whose
automorphism groups are the diffeomorphism groups of all d-dimensional decorated
manifolds. The topologically-enriched Quillen bracket construction U of §1.4.1 then
gives us a topologically-enriched category UDd such that π0(UDd) ∼= U(π0(Dd)),
where the latter category is defined by appyling the construction U to the path-
component category π0(Dd) of Dd. The underlying groupoid of π0(UDd) is therefore
π0(Dd), consisting of all mapping class groups of d-dimensional decorated manifolds,
which contain all d-dimensional motion groups as normal subgroups.

In §1.4.2, we then give an explicit description of morphism spaces of Quillen bracket
categories of manifolds in terms of embedding spaces, which is a crucial ingredient
in the construction of §2.

Outline. To summarise, the main points of this section are the following.
• We construct the topologically-enriched groupoid Dd of decorated manifolds

in §1.1.
• We obtain the topologically-enriched category UDd using the topologically-

enriched Quillen bracket construction introduced in §1.4.1.
• We identify the morphism spaces of UDd with certain embedding spaces in

Proposition 1.76 (in §1.4.2). This crucially uses a Serre fibration result for
decorated diffeomorphism groups proved in Theorem 1.55 (in §1.3).

• The categories that we shall use, in §3, to encode families of mapping class
groups and motion groups, are defined by certain topologically-enriched
Quillen bracket constructions ⟨G,M⟩, which come with natural inclusions
⟨G,M⟩ ↪→ UDd. The homological representation functors (defined on UDd)
constructed in §2 therefore restrict naturally along these inclusions. In §3.1,
we describe in detail the relevant categories ⟨G,M⟩ for mapping class groups
and motion groups.

Preliminaries on categorical tools. We refer to [ML98, Chap. VII] for a com-
plete introduction to the notions of monoidal categories and modules over them. We
generically denote a monoidal category by (C, ♮,0), where C is a category, ♮ is the
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monoidal product and 0 is the monoidal unit. A left-module (M, ♯) over (C, ♮,0)
is a category M with a functor ♯ : C × M → M that is unital and associative.
Similarly, semi-monoidal categories and left-modules over them are defined in the
exact same way as in the genuine monoidal case by relaxing all the structures or
conditions involving (left or right) units; in other words they only involve a binary
operation admitting an associator that satisfies the pentagon condition. Note that a
(semi-)monoidal category (C, ♮) is equipped with a left-module structure over itself,
induced by its monoidal product. Each left-module structure ♯ in this paper is de-
fined from some underlying (semi-)monoidal structure ♮ (see §1.1 and §3.1), so we
abuse notation by using the same symbol ♮ for ♯. The reason for introducing this
semi-monoidal setting is that the boundary connected sum of manifolds naturally
equips the topologically-enriched groupoid Dd with a non-unital such structure; see
Remark 1.23 for more details.

We recall that, by topologically-enriched category, we mean a category enriched over
the symmetric monoidal category of topological spaces with its Cartesian product.
The functor π0 replaces each morphism space with its set of path-components, and so
defines a functor from (small) topologically-enriched categories to (small) categories.
For any topologically-enriched category C, there is a natural functor C → π0(C), also
denoted by π0, sending each point of a morphism space to the path-component that
it lies in.

Remark 1.1. — Although most of the (semi-)monoidal categories and their mod-
ules that we consider in this paper are symmetric or braided, we will not dwell on
these considerations, as these properties are unnecessary for our work, in particular
to define the topologically-enriched bracket construction of §1.4 or the homological
representation functors in §2.

1.1. Decorated manifolds and their diffeomorphisms

In this section, we introduce the topologically-enriched groupoids Dd of decorated
manifolds and their semi-monoidal structures induced by boundary connected sum.
We fix an integer d ⩾ 2.

Convention 1.2. — All of the (topological) categories that we shall consider are
essentially small, i.e. they are each equivalent to a small (topological) category. One
standard way to see this is as follows; see [Gal21, Rem. 1.2.7]. In each case, the
objects of the categories that we shall consider consist of manifolds, submanifolds
and some additional data, such as collar neighbourhoods, etc. Fixing a set Ω, we may
consider the full subcategory whose objects are only those where the underlying set
of the manifold is a subset of Ω. This is a small category, and if the cardinality of Ω
is at least |R|, its inclusion into the whole (large) category is essentially surjective on
objects; thus it is an equivalence. (We assume that manifolds are second-countable,
which implies that their cardinality is no larger than |R|.) In the following, we
implicitly fix a sufficiently large set Ω and we shall consider the corresponding small
subcategories, whenever we need our categories to be small.
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Open path-components. For a topological space X, if we give its set of path-
components π0(X) the discrete topology, the natural map X → π0(X) sending each
point to the path-component that it lies in is continuous if and only if all path-
components of X are open. Similarly, for a topologically-enriched category C, the
natural functor C → π0(C) mentioned above is continuous if and only if all path-
components of all morphisms spaces of C are open. It will be important for us to
ensure that this property holds, so we collect here some facts about this property
that we shall make use of. We first record some basic facts:

Lemma 1.3. — If X has the property that its path-components are open, then
the quotient space X/∼ also has this property, for any equivalence relation ∼ on X.
If a collection Xi of spaces all have this property, then so does their disjoint union⊔

i Xi.

There is a canonical way to refine the topology on an arbitrary space in order to
force this property to hold.

Construction 1.4. — For a topological space X, denote by o(X) the topological
space with the same underlying set as X, equipped with the topology generated by
the base consisting of C ∩ U for U an open subset of X and C a path-component of
X.

One may easily verify the following properties of this construction.

Lemma 1.5. — The path-components of o(X) are open, and they are the same
as the path-components of X. The canonical map o(X) → X defined by the identity
map of the underlying sets is continuous, and becomes a homeomorphism when
restricted to any path-component. Consequently, it is also a weak equivalence. In
addition, the functor o(−) preserves products.

Remark 1.6. — In fact, the operation o(−) is a right adjoint to the inclusion
of the full subcategory of topological spaces having the property that their path-
components are open; this subcategory is therefore coreflective.

Finally, we will need the following lemma, which explains how the operation o(−)
interacts with quotient maps that are Serre fibrations.

Lemma 1.7. — Let X be a topological space and ∼ an equivalence relation on
X. If the quotient map X → X/∼ is a Serre fibration, then so is the quotient map
o(X) → o(X)/∼.

Proof. — The continuous bijection o(X) → X induces a continuous bijection
o(X)/∼ → X/∼, fitting into a commutative square with the two quotient maps. Let
us consider the lifting problem:

(1.1)
[0, 1]d−1 o(X) X

[0, 1]d o(X)/∼ X/∼.

?
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0 t

Figure 1.1. An illustration of the notation for the solid cylinder Bd
t from Nota-

tion 1.9 for d = 3. Its lower boundary ∂lB3
t is coloured yellow, its base bB3

t is
yellow-green and the codimension-2 stratum ∂(bB3

t ) = ∂D2 × {0} is blue.

Since X → X/∼ is a Serre fibration by hypothesis, there is a diagonal map [0, 1]d →
X making the two outer triangles commute. Since the cube [0, 1]d is path-connected,
its image in X lies in a single path-component. Restricted to this path-component,
the continuous bijection o(X) → X is a homeomorphism by Lemma 1.5, so we may
lift the diagonal map [0, 1]d → X to a diagonal map [0, 1]d → o(X) for the left-hand
square, as desired. The two triangles into which this splits the left-hand square of
(1.1) commute, since the triangles that the outer rectangle was split into commute
and the two right-hand horizontal maps in (1.1) are bijective. □

Remark 1.8. — Lemma 1.7 holds more generally for any class of fibrations defined
by the right lifting property with respect to a collection of maps whose codomains
are path-connected. Moreover, it also holds more generally for any two topologies
on the same underlying set that have the same path-components and that agree on
each path-component.

Categories of decorated manifolds. First, we define the notion of decorated
manifolds of dimension d, their morphisms and associated categories. A motivation
to work with this type of manifolds is that the groups π0(Diff(−)) of decorated
manifolds will contain as normal subgroups all of the mapping class groups and
motion groups that we are interested in; see Remark 1.43. Also, the notion of
decorated manifolds is formed so that their associated categories have a well-defined
semi-monoidal structure induced by the boundary connected sum, which would not
be the case if we just considered manifolds without decorations; see Remark 1.20.
The terminology “decorated” originates from [BT01]; see also [BB23].

Notation 1.9 (Solid cylinders.). — We denote by Dd−1 the closed unit (d − 1)-
dimensional disc in Rd−1 in the usual L2 metric. For a real number t > 0, we write
Bd

t = Dd−1 × [0, t] for the solid d-dimensional cylinder of height t. We also write
∂lBd

t = (∂Dd−1 × [0, t]) ∪ (Dd−1 × {0})
and call this the lower boundary of Bd

t , as well as bBd
t = Dd−1 × {0} and call this the

base of Bd
t . This is illustrated in Figure 1.1.

Definition 1.10 (Boundary-cylinders.). — Let M be a smooth d-manifold with
non-empty boundary. A boundary-cylinder forM is a topological embedding e : Bd

1 ↪→
M such that e−1(∂M) = ∂lBd

1 and e is a smooth embedding on Bd
1 ∖ ∂(bBd

1). Two
boundary-cylinders e, e′ are equivalent if they are equal when restricted to Bd

ϵ ⊆ Bd
1
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A0 ϵ ϵ 0

e1 e2M =
A′

0 ϵ ϵ 0

e′
1 e′

2 = M ′

A0 ϵ

e1M♮M ′ =
A′

ϵ 0

e′
2

Figure 1.2. Two decorated manifolds and their boundary connected sum.

for some ϵ > 0. An equivalence class of boundary-cylinders is called a boundary-
cylinder germ.

Definition 1.11 (Decorated manifolds.). — A decorated manifold is a smooth d-
manifold M with non-empty boundary, equipped with a closed submanifold A ⊂ M̊
and a pair (e1, e2) of boundary-cylinder germs for M ∖ A such that e1(bBd

1) and
e2(bBd

1) are disjoint. See Figure 1.2 for a schematic picture.

Definition 1.12 (Morphisms of decorated manifolds.). — A morphism of deco-
rated manifolds from (M,A, e1, e2) to (M ′, A′, e′

1, e
′
2) is a smooth, proper (preimages

of compact subspaces are compact) map φ : M → M ′ such that φ(A) ⊆ A′ and such
that, for some ϵ > 0 and for each i ∈ {1, 2}, we have φ(ei(Bd

ϵ )) = e′
i(Bd

ϵ ) and the
composition (e′

i)−1 ◦ φ ◦ ei : Bd
ϵ → Bd

ϵ is the identity. Write C∞
dec(M,M ′) for the set

of such morphisms, where by abuse of notation we are abbreviating (M,A, e1, e2) to
M and (M ′, A′, e′

1, e
′
2) to M ′.

For decorated manifolds M and M ′, we equip the set C∞
dec(M,M ′) with a topology

induced by a colimit of Whitney topologies, as follows.
• Choose representative boundary cylinders for the boundary-cylinder germs
ei and e′

i. This ensures that the condition in Definition 1.12 makes sense for
a fixed ϵ ∈ (0, 1), not just for an unspecified ϵ ∈ (0, 1) that is quantified over.

• Fix ϵ ∈ (0, 1) and write C∞
dec,ϵ(M,M ′) for the subset of C∞

dec(M,M ′) where
the condition in Definition 1.12 holds for this fixed ϵ. Equip each subset
C∞

dec,ϵ(M,M ′) with the subspace topology induced from the smooth Whitney
topology on the set C∞(M,M ′) of all smooth maps from M to M ′; for details
of the Whitney topology, see for example [Hir76, Chap. 2]. As a set, note that
C∞

dec(M,M ′) is the union of C∞
dec,ϵ(M,M ′) over all choices of ϵ ∈ (0, 1).

Lemma 1.13. — The colimit topology determined by the increasing filtration
{C∞

dec,ϵ(M,M ′)}ϵ∈(0,1) does not depend on the choices of representative boundary-
cylinders for the boundary-cylinder germs ei and e′

i.
Proof. — Different choices of representative boundary-cylinders for the boundary-

cylinder germs ei and e′
i result in different filtrations, which are cofinal in each other,

so the induced colimit topologies are equal. □
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Definition 1.14 (Morphism spaces.). — The morphism set C∞
dec(M,M ′) is topol-

ogised as follows: we first consider the colimit topology induced by the increas-
ing filtration {C∞

dec,ϵ(M,M ′)}ϵ∈(0,1) and then we apply the functor o(−) of Con-
struction 1.4 to ensure that all path-components are open. Thus we may write
C∞

dec(M,M ′) := o
(
colim

ϵ→0
(C∞

dec,ϵ(M,M ′))
)
.

We note that composition is continuous in this topology since the functor o(−)
preserves products (by Lemma 1.5) and because composition of smooth, proper maps
is continuous in the Whitney topology (see [Mat69, §2, Prop. 1]).

Remark 1.15. — Depending on M and M ′, the topology of Definition 1.14 may
differ from the subspace topology inherited directly from the Whitney topology
on C∞(M,M ′): the colimit topology is in general finer than the directly inherited
Whitney topology, and the operation o(−) refines the topology further. However,
these three topologies on C∞

dec(M,M ′) are all weakly equivalent (see Lemma 1.5). In
particular, they have the same π0.

We can now introduce the topologically-enriched categories associated to decorated
manifolds:

Definition 1.16 (Decorated manifold categories.). — Let Decd be the topologically-
enriched category defined as follows. Its objects are all decorated manifolds (M,A, e1, e2)
of dimension d, as in Definition 1.11. The space of morphisms from M = (M,A, e1, e2)
to M ′ = (M ′, A′, e′

1, e
′
2) is the space C∞

dec(M,M ′) whose underlying set is specified in
Definition 1.12 and which is topologised in Definition 1.14.

Let Dd be the underlying topologically-enriched groupoid of Decd. In other words,
its objects are all decorated manifolds of dimension d and its morphisms are those
morphisms (M,A, e1, e2) → (M ′, A′, e′

1, e
′
2) of decorated manifolds whose underlying

smooth map φ : M → M ′ is a diffeomorphism and φ(A) = A′.
Let D+

d denote the topologically-enriched groupoid whose objects are decorated d-
manifolds (M,A, e1, e2) together with an orientation of A ⊂ M̊ (called an orientedly
decorated d-manifold), and whose morphisms are maps φ as in Definition 1.12 that
are diffeomorphisms and such that the restriction φ|A : A → A′ is an orientation-
preserving diffeomorphism.

The morphisms of the groupoid Dd, i.e. the invertible morphisms of Decd, are
called decorated diffeomorphisms, for which we introduce the following notation.

Notation 1.17. — Let us write Diffdec(M,N) for the space of decorated diffeomor-
phisms M → N and abbreviate Diffdec(M) = Diffdec(M,M). We similarly define
Diff+

dec(M) = Diff+
dec(M,M) for an orientedly decorated d-manifold M , where the

superscript + means that diffeomorphisms are orientation-preserving on the subman-
ifold A ⊂ M .

The space Diffdec(M,N) is topologised as a subspace of C∞
dec(M,N), which is

topologised as in Definition 1.14.

Semi-monoidal structure. The topologically-enriched categories Decd, Dd and
D+

d are naturally endowed with semi-monoidal structures defined from the boundary
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connected sum, which we detail here. Let (M,A, e1, e2) and (M ′, A′, e′
1, e

′
2) be two

decorated d-manifolds. Define
M♮M ′ = (M ⊔M ′)/∼,

where ∼ is the equivalence relation generated by e2(x, 0) ∼ e′
1(x, 0) for all (x, 0) ∈ bBd

1.
We give this a smooth structure as follows. There are obvious topological embeddings
(1.2) M ∖ e2(bBd

1) ↪−→ M♮M ′ and M ′ ∖ e′
1(bBd

1) ↪−→ M♮M ′,

and another topological embedding
(1.3) Dd−1 × [−1, 1] ↪−→ M♮M ′

given by (x, t) 7→ e2(x,−t) for t ⩽ 0 and (x, t) 7→ e′
1(x, t) for t ⩾ 0, where we have

implicitly chosen representative boundary-cylinders for the boundary-cylinder germs
e2 and e′

1.
Lemma 1.18. — Declaring that the topological embeddings (1.2) and (1.3) are

both smooth embeddings defines a smooth structure on M♮M ′.
Proof. — First, note that the smooth structures induced by the topological em-

beddings (1.2) and (1.3) are compatible on intersections, since boundary-cylinders
are smooth embeddings away from ∂bBd

1. Then the smooth structure of M♮M ′ is
determined, except on e2(bBd

1) = e′
1(bBd

1), by the smooth structures of M and M ′.
The embedding of Dd−1 × [−1, 1] induced by (boundary-cylinders representing the
boundary-cylinder germs) e2 and e′

1 is therefore only required to extend this smooth
structure to e2(bBd

1) = e′
1(bBd

1). As a result, the smooth structure does not depend
on the choice of representative boundary-cylinders, but only their germs. Hence the
smooth structure is well-defined. □

Definition 1.19 (Boundary connected sum.). — We define the boundary con-
nected sum of decorated d-manifolds by

(M,A, e1, e2) ♮ (M ′, A′, e′
1, e

′
2) = (M♮M ′, A ⊔ A′, e1, e

′
2),

where M♮M ′ is defined by Lemma 1.18 and A ⊔ A′ is the disjoint union of A and
A′. For orientedly decorated d-manifolds, the boundary connected sum is defined in
the same way, with the orientation for A⊔A′ being induced from those of A and A′.
See Figure 1.2 for a schematic illustration.

Remark 1.20. — The usual definition of boundary connected sum of two smooth
manifolds M,M ′ depends on a choice of embedded disc in the boundary of each
manifold, and a method of “straightening corners” after gluing these discs together.
Up to diffeomorphism, the resulting smooth manifold M♮M ′ depends only on the
choice of a boundary component of M and of M ′, and orientations of these if they are
orientable (this is a result of Palais’ Disc theorem [Pal60a, Th. B and Cor. 1] and the
existence of collar neighbourhoods [Bro62]). However, in order for ♮ to induce a well-
defined monoidal structure on some category of manifolds with boundary (which we
will do just below), it must be well-defined on the nose, not just up to diffeomorphism
(since objects are manifolds, not diffeomorphism classes of manifolds). Here, these
additional choices are built in for decorated manifolds, and no additional choices are
required in Definition 1.19 above.
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Remark 1.21. — The boundary connected sum of Definition 1.19 is a fragment of
a richer structure: a non-unital cyclic operad (see [GK95]) in the category of small
categories. This consists in a contravariant functor P from the category of finite
sets and bijections to the category of small categories, together with structure maps
(functors)
(1.4) x◦y : P (X) × P (Y ) −→ P ((X ∖ {x}) ⊔ (Y ∖ {y}))
for each pair (x, y) ∈ X×Y , satisfying certain associativity and equivariance axioms.
In our setting, the category P (X) is defined just as Decd, except that each manifold
is equipped with |X| boundary-cylinder germs, labelled by the elements of X, each
bijection f : X → X ′ induces a functor P (X) → P (X ′) by applying f to the labels
and the functor (1.4) acts by gluing together the boundary-cylinder germs labelled
by x and y. We will only use the fragment of this structure given by Decd = P ({1, 2})
and (1.4) for X = Y = {1, 2} and (x = 2, y = 1), which is the operation described
in Definition 1.19.

The boundary connected sum of Definition 1.19 induces a semi-monoidal structure
on Decd as follows. Let φ : (L,A, e1, e2) → (L′, A′, e′

1, e
′
2) and ψ : (M,B, f1, f2) →

(M ′, B′, f ′
1, f

′
2) be morphisms in Decd. By definition, these are smooth, proper maps

L → L′ and M → M ′ that take A and B into A′ and B′ respectively, and are
compatible with the given boundary-cylinder germs. This compatibility implies that
they glue to a well-defined, smooth, proper map L♮M → L′♮M ′ such that the image
of A⊔B is contained in A′ ⊔B′ and satisfying the boundary-cylinder germ conditions
of Definition 1.12: this is thus a morphism

(L,A, e1, e2) ♮ (M,B, f1, f2) −→ (L′, A′, e′
1, e

′
2) ♮ (M ′, B′, f ′

1, f
′
2)

of Decd that we denote by φ♮ψ. This extends to morphisms of D+
d since the restricted

diffeomorphisms A → A′ and B → B′ are orientation-preserving by assumption and
(φ♮ψ)|A⊔B = φ|A ⊔ ψ|B.

That the operation ♮ preserves composition of morphisms is a straightforward con-
sequence of its assignments. Also, it immediately follows from the definitions that the
boundary connected sum of Definition 1.19 is associative, and that the isomorphisms
defined from this associativity are natural with respect to the morphisms of Decd.
Hence, we equip ♮ with the associator defined by these natural isomorphisms, for
which one easily checks the pentagon diagram. Hence we prove:

Proposition 1.22 (Semi-monoidal structure.). — There is a semifunctor
♮ : Decd × Decd −→ Decd

defined by assigning the boundary connected sum of Definition 1.19 on objects and
φ♮ψ for two morphisms φ and ψ in Decd. Moreover, the semifunctor ♮ induces a
semi-monoidal structure on the topologically-enriched categories Decd, Dd and D+

d .

Remark 1.23 (Monoidal and semi-monoidal structures.). — The semi-monoidal
structure on Decd defined above does not have a unit, since there is no natural
way of identifying M♮Bd

1 with M for all M (although they are clearly non-naturally
diffeomorphic). If decorated manifolds had been defined to be equipped with bound-
ary cylinders (not just germs of boundary-cylinders), then Decd would have had
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an obvious genuine monoidal structure. However, the proof of Theorem 1.55 below,
which tells us that the Serre fibration hypothesis of Proposition 1.66 is satisfied for
subgroupoids of Dd (see Lemma 1.71), depends crucially on the fact that morphisms
of decorated manifolds are only required to preserve germs of boundary-cylinders,
rather than entire boundary-cylinders. Thus we are forced either to formally adjoin a
unit to Decd (which is unnatural since π0(Decd) already has a unit by Lemma 1.24),
or to work directly with semi-monoidal categories, which is the choice that we make
here.

Groupoids of path-components. Applying the functor π0, we may consider
the discrete groupoids π0(Dd) and π0(D+

d ). The following lemma may be checked
straightforwardly from the definitions.

Lemma 1.24. — The discrete groupoids π0(Dd) and π0(D+
d ) inherit semi-monoidal

structures from those on Dd and D+
d . Moreover, these semi-monoidal structures are

monoidal, with unit object given in each case by the solid cylinder (Bd
1, ∅, id, r), where

r : Bd
1 → Bd

1 is the reflection (x, t) 7→ (x, 1 − t).
More generally, if G ⊆ Dd is any subgroupoid closed under the semi-monoidal

structure and containing the solid cylinder (Bd
1, ∅, id, r), then the semi-monoidal

structure inherited by π0(G) is monoidal. Furthermore, if M ⊆ Dd is a subgroupoid
closed under the operation g♮− for each object g of G (thus M is a left module
over the semi-monoidal groupoid G), then π0(M) inherits a structure of a (genuine)
left module over the monoidal groupoid π0(G). Similar results hold for analagous
subgroupoids G ⊆ D+

d and M ⊆ D+
d .

1.2. Split short exact sequences

In this subsection, we establish several split homotopy fibration sequences for em-
bedding spaces and decorated diffeomorphism groups of manifolds, whose associated
split short exact sequences on π1 and π0 will be used in our constructions in §2. In
particular, the split short exact sequences (1.7) and (1.9) below will be used in the
two versions of our general construction of homological representations in §2.2 and
§2.3 respectively. In addition, the split short exact sequence (1.9) implies that any
motion group, under a certain peripherality condition, is a braided mapping class
group (see Proposition 1.42); in particular, a normal subgroup of a mapping class
group.

Throughout §1.2, we fix a closed submanifold Z ⊂ Rd and an open subgroup
G ⩽ Diff(Z). Note that open subgroups G ⩽ Diff(Z) correspond to subgroups
of π0(Diff(Z)). We recall our notational convention that, for X a manifold with
boundary, X̊ denotes its interior.

1.2.1. The first short exact sequence

The first split short exact sequence (1.7) that we construct deals with fundamental
groups of certain spaces of embeddings, which we now define.
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Definition 1.25. — For smooth manifolds X and Y , let us write E(X, Y ) =
Emb(X, Y )/Diff(X). For a subgroup H ⩽ Diff(X), we also write EH(X, Y ) =
Emb(X, Y )/H. In the special case when H = Diff+(X) (when X is orientable),
we also write E+(X, Y ) = Emb(X, Y )/Diff+(X).

We specify once and for all an identification of Rd with the interior of the solid
cylinder Bd

1. The choice of closed submanifold Z ⊂ Rd above therefore determines
a decorated manifold (Bd

1, Z) = (Bd
1, Z, [id], [r]) whose boundary-cylinder germs are

represented, respectively, by the identity and by the reflection r of the solid cylinder
Bd

1 = Dd−1×[0, 1] in its second coordinate. To justify that this is a decorated manifold,
we need to verify that there are boundary-cylinders e1 and e2, having the same germs
as id and r, whose images are disjoint from Z. We will explain this for e1, the case
of e2 being similar. Since Z is a compact subset of the interior of Dd−1 × [0, 1], it
is disjoint from Dd−1 × [0, ϵ] for some ϵ > 0. Choose a diffeomorphism [0, 1] ∼= [0, ϵ]
that agrees with the identity on [0, δ] for some 0 < δ < ϵ. The product of this with
the identity of Dd−1 is then a boundary-cylinder e1 for Bd

1 whose image is disjoint
from Z and whose germ is the same as the identity.

For any other decorated manifold (M,A) ∈ Dd, we may therefore consider the
boundary connected sum (M,A)♮(Bd

1, Z). If we fix an orientation of Z, we may do
the same for any orientedly decorated manifold (M,A) ∈ D+

d .

Notation 1.26. — To shorten notation, we write M = M♮Bd
1 and we denote the

interior of M by M̆ . Notice that M̆ contains (disjointly) both M̊ and Rd under its
fixed identification with the interior of Bd

1.

Construction 1.27. — It will be useful at several points (see for instance the proofs
of Propositions 1.29 and 1.33) to have a specified self-embedding Θ of M whose
image is M ⊂ M , together with a path of embeddings from Θ to the identity. Let
us first choose a representative for the boundary-cylinder germ e2 associated to M ;
this is an embedding Bd

1 = Dd−1 × [0, 1] ↪→ M , which we also denote by e2. Let us
moreover assume that its image e2(Bd

1) is disjoint from the submanifold A ⊂ M̊ . The
decorated manifold M may then be viewed as the union of M and Dd−1 × [−1, 0]
along Dd−1 × {0}. Using this viewpoint, we construct a path of self-embeddings

Θt : M ↪−→ M

such that Θ0 = id and Θ1(M) = M . To do this, we first specify a path of embeddings
of intervals θt : [−1, 1] ↪→ [−1, 1] where θ0 = id, each θt agrees with the identity near
1 and θt([−1, 1]) = [t − 1, 1]. Taking the product of θt with the identity on Dd−1

and extending by the identity on the complement M ∖ (Dd−1 × [−1, 1]), we obtain
a self-embedding M ↪→ M , which we define to be Θt. In particular, Θ = Θ1 is the
advertised self-embedding of M .

Remark 1.28. — We emphasise that, by construction, each self-embedding Θt of
Construction 1.27 agrees with the identity on M ∖ e2(Bd

1); in particular it agrees
with the identity on A ⊂ M̊ .
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Proposition 1.29. — For any decorated manifold (M,A) ∈ Dd and an open
subgroup G ⩽ Diff(Z), there is a homotopy fibration sequence

EG(Z, M̆ ∖ A) EDiff(A)×G(A ⊔ Z, M̆) E(A, M̆),(1.5)

in which the second map admits a section up to homotopy, as pictured. The same
holds for objects of D+

d , with Diff(A) replaced by Diff+(A) in the middle term of
(1.5).

Proof. — The map EDiff(A)×G(A ⊔ Z, M̆) → E(A, M̆) that forgets the embedding
of Z is equivariant with respect to the left action of the topological group Diffc(M̆)
of compactly-supported diffeomorphisms of M̆ . By [Pal21, Prop. 4.15], the action
of Diffc(M̆) on E(A, M̆) is locally retractile, i.e. it admits local sections. Thus, by
[Pal60b, Th. A], the map

(1.6) EDiff(A)×G(A ⊔ Z, M̆) −→ E(A, M̆)

is a fibre bundle, in particular a Serre fibration. Write incl. for the inclusion of A
into M̆ and [incl.] for its Diff(A)-orbit; this is a natural basepoint for E(A, M̆). The
point-set fibre of (1.6) over [incl.] ∈ E(A, M̆) is clearly equal to EG(Z, M̆ ∖ A), so
(1.5) is a homotopy fibration sequence.

A section up to homotopy for (1.6) is defined by sending [φ] ∈ E(A, M̆) to [(Θ ◦
φ) ⊔ ι], where ι is the inclusion Z ⊂ Rd ⊂ M̆ and Θ is the self-embedding of
Construction 1.27. □

Corollary 1.30. — For any decorated manifold (M,A) ∈ Dd there is a split
short exact sequence

1 π1(EG(Z, M̆ ∖ A)) π1(EDiff(A)×G(A ⊔ Z, M̆)) π1(E(A, M̆)) 1,

(1.7)

where the basepoint of each space of embeddings modulo diffeomorphisms is given by
the inclusion. The same holds for objects of D+

d , with Diff(A) replaced by Diff+(A)
in the middle term of (1.7).

We will sometimes consider spaces of embeddings of Z into M , rather than its
interior M̆ . We record here the following fact, for later reference.

Proposition 1.31. — The inclusion EG(Z, M̆∖A) ⊂ EG(Z,M∖A) is a homotopy
equivalence.

Proof. — A deformation retraction may be defined by post-composing embeddings
with an isotopy of self-embeddings of M starting from the identity and “shrinking”
a collar neighbourhood of its boundary. □
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1.2.2. The second short exact sequence

We now construct a second split short exact sequence (1.9). We first need some
notation. For a decorated manifold (M,A) = (M,A, e1, e2) ∈ Dd, recall from Nota-
tion 1.17 that we write Diffdec(M,A) for its automorphism group in Dd, in other
words, the self-diffeomorphisms of M that send A onto itself and that are compatible
with the boundary-cylinder germs e1 and e2. Similarly, we write Diff+

dec(M,A) for
the automorphism group of an orientedly decorated manifold (M,A) ∈ D+

d , the
additional condition being that the restriction to A must be orientation-preserving.

Definition 1.32. — For a decorated manifold (M,A) ∈ Dd such that A de-
composes as A1 ⊔ . . . ⊔ Ak, we define Diffdec(M,A1, . . . , Ak) to be the subgroup of
Diffdec(M,A) of those diffeomorphisms that preserve this decomposition, in other
words, that send each Ai onto itself for each 1 ⩽ i ⩽ k. In the setting of D+

d , we
analogously define the subgroup Diff+

dec(M,A1, . . . , Ak) ⊂ Diff+
dec(M,A).

In the following, we continue to use the Notation 1.26 from §1.2.1.
Proposition 1.33. — For any decorated manifold (M,A) ∈ Dd and an open

subgroup G ⩽ Diff(Z), there is a homotopy fibration sequence

Diffdec(M,A,Z|G) Diffdec(M,A) EG(Z, M̆ ∖ A),(1.8)

in which the first map admits a section up to homotopy, as pictured, and where
Diffdec(M,A,Z|G) denotes the subgroup of φ ∈ Diffdec(M,A,Z) such that φ|Z ∈
G ⩽ Diff(Z).

The analogous statement also holds for objects of D+
d , with Diffdec replaced by

Diff+
dec.

Proof. — The right-hand map above is equivariant with respect to the left action
of Diffc(M̆ ∖ A). By [Pal21, Prop. 4.15], since G ⩽ Diff(Z) is an open subgroup, its
action on EG(Z, M̆ ∖ A) is locally retractile, so by [Pal60b, Th. A], the right-hand
map above is a fibre bundle. Its point-set fibre over the basepoint [incl.] is clearly
equal to Diffdec(M,A,Z|G).

We now define a section up to homotopy for the inclusion Diffdec(M,A,Z|G) ⊂
Diffdec(M,A), using the path of self-embeddings Θt for t ∈ [0, 1] of Construction 1.27.
Let us define a homotopy H : Diffdec(M,A) × [0, 1] → Diffdec(M,A) by H(φ, t)(x) =
Θt(φ(Θ−1

t (x))) if x ∈ Θt(M) and by H(φ, t)(x) = x if x /∈ Θt(M). To see that this
defines a section up to homotopy for the inclusion, we must check (i) that H(φ, t)
is indeed a diffeomorphism of M , (ii) that H is continuous, (iii) that H(−, t) is a
group homomorphism for each t ∈ [0, 1], (iv) that H(−, 0) is the identity and (v)
that H(φ, 1) ∈ Diffdec(M,A,Z|G) for each φ ∈ Diffdec(M,A).

By construction, the conjugate Θt ◦φ ◦ Θ−1
t is a diffeomorphism of Θt(M). Since φ

is a decorated diffeomorphism of M , it agrees with the identity on Dd−1 × [−1,−1+δ]
for some δ > 0 and so Θt ◦φ◦Θ−1

t agrees with the identity on Dd−1 × [t−1, t−1+δ′]
for some δ′ > 0. The result of extending this by the identity on M ∖ Θt(M) =
Dd−1 × [−1, t− 1) is therefore also a diffeomorphism. This is precisely H(φ, t), so we
have verified point (i).
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Composition of proper maps (such as diffeomorphisms or closed embeddings like
Θt) is continuous in the Whitney topology (see [Mat69, §2, Prop. 1]), as is extending
diffeomorphisms by the identity. Since the topology on decorated diffeomorphism
groups is derived from the Whitney topology (see Definitions 1.14 and 1.16 for
precise details), it follows that H(−, t) is continuous for each t ∈ [0, 1]. Continuity
in t follows from the fact that t 7→ Θt was constructed to be a continuous path of
self-embeddings; see Construction 1.27. This verifies point (ii).

Points (iii) and (iv) are obvious: conjugating by a fixed self-embedding and extend-
ing by the identity is clearly a group homomorphism, and H(−, 0) is the identity
since Θ0 is the identity. Finally, H(φ, 1) agrees with the identity on Bd

1 ⊂ M , by
construction, so in particular it acts by the identity on Z ⊂ Bd

1; hence it lies in
Diffdec(M,A,Z|G). This verifies point (v).

Thus H(−, 1) : Diffdec(M,A) → Diffdec(M,A,Z|G) is a section up to homotopy
for the inclusion, witnessed by the homotopy H. □

Corollary 1.34. — For any decorated manifold (M,A) ∈ Dd there is a split
short exact sequence

1 π1(EG(Z, M̆ ∖ A)) π0(Diffdec(M,A,Z|G)) π0(Diffdec(M,A)) 1,

(1.9)

where the basepoint of the space EG(Z, M̆ ∖ A) is the orbit of the inclusion. The
analogous statement also holds for objects of D+

d , with Diffdec replaced by Diff+
dec.

Proof. — In contrast to Corollary 1.30, where it was immediate that (1.5) induces
(1.7) by considering the long exact sequence of homotopy groups, this corollary re-
quires a little more explanation, since it involves also π0, while we aim to prove
that we obtain a short exact sequence of groups and homomorphisms: more pre-
cisely, it is a priori unclear that the connecting homomorphism π1(EG(Z, M̆ ∖
A)) → π0(Diffdec(M,A,Z|G)) of the homotopy long exact sequence is a group
homomorphism. Let us write Γ = Diffdec(M,A), H = Diffdec(M,A,Z|G) and
B = EG(Z, M̆ ∖ A). Since we are not interested in π0(B), we may implicitly re-
place B with the image of the fibre bundle π : Γ → B. This has the effect of possibly
throwing away some path-components of B (not containing its basepoint) and en-
suring that π is a surjective fibre bundle. It is also Γ-equivariant, where in each
case Γ acts on the left by post-composition. Lemma 1.35 below thus implies that
π : Γ → B is isomorphic (in the category of maps out of Γ) to the quotient map
Γ → Γ/H, which is therefore a fibre bundle. We shall prove in a moment that it
is in fact a principal H-bundle. This implies that the homotopy fibration sequence
H ↪→ Γ ↠ Γ/H continues two steps to the right with Γ/H → BH → BΓ (where
BH and BΓ denote the classifying spaces of H and Γ respectively). Moreover, the
map BH → BΓ in this sequence, which is induced by the inclusion, admits a section
up to homotopy, induced by the section up to homotopy in (1.8). Considering the
long exact sequence of homotopy groups associated to the split fibration sequence
Γ/H → BH → BΓ, we obtain the split short exact sequence (1.9), as claimed.
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It remains to prove our assertion that Γ → Γ/H is a principal H-bundle. For this,
we will use a refinement of [Pal60b, Th. A], which is remarked on page 307 of [Pal60b]
and written down explicitly in [Pal21, Prop. 4.8]. Namely, let X be a space with a
left Γ0-action and a right H-action that commute, and such that the induced left
Γ0-action on X/H is locally retractile. Assume that the H-action on X is free and
that the action map x.− : H → X is a topological embedding for each x ∈ H. Then
X → X/H is a principal H-bundle. In our setting we have X = Γ = Diffdec(M,A)
and we take Γ0 = Diffc(M̆ ∖ A) acting on Γ by extending compactly-supported
diffeomorphisms of M̆ ∖A to M by the identity and post-composing. This obviously
commutes with the right action of H by pre-composition. The induced left action
of Γ0 on Γ/H is the same as its left action on EG(Z, M̆ ∖ A) by post-composition
under the homeomorphism Γ/H ∼= B = EG(Z, M̆ ∖ A), which is locally retractile
by [Pal21, Prop. 4.15], as mentioned already in the proof of Proposition 1.33. The
right H-action on Γ is simply right multiplication (H is a subgroup of Γ), so it is
obviously free. It is also clear that the action map g.− : H → Γ is a topological
embedding for each g ∈ Γ, since it is just the inclusion H ⊂ Γ (which is a topological
embedding) followed by the homeomorphism Γ ∼= Γ given by left multiplication by g.
It therefore follows from [Pal21, Prop. 4.8] that Γ → Γ/H is a principal H-bundle,
as claimed. □

Lemma 1.35. — Let Γ be a topological group acting on the left on a space B and
let π : Γ → B be a surjective, Γ-equivariant fibre bundle. Denote by H the stabiliser
of the basepoint π(1Γ) ∈ B. Then there is a homeomorphism B ∼= Γ/H commuting
with π and the projection Γ → Γ/H that quotients by the right action of H on Γ by
multiplication.

