
ON HOMOLOGICAL STABILITY FOR CONFIGURATION

SPACES ON CLOSED BACKGROUND MANIFOLDS
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Abstract. We introduce a new map between configuration spaces of points

in a background manifold – the replication map – and prove that it is a ho-

mology isomorphism in a range with certain coefficients. This is particularly
of interest when the background manifold is closed, in which case the classical

stabilisation map does not exist.

We then establish conditions on the manifold and on the coefficients under
which homological stability holds for configuration spaces on closed manifolds.

These conditions are sharp when the background manifold is a two-dimensional
sphere, the classical counterexample in the field. For field coefficients this ex-

tends results of Church [Church, 2012] and Randal-Williams [Randal-Williams,

2013a] to the case of odd characteristic, and for p-local coefficients it improves
results of Bendersky–Miller [Bendersky and Miller, 2014].

1. Introduction

Let M be a smooth, connected manifold without boundary of dimension n,
and with Euler characteristic χ, and denote by Ck(M) the unordered configuration
space of k points in M :

Ck(M) := {q ⊂M | |q| = k},
which is topologised as a quotient space of a subspace of Mn. After removing a
point ∗ from M one can define a map

Ck(M r {∗}) −→ Ck+1(M r {∗}),
called the stabilisation map, which expands the configuration away from ∗ and
adds a new point near to it. More generally, one can define such a stabilisation
map Ck(M)→ Ck+1(M) using any properly embedded ray in M to bring in a point
from infinity (such a ray exists if and only if M is non-compact).

Let us assume from now on that the manifold is endowed with a Riemannian
metric with injectivity radius bounded below by δ > 0. Define Cδk(M) ⊂ Ck(M)×
(0, δ) to be the space of pairs (q, ε), where q is a configuration whose points are
pairwise at distance at least 2ε. The projection to Ck(M) is a fibre bundle with
contractible fibres, hence a homotopy equivalence. The main theorem in [McDuff,
1975] concerns the scanning map

S : Cδk(M) −→ Γc(ṪM)k
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2 STABILITY FOR CONFIGURATIONS IN CLOSED MANIFOLDS

which takes values in the space of degree-k compactly-supported sections of the
fibrewise one-point compactification of TM (see §3.1).

Definition 1.1 Given a properly embedded ray in M and an abelian group A,
define the function µ = µ[M ] : N→ N to be the pointwise maximum f : N→ N such
that the stabilisation map Ck(M)→ Ck+1(M) induces isomorphisms on H∗(−;A)
in the range ∗ 6 f(k). This is called the stable range of the stabilisation map.

Given a Riemannian metric on M with injectivity radius bounded below by
δ > 0 and an abelian group A, the function ν = ν[M ] : N→ N is defined to be the

pointwise maximum f : N→ N such that the scanning map S : Cδk(M)→ Γc(ṪM)k
induces isomorphisms on H∗(−;A) in the range ∗ 6 f(k). This is called the stable
range of the scanning map.

Henceforth the term “stable range” will by default refer to the stable range ν
of the scanning map.

Theorem ([McDuff, 1975]) For non-compact M the function µ[M ] diverges and

ν[M ](k) = min
j>k
{µ[M ](j)}.

The inequality ν[M ] > ν[M r {∗}] holds for all M , so the function ν[M ] diverges
for all M .

No explicit lower bound for µ[M ] was given in [McDuff, 1975], but the following
lower bounds have since been proved:

◦ µ[M ](k) > k
2 if A = Z and dim(M) > 2, by [Segal, 1979; Randal-Williams,

2013a].

◦ µ[M ](k) > k if A = Q and either dim(M) > 3 or M is non-orientable, by
[Randal-Williams, 2013a; Knudsen, 2014].

◦ µ[M ](k) > k−1 if A = Q and M is orientable, by [Church, 2012; Knudsen,
2014].

◦ µ[M ](k) > k if A = Z[ 1
2 ] and dim(M) > 3, by [Kupers and Miller, 2014b].

See also Propositions A.2 and B.3. Further improvements to the lower bound
are possible under extra hypotheses ([Church, 2012, Proposition 4.1] and [Kupers
and Miller, 2014b, Remark 4.5]). Some of these results can be also deduced from
[Milgram and Löffler, 1988; Bödigheimer et al., 1989; Félix and Thomas, 2000].

McDuff’s theorem says that the homology of configuration spaces Ck(M) on a
non-compact manifold M stabilises, i.e., is independent of k in a diverging range of
degrees. For closed manifolds M stabilisation maps do not exist – this leaves open
the question of when the homology of configuration spaces on closed background
manifolds stabilises.

Stability for p-torsion. Let ṪM denote the fibrewise one-point compactification
of the tangent bundle of M and let Γc(−) denote the space of compactly-supported
sections. By the main result in [Møller, 1987], for each k ∈ Z the localisation of

the path-component Γc(ṪM)k at a prime p is homotopy equivalent to the path-

component Γc(ṪM(p))k of the space of compactly-supported sections of the fibrewise

localisation of ṪM .1 In [Bendersky and Miller, 2014] Bendersky and Miller proved

1To ensure that the localisation of Γc(ṪM(p))k exists, we need to assume here that M has
the homotopy type of a finite complex. However, for the purpose of proving homological stability
results, we may assume this without loss of generality; see §2.1.
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the existence of homotopy equivalences

Γc(ṪM(p))k −→ Γc(ṪM(p))j (1.1)

whenever

• p > n+3
2 and M is odd-dimensional,

• p > n+3
2 and 2k−χ

2j−χ is a unit in Z(p),

• ṪM is trivial and 2k−χ
2j−χ is a unit in Z(p).