Proof. — Surjective fibre bundles are quotient maps, so in order to show that the
two quotient maps Γ → Γ/H and π : Γ → B are isomorphic, it suffices to check
that their fibres give the same partition of the underlying set of Γ. The fibres of
Γ → Γ/H are by definition the right H-cosets in Γ. Let b ∈ B and choose g ∈ Γ
so that π(g) = b, which is possible since π is surjective. The fibre π−1(b) consists
of all g′ ∈ Γ such that g′π(1Γ) = π(g′) = b = π(g) = gπ(1Γ), where we have used
Γ-equivariance of π. This condition is equivalent to g−1g′ ∈ Stab(π(1Γ)) = H, in
other words g′ ∈ gH. Hence the fibres of π are also the right H-cosets in Γ. □

1.2.3. Connecting the short exact sequences

We now describe the relationship between the split short exact sequences (1.7) and
(1.9).

Proposition 1.36. — Let (M,A) ∈ Dd be a decorated manifold, let Z ⊂ Rd

be a closed submanifold and let G ⩽ Diff(Z) be an open subgroup. Then there is a
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commutative diagram of the form:

π1(EG(Z, M̆ ∖ A)) π1(EDiff(A)×G(A ⊔ Z, M̆)) π1(E(A, M̆))

π1(EG(Z, M̆ ∖ A)) π0(Diffdec(M,A,Z|G)) π0(Diffdec(M,A))

1 π0(Diffdec(M, ∅)) π0(Diffdec(M, ∅))

1 1

1 1

1 1id

id
(1.10)

where the top and middle rows are (1.7) and (1.9) respectively and the columns are
also exact. The top-right square also commutes when the solid horizontal arrows are
replaced by the dotted arrows.

Proof. — Let us consider the following diagram:

Diffdec(M,A,Z|G) Diffdec(M,A) EG(Z, M̆ ∖ A)

Diffdec(M, ∅) Diffdec(M, ∅)

EG(Z, M̆ ∖ A) EDiff(A)×G(A ⊔ Z, M̆) E(A, M̆).

id

(1.11)

The top row is (1.8) and the bottom row is (1.5). The bottom vertical maps are
the restriction maps to A ⊔ Z and to A respectively. They are fibre bundles by the
same argument as in the proof of Proposition 1.33, and the top two vertical maps
are the corresponding inclusions of point-set fibres. Both squares evidently commute,
since restricting a diffeomorphism to A ⊔ Z and then to A gives the same result as
restricting directly to A. Taking the associated long exact sequences of homotopy
groups of these homotopy fibration sequences horizontally and vertically, we obtain
the diagram (1.10), where for the two columns we apply the same argument as in the
proof of Corollary 1.34 (except without the section up to homotopy). One may check
directly that the top-right square of (1.10) commutes when the solid horizontal
arrows are replaced by the dotted arrows by considering the diagram (1.11) and
using the definition of the connecting homomorphisms in the vertical long exact
sequences. □

Remark 1.37. — We shall prove in §1.4.3 below that the diagram (1.11) is functo-
rial with respect to morphisms of the category UDd defined in §1.4 below; in particular
it is functorial with respect to decorated diffeomorphisms of (M,A), i.e. with respect
to the morphisms of the groupoid Dd.

1.2.4. Motion groups and braided mapping class groups

The goal of this section is to introduce braided diffeomorphism groups (see Defini-
tion 1.38) and motion groups (see Definition 1.39), and to show (see Proposition 1.42)
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that the groups of path-components of braided diffeomorphism groups (braided map-
ping class groups) are naturally identified with the corresponding motion groups
when A ⊂ M is peripheral in the sense of Definition 1.40 below.

Definition 1.38. — The braided diffeomorphism group Diffbr
dec(M,A) of a deco-

rated manifold (M,A) is the kernel of the natural homomorphism
Diffdec(M,A) −→ π0(Diffdec(M, ∅)),

in other words, it is the subgroup of diffeomorphisms of (M,A) that become isotopic
to the identity after forgetting A. We also define Diffbr,+

dec (M,A) = Diffbr
dec(M,A) ∩

Diff+
dec(M,A).

Definition 1.39. — Given a closed submanifold Y ⊂ M̊ , the corresponding
motion group MotY (M) is the fundamental group π1(E(Y, M̊)). When Y is orientable,
the corresponding oriented motion group is Mot+

Y (M) = π1(E+(Y, M̊)).

Definition 1.40. — Let (M,A) be a decorated manifold. The submanifold A ⊂
M is called peripheral if it is contained in a codimension-zero ball in M .

Remark 1.41. — If A ⊂ M is peripheral, the columns of the commutative diagram
(1.10) are moreover split short exact. Indeed, in this case, one may construct sections
up to homotopy for the top two vertical inclusions in (1.11) (or alternatively consider
the two columns as instances of (1.8) with Z replaced by A or A⊔Z), which implies
that the columns in (1.10) are split short exact.

When A ⊂ M is peripheral (see Definition 1.40), there is a canonical identification
of (oriented) motion groups with π0 of (oriented) braided diffeomorphism groups.
Thus – in this case – it follows that motion groups are braided mapping class groups
(see Remark 1.43 below).

Proposition 1.42. — Let (M,A) be a decorated manifold. There is a canonical
surjection
(1.12) MotA(M) = π1(E(A, M̊)) −→→ π0(Diffbr

dec(M,A))
that is an isomorphism if A ⊂ M is peripheral. The analogous statement also holds
in the oriented setting, adding a superscript + to all groups and embedding spaces
involved.

Proof. — The restriction map Diffdec(M, ∅) → E(A, M̊) is a fibre bundle by the
same reasoning as in the proof of Proposition 1.33, so (using the same argument as
in the proof of Corollary 1.34) it induces a long exact sequence of the form
· · · → π1(Diffdec(M, ∅)) −→ MotA(M) −→ π0(Diffdec(M,A)) −→ π0(Diffdec(M, ∅)).
By exactness, the image of the middle map is precisely π0(Diffbr

dec(M,A)), so we obtain
the surjection (1.12). When A ⊂ M is peripheral, we may choose a codimension-
zero ball in M containing A and an embedded path from a point on its boundary
to a point p ∈ ∂M that lies in one of the boundary cylinders of M . Since all
diffeomorphisms in Diffdec(M, ∅) are the identity in a neighbourhood of p, we may
deform them continuously until they are the identity on the chosen ball and path; in
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particular on A. This deformation provides a section up to homotopy of the inclusion
Diffdec(M,A) ↪→ Diffdec(M, ∅). Hence this inclusion induces a split-surjection on
homotopy groups; by exactness, this implies that the middle map in the long exact
sequence above is injective, and hence (1.12) is an isomorphism. □

Remark 1.43 (Globality.). — In particular, Proposition 1.42 implies: each motion
group MotA(M), where A ⊂ M is peripheral, is canonically isomorphic to a normal
subgroup of the corresponding decorated mapping class group π0(Diffdec(M,A)). All
of the examples of motion groups discussed in this paper are of this form; see §3.1.

Although motion groups and braided mapping class groups are in general different
without the peripherality condition, there is always the canonical surjection (1.12).
Thus we may conclude: a representation of the discrete groupoid π0(Dd) canonically
induces representations of all motion groups and all mapping class groups of d-
dimensional manifolds.

1.2.5. Actions of motion groups

To conclude this subsection, we prove a result identifying the actions coming from
the two split short exact sequences (1.7) and (1.9). We first need the following
general result about connecting homomorphisms in long exact sequences associated
to quotients of topological groups.

Proposition 1.44. — Let Γ be a topological group and H ⩽ Γ a subgroup such
that the quotient map π : Γ → Γ/H is a fibre bundle. There is a left H-action

• on π1(Γ/H) induced by the obvious left H-action on Γ/H,
• on π0(H) by conjugation.

With respect to these actions, the connecting homomorphism
(1.13) δ : π1(Γ/H) −→ π0(H)
of the long exact sequence associated to π is H-equivariant.

Remark 1.45. — Note that the obvious left action of the whole group Γ on Γ/H
does not induce an action on π1(Γ/H), since it does not preserve the basepoint. Also,
Proposition 1.44 may seem counterintuitive, since the action on the domain of (1.13)
is induced by multiplication in Γ whereas the action on its codomain is induced by
conjugation in H. The reason for this is explained in Remark 1.46 after the proof.

Proof of Proposition 1.44. — Let [α] ∈ π1(Γ/H) represented by a loop α : [0, 1] →
Γ/H and let h ∈ H. Our goal is to show that h.δ([α]) = δ(h.[α]). We first compute
the left-hand side of this expression. Choose a path α̃ : [0, 1] → Γ such that α̃(0) = 1Γ
and π◦α̃ = α (this is possible since π is a fibre bundle, in particular a Serre fibration).
By definition of the connecting homomorphism, we have δ([α]) = [α̃(1)]. By definition
of the left-action of H on π0(H) by conjugation, we thus have
(1.14) h.δ([α]) = [hα̃(1)h−1].
We now compute the right-hand side, namely δ(h.[α]). The element h.[α] ∈ π1(Γ/H)
is represented by the loop h.α : [0, 1] → Γ/H given by applying pointwise the left
action of H on Γ/H, i.e. it sends t ∈ [0, 1] to h.α(t) ∈ Γ/H. We lift this to Γ by the
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path h.α̃.h−1 : [0, 1] → Γ, which is the composition along the top of the following
diagram:

(1.15)
Γ Γ Γ

[0, 1] Γ/H Γ/H.

h.−

π π

−.h−1

π

α

α̃

h.−

The square commutes since π is equivariant with respect to the left action of H on
Γ by multiplication and the right-hand triangle commutes since π quotients by the
right action of H on Γ by multiplication. Hence β := h.α̃.h−1 is a lift of h.α to Γ,
which sends 0 to h.α̃(0).h−1 = h.h−1 = 1Γ. Hence, by definition of the connecting
homomorphism, we have:

(1.16) δ(h.[α]) = δ([h.α]) = [β(1)] = [h.α̃(1).h−1].

This is equal to (1.14), so we have shown that δ is H-equivariant. □

Remark 1.46. — In the above proof, rather than (1.15), the first naive guess for
lifting h.α to Γ might instead be the path h.α̃, namely the composition along the
top of the following diagram:

(1.17)
Γ Γ

[0, 1] Γ/H Γ/H.

h.−

π π

α

α̃

h.−

This is indeed a lift of h.α due to the fact that π is H-equivariant, so the square
commutes. However, this path will not do for the definition of δ, since it sends 0
to h.α̃(0) = h instead of 1Γ. This is why we must consider the lift (1.15) rather
than (1.17) in the proof, and why the left H-action on the domain of δ by multi-
plication corresponds to the left H-action on the codomain of δ by conjugation; see
Remark 1.45.

Corollary 1.47. — In the setting of Proposition 1.44, if we have a continuous
group homomorphism s : Γ → H whose composition with the inclusion H ⊂ Γ is
homotopic to the identity on Γ, there is a split short exact sequence

1 π1(Γ/H) π0(H) π0(Γ) 1.δ

s∗
(1.18)

The left action of [g] ∈ π0(Γ) on π1(Γ/H) arising from this split short exact sequence
is precisely the action of s(g) ∈ H on π1(Γ/H) induced by the obvious left action of
H on Γ/H.

Proof. — The split short exact sequence (1.18) follows immediately by taking the
long exact sequence of homotopy groups associated to the fibre bundle Γ → Γ/H
and noting that s provides a section s∗ : π0(Γ) → π0(H) for the inclusion-induced
map π0(H) → π0(Γ). The left action of [g] ∈ π0(Γ) on π1(Γ/H) arising from (1.18)
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is given by lifting [g] to π0(H) using s∗ and then acting by conjugation on π1(Γ/H),
considered as a normal subgroup via δ. Hence it is given explicitly by:

[g] · [α] = δ−1
(
s∗([g])δ([α])s∗([g])−1

)
.

By the H-equivariance of δ deduced from Proposition 1.44, this is the same as the
action of s∗([g]) = [s(g)] on π1(Γ/H) induced by the obvious left action of H on
Γ/H. □

Proposition 1.48. — Let (M,A) be a decorated manifold. Extending deco-
rated diffeomorphisms of (M,A) by the identity on M ∖M , there is an action of
Diffdec(M,A) on EG(Z, M̆ ∖A) by post-composition. This action fixes the basepoint,
since Z lies in M ∖M , and so it induces an action
(1.19) π0(Diffdec(M,A)) ↷ π1(EG(Z, M̆ ∖ A)).

(i) The action (1.19) agrees with the action induced by the split short exact
sequence (1.9), pre-composed with the isomorphism

π0(Diffdec(M,A)) ∼= π0(Diffdec(M,A))
induced by extending decorated diffeomorphisms by the identity on M ∖M .

(ii) Precomposing with the canonical map (see Proposition 1.42)
(1.20) π1(E(A, M̊)) −→→ π0(Diffbr

dec(M,A)) ⩽ π0(Diffdec(M,A)),
the action (1.19) agrees with the action induced by the split short exact sequence
(1.7), pre-composed with the isomorphism π1(E(A, M̊)) ∼= π1(E(A, M̆)) induced by
the inclusion M̊ ⊂ M̆ .

Both statements also hold in the oriented setting, adding a superscript + to all
groups and all embedding spaces (except those already with a subscript G) in the
statement.

Proof. — As explained in the proof of Corollary 1.34, the fibre bundle
Diffdec(M,A) −→ EG(Z, M̆ ∖ A)

from (1.8) is isomorphic (in the category of maps out of Γ) to the quotient map Γ ↠
Γ/H, where Γ = Diffdec(M,A) and H = Diffdec(M,A,Z|G) and we have possibly
thrown away some non-basepoint path-components of EG(Z, M̆ ∖A), which does not
matter since we are only interested in its fundamental group. We are therefore in the
setting of Corollary 1.47, with (1.18) = (1.9). It then follows from Corollary 1.47 that
the action of π0(Γ) on π1(EG(Z, M̆ ∖ A)) induced by the split short exact sequence
(1.9) is equal to the section π0(Γ) → π0(H) followed by the action of π0(H) =
π0(Diffdec(M,A,Z|G)) on π1(EG(Z, M̆ ∖ A)) by post-composition. Pre-composing
the latter action by the isomorphism π0(Diffdec(M,A)) ∼= π0(Diffdec(M,A)) = π0(Γ),
we obtain exactly the action (1.19), because extending by the identity on M ∖M ,
conjugating by the isomorphism Θ: M → M (see Construction 1.27) and extending
by the identity again is isotopic to simply extending by the identity once. This
establishes part (i) of the proposition.

Part (ii) of the proposition then follows from part (i), together with diagram
(1.10) of Proposition 1.36 (in particular the fact that its top-right square commutes
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also when the solid horizontal arrows are replaced by the dotted arrows) and the
observation that the top-right vertical map of that diagram coincides with the
canonical map (1.20) under the two isomorphisms
(1.21)

π1(E(A, M̊)) ∼= π1(E(A, M̆)) and π0(Diffdec(M,A)) ∼= π0(Diffdec(M,A)).
This last observation follows because (1.20) is the connecting homomorphism of the
restriction fibre bundle Diffdec(M, ∅) → E(A, M̊) (see the proof of Proposition 1.42),
the top-right vertical map of (1.10) is the connecting homomorphism of the restriction
fibre bundle Diffdec(M, ∅) → E(A, M̆) (see diagram (1.11)) and the isomorphisms
(1.21) are induced by the map of fibre bundles induced by extending decorated diffeo-
morphisms of M to M by the identity on M ∖M and post-composing embeddings
into M̊ with the inclusion M̊ ⊂ M̆ . □

1.3. A Serre fibration of decorated diffeomorphism groups

This section is devoted to the proof of a technical result (see Theorem 1.55) con-
cerning decorated diffeomorphism groups, which will play an important role in §1.4
to ensure that the topologically-enriched Quillen bracket construction behaves well
with respect to the π0 functor on the topologically-enriched groupoids of decorated
manifolds that we shall consider; see Lemma 1.71 and Proposition 1.76. From this
point onwards, we assume that the dimension d is not equal to 4; see Re-
mark 1.54 for the reason why this is necessary. We start by introducing the following
notion.

Definition 1.49 (Decorated embeddings.). — Let M = (M,A) and N = (N,B)
be decorated manifolds. Define Embdec(M,N) to be the set of smooth, proper em-
beddings φ : M ↪→ N , equipped with a germ of an extension φ′ to an embedding
Bd

1♮M ↪→ N , such that:
• φ(A) ⊆ B;
• for some ϵ > 0 we have φ(e2(Bd

ϵ )) = e′
2(Bd

ϵ ) and (e′
2)−1 ◦ φ ◦ e2 is the identity

map Bd
ϵ → Bd

ϵ , where e1, e2 are the boundary-cylinder germs of (M,A) and
e′

1, e
′
2 are those of (N,B);

• there is a decorated manifold M ′ and diffeomorphism of decorated manifolds
φ̄ : M ′♮M → N such that φ = φ̄ ◦ ιM,M ′ , where ιM,M ′ denotes the canonical
embedding of M into M ′♮M . This extension of φ to φ̄ should be compatible
with the given germ of an extension φ′ of φ.

In other words – modulo decorated diffeomorphisms of the codomain – a decorated
embedding is the canonical inclusion of (a germ of a neighbourhood of) the right-
hand factor of a boundary connected sum. As an illustration, Figure 1.3 depicts the
inclusion of a neighbourhood Mt of M into L♮M , representing a decorated embedding
of M into L♮M .

We now describe the topology on this set. Recall that M = Bd
1♮M = (Dd−1 ×

[−1, 0]) ∪ M and write Mt = (Dd−1 × [−t, 0]) ∪ M for t ∈ (0, 1), as depicted in
Figure 1.3. For ϵ ∈ (0, 1), write Embdec,ϵ(Mt, N) for the set of embeddings defined as
above except that ϵ is fixed in the second bullet point and the embedding is defined
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on Mt rather than on M plus a germ of a neighbourhood. Topologise Embdec,ϵ(Mt, N)
as a subspace of C∞(Mt, N) equipped with the Whitney topology. We may take the
colimit as ϵ → 0 (along inclusion maps) and t → 0 (along restriction maps), and
we define Embdec(M,N) := o

(
colim
ϵ,t→0

(Embdec,ϵ(Mt, N))
)
, where o(−) is the functor

of Construction 1.4.
Notation 1.50. — For decorated manifolds L,M,N , we denote by Embdec(M,N)L

the subspace of Embdec(M,N) of those embeddings for which we may take M ′ =
L in the third point above. Additionally, if A and B are oriented, we denote
by Emb+

dec(M,N) the subspace of Embdec(M,N) of those decorated embeddings
φ : M ↪→ N whose restriction φ|A : A ↪→ B is orientation-preserving.

The composition of decorated embeddings is defined as follows.
Definition 1.51. — Let φ ∈ Embdec(M,N) and ψ ∈ Embdec(N,P ) for deco-

rated manifolds M , N and P . Choose decorated diffeomorphisms φ̄ : M ′♮M → N
and ψ̄ : N ′♮N → P extending φ and ψ respectively; these exist by definition. We may
then form the composite decorated diffeomorphism ψ̄ ◦ (idN ′♮φ̄) : N ′♮M ′♮M → P ,
which restricts to the composite embedding ψ ◦ φ on M ⊂ N ′♮M ′♮M . Moreover, its
restriction to an ϵ-neighbourhood of M ⊂ N ′♮M ′♮M provides a germ of an extension
of ψ◦φ to Bd

1♮M . The first two points of Definition 1.49 clearly hold for the composite
embedding ψ ◦ φ, so this embedding together with the germ of an extension is an
element of Embdec(M,P ), which we define to be the composition of the decorated
embeddings φ and ψ.

Lemma 1.52. — The composition of decorated embeddings given in Definition
1.51 defines a continuous, associative operation Embdec(M,N) × Embdec(N,P ) →
Embdec(M,P ).

Proof. — We must first check that this operation is a well-defined map, i.e. that
the construction of Definition 1.51 does not depend on the choice of decorated
diffeomorphisms φ̄ and ψ̄ extending φ and ψ. The only part of the construction
that depends on these choices of extensions is the germ of an extension of ψ ◦ φ
to an embedding Bd

1♮M ↪→ P . The fact that this germ is independent of the choice
of decorated diffeomorphisms extending the decorated embeddings follows from the
fact that decorated diffeomorphisms are required to be compatible with boundary-
cylinder germs. Continuity of the operation follows from the fact that composition
of proper, smooth maps is continuous in the Whitney topology; see [Mat69, §2,
Prop. 1].

Finally, let us check associativity of this operation. For φ ∈ Embdec(M,N), ψ ∈
Embdec(N,P ) and χ ∈ Embdec(P,Q), the two iterated compositions (χ ◦ ψ) ◦ φ and
χ ◦ (ψ ◦ φ) ∈ Embdec(M,Q) each consist of a smooth embedding M ↪→ Q and a
germ of an extension to Bd

1♮M ↪→ Q. The two smooth embeddings M ↪→ Q are
evidently equal, by associativity of composition of maps. Moreover, the fact that
the two germs of extensions to embeddings Bd

1♮M ↪→ Q are equal follows from the
fact that they are restrictions, to an ϵ-neighbourhood of M ⊂ P ′♮N ′♮M ′♮M , of the
decorated diffeomorphisms (χ̄◦ (idP ′♮ψ̄))◦ (idP ′♮N ′♮φ̄) and χ̄◦ ((idP ′♮ψ̄)◦ (idP ′♮N ′♮φ̄)),
which are equal by associativity of composition of maps. □
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Lemma 1.53. — The embedding space Embdec(M,N) decomposes as a topologi-
cal disjoint union

(1.22) Embdec(M,N) ∼=
⊔
L

Embdec(M,N)L,

where the disjoint union runs over representatives of isomorphism classes of decorated
manifolds.

Proof. — We denote by (−)c the function

Embdec(M,N) −→ {isomorphism classes of decorated manifolds}

that assigns to each decorated embedding the isomorphism class of the decorated
manifold given by the complement of its image. We must show that this function
is locally constant. Let φ ∈ Embdec(M,N) be any decorated embedding; we must
show that it admits a neighbourhood U such that ψc = φc for each ψ ∈ U .

Since φ is a decorated embedding, we may fix an identification of N with L♮M ,
for some decorated manifold L, such that φ is (the germ of an extension to a collar
neighbourhood of) the canonical inclusion of M into L♮M .

We first note that there exists an open neighbourhood U of φ such that, for
each ψ ∈ U , the interface ψ(M) ∩ ((L♮M)) ∖ ψ(M)) between the image of ψ and
its complement is a smoothly embedded (d − 1)-dimensional disc D(ψ) contained
in the central solid cylinder Dd−1 × [−1, 1] along which the boundary connected
sum of L♮M is formed; see Figure 1.3. Moreover, D(ψ) intersects the boundary of
Dd−1 × [−1, 1] precisely in ∂D(ψ). Such an open neighbourhood U exists in the
compact-open topology, and hence also in the topology that we are considering on
Embdec(M,N) (a refinement of a colimit of Whitney topologies), which is finer than
the compact-open topology.

It remains to show, for a given ψ ∈ U , that ψc = φc. The embedded codimension-1
disc D(ψ) cuts the solid cylinder Dd−1 × [−1, 1] into two pieces; let us denote by
A(ψ) the piece that contains Dd−1 × {−1}. We claim that A(ψ) is diffeomorphic to
Dd−1 × [−1, 0] by a diffeomorphism Ξ that acts by the identity on a neighbourhood
of Dd−1 × {−1}. This claim will immediately imply that ψc = φc, as desired, by
extending Ξ by the identity on L∖ (Dd−1 × [−1, 0]).

Smoothing corners, we may rephrase the claim in the previous paragraph as follows.
Consider the standard d-ball Dd ⊂ Rd, denote by Dd

+ the closed upper half-ball and
fix a small (d− 1)-dimensional subdisc D0 of the boundary ∂Dd centred at the north
pole. Suppose we are given a smoothly embedded (d− 1)-dimensional disc D ⊂ Dd

with D ∩ ∂Dd = ∂D disjoint from D0 and denote by A the closure of the component
of Dd∖D containing D0. The claim is that there exists a diffeomorphism Ξ: A ∼= Dd

+
that acts by the identity on a neighbourhood of D0. As explained above, this claim
will complete the proof.

To prove this claim, we first consider the double 2(Dd) of Dd, which is a smooth
d-sphere. Smoothing corners again, the boundary of A ⊂ Dd ⊂ 2(Dd) is a smoothly
embedded (d − 1)-sphere. The smooth Schoenflies theorem (see [Sch06] for d = 2,
see [Maz59, Mor60, Bro60] for d = 3 and see [Mil65, Prop. D, §9] for d ⩾ 5) then
implies that A is diffeomorphic to a d-ball. Smoothing corners yet again, this gives a
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A

0 ϵ 1
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Figure 1.3. The boundary connected sum L♮M from the proof of Theorem 1.55.

diffeomorphism Ξ′ : A ∼= Dd
+. However, this does not necessarily act by the identity

on a neighbourhood of D0.
To ensure this second condition, let e : Dd ↪→ Dd be an orientation-preserving

embedding so that e(Dd) is a neighbourhood of D0 and so that e(Dd) is contained in
A∩Dd

+. Then e and Ξ′ ◦ e are two embeddings of Dd into Dd
+. By composing Ξ′ with

a reflection if necessary, Ξ′ ◦ e is also orientation-preserving. Palais’ disc embedding
theorem [Pal60a, Thm. B] implies that there is a diffeomorphism Ξ′′ : Dd

+
∼= Dd

+
such that Ξ′′ ◦ e = Ξ′ ◦ e. The composition Ξ := (Ξ′′)−1 ◦ Ξ′ : A ∼= Dd

+ is then a
diffeomorphism that acts by the identity on the neighbourhood e(Dd) of D0, as
desired. □

Remark 1.54. — The proof above uses the smooth Schoenflies theorem, which
is an open question (rather than a theorem) in dimension d = 4; this is the reason
for the restriction d ̸= 4 that we make in the present subsection §1.3, as well as
consequently in §1.4.2–§1.4.3, §2.2 and §2.3.

Now, for the remainder of §1.3, we consider two decorated manifolds L = (L,A, e1, e2)
andM = (M,B, e′

1, e
′
2). There is a continuous right action of Diffdec(L) on Diffdec(L♮M)

given by φ · ψ = φ ◦ (ψ♮idM), and hence a quotient map
(1.23) Ψ: Diffdec(L♮M) −→ Diffdec(L♮M)/Diffdec(L).

Theorem 1.55. — The quotient map (1.23) is a Serre fibration. There is a home-
omorphism between its codomain and Embdec(M,L♮M)L, induced by the restriction
map.

If the submanifolds A ⊂ L̊ and B ⊂ M̊ are oriented and we consider the subgroups
Diff+

dec(−) of Diffdec(−), then the analogue of the quotient map (1.23) is also a Serre
fibration and there is a homeomorphism from its codomain to Emb+

dec(M,L♮M)L,
induced by the restriction map.

Remark 1.56. — This is related to results of Cerf [Cer61, p. 294, §II.2.2.2, Cor. 2],
Palais [Pal60b, Th. B] and Lima [Lim63], but we were not able to find an instance
of their results that covers exactly the setting that we need here. We therefore give
a complete proof of Theorem 1.55 below, using as an input two results of Cerf and
Palais, namely Lemme II.2.1.2 (page 291) of [Cer61] and [Pal60b, Th. A].

Proof of Theorem 1.55. — In the proof below, we use the topology on the spaces
of decorated diffeomorphisms and of decorated embeddings given by a colimit of
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Whitney topologies, as described in Definitions 1.14 and 1.49, thus proving that
(1.23) is a Serre fibration for this topology. This result automatically implies that
the same result holds when using the finer topology making all path-components
open; see Lemma 1.7. Hence we shall make no further mention of this finer topology
and work directly with the colimit of Whitney topologies.

Moreover, we detail here the proof for the first (unoriented) case of Theorem 1.55.
All of the arguments below repeat mutatis mutandis in the setting where the sub-
manifolds A and B are oriented and the morphisms of decorated manifolds preserve
these orientations.

The decorated manifolds L = (L,A, e1, e2) and M = (M,B, e′
1, e

′
2) come equipped

with germs e1, e2, e
′
1, e

′
2 of boundary cylinders; let us once and for all choose repre-

sentative boundary cylinders for these germs, and denote them by the same symbols,
by abuse of notation.

For ϵ ∈ (0, 1), let Diffdec,ϵ(L♮M) denote the group of self-diffeomorphisms of L♮M
sending A ⊔B onto itself and restricting to the identity on e1(Bd

ϵ ) and on e′
2(Bd

ϵ ). If
we give this the Whitney topology, then we have
(1.24) Diffdec(L♮M) ∼= colim

ϵ→0
(Diffdec,ϵ(L♮M)),

by Definitions 1.12 and 1.14 (recalling that, after the first paragraph of the present
proof, we are ignoring the refinement o(−) of the topology). Similarly, for each
ϵ, t ∈ (0, 1), let Diffdec,ϵ,t(L) denote the subgroup of Diffdec,ϵ(L♮M) consisting of
diffeomorphisms that restrict to the identity on the submanifold Mt = M ∪ e2(Bd

t )
of L♮M pictured in Figure 1.3. We have a quotient map

Ψϵ,t : Diffdec,ϵ(L♮M) −→ Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L).
For any ϵ, ϵ′, t, t′ ∈ (0, 1) with ϵ′ ⩽ ϵ and t′ ⩽ t there are natural maps

Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L) −→ Diffdec,ϵ′(L♮M)/Diffdec,ϵ′,t′(L),
so we may take the directed colimit of the maps Ψϵ,t to obtain

colim
ϵ,t→0

(Ψϵ,t) : Diffdec(L♮M) −→ colim
ϵ,t→0

(Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L)),

where we have used the identification (1.24) in the domain. Since each Ψϵ,t is a
quotient map, using the characterisation of quotient maps as coequalisers and the
fact that colimits commute, we deduce that colim

ϵ,t→0
(Ψϵ,t) is also a quotient map. The

map
Ψ: Diffdec(L♮M) −→ Diffdec(L♮M)/Diffdec(L),

i.e. the map (1.23) that we would like to show is a Serre fibration, is also a quotient
map, with the same domain. Since Mt is a cofinal family of neighbourhoods of M
in L♮M , two diffeomorphisms of Diffdec(L♮M) have the same image under Ψ if and
only if they have the same image under colim

ϵ,t→0
(Ψϵ,t). As they are quotient maps with

the same domain, it follows that Ψ ∼= colim
ϵ,t→0

(Ψϵ,t).
We will prove below that each Ψϵ,t is a fibre bundle (and hence a Serre fibration),

and then deduce that Ψ is also a Serre fibration using the following general fact.
(∗) Any filtered colimit of based Serre fibrations between compactly-generated

weak-Hausdorff spaces is again a Serre fibration.
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For a reference for this fact, see [TV08, Prop. 1.2.3.5(1)], which states that a fil-
tered colimit of fibrations is a fibration in any compactly generated model category.
The classical model category of based compactly-generated weak-Hausdorff spaces,
with its Quillen model structure in which the fibrations are the Serre fibrations, is
compactly generated; see for example [MMSS01, Prop. 6.3].

To apply (∗) in our situation, first note that we are taking a directed colimit, which
is in particular a filtered colimit. We then need to check that the diffeomorphism
groups Diffdec,ϵ(L♮M) and their quotients are compactly-generated weak-Hausdorff
spaces. Recall that, when restricting to subspaces of proper maps, the Whitney
topology on spaces of smooth maps coincides with the weak topology, which is
second-countable and hence also first-countable; see [Hir76, Chap. 2.1]. Also, diffeo-
morphism groups of smooth manifolds are Hausdorff in the compact-open topology,
and thus also in the Whitney topology, since the latter is a finer topology. Hence
diffeomorphism groups of smooth manifolds, in the Whitney topology, are always
first-countable and Hausdorff, and thus compactly-generated and weak-Hausdorff.
Moreover, the property of being compactly-generated is preserved when taking quo-
tients. The property of being (weak) Hausdorff is not preserved when taking quotients;
however, in the process of proving that each Ψϵ,t is a fibre bundle below, we will also
show that its target space Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L) is Hausdorff.

It therefore remains to show that each Ψϵ,t is a fibre bundle and that its target
space is Hausdorff. Write

Embdec,ϵ(Mt, L♮M)L

for the space of smooth, proper embeddings φ : Mt → L♮M such that φ(B) ⊆ A⊔B,
the restriction of φ to e′

2(Bd
ϵ ) is the identity and there exists φ̄ ∈ Diffdec,ϵ(L♮M) such

that φ = φ̄ ◦ ι, where ι is the inclusion of Mt into L♮M . Then we have
(1.25) Embdec(M,L♮M)L

∼= colim
ϵ,t→0

(Embdec,ϵ(Mt, L♮M)L),

see Definition 1.49, Notation 1.50 and Lemma 1.53. There is a restriction map
Φϵ,t : Diffdec,ϵ(L♮M) −→ Embdec,ϵ(Mt, L♮M)L,

which is equivariant with respect to the left action of Diffdec,ϵ(L♮M) by post-composition.
This factors through the quotient map Ψϵ,t, so we have an induced map

Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L)

Diffdec,ϵ(L♮M) Embdec,ϵ(Mt, L♮M)L.

Ψϵ,t

Φϵ,t

Φ̂ϵ,t

By definition of the right-hand embedding space, the map Φϵ,t is surjective, and so is
the induced map Φ̂ϵ,t. Moreover, if two diffeomorphisms of Diffdec,ϵ(L♮M) have the
same image under Φϵ,t, their difference lies in Diffdec,ϵ,t(L), so the induced map Φ̂ϵ,t

is also injective.
We claim that it is sufficient to prove that Φϵ,t is a fibre bundle. Indeed, it is then

a quotient map, since surjective fibre bundles are always quotient maps. Thus the
induced map Φ̂ϵ,t must be a homeomorphism. This implies:
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◦ The map Ψϵ,t is also a fibre bundle, hence a Serre fibration.
◦ Its target space is homeomorphic to the embedding space Embdec,ϵ(Mt, L♮M)L,

which we have given the Whitney topology, so it is Hausdorff.
◦ We also obtain the second statement of the proposition:

Diffdec(L♮M)/Diffdec(L) ∼= colim
ϵ,t→0

(Diffdec,ϵ(L♮M)/Diffdec,ϵ,t(L))
∼= colim

ϵ,t→0
(Embdec,ϵ(Mt, L♮M)L)

∼= Embdec(M,L♮M)L,

by combining the identification of Ψ ∼= colim
ϵ,t→0

(Ψϵ,t) with the colimit of Φ̂ϵ,t

and (1.25).
It therefore remains just to prove that Φϵ,t is a fibre bundle. Since it is equivariant

with respect to the left action of Diffdec,ϵ(L♮M), it suffices to prove that the action
of Diffdec,ϵ(L♮M) on Embdec,ϵ(Mt, L♮M)L is locally retractile. This is because, by
[Pal60b, Th. A], any G-equivariant map into a G-locally retractile space is a fibre
bundle.

Thus, we have to prove the following: given an embedding e ∈ Embdec,ϵ(Mt, L♮M)L,
we may find an open neighbourhood U of e and continuous map γ : U → Diffdec,ϵ(L♮M)
such that γ(e) = id and γ(f) ◦ e = f for any f ∈ U . Note that, since Diffdec,ϵ(L♮M)
acts transitively on Embdec,ϵ(Mt, L♮M)L (because Φϵ,t is both equivariant and surjec-
tive), it suffices to prove this for just one such e, which we take to be the inclusion
Mt ↪→ L♮M .