Using McDuff’s theorem one obtains a zigzag of Z(p)-homology isomorphisms in
the stable range:

Ck(M) −→ Γc(ṪM)k −→ Γc(ṪM)j ←− Cj(M). (1.2)

We will show that linearly independent pairs of sections of TM ⊕ ε give rise
to families of fibrewise homotopy equivalences of ṪM after localisation, and hence
maps as in (1.1) for certain k and j, from which we are able to extend the results of
Bendersky and Miller to all odd primes and under certain conditions to the prime
2. For a number k ∈ Z, we denote by (k)p the p-adic valuation of k, and observe

that j
k is a unit in Z(p) if and only if (k)p = (j)p. If ` is a collection of primes, the

`-adic valuation is the sequence of all p-adic valuations with p ∈ `.
Theorem A Let M be a closed, connected, smooth manifold. If M is odd-dimensional,
there are zigzags of maps as in (1.2) inducing isomorphisms in the stable range:

H∗(Ck(M);Z) ∼= H∗(Ck+1(M);Z) if dimM = 3, 7 (1.3)

H∗(Ck(M);Z) ∼= H∗(Ck+2(M);Z) (1.4)

H∗(Ck(M);Z[ 1
2 ]) ∼= H∗(Ck+1(M);Z[ 1

2 ]). (1.5)

If M is even-dimensional with Euler characteristic χ, then for each set ` of primes
(assuming 2 6∈ ` if χ is odd) there are zigzags of maps as in (1.2) inducing isomor-
phisms in the stable range:

H∗(Ck(M);Z(`)) ∼= H∗(Cj(M);Z(`)) if (2k − χ)` = (2j − χ)`. (1.6)

In particular there are integral homology isomorphisms between Ck(M) and Cχ−k(M)
in the stable range.

Observe that since these isomorphisms are induced by zigzags of maps, they
also give isomorphisms between the cohomology rings of configuration spaces. In
Proposition 2.10 we show that when M is an odd-dimensional sphere, this method
cannot be used to improve Theorem A. In Proposition 2.12 we prove that our
theorem is sharp when M is an even-dimensional sphere: if n is even and k is in
the stable range with respect to homological degree n− 1, then

Hn−1(Ck(Sn);Z) ∼= τHn−1(Ωn0S
n;Z)⊕ Z/(2k − 2), (1.7)

where τG is the torsion of G. In particular, if j is also in the stable range:

Hn−1(Ck(Sn);Z(`)) ∼= Hn−1(Cj(S
n);Z(`))⇔ (2k − χ)` = (2j − χ)`.

This generalises the computation of H1(Ck(S2);Z) (which follows from the presen-
tation of π1(Ck(S2)) given by [Fadell and Van Buskirk, 1962]).

Replication maps. Our next result involves a new map between configuration
spaces, defined whenever M admits a non-vanishing vector field, which induces
some of the homology isomorphisms of Theorem A. This map (or rather its effect
on π1) has been considered before in the case M = R2 in the context of the Burau
representations of the classical braid groups [Blanchet and Marin, 2007]. It has also
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appeared in §7 of [Martin and Woodcock, 2003]. However, to our knowledge its ho-
mological stability properties have not previously been studied. A homomorphism
π1(Ck(M))→ π1(Ck+1(M)) (which is not induced by a map of spaces) was defined
using a similar idea in [Berrick et al., 2006] (see page 283), where it was used to
show that the collection {π1(Ck(M))} is a crossed simplicial group when M admits
a non-vanishing vector field.

This map is especially interesting when M is closed, in which case it allows
one to compare configuration spaces which do not admit any stabilisation map. It
is also useful when M is open: we will use this map in the case of open manifolds
to prove Theorem D, which concerns closed manifolds.

Let v be a non-vanishing vector field on M of norm 1. Define the r-replication
map ρr = ρr[v] : Cδk(M) → Cδrk(M) by adding r − 1 points near each point of the
configuration in the direction of the vector field v:

ρr[v](q = {q1, . . . , qk}, ε) =
({

exp( jεr v(qi))
∣∣ i=1,...,k
j=0,...,r−1

}
, ε2r
)
.

Theorem B Let r > 2. If M admits a non-vanishing vector field v and ` is a set
of primes each not dividing r, then the homomorphism induced by ρr[v]:

H∗(C
δ
k(M);Z(`)) −→ H∗(C

δ
rk(M);Z(`))

is an isomorphism in the stable range. If M is not closed, then it is always injective.

Remark 1.2 Observe that the map ρr does not induce isomorphisms on r-torsion
in general. For example take M to be simply-connected and of dimension at least
3. Then π1(Ck(M)) ∼= Σk and H1(Ck(M)) ∼= Z/2, given by the sign of the per-
mutation. The map Σk → Σ2k induced by ρ2 on π1 sends a permutation σ to the
concatenation (σ, σ), whose sign is the square of the sign of σ, therefore zero. Hence
the map induced on first homology by ρ2 is zero. In particular this shows that ρ2

cannot be homotopic to a composition of stabilisation maps.

Configurations with labels and the intrinsic replication map. Given a fibre
bundle θ : E →M with path-connected fibres, one can define the configuration space
Ck(M ; θ) with labels in θ by

Ck(M ; θ) = {{q1, . . . , qk} ⊂ E | θ(qi) 6= θ(qj) for i 6= j}.

Configuration spaces with labels admit stabilisation maps, scanning maps and repli-
cation maps (see [Kupers and Miller, 2014b] and Definition B.1 in this article for
the stabilisation map, and Section 4 for the other two maps) which induce homology
isomorphisms in a range, which we call the stable range with labels in θ.

To define the replication and the scanning map it is more convenient to use
the following alternative model:

Cδk(M ; θ) = {(q, ε, s) | (q, ε) ∈ Cδk(M), s : Bε/2(q)→ E a section of θ},

where Bε/2(q) means the (disjoint) union of the (ε/2)-balls around q for each q ∈ q.
So a point in this space consists of a configuration q with prescribed pairwise
separation, together with a choice of label on a small contractible neighbourhood
of each configuration point.

If θ : E → M factors through the unit sphere bundle of TM with a map
ϕ : E → S(TM), then it is possible to define a new map which we call the intrinsic
replication map ろr : Cδk(M ; θ) −→ Cδrk(M ; θ). It sends the labelled configuration
(q = {q1, . . . , qk}, ε, s : Bε/2(q)→ E) to the labelled configuration({

exp( jεr ϕs(qi))
∣∣ i=1,...,k
j=0,...,r−1

}
, ε2r , restriction of s

)
.
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In contrast with the (extrinsic) replication map of Theorem B, this map is defined
for every manifold M .

Theorem C Let r > 2 and let ` be a set of primes each not dividing r. Then
the map ろr : Cδk(M ; θ) → Cδrk(M ; θ) induces isomorphisms on homology with Z`-
coefficients in the stable range with labels in θ.

An extension for field coefficients. The homology of configuration spaces with
field coefficients is better understood than the torsion of their integral homology. In
fact, complete descriptions of the additive structure of H∗(Ck(M);F) were given by
[Milgram and Löffler, 1988] when F has characteristic 2 and by [Bödigheimer et al.,
1989] when either F has characteristic 2 or M is odd-dimensional. The rational
structure was further studied by [Félix and Thomas, 2000] and more recently by
[Knudsen, 2014], who gave a complete description of the rational cohomology ring
of Ck(M). From their computations, it follows that the homology with field coef-
ficients always stabilises, unless the manifold is even-dimensional and the field has
odd characteristic. These results were proven again by [Church, 2012] (in the ra-
tional case) and [Randal-Williams, 2013a] (in all cases) using homological stability
methods (also improving the known stable ranges).

Theorem ([Milgram and Löffler, 1988; Bödigheimer et al., 1989; Félix and Thomas,
2000; Church, 2012; Randal-Williams, 2013a; Knudsen, 2014]) Let M be a con-
nected, smooth manifold of dimension n, let F be a field of characteristic p and
assume that p(n − 1) is even. Then in the stable range we have isomorphisms
H∗(Ck(M);F) ∼= H∗(Ck+1(M);F).

The last part (§5) of this article addresses the question of homological stability
when p(n − 1) is odd, in other words for even-dimensional (closed) manifolds and
with coefficients in fields of odd characteristic. It does not involve section spaces,
but rather uses the result of Theorem B in the case of open manifolds M together
with an argument similar to that of [Randal-Williams, 2013a, §9].

If M is a closed, connected manifold one can choose a vector field on M which
is non-vanishing away from a point ∗ ∈M . This vector field (suitably normalised)
therefore induces an r-replication map for configuration spaces on M r {∗}, which
induces isomorphisms on homology with Z[ 1

r ] coefficients in the stable range by
Theorem B.

We can fit Ck(M) into a cofibre sequence in which the other two spaces are
suspensions of configuration spaces on M r {∗}. We can then define stabilisation
maps on the other two spaces using the r-replication map and the ordinary sta-
bilisation map, which are isomorphisms on homology localised away from r in the
stable range. We will therefore have homological stability for Ck(M), with field
coefficients of characteristic coprime to r, as long as the square formed by this
pair of stabilisation maps commutes. In fact it does not commute in general, but
the obstruction to commutativity on homology is a single homology class whose
divisibility we can calculate. Thus we obtain the following theorem, where

λ(k) = λ[M ](k) := min{ν(k), ν(k − 1) + n− 1, µ(rk − i) | i = 2, . . . , r}.

Here n is the dimension of M and µ = µ[M r {∗}] and ν = ν[M r {∗}].
Theorem D Let M be a closed, connected, even-dimensional smooth manifold.
Choose a field F of positive characteristic p and let r > 2 be an integer coprime to
p such that p divides (χ− 1)(r − 1). Then there are isomorphisms

H∗(Ck(M);F) ∼= H∗(Crk(M);F)
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in the range ∗ 6 min(λ(k), λ(rk)).

See Remark 5.7 for an explanation of how the function λ[M ] arises, and the
remark that if µ[M r {∗}] is linear with slope 6 dim(M) − 1 and r, k > 2, then
λ[M ](k) = µ[M r {∗}](k).

This theorem also generalises to configuration spaces with labels in a fibre
bundle over M with path-connected fibres. See §5.4 for the proof for configuration
spaces without labels and §5.6 for a sketch of the generalisation to configuration
spaces with labels (Theorem D′).