To prove this, we apply a result of Cerf [Cer61, p. 291, Lem. II.2.1.2], which we
first recall. Let X be a manifold-with-corners. This means in particular that X has
a stratification into faces (for example, if X is a connected manifold with boundary,
but no higher-codimension corners, then its set of faces is π0(∂X)⊔{X}). Each point
x ∈ X may lie in many faces, but it has a unique smallest face (according to inclusion)
in which it lies, which we denote by CX(x). Now if Y is any submanifold-with-corners
of X, we define
C∞

face(Y,X) = {smooth maps φ : Y → X such that CX(φ(x)) = CX(x) for each x ∈ Y },
equipped with the Whitney topology. The Extension Lemma II.2.1.2 of [Cer61] says
that, if Y is closed in X and V is any neighbourhood of Y in X, then the restriction
map

C∞
face(X,X) −→ C∞

face(Y,X)
admits a section s defined on an open neighbourhood V of the inclusion in C∞

face(Y,X),
such that s(incl) = id and s(f)(x) = x for all f ∈ V and x ∈ X ∖ V .

Step 1. Let us write ∂•L for the union of all boundary components of L except
for the one that intersects the image of e2; see Figure 1.3. Note that ∂•L may or may
not intersect the image of e1. Then there is a canonical identification:
(1.26) π0(∂(L♮M)) ∼= π0(∂•L) ⊔ π0(∂M).
This is necessarily asymmetric in L andM . Each embedding f ∈ Embdec,ϵ(Mt, L♮M)L

extends to a diffeomorphism of L♮M , so it induces an injection f∂ : π0(∂M) →
π0(∂(L♮M)). In particular, if f is the inclusion, then f∂ is also the inclusion, under
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the identification (1.26). In addition, we know that f sends B into A ⊔B, so it also
induces a map f♯ : π0(B) → π0(A) ⊔ π0(B), which must be an injection since A and
B are closed manifolds and f is an embedding. The function f 7→ (f∂, f♯) is locally
constant, so its fibres are open. Let U ′ be the open subset of Embdec,ϵ(Mt, L♮M)L

consisting of all f such that f∂ is the inclusion and f♯(π0(B)) = π0(B). Note that
the second condition implies that f(B) = B, since f is an embedding and B is a
closed manifold.

Step 2. Write Mϵ,t = e1(Bd
ϵ ) ⊔Mt (pictured in Figure 1.4). Let

γ′ : Embdec,ϵ(Mt, L♮M)L −→ C∞(Mϵ,t, L♮M)

be the continuous map that extends a given embedding Mt ↪→ L♮M to a smooth map
Mϵ,t → L♮M by defining it to be the identity on e1(Bd

ϵ ). Note that this may fail to
be injective, so it is just a smooth map, not necessarily an embedding. Also observe
that, if f lies in the open subset U ′ from Step 1, then γ′(f) lies in the subspace
C∞

face(Mϵ,t, L♮M), since it takes points of ˚(L♮M) ∩Mϵ,t into the interior of L♮M and,
for any boundary component P of L♮M , it takes P ∩Mϵ,t into P (this uses the fact
that f∂ = id). Restricting γ′ to U ′, we therefore have a continuous map

γ′ : U ′ −→ C∞
face(Mϵ,t, L♮M)

such that γ′(incl) = incl and γ′(f)|Mt = f for all f ∈ U ′.
Step 3. Now set X = L♮M and Y = Mϵ,t in the Extension Lemma of Cerf above,

and choose V to be any open neighbourhood of Mϵ,t in L♮M that is disjoint from
the submanifold A ⊂ L̊. Composing the local section s obtained from the Extension
Lemma with γ′, we have a continuous map

γ′′ = s ◦ γ′ : U ′′ = (γ′)−1(V) −→ C∞
face(L♮M,L♮M)

such that γ′′(incl) = id and for any f ∈ U ′′ we have γ′′(f)|Mt = f and γ′′(f)(A) = A.
Moreover, by construction, we also know that γ′′(f)(B) = B and γ′′(f)(x) = x for
all x ∈ e1(Bd

ϵ ) ⊔ e′
2(Bd

ϵ ).
Step 4. Finally, note that Diff(L♮M) is open in C∞(L♮M,L♮M), so

U = (γ′′)−1(C∞
face(L♮M,L♮M) ∩ Diff(L♮M))

is an open neighbourhood of the inclusion in Embdec,ϵ(Mt, L♮M)L. For each f ∈ U ,
the diffeomorphism γ′′(f) of L♮M fixes each point of e1(Bd

ϵ )⊔e′
2(Bd

ϵ ) and sends A⊔B
onto itself, so it is an element of Diffdec,ϵ(L♮M). So we have a continuous map

γ = γ′′|U : U −→ Diffdec,ϵ(L♮M)

such that γ(incl) = id and, for all f ∈ U , we have γ(f) ◦ incl = γ(f)|Mt = f .
Summary. The 4-step construction above may be summarised in the following

commutative diagram:
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A

0 ϵ 1

e1

L♮M = B

1 ϵ 0

e′
2

1 t 0 1

e2 e′
1

Figure 1.4. The submanifold Mϵ,t (shaded in green) of L♮M from the proof of
Theorem 1.55.

Embdec,ϵ(Mt, L♮M) C∞(Mϵ,t, L♮M)

U ′ C∞
face(Mϵ,t, L♮M) C∞

face(L♮M,L♮M)

U ′′ V

U C∞
face(L♮M,L♮M) ∩ Diff(L♮M) Diff(L♮M),

γ′

s

γ
⊆

⊆
⊆

⊆

⊆
⊆

where the construction of γ ensures that its image lies in Diffdec,ϵ(L♮M) ⊆ Diff(L♮M).
□

1.4. The topologically-enriched Quillen bracket construction

This section deals with the bracket construction due to Quillen, its generalisations
(see §1.4.1) and its applications for subcategories of the groupoids of decorated
manifolds (see §1.4.2). The various instances of the Quillen bracket construction will
be essential for the construction of the homological representation functors in §2.
First, we recall the definition of the original version of Quillen’s bracket construction,
which is a particular case of a more general construction described in [Gra76, p.219];
see also [RWW17, §1.1].

Definition 1.57 (Original Quillen bracket construction.). — We fix a (discrete)
monoidal groupoid (G◦, ♮,0) and a (discrete) left module (M◦, ♮) over G◦. The Quillen
bracket construction ⟨G◦,M◦⟩ is the category with the same objects as M◦ and whose
morphisms are given by the colimit

(1.27) ⟨G◦,M◦⟩(X, Y ) = colim
G◦

[M◦(−♮X, Y )].

Example 1.58. — As an example, a monoidal groupoid G◦ has a canonical left
action on itself given by its monoidal structure, so we may always take M◦ = G◦ and
consider the category ⟨G◦,G◦⟩. As an abbreviation, we denote the category ⟨G◦,G◦⟩
by UG◦.

Notation 1.59. — By (1.27), a morphism in ⟨G◦,M◦⟩ from X to Y corresponds to
the equivalence class of a morphism φ ∈ M◦(A♮X, Y ) for an object A of G◦, which
we denote by [A,φ].
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There is a canonical faithful functor c⟨G◦,M◦⟩ : M◦ ↪→ ⟨G◦,M◦⟩ defined as the
identity on objects and sending each morphism φ of M◦(X, Y ) to [0, φ]. Assuming
in addition that M◦ is a groupoid (as for all the examples discussed in this paper,
see §3.1), following mutatis mutandis [RWW17, Prop. 1.7], if (G◦, ♮,0) has no zero
divisors – meaning that A♮B ∼= 0 if and only if A ∼= B ∼= 0 for all objects A and
B of G◦ – and if AutG◦(0) = {id0}, then the above canonical functor c⟨G◦,M◦⟩ is an
isomorphism from M◦ onto the maximal subgroupoid of ⟨G◦,M◦⟩ (i.e. the subcate-
gory with the same objects as ⟨G◦,M◦⟩ and whose morphisms are the isomorphisms
of ⟨G◦,M◦⟩).

1.4.1. A topological enrichment of the Quillen bracket construction

We now explain how to generalise the Quillen bracket construction to semicate-
gories and topologically-enriched semicategories.

Proposition 1.60. — Let (G, ♮) be a semi-monoidal groupoid and let M be a
category with a left action of G also denoted by ♮. There is a semicategory ⟨G,M⟩
with the same objects as M, given by assigning ⟨G,M⟩(X, Y ), for objects X, Y of
M, to be the quotient set  ⊔

ob(G)
M(−♮X, Y )

/∼,
where ∼ is the equivalence relation given by (A,φ) ∼ (A′, φ′) if and only if φ = φ′ ◦
(σ♮idX) for some σ ∈ G(A,A′). For two morphisms [A,φ] : X → Y and [B,ψ] : Y →
Z in ⟨G,M⟩, their composition is defined to be [B,ψ] ◦ [A,φ] = [B♮A, ψ ◦ (idB♮φ)].

Moreover, if the categories G and M are topologically-enriched and the left-action
of G on M is continuous, then performing the same constructions on spaces rather
than sets produces a topologically-enriched semicategory ⟨G,M⟩.

Proof. — It straightforwardly follows from the assignments that ∼ is an equiva-
lence relation, and so ⟨G,M⟩(X, Y ) is well-defined. Hence the associativity of the
composition is the only point to check in order to prove that we define a semi-
category ⟨G,M⟩. Let [A,φ] : X → Y , [B,ψ] : Y → Z and [C, χ] : Z → W be
morphisms in ⟨G,M⟩. Recall that the associator of G provides an isomorphism
αC,B,A : C♮(B♮A) ∼= (C♮B)♮A. Then the functoriality of the left action G × M → M
implies that idC♮(ψ ◦ (idB♮φ)) = (idC♮ψ) ◦ (idC♮(idB♮φ)). We also note from the nat-
urality of the associator that idC♮(idB♮φ) = (α−1

C,B,A♮idX) ◦ (idC♮B♮φ) ◦ (αC,B,A♮idX).
Therefore, we deduce from the associativity of the composition in M that
χ ◦ (idC♮(ψ ◦ (idB♮φ))) = ((χ ◦ (idC♮ψ)) ◦ (α−1

C,B,A♮idX) ◦ (idC♮B♮φ)) ◦ (αC,B,A♮idX)

and so [C♮(B♮A), χ ◦ (idC♮(ψ ◦ (idB♮φ)))] = [(C♮B)♮A, (χ ◦ (idC♮ψ)) ◦ (α−1
C,B,A♮idX) ◦

(idC♮B♮φ)]. Hence, it follows from the assignment for the composition in ⟨G,M⟩ that
[C, χ] ◦ ([B,ψ] ◦ [A,φ]) = ([C, χ] ◦ [B,ψ]) ◦ [A,φ], which proves associativity of the
composition.

In the topologically-enriched setting, the definition of the hom-set ⟨G,M⟩(X, Y ) in
the statement of the lemma equips it with an evident topology, namely the quotient
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topology induced from the topological disjoint union of the hom-spaces M(A♮X, Y )
of the topologically-enriched category M. Continuity of the composition with respect
to this topology straightforwardly follows from that of M, since morphisms of ⟨G,M⟩
are equivalence classes of morphisms of M. □

Remark 1.61. — If the morphism spaces of M have all of their path-components
open, then the same holds for ⟨G,M⟩. This follows from Lemma 1.3, since the mor-
phism spaces of ⟨G,M⟩ are constructed as quotients of disjoint unions of morphism
spaces of M.

When G and M are both discrete categories with a genuine monoidal structure and
left ♮-module structure respectively, then the version of the Quillen bracket construc-
tion defined by Proposition 1.60 recovers that of Definition 1.57. Just as for the non-
enriched case, there is a canonical continuous faithful functor c⟨G,M⟩ : M ↪→ ⟨G,M⟩
defined as the identity on objects and sending ϕ ∈ M(X, Y ) to [0, ϕ]. Furthermore,
Example 1.58 (i.e. taking M = G and defining the category UG := ⟨G,G⟩) repeats
verbatim for G a topologically-enriched monoidal groupoid, since the canonical left
action of G on itself given by its monoidal structure is continuous.

Remark 1.62. — From now on, we assume that all the categories we consider
are small. The point is that the morphisms in the (topologically-enriched) Quillen
bracket construction quantify over all objects of the groupoid that we start with, so
if that groupoid is not small, then the Quillen bracket construction will fail even to
be locally small. Hence it is important that we do this before applying the Quillen
bracket construction, so that the categories arising from this construction are small.
In particular, following Convention 1.2, we stress here that we may assume that
the decorated manifold category Decd (see Definition 1.16), and hence all of its
subcategories that we consider, are small. These are the categories to which we will
apply the Quillen bracket construction; see §1.4.2.

Remark 1.63. — A topological version of Quillen’s bracket construction is men-
tioned briefly in [Kra19, Rem. 2.10], although there the categories are topological in
the sense of being categories internal to the category of topological spaces, rather
than topologically-enriched categories. Proposition 1.60 is stated and proved for
topologically-enriched categories, but it is likely that it has an analogue for cate-
gories internal to the category of topological spaces, in which case [Kra19, Lem. 2.10]
would be a particular case of this analogue.

The construction defined from Proposition 1.60 is clearly functorial in G and M
in an appropriate sense. We detail here some properties of this functoriality that we
will need.

Lemma 1.64. — Let (D, ♮) be a topologically-enriched semi-monoidal groupoid
and let G1 ⊆ G2 ⊆ D and M1 ⊆ M2 ⊆ D be subgroupoids such that, for i ∈ {1, 2},
Gi is closed under −♮− and Mi is closed under g♮− for each object g of Gi. Then
there is a canonical continuous semifunctor ⟨G1,M1⟩ → ⟨G2,M2⟩. Moreover,

• if G1 = G2 = G, the semifunctor ⟨G,M1⟩ → ⟨G,M2⟩ is an inclusion of a
subsemicategory, which is full if the inclusion M1 ⊆ M2 is full;
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• if M1 = M2 = M, the semifunctor ⟨G1,M⟩ → ⟨G2,M⟩ is the identity on
objects, and is faithful – thus an inclusion of a subsemicategory – if the
inclusion G1 ⊆ G2 is full.

In particular, there is a canonical semifunctor ⟨G1,M1⟩ → UD, which is an inclusion
of a subsemicategory if the inclusion G1 ⊆ D is full.

All these results repeat mutatis mutandis in the unital setting, considering genuine
(i.e. unital) monoidal ♮ and left ♮-module structures, so that the Quillen bracket
construction defines categories, and then functors between these categories.

Proof. — The objects of ⟨Gi,Mi⟩ are the objects of Mi, so we define the semifunc-
tor on objects as the class inclusion ob(M1) ↪→ ob(M2). A morphism in ⟨Gi,Mi⟩
from X to Y is represented by a choice of object A of Gi and a morphism A♮X → Y
of Mi. We may therefore send such a morphism, for i = 1, to the morphism, for i = 2,
represented by the same data, since G1 ⊆ G2 and M1 ⊆ M2. It is straightforward
to check that this assignment respects the defining equivalence relation, so induces
a continuous map of morphism spaces, and that it also respects composition (and
identities, if we are in the unital setting). The statements in the two bullet points may
straightforwardly be verified by unwinding the definition of morphisms in ⟨Gi,Mi⟩.
In particular, that the semifunctor ⟨G1,M⟩ → ⟨G2,M⟩ is faithful when the inclusion
G1 ⊆ G2 is full is proven as follows. By definition (see Proposition 1.60), for two mor-
phisms [A,φ] and [A′, φ′] of ⟨G1,M⟩(X, Y ), their images under ⟨G1,M⟩ → ⟨G2,M⟩
are equal if and only if there exists σ ∈ G2(A,A′) such that φ = φ′ ◦ (σ♮idX). Since
G1 ⊆ G2 is full, there exists σ̃ ∈ G1(A,A′) such that φ = φ′ ◦ (σ̃♮idX), and hence, by
definition, [A,φ] = [A′, φ′]. □

Finally, we study the interaction between the topologically-enriched Quillen bracket
construction and the path-component functor π0 in Proposition 1.66. As an ingredient
for its proof, we need the following Lemma 1.65, which will also be used later in the
proof of Lemma 1.71.

Let (G, ♮) be a topologically-enriched semi-monoidal groupoid and M a topologically-
enriched category with a continuous left action of G also denoted by ♮. Since G is a
groupoid, setting that two objects A,A′ of G are equivalent if and only if there is a
morphism A → A′ in G defines an equivalence relation; we generically denote each
one of its associated equivalence classes by Oα for some index α. In particular, the
equivalence classes {Oα}α partition ob(G). Set

Φ =
⊔

A∈ob(G)
M(A♮X, Y ) and Φα =

⊔
A∈Oα

M(A♮X, Y )

for each α indexing an equivalence class of ob(G). It is straightforward to check
that we define an equivalence relation ∼t on Φ by assigning (A,φ) ∼t (A′, φ′) if and
only if there is a morphism σ ∈ G(A,A′) such that φ = φ′ ◦ (σ♮idA). We denote by
ϱ : Φ ↠ Φ/∼t the associated quotient map.
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Lemma 1.65. — For each pair of objects X, Y of M and picking an object
Aα ∈ Oα for each α, there is a commutative diagram

(1.28)

∐
α Φα Φ

∐
α M(Aα♮X, Y )/AutG(Aα) Φ/∼t

∼=

ϱ

∼=

where the horizontal maps are homeomorphisms.

Proof. — First, the equivalence classes Oα provide a partition of ob(G), which
defines the top horizontal homeomorphism ⊔

α Φα
∼= Φ of (1.28). The equivalence

relation ∼t on Φ clearly preserves the topological disjoint union ⊔
α Φα, so this

homeomorphism descends to ⊔
α(Φα/∼t) ∼= Φ/∼t. Moreover, note that, for a fixed

α and for any two objects A,A′ ∈ Oα, we have ϱ(M(A♮X, Y )) = ϱ(M(A′♮X, Y )).
Hence we have a decomposition of Φ/∼t as a topological disjoint union:
(1.29) Φ/∼t

∼=
⊔
α

ϱ(M(Aα♮X, Y )).

Thus we have established the analogue of the commutative diagram (1.28) where
the bottom-left corner is ⊔

α ϱ(M(Aα♮X, Y )).
For each α and A ∈ Oα, we note that two elements φ, φ′ ∈ M(A♮X, Y ) have the

same image under ϱ if and only if they are ∼t-equivalent, which is equivalent to
saying that they lie in the same orbit of the AutG(A)-action on M(A♮X, Y ). Hence
the restriction
(1.30) ϱA : M(A♮X, Y ) −→ ϱ(M(A♮X, Y ))
of ϱ is isomorphic to
(1.31) M(A♮X, Y ) −→ M(A♮X, Y )/AutG(A),
at least on underlying sets. It now just remains to prove that (1.30) and (1.31) are
isomorphic also as continuous maps of spaces. Since (1.30) and (1.31) are surjective
continuous maps with the same domain and the same point-fibres, and we know
moreover that (1.31) is a quotient map, it suffices to prove that (1.30) is also a
quotient map.

Let U ⊆ ϱ(M(A♮X, Y )) be a subset such that ϱ−1
A (U) is open in M(A♮X, Y ).

We need to show that U is open in ϱ(M(A♮X, Y )). The fact that the equivalence
relation ∼t preserves the decomposition of Φ into Φα implies that the restriction

ϱα = ϱ|Φα : Φα −→ ϱ(Φα) = ϱ(M(A♮X, Y ))
is a quotient map. So it suffices to show that ϱ−1

α (U) is open in Φα. Now, from the
definitions, we observe the following description of the subset

ϱ−1
α (U) ⊆

⊔
A′∈Oα

M(A′♮X, Y ).

For each object A′ ∈ Oα, choose an isomorphism σA′ : A′ → A in G. This induces a
homeomorphism

ΥA′ = − ◦ (σA′♮id) : M(A♮X, Y ) −→ M(A′♮X, Y ).
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Then we have
ϱ−1

α (U) =
⊔

A′∈Oα

ΥA′(ϱ−1
A (U)).

Since ϱ−1
A (U) is open in M(A♮X, Y ), it follows that ΥA′(ϱ−1

A (U)) is open in M(A′♮X, Y )
for each A′ ∈ Oα. Thus ϱ−1

α (U) is open in Φα, as required. □

Proposition 1.66. — Let (G, ♮) be a topologically-enriched semi-monoidal groupoid.
Let M be a topologically-enriched category with a continuous left action of G also
denoted by ♮. Assume that, for each object A of G and each pair of objects X, Y of
M, the quotient map
(1.32) M(A♮X, Y ) −→ M(A♮X, Y )/AutG(A)
is a Serre fibration. Then there is a canonical isomorphism of semicategories
(1.33) π0(⟨G,M⟩) ∼= ⟨π0(G), π0(M)⟩.
Moreover, if the semi-monoidal structure induced from (G, ♮) on the groupoid π0(G)
admits a unit (and thus upgrades to a genuine monoidal structure) that acts by the
identity on π0(M) (so that π0(M) is a genuine left ♮-module over π0(G)), then the
isomorphism (1.33) upgrades to an isomorphism of categories.

Proof. — First note that π0(⟨G,M⟩) and ⟨π0(G), π0(M)⟩ have the same class of
objects, by the definition of the discrete and topologically-enriched Quillen bracket
constructions, and the functor π0. Specifically, their common class of objects is
ob(M). It therefore remains to show that, for objects X and Y of M, there is a
natural bijection between π0(⟨G,M⟩(X, Y )) and ⟨π0(G), π0(M)⟩(X, Y ). We shall use
the above notation Φ = ⊔

A∈ob(G) M(A♮X, Y ) and the equivalence relation ∼t from
Lemma 1.65. Unravelling the definitions, what we need to prove is that there is a
natural bijection

π0(Φ/∼t) ∼= π0(Φ)/∼h,

where ∼h is the equivalence relation given by (A, [φ]) ∼h (A′, [φ′]) if and only if
there is a morphism σ ∈ G(A,A′) such that φ ≃ φ′ ◦ (σ♮idA). We note that the only
difference between the definitions of ∼t and ∼h is that the equality is replaced by a
homotopy in the definition of ∼h. As sets, these are both quotients of (the underlying
set of) Φ, so we just need to show that, given two elements (A,φ) and (A′, φ′) of Φ,
they have the same image in π0(Φ/∼t) if and only if they have the same image in
π0(Φ)/∼h.

(a) Suppose first that (A,φ) and (A′, φ′) have the same image in π0(Φ)/∼h. This
means that there is a morphism σ ∈ G(A,A′) and a path γ : [0, 1] −→ M(A♮X, Y ) ⊆
Φ with γ(0) = (A,φ) and γ(1) = (A,φ′ ◦ (σ♮idA)). Composing with the projection
ϱ : Φ ↠ Φ/∼t and writing [−]t for the equivalence classes with respect to ∼t, we
obtain a path in Φ/∼t from [(A,φ)]t to [(A,φ′ ◦ (σ♮idA))]t = [(A′, φ′)]t. Hence (A,φ)
and (A′, φ′) have the same image in π0(Φ/∼t).

(b) To prove the converse, we first show that the quotient map ϱ : Φ ↠ Φ/∼t is
a Serre fibration. Directly from the definition, one may straightforwardly verify the
following two facts:

• ⊔
i fi :

⊔
i Ei → B is a Serre fibration if and only if each fi : Ei → B is a Serre

fibration.
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• f : E → B is a Serre fibration if and only if f(E) is a union of path-components
of B and f : E → f(E) is a Serre fibration.

Hence, since we know by hypothesis that (1.32) is a Serre fibration, so is the left-hand
vertical map of (1.28), and thus so is ϱ : Φ ↠ Φ/∼t by Lemma 1.65.

Now assume that (A,φ) and (A′, φ′) have the same image in π0(Φ/∼t), so there is
a path δ : [0, 1] → Φ/∼t with δ(0) = [(A,φ)]t and δ(1) = [(A′, φ′)]t. Since ϱ is a Serre
fibration, we may lift this to a path ε : [0, 1] → Φ with ε(0) = (A,φ) and ε(1) ∼t

(A′, φ′). Its image ε([0, 1]) is path-connected, so it must lie in M(A♮X, Y ) ⊆ Φ. Hence
we have a path ε : [0, 1] −→ M(A♮X, Y ) with ε(0) = (A,φ) and ε(1) = (A,φ′′) ∼t

(A′, φ′), for some φ′′ ∈ M(A♮X, Y ). The relation (A,φ′′) ∼t (A′, φ′) means that
there is a morphism σ ∈ G(A,A′) such that φ′′ = φ′ ◦ (σ♮idA). Hence ε is a homotopy
witnessing that φ ≃ φ′ ◦ (σ♮idA), so we have shown that (A, [φ]) ∼h (A′, [φ′]), in
other words, (A,φ) and (A′, φ′) have the same image in π0(Φ)/∼h.

Finally, if the semi-monoidal structure induced from (G, ♮) on π0(G) admits a
unit, then ⟨π0(G), π0(M)⟩ is a genuine category via the original Quillen bracket
construction of Definition 1.57. The isomorphism (1.33) automatically preserves
identities, since the image of each identity morphism of ⟨π0(G), π0(M)⟩ satisfies the
relations of an identity and thus defines the identity morphism of its associated
object, making π0(⟨G,M⟩) a genuine category. □

1.4.2. Quillen bracket categories of manifolds

We now focus on applications of the Quillen bracket construction to (subgroupoids
of) the groupoids of decorated manifolds Dd and D+

d , studying in particular their
path components (see Lemma 1.71) and describing their morphism spaces in terms
of embedding spaces (see Proposition 1.76). The results that we shall need for our
construction of homological representation functors are summarised in Corollary 1.80.
Since we make use of the results of §1.3, we resume the assumption that the
dimension d is not equal to 4; cf. Remark 1.54. To begin with, we introduce the
notion of 0-full subcategory, which is weaker than that of full subcategory:

Definition 1.67. — An inclusion of topologically-enriched categories C ⊆ D is
called 0-full if, for each pair of objects c, c′ of C, the subspace C(c, c′) ⊆ D(c, c′) is a
union of path-components.

Remark 1.68. — We recall that a full inclusion of topologically-enriched categories
C ⊆ D is one where, for each pair of objects c, c′ of C, the inclusion C(c, c′) ⊆ D(c, c′)
is an equality. We also note that a 0-full inclusion C ⊆ D induces an inclusion π0(C) ⊆
π0(D). Indeed, subcategories of π0(D) correspond bijectively to 0-full subcategories
of D.

For the remainder of this section, we place ourselves in the following standard
framework that will be further used at many points in the paper:

Hypothesis 1.69. — We fix an integer d ⩾ 2. Let G and M be subgroupoids of
either Dd or D+

d (see §1.1) such that G is full and closed under ♮, while M is 0-full
and closed under the (continuous) left action of G via ♮.
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Hypothesis 1.69 implies that G is a semi-monoidal groupoid with a left action
on M; we may thus form the Quillen bracket construction ⟨G,M⟩, which is a
topologically-enriched semicategory; see §1.4.1. It is called a Quillen bracket category
of manifolds.

Remark 1.70. — If G and M are groupoids as in Hypothesis 1.69, then the
morphism spaces of the Quillen bracket category of manifolds ⟨G,M⟩ have all of
their path-components open, i.e. the projection ⟨G,M⟩ → π0(⟨G,M⟩) is continuous.
Indeed, we ensured that the morphism spaces of Dd and D+

d have all of their path-
components open in Definition 1.14, so it follows that the same is true for M since
it is 0-full, and hence also for ⟨G,M⟩ by Remark 1.61.

Path-components. The following result shows that the topologically-enriched
Quillen bracket construction commutes with the path-component functor π0 under
the above framework.

Lemma 1.71. — The Serre fibration condition of Proposition 1.66 is satisfied for
G and M as in Hypothesis 1.69, and hence we have an isomorphism of semicategories

π0(⟨G,M⟩) ∼= ⟨π0(G), π0(M)⟩,
which upgrades to an isomorphism of categories if the semi-monoidal structure
induced from (G, ♮) on π0(G) admits a unit that acts by the identity on π0(M).

Proof. — Let X, Y be objects of M and let A be an object of G; we must show
that (1.32) is a Serre fibration. If A♮X is not isomorphic to Y in M then it is the
map ∅ → ∅, which is vacuously a Serre fibration. If A♮X is isomorphic to Y in M
then we may use this isomorphism to replace M(A♮X, Y ) with M(A♮X,A♮X); thus
we may assume that Y = A♮X. The fact that (1.32) is a Serre fibration in this case
follows directly from Theorem 1.55 if M is a full subgroupoid of D(+)

d . If M only
satisfies the weaker property of being a 0-full subgroupoid of D(+)

d , then it follows
from Theorem 1.55 together with Lemma 1.72 below. □

Lemma 1.72. — Let X be a space with a continuous right action of a topological
group G such that the projection X → X/G is a Serre fibration. Let X0 ⊆ X be
a union of path-components such that the G-action sends X0 into itself. Then the
projection X0 → X0/G is also a Serre fibration.

Proof. — More generally, by considering lifting diagrams, one may prove that, in
the following commutative square:

A B

C D

a

b

g f

if f is a Serre fibration, a is an inclusion of a union of path-components, and b is
injective, then g is also a Serre fibration. In our setting, a is the inclusion X0 ↪→ X,
which is assumed to be a union of path-components, and b is the induced map
X0/G → X/G, which is injective. □

TOME 1 (-1)



48 M. PALMER & A. SOULIÉ

Morphism spaces. For decorated manifolds M = (M,A) and N = (N,B),
recall from Notation 1.17 and Definition 1.49 the topological group of decorated
diffeomorphisms Diffdec(M) and the space of decorated embeddings Embdec(M,N)
respectively, as well as their oriented versions Diff+

dec(M) and Emb+
dec(M,N).

Definition 1.73 (Decorated diffeomorphisms and embeddings, revisited.). — If
M lies in a subgroupoid H ⊆ Dd, define DiffH(M) ⊆ Diffdec(M) to be the subgroup
of automorphisms of M in H.

If M and N lie in M ⊆ Dd, define Emb⟨G,M⟩(M,N) ⊆ Embdec(M,N) to be the
subspace where, in the third condition of Definition 1.49, the decorated manifold
M ′ lies in G and the decorated diffeomorphism φ̄ lies in M. For an object L of G,
we also write Emb⟨G,M⟩(M,N)L for the subspace of Emb⟨G,M⟩(M,N) where we may
take M ′ = L in Definition 1.49 (and φ̄ lies in M).

For subgroupoids of D+
d , we make the analogous definitions, with a superscript +

in all of the notation.
Remark 1.74. — It is easy to check that composition of decorated embeddings

Embdec(−,−), as described in Definition 1.51, restricts to a well-defined composition
on Emb⟨G,M⟩(−,−), using the facts that ob(G) is closed under ♮ and M is closed
under composition and the action of G via ♮.

Remark 1.75. — We note that the inclusion DiffH(M) ⊆ Diffdec(M) when M lies
in a subgroupoid H ⊆ Dd is an equality if H ⊆ Dd is full. Also, the condition in
the definition of Emb⟨G,M⟩(M,N) that the decorated diffeomorphism φ̄ lies in M is
automatic if M ⊆ Dd is full.

Furthermore, similarly to the decomposition (1.22), the space Emb⟨G,M⟩(M,N)
decomposes as a topological disjoint union:
(1.34) Emb⟨G,M⟩(M,N) ∼=

⊔
L

Emb⟨G,M⟩(M,N)L,

where the disjoint union runs over representatives of isomorphism classes of objects L
of G. This follows directly from Lemma 1.53, since Emb⟨G,M⟩(M,N) ⊆ Embdec(M,N)
is equipped with the subspace topology and Emb⟨G,M⟩(M,N)L = Embdec(M,N)L ∩
Emb⟨G,M⟩(M,N).

Proposition 1.76. — Let G and M be subgroupoids of Dd satisfying the condi-
tions of Hypothesis 1.69. Then the morphism spaces of the Quillen bracket category
of manifolds ⟨G,M⟩ may be identified as follows:
(1.35) ⟨G,M⟩(M,N) ∼= Emb⟨G,M⟩(M,N).
Moreover, composition in the semicategory ⟨G,M⟩ on the left-hand side corresponds
to composition of decorated embeddings on the right-hand side, as described in Defi-
nition 1.51 (see Remark 1.74). The same also holds when G and M are subgroupoids
of D+

d .
Remark 1.77. — When M ⊆ Dd is full, this says that morphisms in ⟨G,M⟩ are

embeddings of decorated manifolds such that the complement of the image of the
embedding is an object of G. In particular, the morphism space ⟨G,M⟩(M,N) is non-
empty if and only if there exists an object M ′ of G such that M ′♮M is diffeomorphic
to N as decorated manifolds.
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Proof of Proposition 1.76. — The space ⟨G,M⟩(M,N) is described in Proposi-
tion 1.60: using the notation of Lemma 1.65, it is the quotient space Φ/∼t. Lemma 1.65
then implies that we have a homeomorphism

⟨G,M⟩(M,N) = Φ/∼t
∼=

⊔
L

M(L♮M,N)/AutG(L),

where the disjoint union runs over representatives L of isomorphism classes of objects
of G. Since M is a groupoid, the space M(L♮M,N)/AutG(L) is empty unless L♮M is
isomorphic to N in M, in which case we may rewrite it as AutM(L♮M)/AutG(L) =
DiffM(L♮M)/Diffdec(L), using the notation of Definition 1.73 (recall that G ⊆ Dd is
full). By Theorem 1.55, the restriction map induces a homeomorphism
(1.36) Diffdec(L♮M)/Diffdec(L) ∼= Embdec(M,L♮M)L,

and one may easily see that this sends the subspace DiffM(L♮M)/Diffdec(L) home-
omorphically onto the subspace Emb⟨G,M⟩(M,L♮M)L. Putting this all together, we
have a homeomorphism
(1.37) ⟨G,M⟩(M,N) ∼=

⊔
L

Emb⟨G,M⟩(M,L♮M)L,

where the disjoint union runs over representatives L of isomorphism classes of objects
of G such that L♮M is isomorphic to N in M.

Next, consider the topological decomposition (1.34), where the disjoint union is
indexed by representatives L of isomorphism classes of all objects of G. If L♮M ̸∼= N
in M, the corresponding term is empty, whereas if L♮M ∼= N in M, we may rewrite
the corresponding term by replacing N with L♮M , to obtain:
(1.38) Emb⟨G,M⟩(M,N) ∼=

⊔
L

Emb⟨G,M⟩(M,L♮M)L,

where the disjoint union now runs over representatives L of isomorphism classes of
objects of G such that L♮M is isomorphic to N in M. Combining (1.37) and (1.38),
we obtain the desired identification (1.35).

To prove the second statement of the proposition, we first note that the isomor-
phism (1.35) is given concretely as follows. A morphism f on the left-hand side
is represented by an object L of G and a decorated diffeomorphism L♮M → N in
M ⊆ Dd. Restricting to an ϵ-neighbourhood of M ⊂ L♮M we obtain a decorated em-
bedding of M into N . This is the image of f under (1.35). (This is ultimately because
the identification (1.36) from Theorem 1.55 is given by the restriction map.) From
this description, it is evident that the square formed by (two instances of) (1.35),
composition in ⟨G,M⟩ and composition of decorated embeddings is commutative.

Finally, all of the above proof adapts identically to the setting where Dd is replaced
by D+

d . □

Corollary 1.78. — Suppose that cancellation holds for our chosen subgroupoids
G and M — meaning that L♮M ∼= L′♮M in M implies L ∼= L′ in G for objects L,L′

of G and M of M. Then we have:

⟨G,M⟩(M,N) ∼=

Emb⟨G,M⟩(M,L♮M)L if ∃L ∈ G such that L♮M ∼= N in M;
∅ otherwise.
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Proof. — This follows from the fact that the disjoint union (1.37) is taken either
over the empty set or a set of size one in this situation. □

Remark 1.79. — All of our examples of G and M in §3.1 satisfy cancellation. This
follows from the classification of compact surfaces in all of our examples in dimension
2 (see §3.1.2 and §3.1.1). In the examples of §3.1.3, it follows from the fact that
the groupoid of finite sets and bijections under disjoint union satisfies cancellation,
since the objects of the groupoids in the examples of §3.1.3 are determined up to
isomorphism by the number of copies of S1 in the submanifold A ⊂ M .

As a conclusion of this subsection, we have the following corollary, which gives an
explicit description of the semicategory UDd defined by applying the topologically-
enriched Quillen bracket construction (see Proposition 1.60) to the semi-monoidal
groupoid Dd (see Definition 1.16).

Corollary 1.80. — For each d ⩾ 2, the semicategory UDd is isomorphic to
the semicategory whose objects are the decorated manifolds M = (M,A, e1, e2) of
dimension d and whose spaces of morphisms are given by the embedding spaces
Embdec(M,N) introduced in Definition 1.49 with composition as described in Defi-
nition 1.51. For subgroupoids G and M of Dd satisfying the conditions of Hypoth-
esis 1.69, the subsemicategory ⟨G,M⟩ corresponds under this isomorphism to the
semicategory whose objects are the objects of M and whose morphisms are given
by the embedding spaces Emb⟨G,M⟩(M,N) of Definition 1.73.

In addition, we have isomorphisms of discrete semicategories π0(UDd) ∼= U(π0(Dd))
and more generally π0(⟨G,M⟩) ∼= ⟨π0(G), π0(M)⟩ for G and M as above. In partic-
ular, π0(Dd) and π0(M) are the underlying groupoids of π0(UDd) and π0(⟨G,M⟩)
respectively.

All of the above holds equally for UD+
d and subgroupoids G,M ⊆ D+

d as in
Hypothesis 1.69.

Proof. — Let us denote by UD′
d the semicategory described in the first statement

of the corollary. To begin with, we note that this is a well-defined (topologically-
enriched) semicategory: its composition is defined in Definition 1.51 and is verified
to be continuous and associative in Lemma 1.52. An isomorphism of semicategories
between UDd and UD′

d is then given by the identity on objects and by Proposition 1.76
(with G = M = Dd) on morphisms. Moreover, the second statement of the corollary
also follows directly from Proposition 1.76 (in its general setting). The third statement
is Lemma 1.71. □

1.4.3. Functorial split short exact sequences

As an immediate application of the description in Corollary 1.80 of UDd in terms of
decorated embeddings of manifolds, we prove that the split short exact sequences (1.7)
and (1.9) – and indeed the whole diagram (1.10) – constructed in §1.2 are functorial
on UDd. Recall that we are continuing to assume that d ̸= 4 (cf. Remark 1.54).

Proposition 1.81. — Each morphism φ : (M,A) → (N,B) in UDd induces a
map of diagrams of the form (1.11), preserving basepoints of the embedding spaces
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and respecting the group structure of the diffeomorphism groups. As a result, we
obtain a map of diagrams of the form (1.10). In particular, we obtain maps of split
short exact sequences of the form (1.7) and (1.9).

Proof. — By Corollary 1.80, φ is a decorated embedding (M,A) ↪→ (N,B), which
means by definition (see Definition 1.49) that there is a diffeomorphism of decorated
manifolds φ̄ : (M ′, A′)♮(M,A) → (N,B), for some decorated manifold (M ′, A′), so
that φ is equal to its pre-composition with the inclusion of (an arbitrarily small
neighbourhood of) (M,A) into (M ′, A′)♮(M,A). Let us fix such a diffeomorphism
φ̄ and extend it by the identity on Bd

1 to φ̂ : (M ′, A′)♮(M,A) → (N,B), where
M = M♮Bd

1 and N = N♮Bd
1 as in Notation 1.26.

On each of the diffeomorphism groups of (1.11), the induced map is defined
by sending a decorated diffeomorphism ψ of M to the decorated diffeomorphism
Eφ(ψ) = φ̂ ◦ (idM ′♮ψ) ◦ φ̂−1 of N . It is straightforward to check that if ψ sends A
onto itself then Eφ(ψ) sends B onto itself and that if ψ sends Z onto itself then
Eφ(ψ) sends Z onto itself by the same diffeomorphism. It is also clear that Eφ(−)
is a group homomorphism.

On the embedding spaces of (1.11) with domain Z, the induced map is defined
simply by post-composing with φ̂. On the embedding spaces of (1.11) with domain
A, the induced map is defined by sending an orbit of embeddings [e] to [φ̂ ◦ (inclA′ ⊔
e) ◦ (φ̂−1)|B], where inclA′ denotes the inclusion A′ ⊂ M̊ ′. On the embedding spaces
of (1.11) with domain A ⊔ Z, the induced map is defined separately on Z and on A
as in the previous two sentences. These maps preserve basepoints because φ̂ sends
A′ ⊔ A onto B and because it fixes Z pointwise, since Z ⊂ Bd

1 ⊂ M .
It remains to check that these induced maps commute with the maps of diagram

(1.11). For the (solid) maps between two diffeomorphism groups or between two
embedding spaces, this is obvious from the construction. For the three maps that
go from a diffeomorphism group to an embedding space, it is also straightforward
to check, the only subtlety being the observation that Eφ(ψ)|Z = φ̂ ◦ ψ|Z , since φ̂
restricts to the identity on Z ⊂ Bd

1. Finally, for the dotted maps of (1.11), their
commutation with the maps induced by φ may also be checked directly, and fol-
lows essentially because the dotted maps are defined by “squashing” the second
(right-hand) boundary-cylinder of M or N using the self-embedding Θ (see Con-
struction 1.27), whereas φ is defined by taking the boundary connected sum with
M ′ or N ′ along the first (left-hand) boundary-cylinder of M or N and then applying
the diffeomorphism φ̄; the two operations thus have “disjoint support”. □

1.4.4. Skeleta of Quillen bracket categories

It is often convenient to be able to pass to a skeleton of a category. For a plain
(small) category this is easy: one simply has to pick one object from each isomorphism
class (using the axiom of choice, if necessary) and consider the full subcategory on
these objects. (We recall that all categories considered in this paper are small; see
Convention 1.2 and Remark 1.62.) For categories with additional structure, one has
to be a little more careful to preserve the structure. The authors learned of the
following folklore fact from [SP].
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Proposition 1.82. — (i) Let C be a monoidal category and let C0 be any skeleton
of C. Then there is a monoidal structure on C0 such that the inclusion C0 ⊂ C may
be enhanced to a monoidal equivalence.

(ii) Let M be a category equipped with a left action of a skeletal monoidal
category C0 and let M0 be any skeleton of M. Then there is a left action of C0
on M0 such that the inclusion M0 ⊂ M may be enhanced to an equivalence of
categories equipped with left C0-actions.

Sketch proof. — Let us first consider part (i). By [ML98, Thm. 1, §IV.4], the
inclusion C0 ⊂ C is part of an adjoint equivalence, namely an adjunction whose unit
and counit are natural isomorphisms. Choosing such an adjoint equivalence, one may
transfer the monoidal structure of C along it to obtain a monoidal structure on C0.
The coherence isomorphisms needed to enhance the inclusion C0 ⊂ C to a (strong)
monoidal equivalence may then be constructed from the units and counits of the
adjoint equivalence. The same strategy also deals with part (ii). □

Remark 1.83. — In general, the monoidal structure induced on C0 and the en-
hancement of the inclusion C0 ⊂ C to a monoidal equivalence depend on the choice of
adjoint inverse to the inclusion in the proof above. We also note that Proposition 1.82
is not true if one insists on the inclusion C0 ⊂ C being a strict monoidal equivalence.

As a consequence, we may always find a skeleton of a Quillen bracket category
that is itself a Quillen bracket category:

Corollary 1.84. — Let C be a monoidal category and let M be a category
with a left action of C. Then there are skeleta C0 ⊂ C and M0 ⊂ M, together
with a monoidal structure on C0 and a left C0-action on M0, such that the inclusion
⟨C0,M0⟩ ⊂ ⟨C,M⟩ is an equivalence. Moreover, the subcategory ⟨C0,M0⟩ is skeletal.

Proof. — We may choose C0 ⊂ C and M0 ⊂ M to be any skeleta. Proposition 1.82
then provides us with a monoidal structure on C0 and a left C0-action on M0 together
with enhancements of C0 ⊂ C to a monoidal equivalence and of M0 ⊂ M to an
equivalence of categories equipped with left C0-actions. These induce an inverse
equivalence for the inclusion ⟨C0,M0⟩ ⊂ ⟨C,M⟩. Finally, ⟨C0,M0⟩ is skeletal since
its underlying groupoid is M0, which is skeletal. □

2. Construction of homological representation functors

In this section, we construct homological representation functors for mapping class
groups and motion groups. We consider the topologically-enriched category UDd

introduced in §1, which contains all motion groups and all mapping class groups of
d-dimensional manifolds, as explained in Remark 1.43. The construction consists of
two main parts:

(1) constructing continuous semifunctors UDd → Cov•;
(2) using the output of step (1) to construct functors π0(⟨G,M⟩) → Mod•, by

restricting to some subcategory ⟨G,M⟩ ⊂ UDd and applying the procedure
summarised in diagram (2.12).
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Here, Cov• and Mod• denote categories of spaces equipped, respectively, with cover-
ings and with right modules over rings; see Definitions 2.2 and 2.3.

In §2.1, we deal with step (2) in a general setting: for any topologically-enriched
semicategory C and continuous semifunctor F : C → Cov•, as well as a continuous
semifunctor V : C → •Mod• that is “compatible” in a precise way with F , we produce
a (semi)functor Li(F ;V ) : π0(C) → Mod• for each i ⩾ 0. We first give precise
definitions of the categories involved in §2.1.1. The three steps of the construction
are then described in §2.1.2–§2.1.4, and are put together in §2.1.5.

In §2.2 and §2.3 we then focus on step (1). This is the more geometric, or topological,
part of our construction of representations, whereas step (2) is the more formal and
algebraic part. We note that the semifunctors F : UDd → Cov• obtained as outputs
of step (1) restrict, after passing to π0, to all motion groups and all mapping class
groups in dimension d. For this reason, we refer to them as global semifunctors.

In contrast, we then restrict each of these semifunctors F to a subcategory
⟨G,M⟩ ⊂ UDd, where G and M are a pair of groupoids as in Hypothesis 1.69,
satisfying further mild properties; see §2.2.3. This is in order to construct in §2.2.3
a continuous semifunctor V = Vcol(F) : ⟨G,M⟩ → •Mod• that is compatible with F
in the above sense. It is constructed so that, under certain conditions, the functor
Li(F ;Vcol(F)) : π0(⟨G,M⟩) → Mod• produced in step (2) has image contained in
the subcategory ModR ⊂ Mod• for a fixed ring R, in other words it is an untwisted
functorial representation.

2.1. Elements of the construction

This section presents the elements of the construction of functorial homological
representations, in the sense of step (2) above, and how to assemble them.

A minor subtlety is that the framework in §2.1 is set up in order to construct homo-
logical representation functors starting from a topologically-enriched semicategory
C, in order to be able to consider C := UDd defined in §1. This is the reason why
the construction produces a semifunctor. However, in our applications of the con-
struction in §2.2 and §2.3, the discrete semicategory π0(C) will always be a genuine
category (i.e. with identities) and the induced semifunctor from π0(C) will always
be a genuine functor (i.e. preserving identities); see Remark 2.21.

2.1.1. Categories

In this subsection, we define the different categories involved in the construction.
Remark 2.1. — The topological spaces involved in the definitions of §2.1 will

always be locally path-connected and semi-locally simply-connected.
Definition 2.2 (The category of bicoverings.). — The topologically-enriched

category •Cov• of spaces equipped with bicoverings is defined as follows. An object
of •Cov• consists of a pair of groups Q1, Q2 and a path-connected, based space X
admitting a universal covering (i.e. locally path-connected and semi-locally simply-
connected), equipped with a surjective homomorphism ϕ : π1(X) ↠ Q1 × Q2. For
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i ∈ {1, 2}, we denote by ϕi the further projection of ϕ onto Qi. Via the correspondence
between connected, regular coverings of X and normal subgroups of π1(X), this is
the same as specifying a pullback square of connected, regular coverings:

Xϕ Xϕ2

Xϕ1 X

⌟

A morphism in •Cov• from (Q1, Q2, X, ϕ) to (Q′
1, Q

′
2, X

′, ϕ′) is a based, continu-
ous map f : X → X ′ such that the induced homomorphism π1(f) sends ker(ϕ1)
into ker(ϕ′

1) and ker(ϕ2) into ker(ϕ′
2). Equivalently, this condition may be phrased

as saying that there exist (uniquely defined) homomorphisms α1 : Q1 → Q′
1 and

α2 : Q2 → Q′
2 such that

ϕ′
1 ◦ π1(f) = α1 ◦ ϕ1 and ϕ′

2 ◦ π1(f) = α2 ◦ ϕ2.

The morphism space of •Cov• from (Q1, Q2, X, ϕ) to (Q′
1, Q

′
2, X

′, ϕ′) is topologised as
a subspace of the space of continuous maps X → X ′ in the compact-open topology.

If G is a group, the category GCov• is the subcategory of •Cov• on those objects
(X,ϕ) such that Q1 = G and those morphisms f such that the induced homomor-
phism α1 : Q1 → Q′

1 is equal to idG. Similarly, we have a subcategory •CovG. If G
is the trivial group, we drop it from the notation, and write Cov• and •Cov respec-
tively for these subcategories of •Cov•. We note that •Cov and Cov• are abstractly
isomorphic, but not equal as subcategories of •Cov•. As another variant, we write
Covtw

G ⊂ Cov• for the full subcategory on those objects (X,ϕ) such that Q1 = G.
(The superscript tw indicates that the morphisms are permitted to act on the trans-
formation group G, i.e. we are considering twisted covering spaces.) We define the
subcategories •Covpr

• , Covpr
• , •Covpr and Covpr,tw

G of •Cov•, Cov•, •Cov and Covtw
G ,

respectively, to have the same objects but only those morphisms that are proper as
maps between spaces.

We recall that all of the rings that we consider are assumed to be associative and
unital and that their morphisms preserve units.

Definition 2.3 (The category of bimodules.). — The category •Mod• is the
category of bimodules over rings. An object of •Mod• is a pair of rings (R, S)
together with an (R, S)-bimodule V . A morphism from (R, S, V ) to (R′, S ′, V ′) is a
pair of ring homomorphisms α : R → R′ and β : S → S ′, together with a morphism
of (R, S)-bimodules θ : V → (α, β)∗(V ′).

The category •Mod• is topologically-enriched by equipping each morphism space
with the discrete topology.

For any ring R, we have a subcategory RMod• ⊂ •Mod• on those objects (R′, S ′, V ′)
where R′ = R and those morphisms (α, β, θ) where α = idR (note that this is
generally not a full subcategory). If moreover R = Z, we drop it from the notation,
and write Mod• for RMod•. Similarly, we have •ModS and RModS for rings R and
S. We note that RModS is just the category of (R, S)-bimodules, as usually defined.
Furthermore, for a fixed ring S, we write Modtw

S ⊂ Mod• for the full subcategory
on those objects (S ′, V ′) where S ′ = S. (The superscript tw indicates that the
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morphisms are permitted to act on the underlying ring S, i.e. we are considering
twisted modules.)

Definition 2.4 (Bundles of G-sets and of (R, S)-bimodules.). — For any space
X and group G, a bundle of left G-sets over X is a functor π⩽1(X) → GSet, where
π⩽1(X) is the fundamental groupoid of X and GSet is the category of left G-sets.
Similarly, for a pair of rings (R, S), a bundle of (R, S)-bimodules over X is a functor
ξ : π⩽1(X) → RModS.

A morphism [τ ] = [f, α, β, τ ] : ξ → ξ′ of bundles of bimodules from ξ : π⩽1(X) →
RModS to ξ′ : π⩽1(X ′) → R′ModS′ is a continuous map f : X → X ′, two ring ho-
momorphisms α : R → R′ and β : S → S ′, and a natural transformation τ : ξ ⇒
(α, β)∗ ◦ ξ′ ◦ π⩽1(f), where (α, β)∗ : R′ModS′ → RModS denotes the restriction func-
tor induced by α and β.

Lemma 2.5. — In notation of Definition 2.4, there is a well-defined, associative
composition of bundles of bimodules, as follows. Let [τ1] = [f1, α1, β1, τ1] : ξ → ξ′

and [τ2] = [f2, α2, β2, τ2] : ξ′ → ξ′′ be bundles of bimodules. Their composition
[τ2] ◦ [τ1] : ξ → ξ′′ is the natural transformation
(2.1) [(α1, β1)∗ ◦ τ2 ◦ π⩽1(f1)] ◦ τ1 : ξ ⇒ (α2 ◦ α1, β2 ◦ β1)∗ ◦ ξ′′ ◦ π⩽1(f2 ◦ f1)
given by pasting together the natural transformations τ1 and τ2 in the diagram:

π⩽1(X) RModS

π⩽1(X ′) R′ModS′

π⩽1(X ′′) R′′ModS′′ .

ξ

ξ′

ξ′′

π⩽1(f1)

π⩽1(f2)

(α1, β1)∗

(α2, β2)∗

⇒
⇒

τ1

τ2

(2.2)

Proof. — Since (α1, β1)∗◦τ2◦π⩽1(f1) is a natural transformation (pre-composing or
post-composing a natural transformation by a functor produces a natural transforma-
tion), the assignment (2.1) is well-defined as it is a composition of natural transforma-
tions. Associativity follows from associativity of composition of natural transforma-
tions, as well as functoriality of π⩽1(−) : Top → Cat and of −Mod− : Rings×Rings →
Cat. □

Remark 2.6. — For a path-connected space X, a bundle of left G-sets over X
is more often defined as a fibre bundle over X with fibre a left G-set T and struc-
ture group the automorphism group AutG(T ) of T as a left G-set; see [Ste51, §2]
for example. With this definition, by unique path-lifting, a bundle of left G-sets
over a path-connected space X determines a functor π⩽1(X) → GSet. Moreover,
whenever X is locally path-connected and semi-locally simply-connected, this gives
an identification between isomorphism classes of bundles of left G-sets over X and
isomorphism classes of functors π⩽1(X) → GSet. In all of our examples, the base
space X has these properties, and it is more convenient to use Definition 2.4 rather
than this definition in terms of fibre bundles.
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Definition 2.7 (The category of bundles of bimodules.). — The topologically-
enriched category of bundles of bimodules •Top• is defined as follows. An object of
•Top• is a space X together with a pair of rings (R, S) and a bundle ξ of (R, S)-
bimodules over X in the sense of Definition 2.4. A morphism from (X,R, S, ξ) to
(X ′, R′, S ′, ξ′) is a morphism of bundles of bimodules as described in Definition 2.4.
The composition of morphisms and its associativity follow from Lemma 2.5. The
category •Top• is then topologically-enriched by topologising each morphism space
from (X,R, S, ξ) to (X ′, R′, S ′, ξ′) as follows: a morphism is given by a four-tuple
[f, α, β, τ ] (see Definition 2.4); we use the compact-open topology for the continuous
map f and the discrete topology for the other three components of this tuple.

For any ringR, we have a subcategory RTop• ⊂ •Top• on those objects (X ′, R′, S ′, ξ′)
where R′ = R and those morphisms (f, α, β, τ) where α = idR. If moreover R = Z,
we drop it from the notation, and write Top• for RTop•. Similarly, we have •TopS

and RTopS for rings R and S. In addition, for a fixed ring S, we write Toptw
S ⊂ Top•

for the full subcategory on those objects (X ′, S ′, ξ′) where S ′ = S. (The superscript
tw indicates that the morphisms are permitted to act on the ground ring S, i.e. we
are considering twisted bundles of bimodules.)

We define the subcategories •Toppr
• , Toppr

• , •Toppr and Toppr,tw
S of •Top•, Top•,

•Top and Toptw
S , respectively, to have the same objects but only those morphisms

whose underlying map of spaces is a proper map.

Note that •Mod• is equivalent to the full subcategory of •Top• on those objects
whose underlying space is a point.

Notation 2.8. — Writing Rings for the category of (associative, unital) rings and
Grp for the category of groups, there are obvious forgetful functors

•Cov• Grp •Mod• ⊂ •Top• Rings
L

R

L

R

that remember just the left (respectively right) underlying group or ring. For example,
an object (X,R, S, ξ) of •Top• is sent under L to R and under R to S.

Definition 2.9. — Write •Top•Mod• for the pullback of the forgetful functors
L : •Mod• → Rings and R : •Top• → Rings:

•Top•Mod• •Mod•

•Top• Rings.
R

L
⌟

(2.3)

Explicitly, an object of •Top•Mod• consists of a space X, a triple of rings (R, S, T ),
a bundle of (R, S)-bimodules ξ over X and an (S, T )-bimodule V . A morphism
from (X,R, S, T, ξ, V ) to (X ′, R′, S ′, T ′, ξ′, V ′) consists of a morphism of bundles of
bimodules as described in Definition 2.4 (a continuous map f : X → X ′, a pair
of ring homomorphisms (α : R → R, β : S → S ′) and a natural transformation
τ : ξ ⇒ (α, β)∗ ◦ ξ′ ◦ π⩽1(f)), together with another ring homomorphism γ : T → T ′

and a morphism of (S, T )-bimodules θ : V → (β, γ)∗(V ′). The category •Top•Mod•
is then topologically-enriched by topologising each morphism space from (X,R, S, ξ)
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to (X ′, R′, S ′, ξ′) as follows: a morphism is given by a 6-tuple [f, α, β, γ, τ, θ]; we use
the compact-open topology for the continuous map f and the discrete topology for
the other five components of the tuple. We define the subcategory •Toppr

• Mod• via
the analogue of (2.3), using the category •Toppr

• instead of •Top•.

Remark 2.10. — The categories of bimodules •Mod• (see Definition 2.3), of bun-
dles of bimodules •Top• (see Definition 2.7) and •Top•Mod• of Definition 2.9 may
easily be generalised using a fixed ring A rather than Z as ground ring, A-algebras
(R, S) rather than rings and the category A-Alg rather than Rings. The work of
§2.1.2–§2.1.5 repeats verbatim for this more general framework.

2.1.2. From bicoverings to bundles of bimodules

In this subsection, we introduce the linearisation continuous functor •Cov• →
•Top•.

Proposition 2.11. — There is a natural continuous functor •Cov• → •Top•,
taking bicoverings to bundles of bimodules, such that the squares

•Cov• •Top•

Grp Rings
Z[(−)op]

L L

•Cov• •Top•

Grp Rings
Z[−]

R R(2.4)

commute, where Z[−] : Grp → Rings is the group ring functor and (−)op : Grp → Grp
takes a group to its opposite. By abuse of notation, we denote this functor •Cov• →
•Top• also by Z[−]. Furthermore, the restriction of the linearisation functor Z[−] to
the subcategory Covpr

• ⊂ Cov• takes values in the subcategory Toppr
• ⊂ Top•.

Proof. — On objects, this is defined as follows. Let (Q1, Q2, X, x0, ϕ : π1(X, x0) ↠
Q1 ×Q2) be an object of •Cov•. The normal subgroup
(2.5) K := ker(ϕ1) ∩ ker(ϕ2) = ker(ϕ) ◁ π1(X, x0)
corresponds to a regular covering of X with deck transformation group Q := Q1 ×Q2.
In order to specify a particular regular covering of X, rather than just an isomorphism
class of such, we will be slightly more careful. Start with the universal covering X̃ ofX;
more specifically, the standard model for X̃ whose underlying set consists of endpoint-
preserving homotopy classes of paths in X starting at x0. This is equipped with an
action of π1(X, x0); take the quotient of X̃ by the action of the subgroup K. We
denote this regular covering by ξϕ : Xϕ = X̃/K → X. Whether deck transformations
act on the left or the right is an arbitrary convention. We will consider them to act
on the right, since this agrees with the typical convention that the structure group of
a principal bundle (of which regular coverings are examples) acts on the total space
on the right. This is a bundle of right Q-sets over X (whose fibres all happen to be
isomorphic to Q itself). Since Q is the product Q1 ×Q2, we may equally view ξϕ as
a bundle of (Qop

1 , Q2)-bisets over X, where a (G,H)-biset is a set equipped with a
left G-action and a compatible right H-action.
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Now replace each fibre of ξϕ with the free Z-module generated by that fibre;
this forms a bundle of (Z[Qop

1 ],Z[Q2])-bimodules over X. This operation of tak-
ing free Z-modules fibrewise is simple to describe when viewing bundles of (G,H)-
bisets over X as functors π⩽1(X) → GSetH to the category of (G,H)-bisets and
bundles of (R, S)-bimodules over X as functors π⩽1(X) → RModS to the cat-
egory of (R, S)-bimodules. Namely, the operation is given by post-composition
with the functor Z[−] : Qop

1
SetQ2 → Z[Qop

1 ]ModZ[Q2] defined by assigning the free
(Z[Qop

1 ],Z[Q2])-bimodule Z[S] to each (Qop
1 , Q2)-biset S. We denote the resulting

bundle of bimodules by Zfib[ξϕ] : Zfib[Xϕ] → X. This defines the linearisation functor
Z[−] : •Cov• → •Top• on objects:

Z[−](Q1, Q2, X, x0, ϕ) = (X,Z[Qop
1 ],Z[Q2],Zfib[ξϕ]).

In order to define the linearisation functor Z[−] : •Cov• → •Top• on morphisms,
we first note that, although we did not need it to define the functor on objects,
the regular covering ξϕ : Xϕ → X associated to (Q1, Q2, X, x0, ϕ) comes equipped
with a particular choice of basepoint of Xϕ, covering the basepoint x0 of X. This is
because the standard construction of the universal cover X̃, which we used above,
has a canonical basepoint (namely the constant path at x0), and therefore so does
its quotient Xϕ. Let us denote this basepoint by x̃0 ∈ Xϕ.

Now suppose we have a morphism (Q1, Q2, X, x0, ϕ) → (Q′
1, Q

′
2, Y, y0, ϕ

′) in •Cov•,
that is, a continuous, based map f : X → Y such that f∗(ker(ϕ1)) ⊆ ker(ϕ′

1) and
f∗(ker(ϕ2)) ⊆ ker(ϕ′

2). We recall from Definition 2.2 that this determines certain
homomorphisms α1 : Q1 → Q′

1 and α2 : Q2 → Q′
2, which determine ring homo-

morphisms Z[αop
1 ] : Z[Qop

1 ] → Z[(Q′
1)op] and Z[α2] : Z[Q2] → Z[Q′

2]. Let us write
ξϕ : Xϕ → X and ξϕ′ : Y ϕ′ → Y for the regular covering spaces corresponding to ϕ
and ϕ′ respectively. By covering space theory, for each point ỹ ∈ ξ−1

ϕ′ (y0), there is a
unique continuous map Xϕ → Y ϕ′ that lifts the composition f ◦ ξϕ : Xϕ → Y and
that takes x̃0 to ỹ. We therefore obtain a uniquely-determined lift f̃ : Xϕ → Y ϕ′ by
requiring that f̃(x̃0) = ỹ0. Extending this map Z-linearly in each fibre results in a
map

Zfib[f̃ ] : Zfib[Xϕ] −→ Zfib[Y ϕ′ ]

of bundles of Z-modules. Finally, one may check that Zfib[f̃ ] is a map of bundles of
(Z[Qop

1 ],Z[Q2])-bimodules, covering f , from Zfib[ξϕ] to Zfib[ξϕ′ ], where the latter is
given the structure of a bundle of (Z[Qop

1 ],Z[Q2])-bimodules via Z[αop
1 ] and Z[α2].

This uses the interpretation of morphisms of •Top• from Remark 2.6. Hence we may
define

Z[−](f) = (f,Z[αop
1 ],Z[α2],Zfib[f̃ ]).

The assignment for Z[−] on morphisms obviously satisfies the identity axiom, and
one may straightforwardly check using the unique path lifting property that the
composition axiom holds for the fourth component Zfib[f̃ ] of Z[−](f), this axiom
being evident for the other components. Finally, the continuity of the linearisation
functor Z[−] : •Cov• −→ •Top• is immediate from the fact that it acts by the identity
on the part of the input data given by the continuous map f : X → X ′. □
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2.1.3. Fibrewise tensor product

In this subsection, we define the fibrewise tensor product continuous functor
(2.6) ⊗ : •Top•Mod• −→ •Top•

via the following assignments:
• (On objects.) We recall that an object of •Top•Mod• consists of a space X,

three rings R, S, T , a bundle ξ : π⩽1(X) → RModS of (R, S)-bimodules over
X and an (S, T )-bimodule V . Define its image under (2.6) to be the following
object of •Top•:

(X,R, T, π⩽1(X) ξ−→ RModS
−⊗SV−−−−→ RModT ).

• (On morphisms.) A morphism of •Top•Mod• from the object (X,R, S, T, ξ, V )
to the object (X ′, R′, S ′, T ′, ξ′, V ′) consists of a continuous map f : X → X ′,
ring homomorphisms α : R → R′, β : S → S ′ and γ : T → T ′, a natural
transformation τ : ξ ⇒ (α, β)∗ ◦ ξ′ ◦ π⩽1(f) and a homomorphism θ : V →
(β, γ)∗V ′ of (S, T )-bimodules, where (α, β)∗ and (β, γ)∗ denote the restriction
functors R′ModS′ → RModS and S′ModT ′ → SModT respectively. Define its
image under (2.6) to be the morphism

(f, α, γ, τ̂)
of •Top•, where τ̂ is the natural transformation given by pasting the following
diagram:

π⩽1(X) RModS RModT

π⩽1(X ′) R′ModS′ R′ModT ′ .

ξ − ⊗S V

ξ′ − ⊗S′ V ′

π⩽1(f) (α, β)∗ (α, γ)∗⇒ ⇒(2.7)

Here, the left-hand natural transformation is τ and the right-hand natural
transformation, for each (R′, S ′)-bimodule W , is given by the (R, T )-bimodule
homomorphism

(α, β)∗(W ) ⊗S V = RR
′ ⊗R′ W ⊗S′ S ′ ⊗S VT

RR
′ ⊗R′ W ⊗S′ S ′ ⊗S S

′ ⊗S′ V ′ ⊗T ′ T ′
T

RR
′ ⊗R′ W ⊗S′ S ′ ⊗S′ V ′ ⊗T ′ T ′

T

RR
′ ⊗R′ W ⊗S′ V ′ ⊗T ′ T ′

T ,(α, γ)∗(W ⊗S′ V ′) =

(RR′ ⊗R′ W ⊗S′ S′) ⊗S θ

(RR′ ⊗R′ W ) ⊗S′ µ ⊗S′ (V ′ ⊗T ′ T ′
T )

∼=

(2.8)

where the (S ′, S ′)-bimodule homomorphism µ : S ′ ⊗S S
′ → S ′ is given by

multiplication in the ring S ′.
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Lemma 2.12. — The above assignments for (2.6) define a continuous functor
•Top•Mod• → •Top•. Its restriction to the subcategory •Toppr

• Mod• ⊂ •Top•Mod•
takes values in the subcategory Toppr

• ⊂ Top•.

Proof. — The diagram (2.7) for the identity morphism of (X,R, S, T, ξ, V ) is the
identity natural transformation, so (2.6) satisfies the identity axiom. The fact that
(2.6) satisfies the composition axiom is clear, since composition in •Top• is given by
vertical pasting of diagrams of the form (2.2), and composition in •Top•Mod• is given
by a similar vertical pasting of diagrams. The continuity of the functor ⊗ is obvious
since it acts by the identity on the part of the input data given by the continuous
map f : X → X ′. The statement about the restriction to •Toppr

• Mod• ⊂ •Top•Mod•
holds since the underlying continuous map is not changed by (2.6). □

Notation 2.13. — There are forgetful functors

•Top•Mod• −→ •Top• and •Top•Mod• −→ •Mod•

coming from the pullback square (2.3). For a continuous functor F : C → •Top•Mod•,
we denote its compositions with these two forgetful functors by

F1 : C −→ •Top• and F2 : C −→ •Mod•

respectively. In this notation, we denote the composite functor ⊗ ◦ F = (2.6) ◦ F by
F1 ⊗ F2.

2.1.4. Twisted homology functor

Over a fixed ring R, we view local coefficient systems on a space X as bundles
of right R-modules over X. From this viewpoint, homology with local coefficients
(defined over R and in degree i ⩾ 0) is a continuous functor
(2.9) Hi : TopR −→ ModR.

It is defined on objects by sending (X, ξ) to the R-module Hi(X; Lξ), where Lξ is
the local system defined by the bundle of R-modules ξ : π⩽1(X) → ModR. See, for
example, [DK01, §5.4] or [Pal18, §5.1]. The following fact may be proven by directly
generalising the usual construction of singular twisted homology, keeping careful
track of the variable bimodule structure.

Proposition 2.14. — In any degree i ⩾ 0, homology with local coefficients
extends to a continuous functor
(2.10) Hi : •Top• −→ •Mod•

such that the square

•Top• •Mod•

TopR ModR

Hi

Hi

(2.11)
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commutes for any ring R. These statements repeat mutatis mutandis for Borel-Moore
homology with local coefficients, providing a continuous functor HBM

i : •Toppr
• →

•Modpr
• in any degree i ⩾ 0.

Proof. — The continuous functor Hi is defined on objects by sending (X,R, S, ξ)
to (R, S,Hi(X; Lξ)), where Lξ is the local system corresponding to the bundle of
(R, S)-bimodules ξ over X. For a morphism (f, α, β, τ) with α = idR and β = idS,
there is a well-defined map Hi(X; Lξ) → Hi(X ′; Lξ′) of (R, S)-bimodules, induced
by f for the spaces and by τ for the local coefficients, constructed in [DK01,
Th. 5.11 and Ex. 83]. For general α and β, the same construction produces a well-
defined map Hi(X; Lξ) → (α, β)∗Hi(X ′; Lξ′) of (R, S)-bimodules that is compatible
with the canonical map (α, β)∗Hi(X ′; Lξ′) → Hi(X ′; L(α,β)∗ξ′) of the universal coeffi-
cient theorem. It is straightforward to check from this construction that it respects
composition of morphisms. For Borel-Moore homology with local coefficients, the
construction is the straightforward analogue of this, generalising [Bre97, Chap. V,
§4]. □

Remark 2.15 (Twisted homology as homology of covering spaces.). — A regular
covering ρ : X̂ → X with deck transformation group G induces a bundle of Z[G]-
modules ξ(ρ) : π⩽1(X) → ModZ[G] by unique path lifting, which in turn determines a
local system Lξ(ρ) on X. By Shapiro’s lemma for covering spaces, there is a canonical
isomorphism H∗(X; Lξ(ρ)) ∼= H∗(X̂;Z). If ρ is a finite covering (not in general if it is
infinite), we also have HBM

∗ (X; Lξ(ρ)) ∼= HBM
∗ (X̂;Z). In the applications (see §3) of

our general construction of homological representations, the relevant local systems
will typically arise from infinite regular coverings, so when we use ordinary homology
(but not when we use Borel-Moore homology) we may interpret them as actions on
the untwisted homology of covering spaces.

2.1.5. The general construction

We now put together the linearisation functor (§2.1.2), the fibrewise tensor product
functor (§2.1.3) and the twisted homology functor (§2.1.4) to give a general construc-
tion (taking two continuous semifunctors as input) of homological representation
functors, described in Theorem 2.19 and Definition 2.20 below.

Throughout §2.1.5, we assume that the projection semifunctor C → π0(C) is con-
tinuous, in other words that the path-components of the morphism spaces of C are
open. In particular, this assumption is always satisfied when considering C = ⟨G,M⟩
as in Hypothesis 1.69; see Remark 1.70. We first record the following observation,
saying that continuous semifunctors with discrete codomain factor through π0 of
their domain.

Lemma 2.16. — Let C be a topologically-enriched semicategory and D a discrete
semicategory. Any continuous semifunctor M : C → D factors uniquely into the
projection semifunctor C → π0(C) followed by a semifunctor π0(M) : π0(C) → D.

Proof. — The categories C and π0(C) have the same objects, so we may define
π0(M)(c) := M(c) for each c ∈ ob(C). For each pair of objects (x, y) of C and
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morphisms ϕ and ϕ′ in C(x, y) such that π0(ϕ) = π0(ϕ′), we have M(ϕ) = M(ϕ′)
since M is continuous and D is discrete, so in particular the path-components of
its morphism spaces are points. We may therefore define π0(M) on morphisms by
assigning π0(M)([ϕ]) = M(ϕ) for each morphism [ϕ] ∈ π0(C)(x, y) with ϕ ∈ C(x, y)
such that π0(ϕ) = [ϕ]. Composition of morphisms and the associativity axiom for
π0(M) follow from those for M . This defines a semifunctor π0(M) with the required
property, which is, moreover, uniquely determined by M . □

We recall (see Notation 2.8) that L and R denote the semifunctors

•Cov• Grp •Mod• ⊂ •Top• Rings
L

R

L

R

that remember just the first (respectively second) underlying group or ring. We use
the same notation for their restrictions to the subcategories •Covpr

• and •Toppr
• .

We are now ready to describe the general construction of homological representa-
tion functors. The input for the construction consists of:

◦ a topologically-enriched (small) semicategory C,
◦ a continuous semifunctor F : C → Cov•,
◦ a continuous semifunctor V : C → •Mod•,
◦ a positive integer i ⩾ 0,

where F and V satisfy the following condition.

Condition 2.17. — The continuous semifunctors F and V are required to be
compatible in the sense that we have

Z[R ◦ F ] = L ◦ V,
where Z[−] denotes the group ring functor Grp → Rings.

Example 2.18. — For fixed F : C → Cov•, a choice of V : C → •Mod• for which
Condition 2.17 is automatically satisfied, is the trivial coefficient system V = Vtr(F ),
defined as follows. We denote by tr : Rings → •Mod• the functor that sends R
to the bimodule (R,R,R). The trivial coefficient system Vtr(F ) is the continuous
semifunctor defined as the composition tr ◦ Z[−] ◦ R ◦ F . In particular, using the
notational convention of Notation 2.13, we have (Z[−] ◦ F ) ⊗ Vtr(F ) ∼= Z[−] ◦ F ;
this is the sense in which the choice V = Vtr(F ) is trivial for F . It follows from this
definition that Condition 2.17 is satisfied for F and V = Vtr(F ).

Another important (and non-trivial) choice of V : C → •Mod• constructed from
F : C → Cov• (together with a subsemicategory of C) is the colimit coefficient system
Vcol(F ) introduced in §2.2.3. In contrast with Vtr(F ), it is not defined for any category
C: it requires one to consider C = ⟨G,M⟩, where G and M are a pair of groupoids
as in Hypothesis 1.69, satisfying further mild properties; see §2.2.3.