Remark 1.3 When M is odd-dimensional the conclusion of Theorem D follows
directly from Theorem A. Also, we note that our proof in §5.4 also works for fields
of characteristic zero: in this case we must asssume that χ = 1, but the proof then
becomes simpler since the square (5.9) commutes up to homotopy (not only on
homology). Finally, in the case where the fibre bundle over M factors through the
unit sphere bundle S(TM)→M , Theorem D′ follows from Theorem C′.

Combining Theorems A and D. Theorem A says that in odd dimensions there
are at most two stable integral homologies, depending on the parity of the number
of points k. On the other hand, in even dimensions – even when taking homology
with Z(p) coefficients – there may be infinitely many different stable homologies: one
for each possible p-adic valuation of 2k−χ. In fact this is sharp, as the calculation
(1.7) shows.

However, the situation is simpler when taking Fp coefficients. From the calcu-
lation (1.7) we see that, when n is even and k is in the stable range with respect
to degree n− 1, we have

Hn−1(Ck(Sn);Fp) ∼= Tor(Hn−2(Ωn0S
n),Fp)⊕ (τHn−1(Ωn0S

n)⊗ Fp)
⊕ (Z/(2k − 2)⊗ Fp).

Writing d for the dimension of the first two summands on the right-hand side
(which is independent of k), it follows that Hn−1(Ck(Sn);Fp) is either d- or (d+1)-
dimensional depending on whether or not p divides 2k−2, so there are at most two
stable Fp-homologies in this special case. One can combine Theorems A and D to
prove that this phenomenon holds more generally:

Corollary E Let M be a closed, connected, even-dimensional smooth manifold
and let F be a field of odd characteristic p. Then there are canonical (additive)
isomorphisms

H∗(Ck(M);F) ∼= H∗(Cj(M);F)

under either of the following conditions:

• min{(2k − χ)p, (χ)p + 1} = min{(2j − χ)p, (χ)p + 1},
• χ ≡ 1 mod p,

in the range ∗ 6 min(λ(k), λ(j)).

This is proved in §5.7, where we also partially recover the known homological
stability results for odd-dimensional manifolds and fields of characteristic 2 or 0
(see Corollary 5.8).

Number of stable homologies. Homological stability (without an explicit range)
for configuration spaces with coefficients in a field F can be rephrased as the state-
ment that for each degree i, the set {dimHi(Cj(M);F) | j = k, . . . ,∞} contains
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only one element once k is sufficiently large, in other words, the number

nshi(M ;F) := limk→∞|{dimHi(Cj(M);F)}∞j=k| ∈ {1, 2, 3, . . . ,∞}

is equal to 1. As mentioned earlier, we have nshi(M ;F) = 1 whenever either dim(M)
is odd or char(F) is even, and we also have the example that nsh1(S2;Fp) = 2. The
above corollary can be viewed as proving that whenever M has non-zero Euler
characteristic, nshi(M ;F) is finite and has the explicit upper bound:

nshi(M ;F) 6 (χ)p + 2

where p = char(F) and χ is the Euler characteristic of M . Moreover, we also have

nshi(M ;F) = 1 when χ ≡ 1 mod p.

In particular this means that when χ(M) = 1 we have nshi(M ;F) = 1 for any field
F, in other words homological stability holds for the sequence {Ck(M)}∞k=1 with
coefficients in any field.

Homological periodicity. A consequence of Corollary E is that the sequence of
homology groups {Hi(Ck(M);F)}∞k=1 for fixed M , F and i is eventually periodic as
k → ∞, as long as χ 6= 0. To see this, note that by Corollary E it is enough to
show that

min{(2k − χ)p, (χ)p + 1} = min{(2(k + a)− χ)p, (χ)p + 1} (1.8)

for some natural number a independent of k. Note that for any two natural numbers
x, y we have the inequality (x+y)p > min{(x)p, (y)p} and a sufficient condition for
equality is that (x)p and (y)p are distinct. Considering the cases (2k − χ)p > (χ)p
and (2k − χ)p 6 (χ)p separately, and applying this fact, one can easily show that

the equation (1.8) holds for a = p(χ)p+1. Hence we have:

Corollary F Let M be a closed, connected, even-dimensional smooth manifold with
Euler characteristic χ 6= 0 and let F be a field of odd characteristic p. Then the
sequence

{Hi(Ck(M);F)}∞k=1 (1.9)

is eventually periodic in k as k →∞, with period equal to pei(M ;F) for some number
ei(M ;F) 6 (χ)p + 1. Equivalently, there are (additive) isomorphisms

Hi(Ck(M);F) ∼= Hi(Ck+pχ(M)p+1(M);F)

for k � i (precisely, in the range i 6 λ(k)).

This is similar to a result of Nagpal [Nagpal, 2015, Theorem F], who also proves
that the sequence (1.9) is eventually periodic in k as k →∞ and obtains an explicit
period of p(i+3)(2i+2). The difference is that his result also holds when χ = 0, but
on the other hand he assumes that M is orientable, and his upper bound on the
period depends on the homological degree.

Note however that Corollary E is much stronger than homological periodicity:
it implies that the number of stable homologies nshi(M ;F) is bounded above by
(χ)p + 2, whereas Corollary F alone only implies an upper bound of pχ(M)p+1.