Theorem 2.19. — Continuous semifunctors F and V satisfying Condition 2.17
induce a continuous semifunctor C → Top•Mod•. The composition of this with the
fibrewise tensor product functor ⊗ (§2.1.3) and the twisted homology functor Hi

(§2.1.4) then induces a semifunctor π0(C) → Mod•.
If F takes values in the subcategory Covpr

• , then the above procedure repeats
verbatim using the twisted Borel-Moore homology functor HBM

i in place of Hi.
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Proof. — Condition 2.17 implies the identity L ◦ V = R ◦ Z[−] ◦ F , where Z[−]
denotes the linearisation functor of Proposition 2.11. Hence the continuous semifunc-
tors Z[−] ◦ F and V jointly determine a continuous semifunctor C → Top•Mod• by
the universal property of the pullback, proving the first statement. This may then be
composed with the fibrewise tensor product ⊗ and twisted homology Hi to obtain
a continuous semifunctor of the form C → Mod•. Since Mod• is a discrete category,
Lemma 2.16 implies that this factors uniquely through a semifunctor π0(C) → Mod•,
which is the output of the construction. This may be summarised diagrammatically
as follows, where the input is red and the output is blue. (We note that the right-hand
square of diagram (2.4) appears as a subdiagram here, where the top Z[−] is the
linearisation functor introduced in Proposition 2.11 while the bottom Z[−] denotes
the group ring functor.)

C Cov• Top•

•Mod• Grp Rings

Top•Mod• Top• Mod•

π0(C)

F Z[−]

V R RZ[−]

L

⊗ Hi

Li(F ; V )

⌜
(2.12)

If F takes values in the subcategory Covpr
• , the alternative construction is similar,

restricting both the linearisation functor Z[−] and the fibrewise tensor product
functor ⊗ to the subcategories of their (co)domains with superscript pr and using
HBM

i in place of Hi. □

Definition 2.20 (The general construction.). — Given continuous semifunctors
F and V satisfying Condition 2.17, define Li(F ;V ) to be the semifunctor given by
Theorem 2.19, called the homological representation semifunctor associated to F and
V . Using the notational convention described in Notation 2.13, this may be written
symbolically as

Li(F ;V ) = Hi ◦ ((Z[−] ◦ F ) ⊗ V ).
Similarly, the homological representation semifunctor HBM

i ◦ ((Z[−] ◦ F ) ⊗ V ) given
by Theorem 2.19 using Borel-Moore homology is denoted by LBM

i (F ;V ).

Given a continuous semifunctor F : C → Cov•, we may apply Theorem 2.19 to F ,
and a fortiori Definition 2.20, along with the coefficient systems of Example 2.18:
hence the key ingredient that we must construct is the semifunctor F : C → Cov•,
which is the aim of §2.2–§2.3.

Remark 2.21. — Although the output Li(F ;V ) of Definition 2.20 is a semifunctor,
we check in §2.2.2 that it is a genuine functor under some standard conditions; see
Corollary 2.46. In particular, this will be the case in all of the situations that we
address in our applications of §3.
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2.1.6. Functorial quotients of groups

The geometric input for the general construction of §2.1.5 is the semifunctor
F : C → Cov•; this will be the subject of §2.2 and §2.3. The definition of F will
depend on a number of parameters, one of which is a functorial quotient of groups.
Here, we introduce this notion and study its behaviour with respect to split short
exact sequences. Recall that Grp denotes the category of groups.

Definition 2.22. — A functorial quotient of groups is a functor Q : Grp → Grp
which is equipped with a natural transformation q : idGrp ⇒ Q such that q(G) : G →
Q(G) is a quotient homomorphism for each group G.

Example 2.23 (Canonical examples.). — The trivial functor 0 (constant at the
trivial group) and the identity functor idGrp provide obvious examples of functorial
quotients of groups. Some more sophisticated examples of functorial quotients of
groups naturally arise in families. A functorial descending normal series is a sequence
indexed by integers ℓ ⩾ 1 of endofunctors sℓ : Grp → Grp with s1 = idGrp, such
that sℓ+1(G) ⊆ sℓ(G) and these inclusions assemble to a natural transformation
sℓ+1 ⇒ sℓ for each ℓ ⩾ 1, and each inclusion sℓ(G) ⊆ G is normal. For each ℓ, we then
define the associated functorial quotient of groups Qsℓ

: Grp → Grp by the natural
transformation G 7→ G/sℓ(G). For instance, the lower central series {Γℓ(−)}ℓ⩾1 and
the derived series are functorial descending normal series. In particular, we will use
functorial quotients of groups defined from the lower central series in the applications
of §3.

We now prove two crucial properties of functorial quotients of groups, concerning
their interactions with split short exact sequences. They will have a decisive role in
the underlying structure of the homological representation functors of §2.2 and §2.3.

Lemma 2.24. — For any functorial quotient of groups Q : Grp → Grp and split
short exact sequence

1 A B C 1,
f

g(2.13)

we have Im(q(B) ◦ f : A → B ↠ Q(B)) = ker(Q(g) : Q(B) → Q(C)). Denoting this
group by Q∗(A), we have an induced commutative diagram

1 A B C 1

1 Q∗(A) Q(B) Q(C) 1

f

g
(2.14)

in which both rows are split short exact sequences and the middle and right-hand
vertical maps are given by the natural transformation q. Furthermore, there is an
action of C on the quotient Q∗(A) induced by the conjugation action of the semi-
direct product defined by (2.13).
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Proof. — The second statement is clear, given the first one: we define the right-
hand square by applying the functor Q to the map g and its given section and
by applying the natural transformation q to the groups B and C. We then fill in
the left-hand square by factoring q(B) ◦ f uniquely as a surjection followed by an
injection. The final thing to check is exactness in the middle of the bottom row,
which is precisely the first statement of the lemma.

To prove the first statement, first note that the inclusion Im(q(B) ◦ f) ⊆ ker(Q(g))
follows immediately from exactness of the top row. To prove the opposite inclusion,
let x ∈ Q(B) with Q(g)(x) = 1; we need to find a lift y ∈ B of x such that
y ∈ f(A). To do this, first pick any lift y′ ∈ B of x and set z = g(y′) ∈ C.
Denoting the given section of g by s, note that s(z) projects to 1 ∈ Q(B), since z
projects to 1 ∈ Q(C). Thus y = y′ · s(z)−1 ∈ B is another lift of x, and moreover
g(y) = g(y′) · z−1 = z · z−1 = 1, so y ∈ f(A) by exactness of the top row.

Finally, the action of C on Q∗(A) is formally defined either by lifting elements of
Q∗(A) along the vertical map A ↠ Q∗(A) and using the conjugation action of the
semi-direct product on the top row of (2.14), or equivalently by projecting along
the vertical map C ↠ Q(C) to the bottom-right group of (2.14) and then using the
conjugation action of the semi-direct product on the bottom row. □

Notation 2.25. — We denote by Q∗(A)C the coinvariants of the group Q∗(A)
under the action of C shown in Lemma 2.24, i.e. the largest quotient of Q∗(A) that
collapses the orbits of the C-action.

Let us use the notation [A,B,C] for a split short exact sequence of the form (2.13).
Recall that a morphism of split short exact sequences [A,B,C] → [A′, B′, C ′] is a
triple Ψ = [ΨA,ΨB,ΨC ] of group homomorphisms ΨA : A → A′, ΨB : B → B′ and
ΨC : C → C ′ making the obvious diagram commute. In particular, we denote by
[q∗(A), q(B), q(C)] the morphism of split short exact sequences defined by diagram
(2.14). In this notation, we have the following naturality property of the construction
of Lemma 2.24 illustrated in diagram (2.14):

Lemma 2.26. — For a morphism of split short exact sequences Ψ: [A,B,C] →
[A′, B′, C ′], there exists a unique group homomorphism ϕ : Q∗(A) → Q∗(A′) such
that there is a morphism of split short exact sequences Q(Ψ) := [ϕ,Q(ΨB), Q(ΨC)]
making the following diagram commute:

[A,B,C] [A′, B′, C ′]

[Q∗(A), Q(B), Q(C)] [Q∗(A′), Q(B′), Q(C ′)].

Ψ

Q(Ψ)
[q∗(A), q(B), q(C)] [q∗(A′), q(B′), q(C ′)](2.15)

Furthermore, there exists a unique group homomorphism ϕcoinv : Q∗(A)C → Q∗(A′)C′

such that the following diagram (where the vertical maps are the canonical projections
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onto the coinvariants) is commutative:

Q∗(A) Q∗(A′)

Q∗(A)C Q∗(A′)C′ .

ϕ

ϕcoinv
(2.16)

Proof. — Since q : id ⇒ Q is a natural transformation, each of the morphisms
g : B → C, g′ : B′ → C ′, ΨB : B → B′ and ΨC : C → C ′ induces a commutative
square of the form of the right-hand side of (2.14). We then obtain a cubical commu-
tative diagram with these four commutative squares along with the one defined by
(g, g′,ΨB,ΨC) (the top of the cube) and its image under the functor Q (the bottom
of the cube), which is of the form

Q(B) Q(C)

Q(B′) Q(C ′),

Q(g)

Q(g′)Q(ΨB) Q(ΨC)(2.17)

where the dotted arrows are the images under Q of the given sections of g and g′.
Commutativity of (2.17) along with the universal property of Q∗(A′) as the kernel
of Q(g′) implies the existence of a unique group homomorphism ϕ : Q∗(A) → Q∗(A′)
such that Q(Ψ) := [ϕ,Q(ΨB), Q(ΨC)] is a well-defined morphism of split short exact
sequences [Q∗(A), Q(B), Q(C)] → [Q∗(A′), Q(B′), Q(C ′)]. Moreover, since the cube
diagram of which (2.17) is the bottom face is commutative, the universal property of
Q∗(A′) as the kernel of Q(g′) ensures the existence of a unique group homomorphism
ϕ′ : A → Q∗(A′) such that
(2.18) [ϕ′, q(B′) ◦ ΨB, q(C ′) ◦ ΨC ] = [ϕ′, Q(ΨB) ◦ q(B), Q(ΨC) ◦ q(C)]
is a well-defined morphism of short exact sequences. The assignment ϕ′ = q∗(A′)◦ΨA

makes the left-hand side of (2.18) a well-defined morphism of short exact sequences,
whereas the assignment ϕ′ = ϕ ◦ q∗(A) makes the right-hand side a well-defined
morphism of short exact sequences. By uniqueness of ϕ′, we conclude that q∗(A′) ◦
ΨA = ϕ′ = ϕ ◦ q∗(A), so diagram (2.15) is commutative.

For a semi-direct product H ⋊G, we denote the conjugation action G×H → H
by conjG(H). By the commutativity of diagram (2.15), we have ϕ ◦ conjC(Q∗(A)) =
conjC′(Q∗(A′))◦(ΨC , ϕ). The universal property of the quotientQ∗(A)C then provides
the unique group homomorphism ϕcoinv : Q∗(A)C → Q∗(A′)C′ making the diagram
(2.16) commute. □

2.2. First constructions of homological representation functors

In this section, we describe the first version of our recipe for constructing homolog-
ical representation functors on the category Uπ0(Dd) ∼= π0(UDd) (see Lemma 1.71)
via the general construction of §2.1.5 above. This consists in specifying the input
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F : UDd → Cov• for the general construction, which is done in Theorem 2.28 below,
and depends on a closed submanifold Z ⊂ Rd and open subgroup G ⩽ Diff(Z), as
well as a functorial quotient of groups Q (see §2.1.6).

Throughout §2.2, we fix an integer d ⩾ 2, d ̸= 4 (cf. Remark 1.54) and consider the
Quillen bracket semicategories of manifolds UDd and UD+

d . In addition, we consider
groupoids G and M satisfying the conditions of Hypothesis 1.69. By Lemma 1.64,
there is a natural inclusion of semicategories
(2.19) ⟨G,M⟩ ↪−→ UDd,

or ⟨G,M⟩ ↪→ UD+
d when considering orientedly decorated d-manifolds. We recall

that this is given by the inclusion of the objects of M into the objects of Dd (or D+
d ),

while on morphisms it is an inclusion of embedding spaces, under the identification
of Corollary 1.80. In this section, we construct global semifunctors on the categories
UDd or UD+

d . We may then restrict them to subcategories of the form ⟨G,M⟩ along
(2.19) in order to consider the homological representations for a specific family of
groups; see §3.2.1.

We fix a closed submanifold Z ⊂ Rd (that is orientable, if we are working with
UD+

d ). We also consider an open subgroup G of Diff(Z), which must lie in the
subgroup Diff+(Z) ⊂ Diff(Z) if we are working with UD+

d . We then construct, in
Theorem 2.28, continuous semifunctors associated to each functorial quotient of
groups Q:

(2.20) F̊(Z,G,Q) and F(Z,G,Q) : UDd −→ Cov•,

or of the form UD+
d → Cov• when considering orientedly decorated d-manifolds.

We also construct variants F̊u
(Z,G,Q) and Fu

(Z,G,Q) by taking coinvariants at a certain
point during the construction (see §2.2.1). These continuous semifunctors are the
essential geometric input in our general construction of §2.1.5 (see Definition 2.20).
Their construction occupies §2.2.1 and their elementary properties are established
in §2.2.2.

Restricting along (2.19) to any subcategory ⟨G,M⟩, we construct in §2.2.3 a colimit
coefficient system V : ⟨G,M⟩ → •Mod• adapted to each semifunctor (2.20). These
are devised so that, under certain conditions, the construction of §2.1.5 leads to
untwisted functorial homological representations; see Proposition 2.59.

The homological representation functors. Having constructed the continuous
semifunctors (2.20), the construction of homological representation functors is then
immediate. Namely, we apply the machinery of §2.1 (summarised in Definition 2.20)
to the input F = (2.20) or one of its variants, possibly restricted along (2.19) to a
subcategory ⟨G,M⟩ ⊂ UDd, together with a coefficient system V adapted to F , for
instance the trivial coefficient system Vtr(F ) of Example 2.18 or the colimit coefficient
system Vcol(F ) introduced in §2.2.3 below. Before stating the core construction of
Theorem 2.28, we record this consequence.

Corollary 2.27. — For groupoids G and M as in Hypothesis 1.69, the semi-
functors of Theorem 2.28 provide semifunctors of the form
(2.21) ⟨π0(G), π0(M)⟩ −→ Mod•,
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where V is any continuous semifunctor satisfying Condition 2.17, such as Vtr(F )
or Vcol(F ). We denote them by Li(F̊(Z,G,Q);V ), Li(F̊u

(Z,G,Q);V ), Li(F(Z,G,Q);V ) and
Li(Fu

(Z,G,Q);V ). If the semifunctor π0(V ) induced from V by Lemma 2.16 is a genuine
functor, then the semifunctors (2.21) upgrade to genuine functors.

Proof. — The construction of the semifunctors (2.21) is a direct application of Defi-
nition 2.20, where we note that π0(⟨G,M⟩) is identified canonically with ⟨π0(G), π0(M)⟩
by Lemma 1.71. The upgrade of the resulting homological representation semifunc-
tors into genuine functors is a consequence of Corollary 2.46 below. □

2.2.1. The construction of the functors F̊ and F

The goal of this section is to prove the following result, defining the input for the
construction of homological representation functors:

Theorem 2.28. — For any integer d ⩾ 2, closed submanifold Z ⊂ Rd and open
subgroup G of Diff(Z), each functorial quotient of groups Q determines continuous
semifunctors
(2.22) F̊(Z,G,Q), F̊u

(Z,G,Q), F(Z,G,Q) and Fu
(Z,G,Q) : UDd −→ Cov•.

Similar continuous semifunctors are defined on the semicategory UD+
d if Z is ori-

entable and G is contained in Diff+(Z).

The proof of Theorem 2.28 occupies the remainder of §2.2.1. We first describe the
construction of the semifunctors of Theorem 2.28 in its F̊(Z,G,Q) and F̊u

(Z,G,Q) (“open”)
variants. After this, we summarise the modifications involved in defining the “closed”
variants F(Z,G,Q) and Fu

(Z,G,Q) of (2.22). Throughout §2.2.1, we focus on the functors
defined on the category UDd, with the oriented setting (functors defined on UD+

d )
being exactly analogous, as we record here:

Proposition 2.29. — All the work of §2.2.1 below repeats mutatis mutandis con-
sidering D+

d instead of Dd and assuming that Z and G are orientable and orientation-
preserving respectively.

The construction of the semifunctor F̊ on objects. We define the continuous
semifunctors F̊(Z,G,Q) and F̊u

(Z,G,Q) on the objects of UDd, which are the same as the
objects of Dd, namely decorated d-dimensional manifolds. Let (M,A) ∈ ob(Dd). We
shall associate to this:

(i) a based, path-connected space X(Z,G)(M,A) that admits a universal cover,
(ii) surjective homomorphisms ϕ(Z,G,Q)(M,A) : π1(X(Z,G)(M,A)) ↠ Q(Z,G,Q)(M,A)

and ϕu
(Z,G,Q)(M,A) : π1(X(Z,G)(M,A)) ↠ Qu

(Z,G,Q)(M,A).
Together, these data determine two objects of Cov• (corresponding to F̊(Z,G,Q) and
F̊u

(Z,G,Q) respectively). To simplify the notation, since the choice of (Z,G, Q) is fixed
throughout this construction, we will drop the subscripts, denoting the space by
X(M,A) and the surjective homomorphisms by ϕ(M,A) : π1(X(M,A)) → Q(M,A)
and ϕu(M,A) : π1(X(M,A)) → Qu(M,A).
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The space. Recall from Notation 1.26 that we write M̆ for the interior of M =
M♮Bd

1, where ♮ denotes the boundary connected sum along boundary-cylinder-germs
(i.e. the semi-monoidal structure of Dd), and that we have fixed an identification
of the interior of Bd

1 with Rd, so that there is a preferred embedding Rd ↪→ M̆ . Its
image is disjoint from M̊ , hence in particular disjoint from A ⊂ M̊ . Thus, restricting
this embedding to Z ⊂ Rd, we obtain a preferred embedding Z ↪→ M̆ ∖ A, which
determines a basepoint of the relative embedding space

EG(Z, M̆ ∖ A) = Emb(Z, M̆ ∖ A)/G.

Definition 2.30. — We define X(M,A) to be the path-component of the space
EG(Z, M̆ ∖ A) that contains the basepoint.

To complete step (i) of the construction, we have to show that X(M,A) admits a
universal cover: this is the result of Corollary 2.33 below. To prove this, we need the
following point-set topological result:

Lemma 2.31. — Let f : X → Y be a surjective fibre bundle and suppose that X
is semi-locally simply-connected. Then Y is also semi-locally simply-connected.

Proof. — Let y ∈ Y and let U be an open neighbourhood of y in Y . We need to
find a smaller open neighbourhood V ⊆ U of y such that any loop in V based at y is
nullhomotopic in U . First, choose a smaller open neighbourhood U ′ ⊆ U such that
f is trivialisable over U ′, and choose a trivialisation φ : f−1(U ′) ∼= U ′ × F (where
F = f−1(y)). Also, since f is surjective, we can choose a point z ∈ F . Since X is
semi-locally simply-connected, we may find an open neighbourhood W ⊆ f−1(U ′) of
ỹ = φ−1(y, z) such that any loop in W based at ỹ is nullhomotopic in f−1(U ′). By
the definition of the product topology, we may then find open subsets V ⊆ U ′ and
F ′ ⊆ F such that y ∈ V , z ∈ F ′ and φ−1(V × F ′) ⊆ W . Now let γ be any loop in
V based at y. Then γ̃ = φ−1 ◦ (γ × {z}) is a loop in W based at ỹ. By above, we
may find a nullhomotopy of γ̃ in f−1(U ′). Composing this nullhomotopy with f , it
becomes a nullhomotopy of γ in U ′ ⊆ U . □

Proposition 2.32. — The space X(M,A) is locally path-connected and semi-
locally simply-connected.

Proof. — First, note that it suffices to show that the space EG(Z, M̆ ∖ A) is
locally path-connected and semi-locally simply-connected, since X(M,A) is one
path-component of this space. There is a quotient map

(2.23) Emb(Z, M̆ ∖ A) −→→ EG(Z, M̆ ∖ A).
Since Z is compact (being a closed submanifold of Rd), the embedding space
Emb(Z, M̆ ∖ A), equipped with the Whitney topology, is locally contractible; see
[Cer61, p. 281, Coro. of Prop. 4′]. Thus in particular it is locally path-connected and
semi-locally simply-connected. Local path-connectedness is preserved under taking
quotients, so it follows that EG(Z, M̆ ∖ A) is also locally path-connected.

Semi-local simply-connectedness is not preserved under taking quotients in general,
so we shall instead invoke Lemma 2.31 above. The space EG(Z, M̆ ∖ A) is locally
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retractile with respect to the left action of the group Diffc(M̆ ∖ A) of compactly-
supported diffeomorphisms, by [Pal21, Prop. 4.15]. (Here we use the assumption that
G is an open subgroup of Diff(Z).) Moreover, the map (2.23) is equivariant with
respect to the left action of Diffc(M̆ ∖ A), so by [Pal60b, Th. A], the map (2.23) is
a fibre bundle. Therefore, Lemma 2.31 implies that its target EG(Z, M̆ ∖ A) is also
semi-locally simply-connected. □

Corollary 2.33. — The space X(M,A) admits a universal cover.

Proof. — By classical covering space theory (see [Hat02, Chap. 1, §3] for instance),
this is equivalent to X(M,A) being path-connected (which is true by definition)
and locally path-connected and semi-locally simply-connected (which is true by
Proposition 2.32). □

The surjective homomorphism. To complete the definition of the functors
F̊(Z,G,Q) and F̊u

(Z,G,Q) on objects, we need to specify two quotients ϕ(M,A) and
ϕu(M,A) of the fundamental group π1(X(M,A)) = π1(EG(Z, M̆ ∖ A)). To do this,
we use the split homotopy fibration sequence (1.5) of Proposition 1.29, which induces
the split short exact sequence (1.7); this is the top row of diagram (2.24) below. We
then apply the natural transformation q : id ⇒ Q (which is part of the data of
the functorial quotient of groups Q) to the middle and right-hand groups, applying
Lemma 2.24 to obtain the following 6-term commutative diagram, in which the two
rows are split short exact sequences. We define ϕ(M,A) to be the left-hand vertical
map of this diagram, denoting its target Q∗(π1(EG(Z, M̆ ∖ A))) by Q(M,A) for
brevity.

π1(X(M, A))∼=

1 π1(EG(Z, M̆ ∖ A)) π1(EDiff(A)×G(A ⊔ Z, M̆)) π1(E(A, M̆)) 1

1 Q(M, A) Q
(
π1(EDiff(A)×G(A ⊔ Z, M̆))

)
Q

(
π1(E(A, M̆))

)
1

ϕ(M, A) q(M, A) q̄(M, A)

(2.24)

The vertical morphisms in (2.24) depend upon (Z,G, Q); this has been elided from
the notation to avoid cluttering the diagram.

The functor F̊(Z,G,Q) is then defined on objects by:

(2.25) (M,A) 7−→ (X(M,A), ϕ(M,A)).

Example 2.34. — When Q = idGrp we have ϕ(M,A) = id, corresponding to the
universal covering, while when Q = 0 we have Q(M,A) = {id}, corresponding to
the trivial covering.

Actions and untwisted quotients. By Proposition 1.81 and Lemma 2.26, the
entire commutative diagram (2.24) is functorial in the input (M,A) as an object of
UDd. Restricting to the automorphism group Diffdec(M,A) of a single object (M,A)
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and looking just at the bottom-left group Q(M,A) of (2.24), we obtain an action
of Diffdec(M,A) on Q(M,A). Concretely, this action is induced via the quotient
ϕ(M,A) from the action on π1(EG(Z, M̆ ∖ A)) induced by post-composition with
diffeomorphisms of (M,A) extended by the identity on M ∖M . Since the group
Q(M,A) is discrete, this action factors through an action of π0(Diffdec(M,A)) on
Q(M,A). Pre-composing with the canonical map (1.20), this gives an action of
π1(E(A, M̊)) on Q(M,A).

We also have an action of π1(E(A, M̆)) (the top-right group of (2.24)) on Q(M,A)
(the bottom-left group of (2.24)) described in Lemma 2.24. Concretely, this action
is induced by the splittings in diagram (2.24). Pre-composing with the isomorphism
π1(E(A, M̊)) ∼= π1(E(A, M̆)) induced by the inclusion M̊ ⊂ M̆ , we thus have another
action of π1(E(A, M̊)) on Q(M,A).

Proposition 2.35. — The two actions of π1(E(A, M̊)) on Q(M,A) described
above are equal.

Proof. — Since both of these actions are induced via the quotient ϕ(M,A) from
actions defined on π1(EG(Z, M̆ ∖ A)), it suffices to prove that the two actions agree
on this group, before passing to the quotient. This is precisely part (ii) of Proposi-
tion 1.48. □

Notation 2.36. — We denote by Qu(M,A) the coinvariants Q(M,A)π1(E(A,M̊)) as-
sociated to this action, and by ϕu(M,A) the composite π1(X(M,A)) ↠ Q(M,A) ↠
Qu(M,A), where the first arrow is ϕ(M,A) while the second one is the canonical
projection onto the coinvariants.

We then define F̊u
(Z,G,Q) on objects by:

(2.26) (M,A) 7−→ (X(M,A), ϕu(M,A)).
Remark 2.37. — By construction, any quotient of Q(M,A) on which the group

π1(E(A, M̊)) acts trivially factors through the quotient onto Qu(M,A). In particular,
the covering spaces encoded by F̊u

(Z,G,Q) have a trivial action of these motion groups.
In this sense they are untwisted (in a universal way), whence the superscript u in
the notation for this variant.

The construction of the semifunctor F̊ on morphisms. We now define the
semifunctors F̊(Z,G,Q) and F̊u

(Z,G,Q) on morphisms of UDd and check the composition
axiom. Recall from Corollary 1.80 that the morphisms of UDd may be described
as embeddings of manifolds satisfying the three properties of Definition 1.49, with
composition induced by the evident composition of embeddings (see Definition 1.51);
this description will be used throughout this paragraph. By Proposition 1.81, each
morphism φ : (M,A) → (N,B) in UDd induces a map of split homotopy fibration
sequences Eφ : (1.5)(M,A) → (1.5)(N,B), in particular a map

fφ : EG(Z, M̆ ∖ A) −→ EG(Z, N̆ ∖B).
Notation of the form (1.5)(N,B) means the sequence (1.5) with each instance of (M,A)
replaced by (N,B). This map preserves basepoints and therefore restricts to a based
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map
(2.27) fX

φ : X(M,A) −→ X(N,B).

This defines the actions of F̊(Z,G,Q) and F̊u
(Z,G,Q) on the morphism φ at the level

of spaces. To verify that (2.27) determines well-defined morphisms in Cov• (see
Definition 2.2), we must verify that the homomorphism π1(fX

φ ) descends along the
quotients ϕ(M,A) and ϕ(N,B) and also along the quotients ϕu(M,A) and ϕu(N,B).

The map of split homotopy fibration sequences Eφ : (1.5)(M,A) → (1.5)(N,B) induces
a map of split short exact sequences Ψφ : (1.7)(M,A) → (1.7)(N,B). It then follows
from Lemma 2.26 that Ψφ induces a map of diagrams (2.24)(M,A) → (2.24)(N,B), in
particular homomorphisms
(2.28) θφ : Q(M,A) −→ Q(N,B) and θu

φ : Qu(M,A) −→ Qu(N,B).
In particular, this means that
θφ ◦ ϕ(M,A) = ϕ(N,B) ◦ π1(fX

φ ) and θu
φ ◦ ϕu(M,A) = ϕu(N,B) ◦ π1(fX

φ ),

i.e. that π1(fX
φ ) descends along the quotients ϕ(M,A) and ϕ(N,B) and along

the quotients ϕu(M,A) and ϕu(N,B). Equivalently, it sends ker(ϕ(M,A)) into
ker(ϕ(N,B)) and ker(ϕu(M,A)) into ker(ϕu(N,B)). So fX

φ is a morphism in Cov•
from (X(M,A), ϕ(M,A)) to (X(N,B), ϕ(N,B)) and also a morphism in Cov• from
(X(M,A), ϕu(M,A)) to (X(N,B), ϕu(N,B)).

In summary, we define both F̊(Z,G,Q) and F̊u
(Z,G,Q) on morphisms by φ 7→ fX

φ ,
interpreted as a morphism in Cov• in these two different ways.

Continuity and composition axioms. We first prove the continuity of the
construction at the level of hom-spaces.

Lemma 2.38. — The function
UDd((M,A), (N,B)) −→ Cov•(F̊(Z,G,Q)(M,A), F̊(Z,G,Q)(N,B))

and its analogue for F̊u defined above are continuous functions of hom-spaces.

Proof. — The function UDd((M,A), (N,B)) → Map∗(EG(Z, M̆∖A), EG(Z, N̆∖B))
given by φ 7→ fφ is continuous, since it is the adjoint of the function Embdec(M,N)×
EG(Z, M̆∖A) → EG(Z, N̆∖B), which is a quotient of a restriction of the composition
map Emb((M,A), (N,B))×Emb(Z, M̆∖A) → Emb(Z, N̆∖B), which is continuous
in the Whitney topology since Z is compact (see [Mat69, §2, Prop. 1]). Restriction
to a subspace is always continuous in the compact-open topology, so it follows that
the function UDd((M,A), (N,B)) → Map∗(X(M,A), X(N,B)) given by φ 7→ fX

φ is
also continuous.

Now, the hom-space Cov•(F̊(Z,G,Q)(M,A), F̊(Z,G,Q)(N,B)) is by definition the sub-
space of Map∗(X(M,A), X(N,B)) of those maps whose induced homomorphism
on π1 sends ker(ϕ(M,A)) into ker(ϕ(N,B)) and we know by construction that the
function φ 7→ fX

φ takes values in this subspace. Hence, by restricting the codomain,
we conclude that the function

UDd((M,A), (N,B)) −→ Cov•(F̊(Z,G,Q)(M,A), F̊(Z,G,Q)(N,B))
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is continuous, as claimed. The proof for F̊u is identical; we just restrict in the last
step of the proof to the subspace of Map∗(X(M,A), X(N,B)) of those maps whose
induced homomorphism on π1 sends ker(ϕu(M,A)) into ker(ϕu(N,B)). □

The composition axiom thus remains the only point to check in order to prove that
F̊(Z,G,Q) and F̊u

(Z,G,Q) are well-defined continuous semifunctors. Let us consider mor-
phisms φ : (M,A) → (N,B) and φ′ : (N,B) → (P,C) in UDd, viewed as embeddings
via Corollary 1.80.

Lemma 2.39. — There is an equality fX
φ′◦φ = fX

φ′ ◦ fX
φ .

Proof. — The composite embedding φ′ ◦ φ clearly induces the same map of split
homotopy fibration sequences (1.5)(M,A) → (1.5)(P,C) as that obtained by concate-
nating the maps induced by the two embeddings φ and φ′ separately. In particular,
there is an equality fφ′◦φ = fφ′ ◦ fφ of maps EG(Z, M̆ ∖ A) → EG(Z, P̆ ∖ C). This
identity is preserved when restricting to path-components of embedding spaces, so
we obtain the claimed equality. □

By the definition above, Lemma 2.39 tells us that F̊(Z,G,Q)(φ′ ◦ φ) = F̊(Z,G,Q)(φ′) ◦
F̊(Z,G,Q)(φ) and F̊u

(Z,G,Q)(φ′ ◦φ) = F̊u
(Z,G,Q)(φ′)◦F̊u

(Z,G,Q)(φ); we thus have well-defined
semifunctors.

This concludes the proof of Theorem 2.28 for the “open” variants F̊(Z,G,Q) and
F̊u

(Z,G,Q).

The closed variant F . The construction of the “closed” variants F(Z,G,Q) and
Fu

(Z,G,Q) of Theorem 2.28 is a slight modification of the construction above of the
“open” variants F̊(Z,G,Q) and F̊u

(Z,G,Q). To do this, we simply replace EG(Z, M̆∖A) with
the slightly larger embedding space EG(Z,M ∖ A). This has the effect of replacing
X(M,A) with another space X ′(M,A) that is homotopy equivalent to X(M,A) by
Proposition 1.31. In particular, we have a canonical isomorphism π1(X(M,A)) ∼=
π1(X ′(M,A)).

Remark 2.40. — We note that the spaces X ′(M,A) and X(M,A), although ho-
motopy equivalent, are not proper homotopy equivalent, which is why the open and
closed variants of (2.20) give rise to different homological representations when using
Borel-Moore homology (see Remark 2.42).

The only small technical difficulty arises when checking that X ′(M,A) has good
local properties, so it admits a universal cover (see Corollary 2.33): the argument is
exactly analogous, except that one has to use a variant of [Pal21, Prop. 4.15] where
the target manifold is allowed to have non-empty boundary. This may be proved by
a small adaptation of the proof of Proposition 4.15 of [Pal21], using ideas of [Cer61]
(where all manifolds are allowed to have corners of any codimension).

The quotient ϕ′(M,A) : π1(X ′(M,A)) ↠ Q(M,A) is defined to be equal to the
quotient ϕ(M,A) : π1(X(M,A)) ↠ Q(M,A) under the isomorphism π1(X(M,A)) ∼=
π1(X ′(M,A)) induced by the homotopy equivalence of Proposition 1.31. The semi-
functor F(Z,G,Q) is defined on objects by (M,A) 7→ (X ′(M,A), ϕ′(M,A)).

To define the untwisted version, we quotient further onto the coinvariants of
Q(M,A) by the action of π1(E(A,M)). This is identical to the action of π1(E(A, M̊))
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under the isomorphism π1(E(A, M̊)) ∼= π1(E(A,M)) induced by the canonical in-
clusion E(A, M̊) ⊂ E(A,M), so this further quotient is precisely Qu(M,A). Let us
write ϕu,′(M,A) for the quotient map ϕu(M,A) pre-composed with the inverse of the
isomorphism π1(X(M,A)) ∼= π1(X ′(M,A)). The semifunctor Fu

(Z,G,Q) is then defined
on objects by (M,A) 7→ (X ′(M,A), ϕu,′(M,A)).

On morphisms, the construction is exactly the same as the construction in the
“open” setting above, using the fact that the actions of embeddings of decorated
manifolds by post-composition on EG(Z, M̆ ∖ A) and on EG(Z,M ∖ A) commute
with the inclusion EG(Z, M̆ ∖ A) ⊂ EG(Z,M ∖ A). This concludes the proof of
Theorem 2.28.

To finish §2.2.1, we note the following relationship between the “open” and “closed”
semifunctors that we have constructed. We note that a homotopy in Cov• between
two morphisms f1, f2 : (X,ϕ : π1(X) ↠ Q) → (X ′, ϕ′ : π1(X ′) ↠ Q′) is a homotopy
of based maps X → X ′ from f1 to f2; in particular it can only exist if the homomor-
phisms Q → Q′ induced by f1 and f2 are equal. Then, a homotopy equivalence in
Cov• from (X,ϕ : π1(X) ↠ Q) to (X ′, ϕ′ : π1(X ′) ↠ Q′) is a based homotopy equiv-
alence X → X ′ such that the induced homomorphism Q → Q′ is an isomorphism.
Finally, a natural homotopy equivalence is a natural transformation between functors
with Cov• as target category that is componentwise a homotopy equivalence.

Lemma 2.41. — There are natural homotopy equivalences between the semifunc-
tors of Theorem 2.28 F̊(Z,G,Q) ⇒ F(Z,G,Q) and F̊u

(Z,G,Q) ⇒ Fu
(Z,G,Q).

Remark 2.42. — These natural homotopy equivalences imply that, when using
ordinary twisted homology (or any other homotopy invariant flavour of twisted
homology) in our general construction, it does not matter whether we use the open
or the closed variants of the semifunctors. However, this remark does not apply if
we use Borel-Moore homology; see Remark 2.40.

Proof of Lemma 2.41. — Our goal is to construct based homotopy equivalences
X(M,A) → X ′(M,A), naturally in (M,A) ∈ UDd, so that the two induced endo-
morphisms Q(M,A) → Q(M,A) and Qu(M,A) → Qu(M,A) are isomorphisms (in
fact they will both be the identity).

By Proposition 1.31, the inclusion EG(Z, M̆ ∖A) ⊂ EG(Z,M ∖A) is a based homo-
topy equivalence. It is clearly natural with respect to embeddings of decorated mani-
folds, i.e. natural in (M,A) ∈ UDd. Restricting to path-components of the basepoints,
we obtain the desired natural based homotopy equivalence X(M,A) → X ′(M,A).
The fact that it induces the identity endomorphism of Q(M,A) is immediate, since
the quotient ϕ′(M,A) was defined to coincide with the quotient ϕ(M,A) under the
identification π1(X(M,A)) ∼= π1(X ′(M,A)) induced by this homotopy equivalence.
For the same reason (ϕu,′(M,A) was defined to coincide with ϕu(M,A) under this
identification), the induced endomorphism of Qu(M,A) is also the identity. □

2.2.2. Elementary properties

We now record some fundamental properties of the continuous semifunctors of
Theorem 2.28.
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Uniqueness up to isotopy. The continuous semifunctors constructed in The-
orem 2.28 depend only on the isotopy class of the submanifold Z ⊂ Rd, in the
following precise sense.

Definition 2.43. — Let Z,Z ′ ⊂ Rd be two closed submanifolds and let G ⩽
Diff(Z) and G′ ⩽ Diff(Z ′) be open subgroups. We say that (Z,G) and (Z ′,G′) are
isotopic if there is a diffeomorphism Z ∼= Z ′ such that the induced isomorphism
Diff(Z) ∼= Diff(Z ′) sends G onto G′ and the induced bijection of path-components
π0(Emb(Z,Rd)/G) ∼= π0(Emb(Z ′,Rd)/G′) sends [inclZ ] to [inclZ′ ].

Proposition 2.44. — If (Z,G) is isotopic to (Z ′,G′), there is a natural isomor-
phism of continuous semifunctors F̊(Z,G,Q) ∼= F̊(Z′,G′,Q), and similarly for each of the
other variants of the construction.

Proof. — The assumption that (Z,G) is isotopic to (Z ′,G′) implies that we have a
homeomorphism η : EG(Z,Rd) ∼= EG′(Z ′,Rd) that sends the basepoint [inclZ ] of the
domain into the path-component containing the basepoint [inclZ′ ] of the codomain.
Let us choose a path in EG′(Z ′,Rd) from [inclZ′ ] to η([inclZ ]). Since the restriction
map Diffc(Rd) → EG′(Z ′,Rd) is a fibre bundle (by the same argument as in the proof
of Proposition 1.33), we may lift this to a path in Diffc(Rd) from the identity to a
diffeomorphism φ ∈ Diffc(Rd) whose pre-composition with η([inclZ ]) is [inclZ′ ]. For
each (M,A) ∈ ob(UDd), pre-composition with (the inverse of) the diffeomorphism
Z ∼= Z ′ also defines a homeomorphism η(M,A) : EG(Z, M̆ ∖ A) ∼= EG′(Z ′, M̆ ∖ A),
which agrees with η on [inclZ ] under the preferred embedding Rd ⊂ M̆ ∖A (see No-
tation 1.26). Denoting by φ(M,A) the extension of φ ∈ Diffc(Rd) to a diffeomorphism
of M̆ ∖A by setting it to be the identity outside of Rd ⊂ M̆ ∖A, we therefore have
a composite homeomorphism

EG(Z, M̆ ∖ A) EG′(Z ′, M̆ ∖ A) EG′(Z ′, M̆ ∖ A)
η(M,A) φ(M,A)◦−

that sends [inclZ ] to [inclZ′ ], i.e. is basepoint-preserving. We thus obtain a based
homeomorphism ζ(M,A) : X(Z,G)(M,A) ∼= X(Z′,G′)(M,A) by restricting to the path-
components of the basepoints. This induces an isomorphism on π1 that extends to
an isomorphism of split short exact sequences of the form (1.7). By Lemma 2.26, this
induces an isomorphism of commutative diagrams of the form (2.24), which implies
that π1(ζ(M,A)) descends to an isomorphism Q(Z,G,Q)(M,A) ∼= Q(Z′,G′,Q)(M,A). Thus
ζ(M,A) is an isomorphism F̊(Z,G,Q)(M,A) ∼= F̊(Z′,G′,Q)(M,A) in Cov•. This isomor-
phism is moreover natural with respect to morphisms of UDd, since they act by
post-composition with embeddings of decorated manifolds, whereas ζ(M,A) acts by
pre-composition with (the inverse of) a diffeomorphism Z ∼= Z ′ and post-composition
with a diffeomorphism φ supported in Rd ⊂ Bd

1 (where all embeddings of decorated
manifolds act by the identity). □

Functors of path-components. Note that Theorem 2.28 defines only semifunc-
tors, since UDd and UD+

d are only semicategories; see §1.4.2. However, this technical
issue does not matter once we pass to π0:
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Proposition 2.45. — The continuous semifunctors of Theorem 2.28 induce
genuine functors on π0.

Proof. — We consider any one of the semifunctors (2.22) of Theorem 2.28, which
we denote by F ; the proof repeats verbatim for the semifunctors defined on the
category UD+

d . Let (M,A) be an object of π0(UDd) (i.e. an object of Dd, a decorated
manifold). We have to show that π0(F) sends id(M,A) to an identity morphism of
π0(Cov•). To do this, we first have to identify the identity morphism of (M,A) in
π0(UDd).

Let e1 : Dd−1 × [0, 1] = Bd
1 ↪→ M denote one of the boundary cylinders that (M,A)

is equipped with (more precisely, a representative of one of the germs of boundary
cylinders that (M,A) is equipped with). The boundary connected sum (Bd

1, ∅)♮(M,A)
may be viewed as the union of Dd−1 × [−1, 1] with M along Dd−1 × [0, 1] via the
embedding e1. Choose a diffeomorphism [−1, 1] → [0, 1] that is given by t 7→ t+1 on
[−1,−1 + ϵ] and by t 7→ t on [1 − ϵ, 1] for some ϵ > 0. Taking the product with Dd−1

(acting by the identity on this factor of the product) and extending by the identity
over M ∖ Im(e1), this determines an isomorphism of decorated manifolds
(2.29) υ(M,A) : (Bd

1, ∅)♮(M,A) −→ (M,A).
Consider the endomorphism of (M,A) in UDd given by Υ(M,A) = [(Bd

1, ∅), υ(M,A)].
One may check that, for any endomorphism φ of (M,A) in UDd, the compositions
Υ(M,A) ◦φ and φ◦Υ(M,A) are both isotopic to φ. Hence Υ(M,A) is the identity of (M,A)
in the category π0(UDd). Under the identification of Corollary 1.80, this corresponds
to the self-embedding of (M,A) given by restricting the diffeomorphism (2.29) to
the submanifold (M,A) ⊂ (Bd

1, ∅)♮(M,A). Since this self-embedding is isotopic to
the identity, the induced self-map of embedding spaces X(M,A) → X(M,A) is
homotopic to the identity, and hence is an identity morphism in π0(Cov•). □

Recall that, apart from the continuous semifunctors provided by Theorem 2.28,
the other input for the general construction of §2.1.5 is a continuous semifunctor
V : UDd → •Mod• satisfying Condition 2.17. By Lemma 2.16, it induces an (abstract)
semifunctor π0(V ) : π0(UDd) → •Mod•.

Corollary 2.46. — If the semifunctor π0(V ) is a genuine functor, then the
associated homological representation semifunctor (2.21) of Corollary 2.27 upgrades
to a genuine functor.

Proof. — We consider any one of the semifunctors of Theorem 2.28, which we
denote by F . First, it follows from Lemma 2.16 that the linearisation (genuine)
functor Z[−] of §2.1.2, the fibrewise tensor product (genuine) functor ⊗ of §2.1.3
and the twisted homology (genuine) functor Hi of §2.1.4 induce (genuine) functors
π0(Z[−]), π0(⊗) and π0(Hi) on path-components, which commute with the canoni-
cal projections C → π0(C) for the categories C involved. Also, by Proposition 2.45,
the composite π0(Z[−]) ◦ π0(F) is a genuine functor. Now, consider the commuta-
tive diagram (2.12) defining the homological representation semifunctor Li(F ;V ).
The functor π0(Z[−]) ◦ π0(F) and the semifunctor π0(V ) determine a semifunc-
tor π0(F , V ) : π0(UDd) → π0(Top•Mod•) by the universal property of the pullback.
But then, since we assume that π0(V ) is a genuine functor, so is π0(F , V ). Finally,
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Li(F ;V ) is defined by the composite of π0(F , V ) with the genuine functors π0(⊗)
and π0(Hi). □

Borel-Moore homology variant. We finally show that the closed variants of
the semifunctors of Theorem 2.28 take values in the subcategory Covpr

• ⊂ Cov•; see
Lemma 2.47. By Theorem 2.19, these semifunctors therefore work equally well as
an input for our general construction when we use twisted Borel-Moore homology,
which is functorial only with respect to proper maps of spaces.

Lemma 2.47. — The continuous semifunctors F(Z,G,Q) and Fu
(Z,G,Q) of Theo-

rem 2.28 and their analogues defined on UD+
d take values in the subcategory Covpr

• ⊂
Cov•.

Proof. — Whichever closed semifunctor of Theorem 2.28 we consider, the proof
goes as follows. We have to show that, for any morphism φ : (M,A) → (N,B) of
decorated manifolds, the induced map of spaces X ′(M,A) → X ′(N,B) (in the closed
variant of the construction described at the end of §2.2.1) is a proper map (preimages
of compact subspaces are compact). This map is (a restriction to particular path-
components of) the inclusion of embedding spaces EG(Z,M ∖ A) ↪→ EG(Z,N ∖ B)
induced by an embedding of decorated manifolds (M,A) ↪→ (N,B) satisfying the
three properties of Definition 1.49 (by Proposition 1.76). In particular, the third
property implies that the inclusion M ∖A ↪→ N ∖B has closed image, which implies
that the inclusion of embedding spaces above also has closed image (this holds for
the compact-open topology, hence also for the Whitney topology, which is finer);
any closed inclusion is a proper map. □

Remark 2.48. — The continuous semifunctor F̊(Z,G,Q) of Theorem 2.28 does not
take values in the subcategory Covpr

• ⊂ Cov•, since proof of Lemma 2.47 breaks down
in this setting as the inclusion of M̆ ∖ A into N̆ ∖ B does not have closed image.
However, the restriction of the semifunctor F̊(Z,G,Q) to the underlying groupoid Dd

of UDd does take values in Covpr
• , since the underlying groupoid of Cov• is contained

in Covpr
• (because homeomorphisms are proper maps). Therefore, using Borel-Moore

homology together with the semifunctor F̊(Z,G,Q) in our general construction is not
fully functorial: namely, it is functorial only for the isomorphisms Dd of UDd, so we
just obtain representations of the individual groups in this case.

Furthermore, the natural homotopy equivalences of Lemma 2.41 are not proper.
Thus, when using Borel-Moore twisted homology – which is invariant only under
proper homotopy equivalences – in the general construction of §2.1.5, the two choices
F(Z,G,Q) and F̊(Z,G,Q) will lead to a priori different homological representations. As
noted above, the homological representations obtained using Borel-Moore homology
are defined on all of UDd when using F(Z,G,Q), but only on Dd when using F̊(Z,G,Q),
so it is only on this subgroupoid that we may compare them.

2.2.3. Colimit coefficient systems and untwisted representations

Throughout this section, we fix a pair of groupoids G and M as in Hypothesis 1.69.
Let us consider any semifunctor F : ⟨G,M⟩ → Cov• that induces a genuine functor
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on π0, for example (see Proposition 2.45) one of those constructed in Theorem 2.28
or its restriction along (2.19) to a subcategory ⟨G,M⟩ ⊆ UDd. In this section we
construct an associated colimit coefficient system Vcol(F ) : ⟨G,M⟩ → •Mod•. Under
certain conditions on the subcategory ⟨G,M⟩, if F is the restriction to ⟨G,M⟩ ⊆ UDd

of one of the two semifunctors F̊u
(Z,G,Q) or Fu

(Z,G,Q) of Theorem 2.28, the homological
representation functor Li(F ;Vcol(F )) : ⟨π0(G), π0(M)⟩ → Mod• resulting from the
general construction of §2.1.5 takes values in a subcategory of Mod• of the form
ModZ[Q] for a fixed group Q; see Proposition 2.59 below.

The idea to construct Vcol(F ) involves “stabilising” along the poset of canonical
morphisms in the category ⟨π0(G), π0(M)⟩, so we first fix notation for this poset.

Definition 2.49. — A morphism φ : M → N of ⟨π0(G), π0(M)⟩ is called canon-
ical if N = L♮M and φ = [L, idL♮M ] for some object L of π0(G). Write P(G,M)
for the subcategory of ⟨π0(G), π0(M)⟩ with the same objects and only the canonical
morphisms. There is at most one canonical morphism between any pair of objects,
so this subcategory is a poset. For an object M , we also write P(G,M)⩾M for the
subposet on all objects N ⩾M , in other words all objects of the form L♮M . Finally,
we write (−♮M) : P(G,M) ∼= P(G,M)⩾M for the canonical isomorphism of posets.

Remark 2.50. — The fact that the subcategory P(G,M) of Definition 2.49 is
a poset is equivalent to the statement that if L♮M = L′♮M then L = L′, which
is tautologically true by construction. To clarify, we note that the corresponding
statement with ∼= in place of = is false in general, but that is not relevant here. We
also recall from Remark 1.62 that ⟨π0(G), π0(M)⟩ is a small category, so P(G,M)
is really a set and not a proper class.

The basic construction is the following operation on functors ⟨π0(G), π0(M)⟩ →
Grp. For a functor T : ⟨π0(G), π0(M)⟩ → Grp, since ⟨π0(G), π0(M)⟩ is a small
category and the category of groups Grp is cocomplete, we may define
(2.30) Tcol(M) := colim

P(G,M)
(T ◦ (−♮M)).

Each morphism φ : M → N induces a natural transformation T ◦(−♮M) ⇒ T ◦(−♮N)
given by T (idL♮φ) on each object L of P(G,M). Natural transformations of dia-
grams induce morphisms of colimits, so we may define Tcol(φ) to be the morphism
Tcol(M) → Tcol(N) induced by this natural transformation. The identity and com-
position axioms are straightforward to check from the definition, and so we prove:

Lemma 2.51. — For a functor T : ⟨π0(G), π0(M)⟩ → Grp, the above assignments
define a functor Tcol : ⟨π0(G), π0(M)⟩ → Grp.

Moreover, there is a natural transformation T ⇒ Tcol given on each object M by
the morphism T (M) → Tcol(M) induced by the morphisms T ([L, idL♮M ]) : T (M) →
T (L♮M) for all L.

An important observation is the following.
Lemma 2.52. — If the poset P(G,M) is a directed set, then for any functor

T : ⟨π0(G), π0(M)⟩ → Grp, the associated functor Tcol is isomorphic to a functor
that is constant on P(G,M) ⊂ ⟨π0(G), π0(M)⟩, in other words it sends every object
to a fixed group T and it sends every canonical morphism to idT .
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Proof. — This follows immediately from the fact that, when P(G,M) is a directed
set, all of the subposets P(G,M)⩾M are cofinal in each other, so all of the colimits
(2.30) are canonically isomorphic to each other; see [Sta24, Lemma 04E7]. Thus
they are all canonically isomorphic to a fixed choice of group T representing this
isomorphism class. Moreover, since the colimit in (2.30) is taken over all canonical
morphisms, the canonical morphisms are sent to idT under these identifications.
Hence these canonical isomorphisms assemble into an isomorphism of functors from
Tcol to one having the properties described. □

Notation 2.53. — When the poset P(G,M) is a directed set, the group (2.30) (up
to isomorphism) is independent of M , by the proof of Lemma 2.52, and we denote
it by Qcol(T ).

The technical result that we shall need is the following strengthening of Lemma 2.52
under an additional condition.

Definition 2.54. — A subgroupoid H ⊆ Dd (respectively H′ ⊆ D+
d ) is called

a motion groupoid if, for each object (M,A) of H, the subgroup AutH(M,A) ⊆
Diffdec(M,A) (resp. AutH′(M,A) ⊆ Diff+

dec(M,A)) lies in Diffbr
dec(M,A) (resp. in

Diffbr,+
dec (M,A)). (The motivation for this terminology is Proposition 1.42.)

Proposition 2.55. — Suppose that we have groupoids G and M as in Hypoth-
esis 1.69 and let F = Fu be one of the untwisted semifunctors of Theorem 2.28,
restricted along the inclusion (2.19). Assume that the poset P(G,M) is a directed set
and that M is a motion groupoid. Then the functor (R ◦ Fu)col : ⟨π0(G), π0(M)⟩ →
Grp is equivalent to a constant functor.

Proof. — By Corollary 1.84, we may find a skeleton of ⟨π0(G), π0(M)⟩ that is
itself a Quillen bracket category. That is, we may find skeleta G0 ⊂ π0(G) and
M0 ⊂ π0(M), together with a monoidal structure on G0 and a left action of G0 on M0,
such that ⟨G0,M0⟩ is a skeleton of ⟨π0(G), π0(M)⟩, i.e. the inclusion i : ⟨G0,M0⟩ ↪→
⟨π0(G), π0(M)⟩ is an equivalence. By construction, every morphism in ⟨G0,M0⟩
is the composition of a canonical morphism and an isomorphism of M0 (via the
canonical embedding of M0 as the underlying groupoid of ⟨G0,M0⟩); since M0 is
skeletal, this isomorphism must be an automorphism.

We will prove below that each automorphism of π0(M) (thus in particular of M0)
is sent by T = R ◦ Fu to an identity morphism. This implies that Tcol also sends
each automorphism of π0(M) to an identity morphism, since Tcol(φ) is induced by a
natural transformation whose component morphisms are of the form T (idL♮φ), and
idL♮φ is an automorphism if φ is an automorphism.

By Lemma 2.52, Tcol is isomorphic to a functor T ′
col that sends every object to a

fixed group T and every canonical morphism to idT . By the previous paragraph,
Tcol sends every automorphism of π0(M) to an identity morphism; it follows that
T ′

col sends every automorphism of π0(M) to idT . Thus T ′
col is constant on objects,

canonical morphisms and automorphisms of π0(M) (in particular automorphisms of
M0). As noted above, every morphism in ⟨G0,M0⟩ is the composition of a canonical
morphism and an automorphism of M0, so T ′

col is constant on ⟨G0,M0⟩.
Let r : ⟨π0(G), π0(M)⟩ → ⟨G0,M0⟩ be an inverse equivalence for the inclusion i.

Then Tcol is equivalent to Tcol ◦ i ◦ r. By above, Tcol is isomorphic to T ′
col, which has
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the property that T ′
col ◦ i is constant. It thus follows that Tcol is equivalent to T ′

col ◦ i◦ r,
which is constant.

It remains to prove the claim above that T sends every automorphism φ : (M,A) →
(M,A) of π0(M) to an identity morphism. We first recall that, by the definition of
Fu in §2.2.1, the functor T = R ◦ Fu sends the object (M,A) to Qu(M,A), which
is the coinvariants of Q(M,A) under the action of π1(E(A, M̆)) induced by the
splittings in diagram (2.24). It also sends the automorphism φ : (M,A) → (M,A)
to the automorphism θu

φ : Qu(M,A) → Qu(M,A) of (2.28), which is the map on
coinvariants induced by the map θφ : Q(M,A) → Q(M,A), which is part of the map
of diagrams of the form (2.24) induced by φ, as explained in §2.2.1. Our goal is thus
to prove that θu

φ is the identity.
By the assumption that M is a motion groupoid, the element φ lies in the

subgroup π0(Diffbr
dec(M,A)) ⊆ π0(Diffdec(M,A)). We may therefore choose a lift

φ̃ ∈ π1(E(A, M̊)) of φ under the surjection (1.12) of Proposition 1.42. Via the iso-
morphism π1(E(A, M̊)) ∼= π1(E(A, M̆)) induced by the inclusion M̊ ⊂ M̆ we may
view φ̃ as an element of π1(E(A, M̆)). Via the splittings in diagram (2.24), it induces
an automorphism φ̃♯ of Q(M,A). Proposition 2.35 tells us that θφ = φ̃♯. By definition
of Qu(M,A) as coinvariants, the automorphism of Qu(M,A) induced by φ̃♯ is the
identity. But θu

φ is precisely the automorphism of Qu(M,A) induced by θφ = φ̃♯, so
it is the identity. □

The colimit coefficient system Vcol(F ). Given any semifunctor F : ⟨G,M⟩ →
Cov• that induces a genuine functor on π0, we now define the colimit coefficient sys-
tem semifunctor; see Definition 2.56. Composing with the forgetful functor R : Cov• →
Grp of Notation 2.8, we have a semifunctor R ◦F : ⟨G,M⟩ → Grp, which induces by
Lemma 2.16 a semifunctor π0(⟨G,M⟩) → Grp. Since F induces a genuine functor
on π0 (by assumption), this is a genuine functor. Composing with the isomorphism
of Lemma 1.71, we have a functor ⟨π0(G), π0(M)⟩ → Grp, which we also denote
by R ◦ F . Applying Lemma 2.51, we may therefore consider the functor (R ◦ F )col
and the natural transformation R ◦ F ⇒ (R ◦ F )col. Composing with the group ring
functor Z[−] : Grp → Rings, this is a natural transformation of functors of the form
⟨π0(G), π0(M)⟩ → Rings. Hence, we obtain:

Definition 2.56. — For F : ⟨G,M⟩ → Cov• a semifunctor that induces a gen-
uine functor on π0, we define the colimit coefficient system semifunctor:
(2.31) Vcol(F ) : ⟨G,M⟩ −→ •Mod•

to be the composite (Z[R ◦ F ] × Z[(R ◦ F )col] × Z[(R ◦ F )col]) ◦ ∆3 ◦ π0, where ∆3 is
the 3-ary diagonal functor and π0 : ⟨G,M⟩ → ⟨π0(G), π0(M)⟩ is the projection onto
path-components composed with the isomorphism of Lemma 1.71. Concretely, on
objects, Vcol(F ) sends M to the group ring Z[(R ◦ F )col(M)] considered as a right
module over itself and as a left module over Z[R ◦ F (M)] via the canonical group
homomorphism R ◦ F (M) → (R ◦ F )col(M).

Lemma 2.57. — The assignments for (2.31) determine a continuous semifunctor,
such that Condition 2.17 is satisfied and the semifunctor π0(Vcol(F )) is a genuine
functor.
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Proof. — For each object M of ⟨G,M⟩, the group ring Z[(R ◦ F )col(M)] has a
canonical bimodule structure over the pair of rings (Z[R ◦ F (M)],Z[(R ◦ F )col(M)]):
the action of Z[R ◦ F (M)] is induced by the canonical group homomorphism R ◦
F (M) → (R ◦ F )col(M) and left multiplication, while the action of Z[(R ◦ F )col(M)]
is right multiplication. Thus Vcol(F )(M) is an object of •Mod•. For each morphism
φ : M → N of ⟨G,M⟩, the ring homomorphisms Z[R ◦ F (φ)] and Z[(R ◦ F )col(φ)]
are well-defined and the latter is moreover also a bimodule homomorphism Z[(R ◦
F )col(M)] → (Z[R ◦ F (φ)],Z[(R ◦ F )col(φ)])∗(Z[(R ◦ F )col(N)]). Thus Vcol(F )(φ) is
a morphism of •Mod•.

It is routine to verify that Vcol(F ) respects composition, so it is a well-defined
semifunctor. It is continuous since the projection of ⟨G,M⟩ onto its path-components
is continuous (see Remark 1.70) and this is then post-composed with functors between
discrete categories to obtain Vcol(F ).

Applying the forgetful functor L of Notation 2.8, it follows from the definition
of Vcol(F ) that L ◦ Vcol(F ) is equal to Z[R ◦ F ], thus Condition 2.17 automatically
holds.

Let ΥM be an endomorphism of M in ⟨G,M⟩ whose image in π0(⟨G,M⟩) is the
identity of M . (For example, we could take the explicit endomorphism defined in
the proof of Proposition 2.45.) By Proposition 2.45, we have F (ΥM) = idF (M) and it
follows from our definition of Vcol(F ) on morphisms that Vcol(F )(ΥM) is an identity
morphism. Thus π0(Vcol(F )) preserves identities, i.e. it is a genuine functor. □

It follows that each semifunctor F : ⟨G,M⟩ → Cov• that induces a genuine functor
on π0 automatically induces a homological representation functor Li(F ;Vcol(F )) :
⟨π0(G), π0(M)⟩ → Mod• for each i ⩾ 0 by the construction of §2.1.5 applied to F
and its associated colimit coefficient system (2.31). The fundamental “untwisting”
results of this section are the following two propositions:

Proposition 2.58. — Suppose that we have groupoids G and M as in Hypothe-
sis 1.69 and assume that the poset P(G,M) is a directed set. Then, for each i ⩾ 0, the
homological representation functor Li(F ;Vcol(F )) is isomorphic to a functor taking
values in the subcategory Modtw

Z[Q] ⊂ Mod• for a fixed group Q.
Proof. — By Lemma 2.52, the functor (R ◦ F )col is isomorphic to a functor that

sends all objects to a fixed group Q. By construction it follows that, up to isomor-
phism, Vcol(F ) takes values in the subcategory •Modtw

Z[Q] ⊂ •Mod•. It then follows
directly from the construction of §2.1.5 that the resulting homological represen-
tation functor Li(F ;Vcol(F )), up to isomorphism, takes values in the subcategory
Modtw

Z[Q] ⊂ Mod•. □

Proposition 2.59. — Suppose that we have groupoids G and M as in Hypoth-
esis 1.69 and let F = Fu be one of the untwisted semifunctors of Theorem 2.28,
restricted along the inclusion (2.19). Assume that the poset P(G,M) is a directed
set and that M is a motion groupoid. Then, for each i ⩾ 0, the homological rep-
resentation functor Li(Fu;Vcol(Fu)) is isomorphic to a functor taking values in the
subcategory ModZ[Q] ⊂ Mod• for a fixed group Q.

Proof. — By Proposition 2.55, the functor (R◦Fu)col is isomorphic to the constant
functor at a fixed group Q. By construction it follows that, up to isomorphism,
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Vcol(Fu) takes values in the subcategory •ModZ[Q] ⊂ •Mod•. It then follows directly
from the construction of §2.1.5 that the resulting homological representation functor
Li(Fu;Vcol(Fu)), up to isomorphism, takes values in the subcategory ModZ[Q] ⊂
Mod•. □

Example 2.60 (Low-degree lower central series.). — We note that, in some ex-
amples of interest, we have F = Fu for the semifunctors of Theorem 2.28, which
means that Proposition 2.59 applies to the homological representation functors
Li(F ;Vcol(F)) for any of the semifunctors F of Theorem 2.28.

This is true exactly when, for each object (M,A), the π1(E(A, M̊)-action on
Q(M,A) is trivial, so that Qu(M,A) = Q(M,A); see Notation 2.36. An obvious ex-
ample of this is when Q is the quotient onto the trivial group, since Q(M,A) is then
always trivial. A less obvious but important example is when Q is the abelianisation
functor: in this case, all groups on the bottom row of diagram (2.24) are abelian,
so the semi-direct product is a direct product, and so the π1(E(A, M̊)-action on
Q(M,A) is trivial. These are precisely the ℓ ∈ {1, 2} cases of Example 2.23 applied
to the lower central series, since QΓ1 is the quotient onto the trivial group and QΓ2

is the abelianisation functor.

2.3. Further constructions of homological representation functors

The construction of the functors F : UDd → Mod• in §2.2 (see Theorem 2.28) is
well-adapted for motion groups in the sense that, if one restricts to a subcategory
of UDd of the form ⟨G,M⟩, where M is a motion groupoid (see Definition 2.54
and Proposition 1.42), then Proposition 2.59 implies that the induced homological
representation functor Li(F ;Vcol(F)) takes values in the subcategory ModZ[Q] ⊂
Mod• for a fixed group Q, as long as the underlying poset P(G,M) is directed and
if F is one of the two untwisted semifunctors constructed in Theorem 2.28. Thus the
construction of §2.2 is effective for producing families of untwisted representations
of motion groups (or braided mapping class groups; see Remark 1.43). However, for
the full mapping class groups, the construction of §2.2 typically produces twisted
representations.

In this subsection, we describe a variant of the construction of §2.2, based on
the split short exact sequence (1.9) instead of (1.7), which has good properties for
the full mapping class groups. More precisely, this variant satisfies an analogue of
Proposition 2.59 where one does not have to assume that M is a motion groupoid;
see Proposition 2.65 below.

Since the constructions and proofs are very similar to those of §2.2, we review the
adaptation of the results of §2.2, pointing out and focusing on the differences.

2.3.1. Construction of the homological representation functors

As in §2.2, we fix an integer d ⩾ 2, d ≠ 4 (cf. Remark 1.54), a closed submanifold
Z ⊂ Rd, an open subgroup G of Diff(Z) and a functorial quotient of groups Q.
We explain in the following paragraphs the construction of continuous semifunctors
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analogous to (2.22), which we denote by F̊(Z,G,Q), F̊u
(Z,G,Q), F(Z,G,Q) and Fu

(Z,G,Q) to
distinguish them from those of Theorem 2.28. The result of this construction is
summarised in Theorem 2.62 below.

The semifunctor F̊. The construction of the semifunctor F̊(Z,G,Q) is similar to
that of F̊(Z,G,Q) in §2.2.1. On objects, we follow the construction of §2.2.1; in par-
ticular we use the same space X(M,A) (see Definition 2.30). However, the quotient
ϕ(M,A) : π1(X(M,A)) ↠ Q(M,A) is defined using the following 6-term commuta-
tive diagram instead of (2.24).

π1(X(M, A))∼=

1 π1(EG(Z, M̆ ∖ A)) π0(Diffdec(M, A, Z|G)) π0(Diffdec(M, A)) 1

1 Q(M, A) Q(π0(Diffdec(M, A, Z|G))) Q(π0(Diffdec(M, A))) 1

ϕ(M, A) q(M, A) q̄(M, A)

(2.32)

The top row is the split short exact sequence (1.9) of Corollary 1.34. The rest of the
diagram is induced from this just as in §2.2.1, using Lemma 2.24. The construction of
F̊(Z,G,Q) on morphisms is then exactly as in §2.2.1, using the fact that the commutative
diagram (2.32) is functorial in the morphisms of UDd thanks to Proposition 1.81 and
Lemma 2.26. In particular, Lemmas 2.38 and 2.39 and their proofs repeat verbatim.

Untwisted and closed variants. By Proposition 1.81 and Lemma 2.26, the
commutative diagram (2.32) is functorial in the morphisms of UDd, so there is an
action of Diffdec(M,A) = AutUDd

((M,A)) on the bottom-left group Q(M,A). Since
Q(M,A) is discrete, this factors through an action of π0(Diffdec(M,A)) on Q(M,A).
On the other hand, the top-left group π0(Diffdec(M,A)) of (2.32) acts on Q(M,A)
either by lifting elements of Q(M,A) along ϕ(M,A) and using the conjugation
action of the semi-direct product on the top row, or equivalently by projecting
along q̄(M,A) to the bottom-right group of (2.32) and then using the conjugation
action of the semi-direct product on the bottom row. Via the canonical isomorphism
π0(Diffdec(M,A)) ∼= π0(Diffdec(M,A)), induced by extending diffeomorphisms by the
identity on M ∖M , this gives another action of π0(Diffdec(M,A)) on Q(M,A). The
following is the analogue of Proposition 2.35.

Proposition 2.61. — The two actions of π0(Diffdec(M,A)) on Q(M,A) de-
scribed above are equal.

Proof. — Since both of these actions are induced via the quotient ϕ(M,A) from
actions defined on π1(EG(Z, M̆∖A)), it suffices to prove that the two actions agree on
this group, before passing to the quotient. This is precisely part (i) of Proposition 1.48.

□
Analogously to Notation 2.36 in §2.2, we denote by Qu(M,A) the coinvariants

Q(M,A)π0(Diffdec(M,A)) associated to this action, and by ϕu(M,A) the composite
X(M,A) ↠ Q(M,A) ↠ Qu(M,A), where the first arrow is ϕ(M,A) and the second
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is the canonical projection onto the coinvariants. As in Remark 2.37, this quotient
group Qu(M,A) is the universal one for the associated homological representations
to be untwisted; see Proposition 2.65 below. We thus define the untwisted variant
F̊u

(Z,G,Q) by (M,A) 7→ (X(M,A), ϕu(M,A)) on objects; on morphisms it is defined
just as above, using functoriality of the diagram (2.32) by Proposition 1.81 and
Lemma 2.26.

Finally, the closed variants F(Z,G,Q) and Fu
(Z,G,Q) are constructed by making the

same modification as at the end of §2.2.1, using the (homotopy equivalent but not
proper homotopy equivalent) space X ′(M,A) in place of X(M,A).

The discussion above proves the following analogue of Theorem 2.28.

Theorem 2.62. — For any integer d ⩾ 2, closed submanifold Z ⊂ Rd and open
subgroup G of Diff(Z), each functorial quotient of groups Q determines, via (2.32),
continuous semifunctors
(2.33) F̊(Z,G,Q), F̊

u
(Z,G,Q), F(Z,G,Q) and Fu

(Z,G,Q) : UDd −→ Cov•.

Similar continuous semifunctors are defined on the semicategory UD+
d if Z is ori-

entable and G is contained in Diff+(Z).

Remark 2.63. — There is a natural morphism of diagrams (2.24) → (2.32) induced
by Lemma 2.26 from the map of split short exact sequences from the top row
to the middle row in diagram (1.10) of Proposition 1.36. This induces a natural
transformation of semifunctors (2.22) ⇒ (2.33) for each of the four versions and for
each fixed (Z,G, Q).

Corollary 2.64. — The semifunctors of Theorem 2.62 provide semifunctors of
the form
(2.34) ⟨π0(G), π0(M)⟩ −→ Mod•,

which we denote by Li(̊F(Z,G,Q);V ), Li(̊Fu
(Z,G,Q);V ), Li(F(Z,G,Q);V ) and Li(Fu

(Z,G,Q);V ),
where V is any continuous semifunctor satisfying Condition 2.17. If the semifunctor
π0(V ) defined from V by Lemma 2.16 is a genuine functor, then the semifunctors
(2.34) upgrade to genuine functors.

Proof. — This is a direct application of the general construction of §2.1.5 (see
Definition 2.20), together with the identification of π0(⟨G,M⟩) with ⟨π0(G), π0(M)⟩
by Lemma 1.71. The upgrade of (2.34) to genuine functors follows from the analogues
of Proposition 2.45 and Corollary 2.46, whose proofs are identical. □

2.3.2. Elementary properties

The properties of §2.2.2 also hold for the semifunctors of Theorem 2.62. In par-
ticular, the proof of Proposition 2.44 repeats verbatim to prove that, for fixed Q,
each of the four versions of (2.33) depends (up to natural isomorphism) on (Z,G)
only up to isotopy in the sense of Definition 2.43. In addition, it is routine to adapt
the proofs of §2.2.2 to show that the continuous semifunctors (2.33) induce genuine
functors on π0 (viz. Proposition 2.45), that the closed variants F(Z,G,Q) and Fu

(Z,G,Q)
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take values in Covpr
• (viz. Lemma 2.47) and that there are natural homotopy equiva-

lences F̊(Z,G,Q) ⇒ F(Z,G,Q) and F̊u
(Z,G,Q) ⇒ Fu

(Z,G,Q) (viz. Lemma 2.41). Indeed, the only
difference between the constructions of the semifunctors of Theorem 2.28 and those
of Theorem 2.62 is that, in the former, the groups Q(M,A) (and the homomorphisms
Q(φ)) are those obtained from diagram (2.24) (and its functoriality), whereas in the
latter they are obtained from diagram (2.32) (and its functoriality).

2.3.3. Colimit coefficient systems and untwisted representations

Recall from §2.2.3 that each semifunctor F : ⟨G,M⟩ → Cov• that induces a
genuine functor on π0 has an associated colimit coefficient system (semifunctor)
Vcol(F ) : ⟨G,M⟩ → •Mod•; see Definition 2.56 and Lemma 2.57. Since the semifunc-
tors (2.33) induce genuine functors on π0 (see §2.3.2), we may apply this construction
to F = (2.33). Proposition 2.58 applies directly to this setting, since it makes no
further assumptions on F . The analogue of Proposition 2.59 is the following, in
which we notably drop the assumption that M is a motion groupoid.

Proposition 2.65. — Suppose that we have groupoids G and M as in Hypoth-
esis 1.69 and let F = Fu be one of the untwisted semifunctors of Theorem 2.62,
restricted along the inclusion (2.19). Assume that the poset P(G,M) is a directed
set. Then, for each i ⩾ 0, the homological representation functor Li(Fu;Vcol(Fu)) is
isomorphic to a functor taking values in the subcategory ModZ[Q] ⊂ Mod• for a fixed
group Q.

Proof. — Just as in the proof of Proposition 2.59, this will follow immediately from
the definition of the colimit coefficient system Vcol(Fu) and the general construction
of §2.1.5, once we have proven the analogue of Proposition 2.55, in which we consider
Fu in place of Fu (and we do not assume that M is a motion groupoid). The proof of
this analogue is identical to that of Proposition 2.55 itself, the only difference being
that we use Proposition 2.61 instead of Proposition 2.35 to understand the action of
automorphisms of π0(M) on Q(M,A). Since Proposition 2.61 applies to the whole
mapping class group π0(Diffdec(M,A)) (whereas Proposition 2.35 applies only to the
subgroup π0(Diffbr

dec(M,A)), the braided mapping class group), we do not need to
assume that M is a motion groupoid, as we had to for Proposition 2.59. □

3. Applications for mapping class groups and motion groups

In this section, we study in detail the representations obtained as outputs of the
general construction of §2.1.5 (see Definition 2.20), applied following the methods
of §2.2–§2.3 to some important families of mapping class groups and motion groups,
namely the families of classical braid groups, braid groups on surfaces and loop braid
groups in §3.2.1, and the families of mapping class groups of surfaces in §3.2.2.
Beforehand, we detail the categorical framework coming from §1 for these families
of groups in §3.1.
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3.1. Categories for mapping class groups and motion groups

The mapping class groups and motion groups that we shall study in §3.2.1 and
§3.2.2 generally come in families, in the sense that they naturally form a set {Gn}n∈N
along with canonical maps gn : Gn → Gn+1. A good way to treat these objects
systematically, extracting their essential structure, is to package them using the
Quillen bracket construction framework of §1.4, as follows.

Construction 3.1. — Let {gn : Gn → Gn+1}n∈N be a family of groups of the
following form.