Acknowledgements. We thank Oscar Randal-Williams for careful reading of an
earlier draft of this paper and for enlightening discussions. The paper has also
benefited from conversations with Frederick Cohen, Mark Grant, Fabian Hebestreit,
Alexander Kupers and Jeremy Miller. We would also like to thank the anonymous
referee for helpful comments and corrections.
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2. Homological stability via the scanning map

2.1. Sphere bundles, localisation and fibrewise homotopy equivalences.
Let M be a connected manifold and E →M a rank n inner product vector bundle.
Let Ė be the fibrewise one point compactification of E. The topological bundle Ė
is isomorphic to the unit sphere bundle S(E ⊕ ε) of the Whitney sum of E and a
trivial line bundle. We denote by ∞ the point at infinity in each fibre. We denote
by ι the section with value∞ and by z the zero section. During the next paragraph
we assume temporarily that M is a compact manifold with boundary.

Let Γ∂(Ė) ⊂ Γ(Ė) be the subspace of those sections that take value ∞ on the

boundary of M . Since the fibre of Ė → M is nilpotent and the pair (M,∂M) has
finitely many non-zero homology groups, then by [Møller, 1987, Theorem 4.1], each

connected component of Γ∂(Ė) is also nilpotent. We may therefore consider, for

each set of primes `, the localisation Γ∂(Ė)(`). We may also consider the fibrewise

localisation Ė → Ė(`), and [Møller, 1987, Theorem 5.3] implies that the induced

map Γ∂(Ė) → Γ∂(Ė(`)) is a localisation in each component, since (M,∂M) is a
finite relative complex.

If M is an arbitrary manifold, we can write it as a union M =
⋃
M i of

compact codimension-0 submanifolds with boundary. Let Ėi denote the restriction
of Ė to the submanifold M i. The map Γc(Ė)→ Γc(Ė(`)), induced by the fibrewise

localisation Ė → Ė(`), is then the colimit of the maps Γ∂(Ėi)→ Γ∂(Ėi(`)):

Γ∂(Ėi) //

��

Γ∂(Ėi+1) //

��

· · · // Γc(Ė)

��

Γ∂(Ėi(`))
// Γ∂(Ėi+1

(`) ) // · · · // Γc(Ė(`)).

Since the vertical maps induce (componentwise) isomorphisms on homology with
Z(`)-coefficients, so does their colimit.

A bundle endomorphism f of Ė(`) is compactly supported if f ◦ ι = ι outside a

compact subset of M . We denote by Endrc(Ė(`)) the space of compactly supported

endomorphisms which induce on fibres maps of degree r. We denote by endr(Ė(`))

the bundle of pairs (x, fx), where x ∈ M and fx : (Ė(`))x → (Ė(`))x is a map of

degree r. By definition Endrc(Ė(`)) = Γc(endr(Ė(`))). By Theorem 3.3 of [Dold,

1963], if r is a unit in Z(`), then any endomorphism in Endrc(Ė(`)) admits a fibre-
wise homotopy inverse. Postcomposition with it induces a homotopy equivalence
between path-components

Γc(Ė(`))k −→ Γc(Ė(`))[f ](k),

where [f ] denotes the map induced by f on π0Γc(Ė(`)).

We summarize the discussion so far in the following lemma:

Lemma 2.1 If r is a unit in Z(`), f ∈ Endrc(Ė(`)) and [f ](k) is an integer, then
the zigzag

Γc(Ė)k −→ Γc(Ė(`))k −→ Γc(Ė(`))[f ](k) ←− Γc(Ė)[f ](k),

where the middle map is given by post-composition with f , induces an isomorphism
on homology with Z(`)-coefficients.
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Remark 2.2 Note that if ` = ∅, then (−)(`) is rationalisation (also denoted (−)(0)),
whereas if ` = SpecZ, the set of all primes, this localisation is the identity, i.e., we
are not localising at all.

2.2. The degree of a section. Let β be a compactly supported section of π : ṪM →
M , and let Th(β) be the Thom class in Hn(ṪM ;π∗O), where O is the orientation
sheaf of M . The β-degree of a compactly supported section α is

degβ(α) = α∗(Th(β))∨ ∈ H0(M ;Z),

the Poincare dual in M of α∗Th(β) ∈ Hn
c (M ;O). If M is orientable, then Th(β)

is the Poincare dual of β∗[M ] ∈ Hn(ṪM ;Z), and degβ(α) is also equal to the

intersection product of α∗[M ] and β∗[M ] in ṪM . We will write deg for degz, where

z is the zero section of ṪM .

Assume now that M is closed and orientable. The Gysin sequence for the

sphere bundle Sn
i→ ṪM

π→M splits an exact sequence

0 −→ Hn(Sn;Z)
i∗−→ Hn(ṪM ;Z)

π∗−→ Hn(M ;Z) −→ 0. (2.1)

The zero section z : M → ṪM is an inverse of π, so the group Hn(ṪM) ∼= Z ⊕ Z
is generated by i∗[S

n] and z∗[M ]. The fibres over two different points give two
disjoint representatives of i∗[S

n], therefore i∗[S
n]∩ i∗[Sn] = 0. On the other hand,

the intersection of the zero section with itself is the Euler characteristic χ of M .
And it is also clear that the intersection of i∗[S

n] and z∗[M ] consists of a single
point. The intersection products of 4k (resp. 4k + 2) dimensional manifolds are
symmetric (antisymmetric). Therefore we have:

Lemma 2.3 If M is connected, closed, orientable and of dimension n, then the
intersection pairing of ṪM with respect to the above basis is given by(

0 1
(−1)n χ

)
.

If α is a section of π, then α∗[M ] = (deg(α)− χ, 1) in this basis.