(i) There is a fixed dimension d ⩾ 2 such that, for each n ∈ N, the group Gn

is isomorphic either to the mapping class group π0(Diffdec(Mn, An)) (see No-
tation 1.17) or to the braided mapping class group π0(Diffbr

dec(Mn, An)) (see
Definition 1.38), where (Mn, An) is a decorated manifold (see Definition 1.11);
in particular, Mn is a smooth d-manifold with non-empty boundary and An

is a closed submanifold of its interior M̊n. Moreover, the homomorphism gn

is induced by an embedding in Embdec((Mn, An), (Mn+1, An+1)) (see Defini-
tion 1.49), sending an isotopy class of diffeomorphisms of (Mn, An) to the
isotopy class of diffeomorphisms of (Mn+1, An+1) given by applying this em-
bedding and extending it by the identity on the complement of its image.

(ii) There is a decorated manifold (M,A) ∈ Dd such that, for each n ∈ N,
the decorated manifold (Mn+1, An+1) is isomorphic to the boundary con-
nected sum (M,A)♮(Mn, An) and, under this isomorphism, the preferred em-
bedding of (Mn, An) into (Mn+1, An+1) corresponds to the inclusion into
(M,A)♮(Mn, An).

(iii) In the case when Gn is a braided mapping class group in point (i), we
also assume that the mapping class group π0(Diffdec((M, ∅)♮n)) is trivial for
all n ∈ N. This implies that we have an equality π0(Diffbr

dec((M,A)♮n)) =
π0(Diffdec((M,A)♮n)).

In order to encode the family of groups {gn : Gn → Gn+1}n∈N, we carry out the
following steps.

(1) We first define M to be a certain subgroupoid of Dd whose objects are
all decorated manifolds that are isomorphic to (Mn, An) for some n ∈ N.
In the case when Gn is a full mapping class group, we define M to be
the full subgroupoid on these objects. In the case when Gn is a braided
mapping class group, we must be slightly more careful. For each decorated
manifold (N, ∅) in the isomorphism class of (Mn, ∅), let us fix an isomorphism
i(N,∅) : (N, ∅) ∼= (Mn, ∅); in the case (N, ∅) = (Mn, ∅) we take it to be the
identity. We then define the morphisms of M to be those isomorphisms
(N,B) ∼= (N ′, B′) that become isotopic to i−1

(N ′,∅) ◦ i(N,∅) after forgetting the
submanifolds B and B′. (We call these braided isomorphisms, generalising
Definition 1.38 to isomorphisms between distinct objects.) This ensures that
M is a well-defined subgroupoid of Dd and that its automorphism groups are
braided diffeomorphism groups.
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(2) We then define G to be the full subgroupoid of Dd on all objects that are
isomorphic to (M,A)♮n for some n ∈ N. This is evidently closed under the semi-
monoidal structure ♮ of Dd (see Definition 1.22). Moreover, the subgroupoid
M ⊆ Dd is closed under the left action of G induced by ♮; in the case when
the groups Gn are full mapping class groups (where we defined M to be a
full subgroupoid in step (1)) this is clear, whereas in the case when they are
braided mapping class groups it follows from the assumption in point (iii).

(3) Then, by Corollaries 1.80 and 1.84, there exists a skeleton ⟨π0(G), π0(M)⟩0
of the Quillen bracket construction ⟨π0(G), π0(M)⟩; this encodes the family
of groups {gn : Gn → Gn+1}n∈N.

Remark 3.2. — Recall from Convention 1.2 that the topologically-enriched groupoids
Dd and D+

d are essentially small, and that we have implicitly replaced them with
equivalent small groupoids. All of the subgroupoids of Dd and D+

d that we shall
consider are therefore also small, as are the corresponding discrete groupoids after
applying the functor π0 and the corresponding (discrete or topologically-enriched)
Quillen bracket categories.

In the remainder of this subsection, we describe and discuss some properties of the
subgroupoids G and M defined as in Construction 3.1, corresponding to mapping
class groups of surfaces in §3.1.1, to surface braid groups in §3.1.2 and to loop braid
groups and extended loop braid groups in §3.1.3. In §3.2 we then apply the general
construction of §2 to these examples to obtain coherent representations of these
families of groups.

3.1.1. Mapping class groups of surfaces

We denote by D2 the closed unit 2-disc. Let Σ1
0,1 denote the cylinder S1 × [0, 1]

(this notation is more commonly used to denote a once-punctured disc, which is
consistent with the fact that the non-distinguished boundary component of Σ1

0,1 may
be moved freely by diffeomorphisms), let Σ1,1 denote the torus with one boundary
component (S1 × S1) ∖ D̊2 and let N1,1 denote a Möbius band. For g ⩾ 0, we denote
by Σs

g,1 the boundary connected sum (♮sΣ1
0,1)♮(♮gΣ1,1) and by Γs

g,1 the mapping class
group π0(Diff∂(Σs

g,1)). For h ⩾ 0, we denote by Ns
h,1 the boundary connected sum

(♮sΣ1
0,1)♮(♮hN1,1) and by N s

h,1 the mapping class group π0(Diff∂(Ns
h,1)). When s = 0,

we omit it from the notation. Let M+,t
2 and M−,t

2 be the full subgroupoids of D2
on decorated surfaces of the form (S, ∅, e1, e2), where S is homeomorphic to Σg,1 for
some g ⩾ 0 (for M+,t

2 ) or to Nh,1 for some h ⩾ 0 (for M−,t
2 ) and the boundary-

cylinders e1 and e2 both lie on the same boundary component of S. The groupoids
M+,t

2 and M−,t
2 clearly both inherit the semi-monoidal structure ♮ from D2 (see

Definition 1.22). The choices G = M = M+,t
2 and G = M = M−,t

2 thus each fit into
Hypothesis 1.69.

We denote by M+
2 and M−

2 the path-components π0(M+,t
2 ) and π0(M−,t

2 ) respec-
tively. Since M+,t

2 and M−,t
2 contain the solid cylinder (B2

1, ∅, id, r), the groupoids
M+

2 and M−
2 have, by Lemma 1.24, a monoidal structure induced by the boundary

TOME 1 (-1)



88 M. PALMER & A. SOULIÉ

connected sum ♮ of Definition 1.19. Hence we may apply Quillen’s bracket construc-
tion and by Lemma 1.71 we have isomorphisms of categories π0(UM+,t

2 ) ∼= UM+
2

and π0(UM−,t
2 ) ∼= UM−

2 . By Proposition 1.82, we may pass to monoidal skeleta of
(M+

2 , ♮) and (M−
2 , ♮) and the categories UM+

2 and UM−
2 are thus also skeletal by

Corollary 1.84. For diffeomorphisms of surfaces, the condition of fixing pointwise
two (neighbourhoods of) intervals in a boundary component is equivalent to fixing
pointwise the whole boundary component. So the morphisms in M+

2 and M−
2 may

be identified with the isotopy classes of diffeomorphisms of the surfaces S that that
fix pointwise the preferred boundary component of S, i.e. their automorphism groups
are the mapping class groups π0(Diff∂(S)) of S.

3.1.2. Surface braid groups

Let S be a compact, connected, smooth surface with a chosen boundary component
∂0S. For each non-negative integer n, we denote by n a closed submanifold of S
consisting of n distinct points in the interior of S. Let BrS be the subgroupoid of D2
with objects all decorated surfaces of the form (S ′, n′, e1, e2), where the embedded
1-discs e1(bB2

1) and e2(bB2
1) lie on the same boundary component ∂0S

′, n is any
non-negative integer and there is a diffeomorphism S ∼= S ′ taking ∂0S onto ∂0S

′ and
n onto n′. The morphisms of BrS are the braided isomorphisms of D2, as described
in step (1) of Construction 3.1; in particular its automorphism groups are given by
the braided diffeomorphism groups of Definition 1.38. Since the condition of being a
braided isomorphism is invariant under deformations along paths in the space of all
isomorphisms in D2, the groupoid BrS is 0-full in D2. If S = D2, this collection of
objects is closed under the semi-monoidal structure ♮ of Definition 1.22, so in this
case BrD2 is a semi-monoidal subgroupoid of D2. Moreover, in this case, BrD2 is full
(not just 0-full) in D2, since the mapping class group π0(DiffI⊔I(D2)) is trivial by
Lemma 3.3 below. In general, the groupoid BrS is closed under the left action of
BrD2 via ♮. Thus the choice of G = BrD2 and M = BrS fits into Hypothesis 1.69.

Lemma 3.3. — Let I ⊔ I be a pair of disjoint closed intervals in the boundary
of the disc D2 and write DiffI⊔I(D2) for the group of diffeomorphisms of D2 that fix
I ⊔ I pointwise. Then DiffI⊔I(D2) is weakly contractible, hence path-connected, so
the mapping class group π0(DiffI⊔I(D2)) is trivial.

Proof. — By [Cer61, §II.2.2.2, Cor. 2] (see also [Pal60b, Lim63]), the map

DiffI⊔I(D2) −→ Diff∂(I ⊔ I) ∼= (Diff∂(I))2

that remembers just the action of a diffeomorphism restricted to the complementary
pair of intervals ∂D2 ∖ (I ⊔ I) ∼= I ⊔ I is a fibre bundle. Its fibre over the identity
is Diff∂(D2), the group of diffeomorphisms of D2 fixing all of ∂D2 pointwise. The
diffeomorphism group Diff∂(I) is easily seen to be contractible, and the diffeomor-
phism group Diff∂(D2) was shown to be contractible by Smale [Sma59]. The long
exact sequence of the above fibre bundle then implies that DiffI⊔I(D2) is weakly
contractible. □
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Let βS be the groupoid π0(BrS). For each non-negative integer n, the automor-
phism group of its object (S, n) is the surface braid group π0(Diffbr

dec(S, n)) of S,
which we denote by Bn(S). When S = D2, we abbreviate βD2 to β for brevity.
Since BrD2 contains the solid cylinder (B2

1, ∅, id, r), Lemma 1.24 implies that the
groupoid β inherits a monoidal structure from the boundary connected sum ♮ of
D2, which also induces on βS a left module structure over the monoidal groupoid β.
Then, the Quillen bracket construction defines categories UBrD2 , ⟨BrD2

,BrS⟩, Uβ and
⟨β,βS⟩. By Lemma 1.71, we have isomorphisms of categories π0(UBrD2) ∼= Uβ and
π0(⟨BrD

2
,BrS⟩) ∼= ⟨β,βS⟩. By Proposition 1.82, we may pass to monoidal skeleta

of (β, ♮) and (βS, ♮); after doing this, the groupoid β becomes equivalent to the
well-known braid groupoid; see [ML98, Chap. XI, §4] for instance. The categories Uβ
and ⟨β,βS⟩ are then also skeletal by Corollary 1.84.

An alternative viewpoint on surface braid groups is as fundamental groups of
configuration spaces. Fix a non-negative integer n and a compact, connected surface
S. Then the embedding space Emb(n, S̊) is the ordered configuration space of n
points in S̊, denoted by Fn(S̊). For a partition λ = {λ1; . . . ;λr} ⊢ n, the quotient
space Fn(S̊)/Sλ, induced by the natural action of Sλ := Sλ1 × · · · × Sλr ⊆ Sn on
the coordinates, is the λ-partitioned configuration space of n points in S̊, denoted by
Cλ(S̊). When λ is the trivial partition {n} (which we simply denote by n), this is
the unordered configuration space and is denoted by Cn(S̊). The fundamental group
of Cn(S̊) is isomorphic to Bn(S) (this is a classical fact, or Proposition 1.42 with
M = S and Z = n). More generally, following Definition 1.32, the fundamental group
π1(Cλ(S̊)), which is isomorphic to π0(Diffbr

dec(S, λ1, . . . , λr)) by Proposition 1.42, is
called the λ-partitioned braid group Bλ(S).

3.1.3. Loop braid groups

We now focus on the families of extended and non-extended loop braid groups.
Their definitions are recalled here and we refer to [Dam17] for a complete introduction
to these groups. Let us denote by D3 the closed 3-disc. For each non-negative integer
n, we denote by nS1 a closed submanifold of D3 consisting of a collection of n disjoint
circles forming a trivial link of n components in the interior of D3. The notation
nS1

+ denotes the same unlink as nS1, but it indicates that we shall require any
diffeomorphism on this unlink to be orientation-preserving; otherwise orientation-
reversing diffeomorphisms are permitted. Choosing also two germs of boundary-
cylinders (which we elide from the notation), the pair (D3, nS1) forms a decorated
manifold, which we sometimes denote by D3

n for simplicity. Let Diff∂(D3, nS1) be
the group of self-diffeomorphisms of D3 that fix ∂D3 pointwise and nS1 setwise. The
extended loop braid group LB′

n is the group of isotopy classes π0(Diff∂(D3, nS1)).
Let Diff∂

(
D3, nS1

+

)
denote the subgroup of diffeomorphisms that also preserve the

orientation of nS1. The (non-extended) loop braid group LBn is the group of isotopy
classes π0

(
Diff∂

(
D3, nS1

+

))
.

We now set up a categorical framework for handling these families of groups.
Let LB′ (respectively LB) be the full subgroupoid of D3 (respectively D+

3 ) on all
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decorated manifolds (M,A, e1, e2) such that the pair (M,A) is diffeomorphic to
the 3-disc relative to an embedded n-component unlink. Both LB′ and LB are
closed under the semi-monoidal structure ♮ of Definition 1.22, so they inherit a semi-
monoidal structure from D3 and D+

3 . In particular, either choice G = M = LB or
G = M = LB′ fits into Hypothesis 1.69. We denote π0(LB′) and π0(LB) by Lβ′ and
Lβ respectively. Since LB′ and LB both contain the solid cylinder (B3

1, ∅, id, r), the
groupoids Lβ′ and Lβ both inherit a monoidal structure from the semi-monoidal
structures of D3 and D+

3 by Lemma 1.24. We may pass to monoidal skeleta of
(Lβ′, ♮) and (Lβ, ♮) by Proposition 1.82. Hence Quillen’s bracket construction defines
categories ULβ′ and ULβ, which are skeletal by Corollary 1.84. By Lemma 1.71, we
have isomorphisms of categories π0(ULB′) ∼= ULβ′ and π0(ULB) ∼= ULβ.

Let us show that there are isomorphisms AutLβ′(D3
n) ∼= LB′

n and AutLβ(D3
n) ∼=

LBn. We show this for the first case, the other one following by an identical argument.
The automorphism group of D3

n in Lβ′ is π0(Diffdec(D3
n)), where Diffdec(D3

n) is the
topological group of diffeomorphisms of D3 that send the embedded n-component
unlink onto itself and that restrict to the identity on a neighbourhood of two disjoint
2-discs in ∂D3. The condition of fixing a neighbourhood of two discs in the boundary
is equivalent (up to homotopy equivalence, so in particular on π0) to fixing just the
two discs themselves. On the other hand, LB′

n has the same description except that
diffeomorphisms must fix the whole boundary ∂D3. To show that these two groups
are isomorphic, it therefore suffices to show the following.

Lemma 3.4. — Let M be a 3-manifold with a boundary component ∂0M ∼= S2.
For isotopy classes of diffeomorphisms of M , fixing two disjoint 2-discs in ∂0M is
equivalent to fixing all of ∂0M .

Proof. — Let Diff(M,∂0M) be the group of diffeomorphisms of M that send ∂0M
onto itself. The restriction map Diff(M,∂0M) → Diff(∂0M) ∼= Diff(S2) is a fibre
bundle, by [Cer61, p. 294, §II.2.2.2, Cor. 2]. Hence its restriction DiffD2⊔D2(M) −→
DiffD2⊔D2(S2) ∼= Diff∂C(C) is also a fibre bundle, where the subscript D2⊔D2 means
that diffeomorphisms must restrict to the identity on a given pair of disjoint discs
in ∂0M ∼= S2 and C denotes the 2-dimensional cylinder S1 × [0, 1]. The fibre is
Diff∂0M(M) and we obtain an exact sequence

· · · → π1(Diff∂C(C)) −→ π0(Diff∂0M(M)) (∗)−−→ π0(DiffD2⊔D2(M)) −→ π0(Diff∂C(C)).
By [Gra73, Théorème 1], Diff∂C(C) is contractible, and hence (∗) is a bijection. □

Since their automorphism groups are the (extended) loop braid groups, we call
Lβ′ and Lβ respectively the extended loop braid groupoid and the (non-extended)
loop braid groupoid. Also, recall (see Definition 1.38) the braided diffeomorphism
group Diffbr

dec(M,A), consisting of all of those (decorated) diffeomorphisms that
become isotopic to the identity after forgetting A. Since π0(Diffdec(D3, ∅)) is trivial
by [Cer68] (and Lemma 3.4), this condition is vacuous when M = D3, so we have
LB′

n
∼= AutLβ′(D3

n) = π0(Diffdec(D3
n)) = π0(Diffbr

dec(D3
n)) and LBn

∼= AutLβ(D3
n) =

π0(Diff+
dec(D3

n)) = π0(Diffbr,+
dec (D3

n)). Hence LB′
n and LBn may be thought of as

braided mapping class groups (although the adjective braided is redundant in this
case).
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Finally, we introduce here further generalisations of loop braid groups. We fix
non-negative integers n and k and a partition λ = {λ1; . . . ;λr} ⊢ k. Now, consider
the embedding spaces Fk(D3

n) = Emb(k, D̊3 ∖ nS1) and Uk(D3
n) = Embunl(kS1, D̊3 ∖

nS1), where the superscript unl means the path-component of the embedding space
corresponding to (n+ k)-component unlinks. We set
(3.1)
Cλ(D3

n) = Fk(D3
n)/Sλ, U

+
λ (D3

n) = Uk(D3
n)/Diff+(λS1), Uλ(D3

n) = Uk(D3
n)/Diff(λS1),

where λS1 = (λ1S1, . . . , λrS1). The first is the λ-partitioned configuration space
of k points in the unlink-complement D̊3 ∖ nS1. The middle space is the space of
λ-partitioned oriented k-component unlinks in D̊3 ∖ nS1 such that the resulting
(n + k)-component link is again trivial. The right-hand space is similar, except
that the k-component unlinks are unoriented. By Proposition 1.42, we have isomor-
phisms π1(U+

n (D3)) ∼= LBn and π1(Un(D3)) ∼= LB′
n and, more generally, the groups

π1(U+
λ (D3)) and π1(Uλ(D3)) are isomorphic to the partitioned versions LBλ and LB′

λ

respectively.

3.2. Examples of homological representation functors

Recall from §2.2–§2.3 that the input to construct a homological representation
functor is a continuous semifunctor of the form F̊(Z,G,Q), for Z a closed submanifold
of Rd, G an open subgroup of Diff(Z) and Q a functorial quotient of groups. (Here, F
refers either to the semifunctors denoted by F in Theorem 2.28 or the semifunctors
denoted by F in Theorem 2.62.) Throughout §3.2, we consider an integer k ⩾ 1,
which will determine the closed submanifold Z ⊂ Rd, as well as a partition λ =
{λ1; . . . ;λr} ⊢ k, which will determine the group G. We denote by r′ the number of
indices 1 ⩽ i ⩽ r such that λi ⩾ 2.

Furthermore, we confine our study throughout §3.2 to the homological represen-
tation functors with the following restrictions on the inputs of the construction of
Definition 2.20.

• For concision, we mainly present the “open” versions F̊(Z,G,Q) rather than the
“closed” variants F(Z,G,Q), although everything in §3.2 repeats verbatim using
the closed variants F(Z,G,Q).

• We always consider the lower central series functorial quotients of groups
QΓℓ

: Grp → Grp (see Example 2.23) for the parameter Q, and we simplify
the indexing notation of F̊ using ℓ instead of QΓℓ

. We choose to focus on
constructions with these functorial quotients of groups since the lower central
series of (partitioned) surface braid groups and loop braid groups are well-
understood (see for example [DPS22]), which helps us to understand the
specific examples of homological representations fitting into this framework.
We recall from Example 2.60 that the untwisted variant semifunctor F̊u

(Z,G,ℓ)
is equal to F̊(Z,G,ℓ) for the parameter ℓ ∈ {1, 2}.

• For simplicity, we always take the continuous semifunctor V : C → •Mod• in
the inputs for Definition 2.20 to be equal to the colimit coefficient system
V = Vcol(̊F(Z,G,ℓ)) associated to F̊(Z,G,ℓ) (see §2.2.3 and §2.3.3). This allows
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us to apply Propositions 2.58, 2.59 and 2.65 to deduce that the homological
representation functors that we construct take values in Modtw

Z[Q] or ModZ[Q]
for a fixed transformation group Q. We recall that the colimit coefficient
system Vcol(̊F(Z,G,ℓ)) and the transformation group Q are determined by the
semifunctor F̊(Z,G,ℓ) and the choice of subcategory ⟨G,M⟩ ⊆ UDd to which we
have restricted it.

• The sequence of construction in each setting is thus as follows: we select the
parameters k ⩾ 1, λ ⊢ k and ℓ ⩾ 1, determining the data Z, G and Q respec-
tively; we restrict the continuous semifunctor F̊ = F̊(Z,G,ℓ) of Theorem 2.28 or
Theorem 2.62 to a subcategory ⟨G,M⟩ ⊆ UDd; this determines the colimit
coefficient system Vcol(̊F) by §2.2.3 or §2.3.3; the data of F̊ and Vcol(̊F) then
determine a homological representation functor Li(̊F;Vcol(̊F)) for each i ⩾ 0.

3.2.1. Motion groups

We apply the general construction of §2.2 to some families of motion groups
(see Definition 1.39). Namely, we study examples of the homological representation
functors introduced in §2.2, defined on the subcategories of UD2 and UD3 that are
relevant for classical braid groups, surface braid groups and loop braid groups. These
subcategories are introduced in §3.1.2 and §3.1.3.

Classical braid groups. We denote by F̊(k,Sλ,ℓ)(D) and F̊u
(k,Sλ,ℓ)(D) the restric-

tions to the subcategory UBrD2 ⊂ UD2 of the continuous semifunctors of Theo-
rem 2.28, where we take Z := k a finite set of k ⩾ 1 points, G := Sλ and Q := QΓℓ

for some ℓ ⩾ 1. Recall from §3.1.2 that the automorphism groups of BrD2 are the
braided diffeomorphism groups Diffbr

dec(D2, n) (see Definition 1.38), so it is a motion
groupoid (see Definition 2.54). Also, by definition of the braid groupoid β (see §3.1.2),
the poset P(β,β) (see Definition 2.49) is isomorphic to the poset of natural numbers
N with its usual order, so in particular it is a directed set. Therefore, using the
colimit coefficient systems (2.31) associated to the semifunctors under consideration,
we obtain from Corollary 2.27, Proposition 2.58 and Proposition 2.59 the following
homological representation functors for all i ⩾ 0:

Li(F̊(k,Sλ,ℓ)(D)) : Uβ −→ Modtw
Z[Q(λ,ℓ)(D)];

Li(F̊u
(k,Sλ,ℓ)(D)) : Uβ −→ ModZ[Qu

(λ,ℓ)(D)].
(3.2)

Here, Q(λ,ℓ)(D) and Qu
(λ,ℓ)(D) denote the colimit group Qcol(R ◦ F̊) (Notation 2.53)

associated to F̊ = F̊(k,Sλ,ℓ)(D) and F̊ = F̊u
(k,Sλ,ℓ)(D) respectively. For ℓ = 2 and the

trivial partition λ = {k}, the representations arising from the functors (3.2) are
related to the well-known families of Lawrence-Bigelow representations, originally
introduced by Lawrence [Law90] as representations of Hecke algebras and recovered
by Bigelow [Big01, §2] following a more geometric method. Namely, they define a Bn-
representation LBk(n) for each k ⩾ 1 and n ⩾ 0, called the k-th Lawrence-Bigelow
representation. The most famous among these are the Burau representations, first
introduced in [Bur35], and the Lawrence-Krammer-Bigelow representations, which
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Bigelow [Big01, Th. 1.1] and Krammer [Kra02] independently proved to be faithful.
The following result may be straightforwardly verified by unwinding the construction
of §2.2 and comparing it to that of [Big01, §2].

Theorem 3.5 (The Lawrence-Bigelow representations.). — Let k ⩾ 1 and n ⩾ 0
be integers. The Bn-representation encoded by the functor Lk(F̊(k,Sk,2)(D)), i.e. (3.2)
with i = k = λ and ℓ = 2, is isomorphic to the Lawrence-Bigelow representation
LBk(n).

In addition, we compute that Q(λ,2)(D) ∼= Zr′ × Zr(r−1)/2 × Zr; see Lemma 4.3.
As far as the authors know, there are no representations of the braid groups in the
literature whose ground rings are of the form Z[Zr′ ×Zr(r−1)/2 ×Zr] for r ⩾ 2. Hence
the functors (3.2) for ℓ = 2 appear to define new representations of the braid groups.

Furthermore, if λ is a partition of the form {2;λ′} or {1; 1; 1;λ′′} where λ′ and
λ′′ are any partitions of k − 2 and k − 3 respectively, we prove in the sequel [PS22b]
that Li(F̊(k,Sλ,ℓ)(D)) ̸= Li(F̊(k,Sλ,ℓ+1)(D)) for each ℓ ⩾ 2; see [PS22b, Table 2]. The
transformation group Q({2;λ′},ℓ)(D) is computed in Proposition 4.5 for ℓ ⩾ 2 when
the partition λ′ ⊢ (k − 2) is such that λ′

l ⩾ 3 for all 1 ⩽ l ⩽ r − 1. Also, one may
easily deduce from [Big01, Th. 1.1] that each functor Lk(F̊(k,S{2;λ′},ℓ)(D)) for ℓ ⩾ 2
encodes a faithful representation of Bn for each n; see [PS22b, Rem. 4.8].

Surface braid groups. We consider the continuous semifunctors F̊(k,Sλ,ℓ) and
F̊u

(k,Sλ,ℓ) of Theorem 2.28 where we take Z := k a finite set of k ⩾ 1 points, G := Sλ

and Q := QΓℓ
for some ℓ ⩾ 1. Let S be a compact, connected surface with boundary,

different from the 2-disc: it is therefore homeomorphic to either Σg,1 or Nh,1 for
g or h ⩾ 1. We denote by F̊(k,Sλ,ℓ)(S) and F̊u

(k,Sλ,ℓ)(S) the restrictions of these
semifunctors to the subcategory ⟨BrD2

,BrS⟩ ⊂ UD2. Recall from §3.1.2 that the
automorphism groups of βS are the braided diffeomorphism groups Diffbr

dec(S, n) (see
Definition 1.38), so it is a motion groupoid (see Definition 2.54). Also, by definition of
the groupoid βS (see §3.1.2), the poset P(β,βS) (see Definition 2.49) is isomorphic to
the poset of natural numbers N with its usual order, so in particular it is a directed
set. By Corollary 2.27, Proposition 2.58 and Proposition 2.59, using the colimit
coefficient systems (2.31) associated to these semifunctors, we have the following
homological representation functors for all i ⩾ 0:

Li(F̊(k,Sλ,ℓ)(S)) : ⟨β,βS⟩ −→ Modtw
Z[Q(λ,ℓ)(S)];

Li(F̊u
(k,Sλ,ℓ)(S)) : ⟨β,βS⟩ −→ ModZ[Qu

(λ,ℓ)(S)].
(3.3)

Here, Q(λ,ℓ)(S) and Qu
(λ,ℓ)(S) denote the colimit group Qcol(R ◦ F̊) (Notation 2.53)

associated to F̊ = F̊(k,Sλ,ℓ)(S) and F̊ = F̊u
(k,Sλ,ℓ)(S) respectively. For ℓ ∈ {2, 3}, we

compute that Q(λ,2)(S) ∼= (Z/2)r′ ×H1(S;Z)r (see Lemma 4.3), while, when the parti-
tion λ ⊢ k is such that λl ⩾ 3 for all 1 ⩽ l ⩽ r, the transformation groups Q(λ,3)(Σg,1),
Qu

(λ,3)(Σg,1), Q(λ,3)(Nh,1) and Qu
(λ,3)(Nh,1) are calculated in Proposition 4.5 (see (4.3)

and (4.4)). Apart from one specific case when ℓ = 3 detailed in Example 3.6 below,
there are no representations of surface braid groups in the literature whose ground
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rings coincide with those of the functors (3.3) for ℓ ∈ {2, 3}, which thus appear to
be new.

Example 3.6 (The An-Ko representations.). — Let us focus on the closed variant
F(k,Sk,3)(Σg,1) for orientable surfaces. Since it takes values in Covpr

• by Lemma 2.47,
we may use Borel-Moore homology in the construction of Definition 2.20 and we
denote by LBM

k (F(k,Sk,3)(Σg,1)) the corresponding homological representation functor.
This functor defines representations of Bn(Σg,1) for any k ⩾ 1 and n ⩾ 0. The
procedure to construct these representations may be seen as a reinterpretation
following Bellingeri, Godelle and Guaschi [BGG17] of the work of An and Ko [AK10],
who extend some homological representations from the classical braid groups to the
surface braid groups. Namely, in [AK10, §3.A], the transformation group Q(k,3)(Σg,1)
and the quotient Bk,n(Σg,1)/Γ3 are introduced in a completely different way, as
abstract groups satisfying certain technical homological constraints. Then, for k ⩾ 3,
[BGG17, §4] redefine these groups via the third lower central quotient of Bk,n(Σg,1)
and prove that they are isomorphic to those of [AK10, §3.A].

For k ⩾ 3, one may straightforwardly check from the definitions that the k-th
An-Ko representation [AK10, Th. 3.2] of Bn(Σg,1) is given by the tensor product
LBM

k (F(k,Sk,3)(Σg,1))(n) ⊗Z[Q(k,3)(Σg,1)] Z[Bk,n(Σg,1)/Γ3]. The case of k ⩽ 2 is trick-
ier: a careful analysis of the definitions of [AK10, §3.A] shows, using the canonical
map Q(k,3)(Σg,1) → Q(3,3)(Σg,1) → B3,n(Σg,1)/Γ3, that for k ⩽ 2 the k-th An-Ko
representation [AK10, Th. 3.2] corresponds to LBM

k (F(k,Sk,3)(Σg,1))(n) ⊗Z[Q(k,3)(Σg,1)]
Z[B3,n(Σg,1)/Γ3]. The general method applied in this section thus elucidates the
geometric origins of these groups, moreover proving that the use of the third lower
central quotient is a key tool in defining the homological representations. Our frame-
work also gives an alternative to the technical result [AK10, Lem. 3.1] to justify that
the representations are well-defined. In contrast, the representations encoded by the
functors LBM

i (F(k,Sλ,3)(S)) for any non-trivial partition λ ⊢ k, as well as all of the
untwisted versions LBM

i (Fu
(k,Sλ,3)(S)), appear to be new.

In addition, if λ is a partition of the form {1;λ′} or {2;λ′′} where λ′ and λ′′ are
any partitions of k− 1 and k− 2 respectively, and for S ∈ {Σg,1,Nh,1 | g ⩾ 1, h ⩾ 2},
the sequel [PS22b] proves that Li(F̊(k,Sλ,ℓ)(S)) ̸= Li(F̊(k,Sλ,ℓ+1)(S)) for each ℓ ⩾ 2;
see [PS22b, Prop. 5.2]. Therefore, for the aforementioned reasons, the functors (3.2)
for ℓ ⩾ 2 appear, in general, to define new representations of the braid groups on
the surfaces Σg,1 and Nh,1.

Loop braid groups. To apply the construction of §2.2 to extended loop braid
groups, we consider restrictions of the continuous semifunctor F̊(Z,G,ℓ) : UD3 → Cov•
of Theorem 2.28, with Q := QΓℓ

for some ℓ ⩾ 1, to the subcategory ULB′ ⊂ UD3
(see §3.1.3). For non-extended loop braid groups, we instead consider restrictions
to ULB ⊂ UD+

3 (see §3.1.3) of the continuous semifunctor F̊(Z,G,ℓ) : UD+
3 → Cov•;

see Theorem 2.28. The automorphism groups of LB′ and LB are the (braided)
diffeomorphism groups Diffbr

dec(D3
n) and Diffbr,+

dec (D3
n) respectively; see §3.1.3. Hence

LB′ and LB are motion groupoids (see Definition 2.54). It also follows from the
definitions that the posets P(LB′,LB′) and P(LB,LB) (see Definition 2.49) are

ANNALES HENRI LEBESGUE



Unified topological representations 95

both isomorphic to the poset of natural numbers N with its usual order, so in
particular they are directed sets. Now, two choices for the submanifold Z ⊂ R3

naturally arise as relevant inputs to construct homological representations: a set of
points or an unlink.

Using configurations of points. We take Z = k a set of k ⩾ 1 points in R3 and
G = Sλ. We consider the restrictions of the continuous semifunctors of Theorem 2.28
to the subcategories ULB ⊂ UD+

3 and ULB′ ⊂ UD3. Using the colimit coefficient
systems (2.31) associated to these semifunctors, by Corollary 2.27, Proposition 2.58
and Proposition 2.59, we have the following homological representation functors for
all i ⩾ 0:

Li(F̊(k,Sλ,ℓ)(D3)) : ULβ −→ Modtw
Z[Q(P,λ,ℓ)(D3)];

Li(F̊u
(k,Sλ,ℓ)(D3)) : ULβ −→ ModZ[Qu

(P,λ,ℓ)(D3)];

Li(F̊ ′
(k,Sλ,ℓ)(D3)) : ULβ′ −→ Modtw

Z[Q′
(P,λ,ℓ)(D3)];

Li(F̊ ′u
(k,Sλ,ℓ)(D3)) : ULβ′ −→ ModZ[Q′u

(P,λ,ℓ)(D3)].

(3.4)

Here, Q(P,λ,ℓ)(D3) and Qu
(P,λ,ℓ)(D3) denote the colimit group Qcol(R ◦ F̊) (Nota-

tion 2.53) associated to F̊ = F̊(k,Sλ,ℓ)(D3) and F̊ = F̊u
(k,Sλ,ℓ)(D3) respectively,

and similarly for the versions with ′. The symbol ‘P ’ here simply indicates that
we are in the setting where Z is a set of points. For ℓ = 2, we compute that
Q(P,λ,2)(D3) ∼= Zr × (Z/2)r′ and Q′

(P,λ,2)(D3) ∼= (Z/2)r+r′ ; see Lemma 4.7. Among the
representations introduced by (3.4), the only ones that we currently understand in
detail are those defined with the parameters i = k = 1 and ℓ = 2:

Example 3.7 (The loop Burau representations.). — In [PS22a], we explicitly com-
pute the matrices of the representations encoded by the functors L1(F̊(1,0,2)(D3))
and L1(F̊ ′

(1,0,2)(D3)): these extend the Burau representations of the classical braid
groups to LBn and LB′

n respectively. To describe these calculations, we recall that
the loop braid group LBn admits a presentation given by generators {σi, τi | 1 ⩽ i ⩽
n− 1}, where {σ1, . . . , σn−1} satisfy the relations of the classical braid group Bn and
{τ1, . . . , τn−1} satisfy those of the symmetric group Sn, together with three additional
mixed relations; see [Dam17, Prop. 3.14 and 3.16] for details. We show in [PS22a] that
the matrices of the representations L1(F̊(1,0,2)(D3))(n) : LBn → AutZ[Z](Z[Z]⊕n−1)
are those of:

• the Burau representation LB1(n) (see §3.2.1) for the generators {σ1, . . . , σn−1};
• the standard representation of the symmetric group Sn for the generators

{τ1, . . . , τn−1}.
The matrices for the representations L1(F̊ ′

(1,0,2)(D3))(n) of the extended loop braid
groups LB′

n over R = Z[Z/2] ∼= Z[t±1]/(t2 − 1) are more subtle, since the underlying
R-module is not free in this case: it is R⊕n−1 ⊕ R/(t − 1). They can however be
computed; see [PS22a, Table 1].

On the other hand, apart from the setting of Example 3.7, the representations of the
(extended and non-extended) loop braid groups encoded by the functors (3.4) appear
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to be new because of their ground rings. Furthermore, for any partition λ = {2;λ′},
we prove in [PS22b, Prop. 6.2] that Li(F̊(k,Sλ,ℓ)(D3)) ̸= Li(F̊(k,Sλ,ℓ+1)(D3)) for each
ℓ ⩾ 2.

Using configurations of unlinks. We now set Z = kS1 a k-component un-
link in R3. For each partition λ ⊢ k, we focus on two choices for the group G: the
group Diff(λS1) of diffeomorphisms of kS1 preserving the partition λ or its sub-
group Diff+(λS1) of orientation-preserving diffeomorphisms. Then we consider the
restrictions of the continuous semifunctors of Theorem 2.28 to the full subcategories
ULB ⊂ UD+

3 and ULB′ ⊂ UD3 along with their associated colimit coefficient systems
(2.31).

The oriented version. We take G = Diff+(λS1). By Corollary 2.27, Proposi-
tion 2.58 and Proposition 2.59, we have the following homological representation
functors for all i ⩾ 0:

Li(F̊(kS1,Diff+(λS1),ℓ)(D3)) : ULβ −→ Modtw
Z[Q(S+,λ,ℓ)(D3)];

Li(F̊u
(kS1,Diff+(λS1),ℓ)(D

3)) : ULβ −→ ModZ[Qu
(S+,λ,ℓ)(D3)];

Li(F̊ ′
(kS1,Diff+(λS1),ℓ)(D

3)) : ULβ′ −→ Modtw
Z[Q′

(S+,λ,ℓ)(D3)];

Li(F̊ ′u
(kS1,Diff+(λS1),ℓ)(D

3)) : ULβ′ −→ ModZ[Q′u
(S+,λ,ℓ)(D3)].

(3.5)

The group Q(S+,λ,ℓ)(D3) and its variants with u or ′ are defined similarly to above,
except that the symbol ‘S+’ indicates that we are now in the setting where Z is an
oriented unlink. For ℓ = 2, we compute that Q(S+,λ,2)(D3) ∼= Zr2+r+r′ × (Z/2)r′ and
Q′

(S+,λ,2)(D3) ∼= Zr2+r′ × (Z/2)r+r′ ; see Lemma 4.7. Moreover, for partitions of the
form λ = {b;λ′} with b ∈ {2, 3,{1, 1}} and generically denoting both F̊(kS1,Diff+(λS1),ℓ)

and F̊ ′
(kS1,Diff+(λS1),ℓ) by F(λ,ℓ), we prove in [PS22b, Prop. 6.2] that Li(F(λ,ℓ)(D3)) ̸=

Li(F(λ,ℓ+1)(D3)) for each ℓ ⩾ 2.
The unoriented version. We take G = Diff(λS1). By Corollary 2.27, Propo-

sition 2.58 and Proposition 2.59, we have the following homological representation
functors for all i ⩾ 0:

Li(F̊(kS1,Diff(λS1),ℓ)(D3)) : ULβ −→ Modtw
Z[Q(S,λ,ℓ)(D3)];

Li(F̊u
(kS1,Diff(λS1),ℓ)(D3)) : ULβ −→ ModZ[Qu

(S,λ,ℓ)(D3)];

Li(F̊ ′
(kS1,Diff(λS1),ℓ)(D3)) : ULβ′ −→ Modtw

Z[Q′
(S,λ,ℓ)(D3)];

Li(F̊ ′u
(kS1,Diff(λS1),ℓ)(D3)) : ULβ′ −→ ModZ[Q′u

(S,λ,ℓ)(D3)].

(3.6)

The group Q(S,λ,ℓ)(D3) and its variants with u or ′ are defined similarly to above,
except that the symbol ‘S’ indicates that we are now in the setting where Z is an
unoriented unlink. For ℓ = 2, we compute that Q(S,λ,2)(D3) ∼= Zr × (Z/2)2r′+r(r+1)

and Q′
(S,λ,2)(D3) ∼= (Z/2)2r′+r(r+2); see Lemma 4.7. Moreover, for partitions of the

form λ = {b;λ′} with b ∈ {1, 2, 3} and generically denoting both F̊(kS1,Diff(λS1),ℓ)
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and F̊ ′
(kS1,Diff(λS1),ℓ) by F(λ,ℓ), we prove in [PS22b, Prop. 6.2] that Li(F(λ,ℓ)(D3)) ̸=

Li(F(λ,ℓ+1)(D3)) for each ℓ ⩾ 2.
Therefore, because of the computations of their ground rings, all of the represen-

tations encoded by the functors (3.5) and (3.6) appear to be new.

3.2.2. Mapping class groups of surfaces

Although it is best adapted to motion groups, the general construction of §2.2
may also be used to construct representations of mapping class groups, and recovers
several classical constructions. This is detailed in the first paragraph below. We then
apply, in the second paragraph, the method of §2.3 to define other representations
for mapping class groups of surfaces.

Homological representations from the construction of §2.2. Let UD∅
2 de-

note the full subcategory of UD2 on the decorated manifolds (M,A) where A = ∅.
We consider the continuous semifunctor F̊(k,Sλ,ℓ) of Theorem 2.28 where Z := k is
a finite set of k ⩾ 1 points, G := Sλ and Q := QΓℓ

for some ℓ ⩾ 1, which we first
restrict to UD∅

2. We note that, on this subcategory, the short exact sequences of the
diagram (2.24) degenerate in the sense that the right-hand side is the trivial group.
Restricting further, we then denote by F̊(k,Sλ,ℓ)(Γ) and F̊(k,Sλ,ℓ)(N ) the restrictions
of this semifunctor to the subcategories UM+,t

2 and UM−,t
2 of UD∅

2 (see §3.1.1).
Note that, by definition of the groupoids M+

2 and M−
2 , the posets P(M+

2 ,M+
2 )

and P(M−
2 ,M−

2 ) (see Definition 2.49) are both isomorphic to the poset of natural
numbers N with its usual order, so in particular they are directed sets. Hence, using
the colimit coefficient systems (2.31) associated to the semifunctors under consider-
ation, we obtain from Corollary 2.27 and Proposition 2.58 the following homological
representation functors for all i ⩾ 0:

Li(F̊(k,Sλ,ℓ)(Γ)) : UM+
2 −→ Modtw

Z[QF
(λ,ℓ)(Γ)];

Li(F̊(k,Sλ,ℓ)(N )) : UM−
2 −→ Modtw

Z[QF
(λ,ℓ)(N )].

(3.7)

Remark 3.8. — Since the groupoids M+
2 and M−

2 are not motion groupoids,
Proposition 2.59 does not apply in this setting, so we cannot deduce that the F̊u

variants of Theorem 2.28 lead to untwisted versions of (3.7); thus we do not consider
these variants here. This issue is precisely what is solved in the next paragraph below,
by applying the construction of §2.3 instead of that of §2.2.

The transformation groups QF
(λ,ℓ)(Γ) and QF

(λ,ℓ)(N ) in (3.7) are defined (via taking
a colimit) from the ℓ-th lower central quotients Bλ(Σg,1)/Γℓ or Bλ(Nh,1)/Γℓ for all
g, h ⩾ 1 respectively. These lower central quotients are computed in [DPS22, §6.5–
§6.6], from which one may deduce complete calculations of all of these transformation
groups.

A simple modification of the above construction of (3.7) consists in replacing
the lower central quotient Q = QΓℓ

with the identity quotient Q = idGrp. The
corresponding functors encode the representations given by the natural actions on the
homology of the universal covers of λ-partitioned configuration spaces on the surfaces.
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In particular, it is easy to check from the definitions that the functor corresponding
to λ = {1} and Q = idGrp encodes the (reduced) Magnus representations of the
mapping class groups, whose topological interpretation was introduced in [Suz05].

Another interesting modification of the construction of (3.7) consists in removing
the basepoint p0 ∈ ∂S from the surface and allowing the configuration points to lie in
the boundary of the surface. Namely, we replace each surface S by the surface S∖{p0}
(formally, this means slightly changing the domain category of the homological rep-
resentation functors, but its automorphism groups are the same up to isomorphism)
and we use the closed variant F(k,Sλ,ℓ) of (2.22) instead of F̊(k,Sλ,ℓ), so that Borel-
Moore homology may be applied to this variant by Lemma 2.47. In this way we
define homological representation functors LBM

i (F(k,Sλ,ℓ)(Γ)) and LBM
i (F(k,Sλ,ℓ)(N ))

analogous to those of (3.7). These alternatives have the advantage of encoding repre-
sentations endowed with natural free generating sets; see [PS23, §2.2]. In particular,
we make here the connection between the representations arising from the functor
LBM

k (F(k,0,1)(Γ)) (i.e. i = k, λ = {1k} and ℓ = 1) with those introduced by Moriyama
in [Mor07], whose kernels are the k-th terms of the Johnson filtration. More precisely,
for each g, the Γg,1-representation introduced by [Mor07] is given by the Γg,1-action
on the relative homology group Hk(Σ×k

g,1,∆ ∪ Ag;Z), where ∆ denotes the “fat diag-
onal” of Σ×k

g,1 where at least two points coincide and Ag denotes the subspace of Σ×k
g,1

where at least one point is equal to p0, a chosen basepoint on ∂Σg,1.
Proposition 3.9. — The restriction of the functor LBM

k (F(k,0,1)(Γ)) to the map-
ping class group Γg,1 of genus g is isomorphic to the k-th Moriyama representation
Γg,1 → AutZ(Hk(Σ×k

g,1,∆ ∪ Ag;Z)).

Proof. — We write Σ′
g,1 = Σg,1 ∖ {p0} and Fk(Σ′

g,1) for C{1k}(Σ′
g,1). Since Σ×k

g,1 is a
compactification of Fk(Σ′

g,1) = Σ×k
g,1∖(∆∪Ag), the Borel-Moore homology of Fk(Σ′

g,1)
is isomorphic to the relative homology H∗(Σ×k

g,1,∆ ∪Ag;Z). That this isomorphism is
Γg,1-equivariant follows from the fact that the Γg,1-actions on HBM

∗ (Fk(Σ′
g,1);Z) and

H∗(Σ×k
g,1,∆ ∪ Ag;Z) are both induced from the diagonal action of Γg,1 on Σ×k

g,1. □
On the other hand, the other representations encoded by the homological represen-

tation functors (3.7), as well as their variants LBM
i (F(k,Sλ,ℓ)(Γ)) and LBM

i (F(k,Sλ,ℓ)(N )),
do not appear in the literature and thus seem to be new.

Homological representations from the construction of §2.3. As pointed
out in Remark 3.8, the construction of §2.2 typically does not lead to untwisted
representations when applied to (full) mapping class groups, since Proposition 2.59
requires the groupoid M to be a motion groupoid (its automorphism groups must
be braided mapping class groups). The purpose of the alternative construction in
§2.3 is that it solves this problem: the analogue of Proposition 2.59 in this setting
is Proposition 2.65, which does not assume that M is a motion groupoid. In this
section we illustrate this alternative construction with some examples in the context
of mapping class groups of surfaces.

Let us consider the continuous semifunctors F̊(k,Sλ,ℓ) and F̊u
(k,Sλ,ℓ) of Theorem 2.62,

where Z := k is a finite set of k ⩾ 1 points, G := Sλ and Q := QΓℓ
for some ℓ ⩾ 1.

We denote the restrictions of these semifunctors to the subcategories UM+,t
2 and
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UM−,t
2 of UD2 (see §3.1.1) by F̊(k,Sλ,ℓ)(Γ), F̊u

(k,Sλ,ℓ)(Γ), F̊(k,Sλ,ℓ)(N ) and F̊u
(k,Sλ,ℓ)(N )

respectively. Recall from §3.2.2 that the posets P(M+
2 ,M+

2 ) and P(M−
2 ,M−

2 ) are
both directed sets. Using the appropriate colimit coefficient system Vcol(F) of §2.3.3
in each case, we therefore obtain from Corollary 2.64, Proposition 2.58 and Proposi-
tion 2.65 the following homological representation functors for all i ⩾ 0:

Li(̊F(k,Sλ,ℓ)(Γ)) : UM+
2 −→ Modtw

Z[QF
(λ,ℓ)(Γ)];

Li(̊Fu
(k,Sλ,ℓ)(Γ)) : UM+

2 −→ ModZ[Qu,F
(λ,ℓ)(Γ)];

Li(̊F(k,Sλ,ℓ)(N )) : UM−
2 −→ Modtw

Z[QF
(λ,ℓ)(N )];

Li(̊Fu
(k,Sλ,ℓ)(N )) : UM−

2 −→ ModZ[Qu,F
(λ,ℓ)(N )].

(3.8)

In contrast with the previous paragraph (constructing homological representations
from the construction of §2.2), the representations encoded by the functors (3.8)
for ℓ ⩾ 2 are more novel. For instance, for ℓ = 2, we have QF

(λ,2)(Γ) ∼= (Z/2)r′ and
QF

(λ,2)(N ) ∼= (Z/2)r′ × (Z/2)r; see Corollary 4.9. As far as the authors know, there
are no representations of the mapping class groups Γg,1 and N h,1 in the literature
whose ground rings are of the above form. Therefore, many new representations of
the mapping class groups arise from the functors (3.8).

4. Appendix: computations of transformation groups

This appendix aims to study some of the transformation groups (i.e. the groups
whose group rings are the ground rings) of the homological representation functors
that we construct in §3, in order to offer a more concrete understanding of these
representations. We first deal with some necessary recollections of presentations of
surface braid groups in §4.1. Then we compute and present some properties of the
transformation groups of the homological representation functors of §3 in §4.2.

4.1. Presentations of surface braid groups

Presentations of braid groups on surfaces with one boundary component may be
found in [HOL02, §4] and in [Bel04, Th. 1.1 and A.2]; see also [DPS22, §6.3]. We fix
three integers k ⩾ 0, g ⩾ 0 and h ⩾ 1. We shall use the same notation Σk

g,1 and Nk
h,1

for surfaces as in §3.1.1. In the following presentations, we write x ⇄ y to denote
the relation saying that x and y commute.

Proposition 4.1. — The braid group on n strands on the orientable surface
Σk

g,1, denoted by Bn(Σk
g,1), admits the presentation with generators S = {σi}1⩽i⩽n−1,

A = {ai}1⩽i⩽g, B = {bi}1⩽i⩽g and X = {ξi}1⩽i⩽k and relations given by the braid
relations for the elements of S, to which are added the following families of relations
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(where x and y denote either a or b, and 1 ⩽ r, s ⩽ g):

(4.1)



(BS1) σi ⇄ xr for all r and all 1 ⩽ i ⩽ n− 2 ;
(BS2) xr ⇄ σn−1ysσ

−1
n−1 for s < r ;

(BS3) (σn−1xr)2 = (xrσn−1)2 for all r ;
(BS4) [σn−1brσ

−1
n−1, a

−1
r ] = σ2

n−1 for all r ;
(BS5) ξj ⇄ σi for all 1 ⩽ j ⩽ k and all 1 ⩽ i ⩽ n− 2 ;
(BS6) xr ⇄ σn−1ξjσ

−1
n−1 for all 1 ⩽ j ⩽ k and all 1 ⩽ r ⩽ g ;

(BS7) ξi ⇄ σn−1ξjσ
−1
n−1 for i < j.

The braid group on n strands on the non-orientable surface Nk
h,1, denoted by Bn(Nk

h,1),
admits the presentation with generators S = {σi}1⩽i⩽n−1, C = {ci}1⩽i⩽h and X =
{ξi}1⩽i⩽k and relations given by the braid relations for the elements of S, to which
are added the following families of relations (where 1 ⩽ r, s ⩽ h):

(4.2)



(BN1) σi ⇄ cr for all r and all 1 ⩽ i ⩽ n− 2 ;
(BN2) cr ⇄ σn−1csσ

−1
n−1 for s < r ;

(BN3) [σn−1crσ
−1
n−1, c

−1
r ] = σ2

n−1 for all r ;
(BN4) ξj ⇄ σi for all 1 ⩽ j ⩽ k and all 1 ⩽ i ⩽ n− 2 ;
(BN5) cr ⇄ σn−1ξjσ

−1
n−1 for all 1 ⩽ j ⩽ k and all 1 ⩽ r ⩽ h ;

(BN6) ξi ⇄ σn−1ξjσ
−1
n−1 for i < j ;

(BN7) (σn−1ξj)2 = (ξjσn−1)2 for all 1 ⩽ j ⩽ k.

Now we consider a partition λ = {λ1; . . . ;λr} ⊢ k. There is an isomorphism
Bλ(S) ∼= B{λ1;...;λr−1}

(
D2

λr
♮S

)
⋊ Bλr(S), which may be deduced from the split short

exact sequence (1.7). There is a classical method of constructing a presentation of
a group extension from a presentation of the quotient and a presentation of the
kernel; see [HEO05, §2.4.3] and [DPS22, Appendix B]. For instance, a presentation
of the group Bk,n(Σg,1) is detailed in [BGG17, Prop. 3.2] following this method,
while a presentation of Bk,n(Nh,1) is given in [DPS22, Prop. 6.58]. It is routine to
generalise this to give full presentations for any partition λ. We thus obtain from
Proposition 4.1 the following result for the partitioned surface braid groups.

Proposition 4.2. — Let λ = {λ1; . . . ;λr} be a partition of k ⩾ 1. The surface
braid group Bλ(S) admits a presentation whose generating sets are:

• X(ρ) = {ξ(ρ)
i | 1 ⩽ i ⩽ Σρ} with Σρ := ∑

ρ+1⩽l⩽r λl, for each block 1 ⩽ ρ ⩽
r − 1;

• S(ρ′) = {σ(ρ′)
i }1⩽i⩽λρ′ −1 for each block 1 ⩽ ρ′ ⩽ r such that rρ′ ⩾ 2;

• if S = Σg,1: A(ρ) = {a(ρ)
i }1⩽i⩽g and B(ρ) = {b(ρ)

i }1⩽i⩽g for each block 1 ⩽ ρ ⩽ r;
• if S = Nh,1: C(ρ) = {c(ρ)

i }1⩽i⩽h for each block 1 ⩽ ρ ⩽ r.
The relations between generators of the same blocks are those of (4.1) and (4.2),
while the relations between generators of different blocks are analogous to those of
(c.1)–(c.8) in [BGG17, Prop. 3.2].
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4.2. Properties of the transformation groups

This section deals with some properties of the homological representation functors
of §3. Throughout §4.2, we consider an integer ℓ ⩾ 1 corresponding to a lower central
series index, and an integer k ⩾ 1 and a partition λ = {λ1; . . . ;λr} ⊢ k. We also
denote by r′ the number of indices 1 ⩽ i ⩽ r such that λi ⩾ 2. For simplicity, we
denote the decorated surface (D2, n) for each non-negative integer n by Dn and call
it the n-th marked 2-disc, and we denote the decorated surface (S, n) by S(n). If
n = 0, we abbreviate (S, 0) = S(0) to S.

4.2.1. Surface braid groups

We continue to follow the notation of §4.1 and consider a compact, connected,
smooth surface S with one boundary component. We deal here with the computation
of the transformation groups of the homological representation functors of the form
Li(F̊(k,Sλ,ℓ)(S)) for surface braid groups defined in §3.2.1. We denote by Q(λ,ℓ)(S(n))
the group of the form Q(S, n) induced by diagram (2.24) for each integer n ⩾ 0 and by
Q(λ,ℓ)(S) the colimit of these groups as n → ∞, which is the colimit transformation
group Qcol(T ) of Notation 2.53 in this setting.

Abelian quotients. We start with the homological representation functor defined
using the Γ2 term of the lower central series. The abelianisations of the groups Bλ,n(S)
are explicitly computed in [DPS22, Props. 3.5 and 6.47], and may be described via
the corresponding generating set of Proposition 4.2. In particular, a generating set
for Bλ,n(S)ab is given by:

• the common image ti′ of the generators of S(i′) for each 1 ⩽ i′ ⩽ r such that
ri′ ⩾ 2;

• if S = D: the common image qi of all ξ(i)
j ∈ X(i) with j ⩾ 1 + ∑

i+1⩽l⩽r λl

for each 1 ⩽ i ⩽ r, and the common image si1,i2 of all ξ(i1)
j with j ∈ {j′ +∑

i1+1⩽l⩽i2−1 λl | 1 ⩽ j′ ⩽ i2} for each pair 1 ⩽ i1 < i2 ⩽ r;
• if S = Σg,1: the images {A(i)

j , B
(i)
j }1⩽j⩽g of the sets A(ρ) and B(ρ) for each

1 ⩽ i ⩽ r;
• if S = Nh,1: the images {C(i)

j }1⩽j⩽h of the set C(ρ) for each 1 ⩽ i ⩽ r.

Lemma 4.3. — We have Q(λ,2)(D) ∼= Zr′ ×Zr(r−1)/2×Zr and Q(λ,2)(S) ∼= (Z/2)r′ ×
H1(S;Z)r if S ̸∼= D.

Proof. — We compute the group Q(λ,2)(S(n)) for n ⩾ 3 as the kernel of the map
Bλ,n(S)ab ↠ Bn(S)ab given by diagram (2.24), the abelianisations Bλ,n(S)ab and
Bn(S)ab being calculated in [DPS22, Props. 3.5 and 6.47]. We deduce from these
computations that Q(λ,2)(S(n)) ∼= Q(λ,2)(S(n+1)) for all n ⩾ 3 and a fortiori that the
colimit Q(λ,2)(S) is isomorphic to Q(λ,2)(S(3)), thus giving the result. □

Further Γℓ-quotients. We now consider more generally the surface braid group
homological representation Li(F̊(k,Sλ,ℓ)(S)) defined using any parameter ℓ ⩾ 2.

TOME 1 (-1)



102 M. PALMER & A. SOULIÉ

Proposition 4.4. — For any integers ℓ ⩾ 2 and n ⩾ 4, we have Q(λ,ℓ)(S(n)) ∼=
Q(λ,ℓ)(S(n+1)).

Proof. — We recall that Q(λ,ℓ)(S(n)) is defined as the kernel of the surjection of
Bλ,n(S)/Γℓ onto Bn(S)/Γℓ. The data which depends on n in the presentation of
Bλ,n(S) are the set of braid generators S(n) of the n-th block, and, for each block
1 ⩽ ρ ⩽ r, the subset of X(ρ) of the pure braid generators {χ(ρ)

i := ξ
(ρ)
Σρ+i | 1 ⩽ i ⩽ n}

where Σρ denotes the sum ∑
ρ+1⩽l⩽r λl. For a group G, we generically denote by γℓ

the projection onto the ℓ-nilpotent quotient G/Γℓ.
Since the assignment S 7→ Bn(S) is functorial with respect to embeddings of

surfaces, we have a canonical injection Bn ↪→ Bn(S) ↪→ Bλ,n(S). In particular, this
morphism sends Γ∞(Bn) to Γ∞(Bλ,n(S)). Since Γ∞(Bn) = Γ2(Bn) (see for instance
[DPS22, Ex. 2.3]), we know that σiσ

−1
j ∈ Γ∞(Bn) for all 1 ⩽ i, j ⩽ n− 1. A fortiori,

we deduce that σ(n)
i ≡ σ

(n)
j (mod Γ∞(Bn(S))) and we denote by σ(n) ∈ Bn(S)/Γℓ

the common image of all the σ(n)
i under γℓ.

Furthermore, for each 1 ⩽ ρ ⩽ r, we have the relations σ
(n)
i χ

(ρ)
i (σ(n)

i )−1 =
(χ(ρ)

i )−1χ
(ρ)
i+1χ

(ρ)
i , σ(n)

i χ
(ρ)
i+1(σ

(n)
i )−1 = χ

(ρ)
i and σ

(n)
i χ

(ρ)
j (σ(n)

i )−1 = χ
(ρ)
j if j /∈ {i, i + 1}

by Proposition 4.2. These are the typical relations between pure braids and Artin
generators of a given block induced by the injection Bλ,n ↪→ Bλ,n(S); see [BGG17,
Prop. 3.2] for the case of S = Σg,1 and λ = {k}. Then, we deduce from these relations
that:

• γℓ(χ(ρ)
i+1) = γℓ((σ(n)

i )−1χ
(ρ)
i σ

(n)
i ) = γℓ((σ(n)

i−1)−1χ
(ρ)
i σ

(n)
i−1) = γℓ(χ(ρ)

i ) for all 2 ⩽
i ⩽ n− 1;

• γℓ(χ(ρ)
2 ) = γℓ((σ(n)

1 )−1χ
(ρ)
1 σ

(n)
1 ) = γℓ((σ(n)

3 )−1χ
(ρ)
1 σ

(n)
3 ) = γℓ(χ(ρ)

1 ).
We denote by χ(ρ) ∈ Bλ,n(S)/Γℓ the common image of all the χ(ρ)

i under γℓ.
Therefore, the presentation of Bλ,n(S)/Γℓ is independent of n. In particular, it

is routine to check that there is a well-defined map γ′
ℓ : Bλ,n+1(S) → Bλ,n(S)/Γℓ

defined by σ
(n+1)
i 7→ σ(n), χ(ρ)

j 7→ χ(ρ) (with 1 ⩽ j ⩽ n + 1) and the assignment
of γℓ for the other generators. Then γ′

ℓ induces an inverse to the canonical map
Bλ,n(S)/Γℓ → Bλ,n+1(S)/Γℓ, which is thus an isomorphism. We also know the
analogous result for Bn(S)/Γℓ by [BGG17, Prop. 3.13] (see also [DPS22, Prop. 6.43]),
whence the result. □

It follows from Proposition 4.4 that Q(λ,ℓ)(S) ∼= Q(λ,ℓ)(S(n)) for each ℓ ⩾ 2 and
n ⩾ 4. Thus, for each ℓ ⩾ 2, we may compute the colimit transformation group from
a computation of Q(λ,ℓ)(S(n)) for any n ⩾ 4. For ℓ = 2, this was done in Lemma 4.3
above; the following result gathers further results for ℓ ⩾ 2.

Proposition 4.5. — We assume that the partition is such that λl ⩾ 3 for all
1 ⩽ l ⩽ r.

For the classical braid groups, we have for all ℓ ⩾ 2:

Q({2;λ},ℓ)(D) ∼= Z(r+2
2 )−1 × ((Z2/2ℓ−2∆̄)r+1 ⋊ Z),

where ∆̄ = (1,−1) ∈ Z2 and 1 ∈ Z acts on each copy of Z2/2ℓ−2∆̄ by swapping
coordinates.
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For the surfaces different from the disc, we have the following computations for
ℓ = 3. For orientable surfaces, for all g ⩾ 1:
(4.3) Q(λ,3)(Σg,1) ∼= ((Zr(r−1)/2 × Zr × Zrg) ⋊ Zrg) × Zr.

In more detail, the right-hand side of (4.3) may be written as⟨sr1,r2⟩1⩽r1<r2⩽r × ⟨t1, . . . , tr⟩ ×
∏

1⩽ρ⩽r

⟨A(ρ)
1 , . . . , A(ρ)

g ⟩


⋊

∏
1⩽ρ⩽r

⟨B(ρ)
1 , . . . , B(ρ)

g ⟩

 × ⟨q1, . . . , qr⟩

where the action defining the semi-direct product structure is determined by
• [A(ρ)

i , B
(ρ)
i ] = t2ρ for all 1 ⩽ ρ ⩽ r;

• [A(r1)
i , B

(r2)
i ] = [A(r2)

i , B
(r1)
i ] = sr1,r2 for all 1 ⩽ r1 < r2 ⩽ r;

• all other pairs of generators commute.
We deduce that Qu

(λ,3)(Σg,1) ∼= Q(λ,3)(Σg,1)/⟨q1, . . . , qr⟩. For non-orientable surfaces,
for all h ⩾ 1:

(4.4) Q(λ,3)(Nh,1) ∼=(
(Zr−1 × (Zr−2 × · · · × (Z2 × (Z × Zh) ⋊ Zh) ⋊ · · · ⋊ Zh) ⋊ Zh) ⋊ Zh

)
×(Z/2)r×Zr.

In more detail, the right-hand side of (4.4) may be written as((
⟨s1,r2⟩r2⩾2 × · · · ×

(
⟨sr−1,r⟩ × ⟨C(r)

1 , . . . , C
(r)
h ⟩

)
⋊ · · · ⋊ ⟨C(2)

1 , . . . , C
(2)
h ⟩

)
⋊⟨C(1)

1 , . . . , C
(1)
h ⟩

)
× ⟨t1, . . . , tr⟩ × ⟨q1, . . . , qr⟩

where the action defining the semi-direct product structure is determined by
• [C(r1)

i , C
(r2)
i ] = [C(r2)

i , C
(r1)
i ] = sr1,r2 for all 1 ⩽ r1 < r2 ⩽ r;

• all other pairs of generators commute.
We deduce that Qu

(λ,3)(Nh,1) ∼= Q(λ,3)(Nh,1)/⟨q1, . . . , qr⟩.

Proof. — That Q({2;λ},ℓ)(D) = Qu
({2;λ},ℓ)(D) and its explicit computation for each

ℓ ⩾ 3 is done in [PS22b, §4, Cor. 5.4].
For the surfaces different from the disc, we first recall that the quotient Bn(Σg,1)/Γ3

is computed by [BGG17, Prop. 3.13], while Bn(Nh,1)/Γ3 = Bn(Nh,1)ab by [DPS22,
Th. 6.42]. Now the computation of Bλ,n(S)/Γ3 follows the same steps as the proof of
[DPS22, Prop. 6.58], which computes Bk,n(Nh,1)/Γ3 and generalises mutatis mutandis
as follows.

• Using the presentation from Proposition 4.2, let N be the normal closure
of the σ(ρ)

i (σ(ρ)
i+1)−1 for i < λρ together with the ξ(ρ)

j (ξ(ρ)
j+1)−1 for j < Σρ, for

each 1 ⩽ ρ ⩽ n. Therefore, N ⊆ Γ3(Bλ,n(S)) because its generators are in
Γ3(Bλ,n(S)); see for instance [DPS22, Lem. 6.49] and its proof. We claim that,
in fact, N = Γ3(Bλ,n(S)).

• Consider the partition {λ, n} as a partition λ′ of k+ n with length r+ 1 and
we make the identification si,n := qi for each 1 ⩽ i ⩽ r. It is routine, although
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lengthy (and an inductive generalisation of the analogous point in the proof
of [DPS22, Prop. 6.58]), to check from the presentation of Proposition 4.2
that the quotient Bλ,n(S)/N is

(4.5)
⟨sr1,r2⟩1⩽r1<r2⩽r+1 × ⟨t1, . . . , tr+1⟩ ×

∏
1⩽ρ⩽r+1

⟨A(ρ)
1 , . . . , A(ρ)

g ⟩


⋊

∏
1⩽ρ⩽r+1

⟨B(ρ)
1 , . . . , B(ρ)

g ⟩

if S = Σg,1, and

(4.6)
(
⟨s1,r2⟩2⩽r2⩽r+1 × · · · × (⟨sr,r+1⟩ × ⟨C(r+1)

1 , . . . , C
(r+1)
h ⟩) ⋊ · · ·

· · · ⋊ ⟨C(1)
1 , . . . , C

(1)
h ⟩

)
× ⟨t1, . . . , tr+1⟩

if S = Nh,1.
• The proof of the claim in the first point thus follows from the observation

that, using the second point, Bλ,n(S)/N is a 2-nilpotent group. Indeed, in
both cases, the commutator subgroup is generated by the elements sr1,r2 and
t2i (if S = Σg,1 for the latter): all these generators are also clearly central in
Bλ,n(S)/N , which proves our claim.

The computations of Q(λ,3)(S) then directly follow from the above descriptions of
Bλ,n(S)/Γ3 and Bn(S)/Γ3.

Finally, we compute the untwisted quotients Qu
(λ,3)(Σg,1) and Qu

(λ,3)(Nh,1) as follows.
First we know from the presentation of Bλ,n(S)/Γ3 (see (4.5) and (4.6)) that the
only generators of Q(λ,3)(S) on which the action of Bn(S) (given by conjugation) is
not trivial are A(ρ)

i and B
(ρ)
i for all i and each 1 ⩽ ρ ⩽ r if S = Σg,1, or the C(ρ)

j

for all j and each 1 ⩽ ρ ⩽ r if S = Nh,1. Then, we deduce from the presentation of
Proposition 4.2 that for all 1 ⩽ ρ ⩽ r:

qρB
(ρ)
i = A

(r+1)
i B

(ρ)
i (A(r+1)

i )−1,

and the analogous relation swapping A and B, for all 1 ⩽ i ⩽ g, and
qρC

(ρ)
j = C

(r+1)
j C

(ρ)
j (C(r+1)

j )−1

for all 1 ⩽ j ⩽ h. This proves that the quotienting submodule defining the coinvari-
ants is ⟨q1, . . . , qr⟩ in each case. □

Remark 4.6. — If λi ⩽ 2 for some 1 ⩽ i ⩽ r and ℓ ⩾ 3, we do not know whether
the quotient Qu

(λ,ℓ)(S) of Q(λ,ℓ)(S) is a proper quotient.

4.2.2. Loop braid groups

We now compute the transformation groups of the homological representation
functors defined in §3.2.1 for loop braid groups with the parameter ℓ = 2.

Lemma 4.7. — We have the following descriptions of the colimit transformation
groups:

• for (3.4): Q(P,λ,2)(D3) ∼= Zr × (Z/2)r′ and Q′
(P,λ,2)(D3) ∼= (Z/2)r+r′ ;
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• for (3.5): Q(S+,λ,2)(D3) ∼= Zr2+r+r′ × (Z/2)r′ and Q′
(S+,λ,2)(D3) ∼= Zr2+r′ ×

(Z/2)r+r′ ;
• for (3.6): Q(S,λ,2)(D3) ∼= Zr ×(Z/2)2r′+r(r+1) and Q′

(S,λ,2)(D3) ∼= (Z/2)2r′+r(r+2).

Proof. — Recall the quotients of embedding spaces Cλ(D3
n), U+

λ (D3
n) and Uλ(D3

n)
introduced in (3.1); henceforth we denote by Cλ,n any one of these spaces. The
abelianisations of all of the groups π1(Cλ,n)⋊LBn, LBn, π1(Cλ,n)⋊LB′

n and LB′
n are

computed in [DPS22, Props. 4.46 and 5.10]. In particular, via these computations, one
sees that (π1(Cλ,n)⋊LBn)ab ∼= (π1(Cλ,n+1)⋊LBn+1)ab, LBab

n
∼= LBab

n+1, (π1(Cλ,n)⋊
LB′

n)ab ∼= (π1(Cλ,n+1)⋊LB′
n+1)ab and (LB′

n)ab ∼= (LB′
n+1)ab for all n ⩾ 4. Therefore,

the groups of the statement of the form Q given by diagram (2.24) are computed
as the kernels of the maps (π1(Cλ,n) ⋊ LBn)ab ↠ LBab

n and (π1(Cλ,n) ⋊ LB′
n)ab ↠

(LB′
n)ab for some fixed n ⩾ 4. □

4.2.3. Mapping class groups

We finally study the transformation groups of the homological representation
functors for mapping class group from §3.2.2 with the parameter ℓ = 2. For the
sake of completeness, we recall that the Lickorish generators together with the Dehn
twist along a simple closed curve encircling the boundary component generate the
mapping class group Γg,1 with g ⩾ 1 (see for instance [FM12, §4.4]), and that
generating sets for the mapping class group N h,1 have been worked out by Stukow
in [Stu06, Th. A.7] for h = 2 and in [Stu10, Th. 5.2] for h ⩾ 3, while N 0,1 = N 1,1
are trivial by [Eps66]. For brevity, we shall typically use the notation MCG(S, λ) for
the mapping class group π0(Diffdec(S, λ)), where S is a compact, connected, smooth
surface with one boundary component equipped with k marked points that are
fixed setwise, respecting the partition λ ⊢ k. We first establish the following general
decomposition for abelianisations of mapping class groups:

Proposition 4.8. — For a compact, connected, smooth, non-planar surface S
with one boundary component, we have:

(4.7) MCG(Dk♮S, λ)ab ∼= (Z/2)r′ × (H1(S;Z)r)MCG(S) × MCG(S)ab,

where each of the first r′ Z/2-summands is generated by the image in the abelian-
isation σ(ρ′) (with 1 ⩽ ρ′ ⩽ r such that λρ′ ⩾ 2) of a standard braid generator
(considered as a mapping class) interchanging two points in the corresponding ρ′-th
block of the partition.

Proof. — Considering the split short exact sequence (1.9) and using the com-
putation of Bλ(S)ab (see for instance [DPS22, Prop. 6.47]), it follows from the
general formula for the calculation of the abelianisation of a semi-direct product
that MCG(Dk♮S, λ)ab ∼= ((Z/2)r′ ×H1(S;Z)r)MCG(S) × MCG(S)ab. We note that the
splitting of (1.9) is induced by the embedding of surfaces S ↪→ Dk♮S. Therefore,
each σ(ρ′) may be represented as a mapping class supported in the subsurface Dk on
which MCG(S) acts trivially, whence the result. □
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Using this, we deduce the following calculations of the transformation groups of
the homological representation functors Li(̊F(k,Sλ,ℓ)(Γ)) and Li(̊F(k,Sλ,ℓ)(N )) of (3.8)
for ℓ = 2. Let us write G ∈ {Γ,N } and correspondingly S ∈ {Σ1,1,N1,1}. Denote
by QF

(λ,2,n)(G) the group of the form Q(S♮n, ∅) induced by diagram (2.32) for each
integer n ⩾ 0 and by QF

(λ,2)(G) the colimit of these groups as n → ∞, which is the
colimit transformation group Qcol(T ) of Notation 2.53 in the setting of (3.8).

Corollary 4.9. — We have QF
(λ,2)(Γ) ∼= (Z/2)r′ and QF

(λ,2)(N ) ∼= (Z/2)r′ ×
(Z/2)r.

Proof. — Considering the discrete partition {1k}, we know from [Kor02, Th. 5.1]
that the abelianisations of Γg,1 and of Γ{1k}

g,1 are trivial for g ⩾ 3, while it follows from
[Stu10, Th. 6.21] that

(
N {1k}

h,1

)ab ∼= (Z/2)r×(N h,1)ab for h ⩾ 7. Using Proposition 4.8
for λ = {1k}, we deduce that (H1(Σg,1;Z)r)Γg,1 = 0 and that (H1(Nh,1;Z)r)N h,1

∼=
(Z/2)r. Applying Proposition 4.8 again, now for arbitrary λ, we then deduce that
QF

(λ,2,g)(Γ) ∼= (Z/2)r′ and QF
(λ,2,h)(N ) ∼= (Z/2)r′ × (Z/2)r for all g ⩾ 3 and h ⩾ 7.

In particular, these are independent of g and h respectively, so the result follows by
taking the colimits as g → ∞ and h → ∞. □
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