Proof. For the second claim, observe that α is an inverse of π too, so the second
component of α∗[M ] is the same as the second component of z∗[M ]. The first
component is obtained from the following equation:

deg(α) = α∗[M ] ∩ z∗[M ] = (a, 1)

(
0 1

(−1)n χ

)(
0
1

)
= a+ χ. �

The Gysin sequence (2.1) applied to the localised bundle Sn(`) → ṪM(`) → M

shows that Hn(ṪM(`)) ∼= Z(`)⊕Z. The first factor is generated as a Z(`)-module by
the fundamental class of the fibre, and the second factor is generated by the image
of the fundamental class of M under the zero section. The following definition
extends the notion of degree to sections of fibrewise localised sphere bundles.

Definition 2.4 The degree of a section α of ṪM(`), denoted deg(α), is the value
a+ χ ∈ Z(`), where (a, 1) = α∗[M ] in our preferred basis.

2.3. Fibrewise homotopy equivalences of many degrees. Let V2(E ⊕ ε) be
the fibrewise Stiefel manifold of E⊕ ε. If σ is a section of Γ(V2(E⊕ ε)(`)) we denote
by σ0 the image of σ under the localisation of the map that forgets the second
vector:

ϕ(`) : Γ(V2(E ⊕ ε)(`)) −→ Γ(S(E ⊕ ε)(`)).



10 STABILITY FOR CONFIGURATIONS IN CLOSED MANIFOLDS

We denote by Γc(V2(E ⊕ ε)(`)) the space of sections σ such that σ0 is compactly
supported.

Lemma 2.5 Let E be a real inner product bundle over a manifold M . There is a
bundle map

V2(E ⊕ ε) −→ endr(Ė)

for each r ∈ Z and therefore, for each set of primes `, there are maps

Φ`r : Γc(V2(E ⊕ ε)(`)) −→ Endrc(Ė(`))

which are natural with respect to pullback of bundles. If M is closed and E = TM ,
then Φ`r(σ) sends sections of degree k to sections of degree r(k−deg(σ0))+deg(σ0).

Proof. A 2-frame in V2(E ⊕ ε) determines a linear embedding R2 → (E ⊕ ε)x.
If we denote by V its orthogonal complement, we obtain canonical isomorphisms
R2 ⊕ V ∼= (E ⊕ ε)x which induce canonical isomorphisms S1 ∗ S(V ) ∼= S(E ⊕ ε).
This allows to define a degree r map

S(E ⊕ ε)x ∼= S1 ∗ S(V )
e2πir∗Id // S1 ∗ S(V ) ∼= S(E ⊕ ε)x.

After fibrewise localizing and taking sections, one obtains the second map. Observe
that the above map fixes the first vector in the 2-frame, hence the image of a section
in Γc(V2(E ⊕ ε)(`)) will fix the section ι outside a compact subset.

By construction, f∗(Φ`r(σ)) = Φ`r(f
∗(σ)), so these maps are natural. Similarly,

observe that

Endrc(Ė(`))× Γ(Ė(`)) −→ Γ(Ė(`)) (2.2)

is also natural with respect to pullback of bundles.

Now we describe the effect of φr := Φ`r(σ) on components of Γ(ṪM(`)) when

M is closed. Assume first that M is orientable, in which case ṪM is also orientable
and Lemma 2.3 applies. First we identify the induced map (φr)∗ : Hn(ṪM(`)) →
Hn(ṪM(`)). Since φr(σ0) = σ0, we have

(φr)∗(deg(σ0)− χ, 1) = (deg(σ0)− χ, 1).

On the other hand, φr acts on the fibre over a point as a map of degree r, hence

(φr)∗(1, 0) = (r, 0).

From this we deduce that (φr)∗ has the form(
r −(r − 1)(deg(σ0)− χ)
0 1

)
,

hence, for an arbitrary section α, we have that

(deg(φr(α)∗[M ])− χ, 1) = φr(α)∗[M ] = (φr)∗(α∗[M ])

= (r(deg(α)− χ)− (r − 1)(deg(σ0)− χ), 1)

and so deg(φr(α)) = r deg(α)− (r − 1) deg(σ0) = r(deg(α)− deg(σ0)) + deg(σ0).

Assume now that M is non-orientable. We take then the orientation cover
f : M̃ → M . If s is a section of ṪM(`) and σ is a section of V2(TM ⊕ ε)(`), we

can pull back both sections along f to obtain a section f∗s of Ṫ M̃(`) and a section

f∗σ of V2(TM̃ ⊕ ε)(`). Then, because f is a double cover, deg(f∗s) = 2 deg(s),

and by the naturality of φr and (2.2) we have that Φ`r(f
∗σ)(f∗s) = f∗(Φ`r(σ)(s)).
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On the other hand, since M̃ is orientable, by the previous paragraph we know that
deg(Φ`r(f

∗σ)(s)) = r deg(f∗s)− (r − 1) deg(f∗σ0). As a consequence:

2 deg(Φ`r(σ)(s)) = deg(f∗(Φ`r(σ)(s)))

= deg(Φ`r(f
∗σ)(f∗(s))

= r(deg(f∗s)− deg(f∗σ0)) + deg(f∗σ0)

= r(2 deg(s)− 2 deg(σ0)) + 2 deg(σ0). �

We now face the following lifting problem:

V2(TM ⊕ ε)(`)

ϕ(`)

��

M
σ0 //

σ
66

S(TM ⊕ ε)(`),

Proposition 2.6 Let M be closed and of dimension n > 2. When n is odd every
diagram has a lift, and when n is even the diagram has a lift precisely for sections
σ0 of degree χ/2 (which exist whenever χ is even or 2 /∈ `).

Proof. The above problem is equivalent to find a section of the pullback η(`) of ϕ(`)

along σ0, which is an Sn−1
(`) -bundle over an n-dimensional manifold. If n is odd, η(`)

has always a section, hence in that case every section σ0 admits a lift. If n is even,
the complete obstruction (if M is orientable) is the Euler class e(η(`)) of η(`). We
proceed to compute it:

Assume first that M is orientable and ` = SpecZ. The bundle η is the unit
sphere bundle of σ∗0T

v(TM ⊕ ε), whose Euler number can be computed by taking
the self-intersection of its zero section in the fibrewise one point compactification of
σ∗0T

v(TM ⊕ ε), which is precisely S(TM ⊕ ε). As the zero section of σ∗0T
v(TM ⊕ ε)

is σ0, we have that (we denote by x∨ the Poincaré dual of x)

e(η)∨ = σ0[M ] ∩ σ0[M ] (2.3)

= (deg(σ0)− χ, 1)

(
0 1
1 χ

)(
deg(σ0)− χ

1

)
= 2 deg(σ0)− χ. (2.4)

Hence a section admits a lift if and only if deg(σ0) = χ/2.

Let us assume now that M is orientable and ` is a proper subset of SpecZ.
In this case, the above computation is no longer valid, as it relies on a geometric
interpretation of the Euler class. We will first compute the Euler class e of ϕ(`):

e(η(`)) = σ∗0(e)∨ = e _ σ0[M ] = e∨ ∩ σ0[M ],

and therefore, if e∨ = (a, b) in the basis described before, it holds that

e(η(`))
∨ = σ∗0(e)∨ = (a, b)

(
0 1
1 χ

)(
deg(σ0)− χ

1

)
= a+ bdeg(σ0).

This, together with (2.3) (which holds for integral values), implies that e∨ =
(−χ, 2), and therefore that σ∗0(e)∨ = 2 deg(σ0) − χ. Hence, after localising we
obtain that only sections of degree χ/2 admit a lift.

Finally, let M be non-orientable and let f : M̃ →M be the orientation cover of
M . Then degf∗σ0

(f∗σ0) = 2 degσ0
(σ0) and the Euler characteristic of M̃ is 2χ, so

degσ0
(σ0) = 0 if and only if (2χ)/2 = deg(f∗σ0) = 2 deg(σ0). Hence only sections

of degree χ/2 have lifts. �
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Combining Lemma 2.5 and Proposition 2.6, we have the following (see imme-
diately above Lemma 2.1 for the notation [f ]).

Corollary 2.7 Let ` be a collection of primes. Suppose that dim(M) is odd and we

are given any r, d ∈ Z. Then there exists an endomorphism f ∈ Endrc(ṪM(`)) with
[f ](k) = r(k − d) + d. Suppose that dim(M) is even and we are given any r ∈ Z.
Assume also that χ/2 ∈ Z(`), i.e., either χ is even or 2 6∈ `. Then there exists an

endomorphism f ∈ Endrc(ṪM(`)) with [f ](k) = r(k − χ/2) + χ/2.

2.4. Proof of Theorem A. As promised in the introduction, in the next three
propositions we will provide the middle map in the zigzag (1.2), from which the
assertions in the theorem will follow by virtue of Lemma 2.1.

Proposition 2.8 If dimM is odd and ` is any set of odd primes, then there are
homotopy equivalences

Γc(ṪM)k
'−→ Γc(ṪM)k+2

Γc(ṪM(`))k
'−→ Γc(ṪM(`))k+1.

Proof. By Corollary 2.7 and Theorem 3.3 of [Dold, 1963] (cf. the discussion above
Lemma 2.1), there exist homotopy equivalences

Γc(ṪM(`))k −→ Γc(ṪM(`))r(k−d)+d

for all integers r and d such that r /∈ `Z (if ` = SpecZ), then the condition becomes
that r = 1,−1). Observe first that if r is odd, then k and r(k − d) + d have the
same parity. Hence if k and j have different parity then a homotopy equivalence
Γc(ṪM(`))k −→ Γc(ṪM(`))j as above exists only if 2 /∈ `.

Taking r = −1 and d = k+1 (and ` = SpecZ) we obtain the first map. Taking
r = 2 and d = k − 1 we obtain the second map. �

Proposition 2.9 Suppose that dimM is even, ` is a set of primes and k, j are
integers such that (2k − χ)` = (2j − χ)`. If χ is odd, assume also that 2 6∈ `. Then

there is a zigzag of homotopy equivalences between Γc(ṪM(`))k and Γc(ṪM(`))j. If

j = χ− k, there is a homotopy equivalence Γc(ṪM)k → Γc(ṪM)j.

Proof. By Corollary 2.7 and Theorem 3.3 of [Dold, 1963], there exists, for each
integer r with trivial `-adic valuation, a homotopy equivalence

Γc(ṪM(`))k −→ Γc(ṪM(`))r(k−χ/2)+χ/2.

Equivalently, there exists a homotopy equivalence Γc(ṪM(`))k → Γc(ṪM(`))j when-
ever (2j − χ) = r(2k − χ) for some r such that (r)` = 0. Now let k and j be the
two given integers, let l = (2k − χ)` = (2j − χ)` and define m =

∏
p∈` p

l(p). Note

that the integer 1
m (2k − χ)(2j − χ) + χ is always even, so we have

1
m (2k − χ)(2j − χ) = (2h− χ)

for some integer h. Since 1
m (2j−χ) and 1

m (2k−χ) both have trivial `-adic valuation,

the previous discussion implies that there are homotopy equivalences Γc(ṪM(`))k →
Γc(ṪM(`))h and Γc(ṪM(`))j → Γc(ṪM(`))h.

For the last claim, observe that if M has even Euler characteristic χ, taking r =
−1 and ` = SpecZ in Corollary 2.7, we obtain a homotopy equivalence Γc(ṪM)→
Γc(ṪM) (without localising) that sends sections of degree k to sections of degree
χ− k. In fact, such a homotopy equivalence exists regardless of whether χ is even
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or odd: it may be obtained by postcomposition with the antipodal map ṪM →
ṪM . �

If dimM is odd, Theorem A can only be improved when 2 ∈ ` and k, j have
different parity. To face this problem using a zigzag as in (1.2), we need to find

a fibrewise homotopy equivalence f of ṪM(2) whose action on components of the
section space changes the parity. The following proposition deals with this case
(cf. [Hansen, 1974; Hansen, 1981]). We note that its proof can be used to recover
Theorem A when M is a sphere, as well as the integral homology isomorphisms of
Theorem A when M is an arbitrary odd-dimensional manifold (see Remark 2.11).

Proposition 2.10 For n odd and 2 ∈ `, the fibre bundle Ṫ Sn(`) admits fibrewise

homotopy equivalences that change the parity of the sections if and only if n = 1, 3, 7.
If dimM = 1, 3, 7, then ṪM admits a fibrewise homotopy equivalence that sends
sections of degree k to sections of degree k + 1.

Proof. Spheres are stably parallelisable, and therefore Ṫ Sn is trivial, being the unit
sphere bundle of TSn⊕ε. After choosing a trivialisation, a fibrewise endomorphism
f of Ṫ Sn(`) of degree r is the same as a map

f t : Sn −→ Mapr(S
n
(`), S

n
(`)).

Since n is odd, the Euler characteristic χ is 0, so we may trivialise Ṫ Sn so that the
zero section corresponds to a trivial section of the product bundle Sn×Sn(`). Hence

the matrix of Hn(f) with the basis considered in Lemma 2.3 is of the form(
r b
0 1

)
,

where b ∈ Z(`) is the degree of the composition of f t with the evaluation map.
Such an f sends sections of degree k to sections of degree rk + b. For f to be a
fibrewise homotopy equivalence, r must be odd (and moreover equal to ±1 when
` = SpecZ), and therefore b has to be odd as well, because [f ](k) = rk + b and we
want k and [f ](k) to have different parity. Therefore, we need to solve the lifting
problem

Mapr(S
n
(`), S

n
(`))

��

Sn
b //

66

Sn(`)

where the vertical map is the evaluation map and the horizontal map is some map
of odd degree b. The single (and therefore complete) obstruction to the existence
of a lift is a class in Hn(Sn;πn−1ΩnrS

n
(`))
∼= πn−1ΩnrS

n
(`). This class is b times the

image of the generator of πnS
n
(`) under the boundary homomorphism in the long

exact sequence of homotopy groups. The boundary homomorphism is computed in
[Whitehead, 1946, Theorem 3.2] with a correction in [Whitehead, 1953], who proved
that under the identification πi(Ω

n
rS

n
(`))
∼= πn+i(S

n
(`)), it corresponds to taking the

Whitehead product with −rι, where ι is a generator of πn(Sn). Therefore our
obstruction is b[−rι, ι]. Because the Whitehead product is graded-commutative,
[ι, ι] has order two, so −br[ι, ι] = [ι, ι]. The EHP sequence shows that the vanishing
of this class is equivalent to the existence of elements of Hopf invariant one in
π2n+1(Sn+1

(`) ), which exist if and only if n = 0, 1, 3, 7 [Adams, 1960].

If M is an arbitrary manifold of dimension 1, 3 or 7, we first choose an open
disc D in M . Then we take ` = ∅, r = 1, b = 1, and we consider the one-point
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compactification Ḋ of D. By the previous part, there is a fibrewise endomorphism f
of fibrewise degree 1 of Ṫ Ḋ. Without loss of generality, we may assume that its value
on the basepoint is the identity. Then we can extend this fibrewise endomorphism
to the whole of M by defining x 7→ (Id: ṪxM → ṪxM) if x /∈ D. The extension
sends sections of degree k to sections of degree rk + b = k + 1. By Theorem 3.3 of
[Dold, 1963], it is a fibrewise homotopy equivalence. �

Remark 2.11 The above proof recovers Theorem A in certain cases, as follows.
Given some k ∈ Z, we take r = 2 and b = 1 − k to obtain homotopy equivalences
Γc(Ṫ S

n
(`))k ' Γc(Ṫ S

n
(`))k+1 with ` the set of all odd primes. This recovers the

isomorphisms (1.5) when M = Sn. For the isomorphisms (1.4), we take r = 1 and
b = 2 (and ` the set of all primes, i.e., we do not localise) and extend the resulting
fibrewise homotopy equivalence, defined over a disc in M , to the whole of M by the
identity. This gives homotopy equivalences Γc(ṪM)k ' Γc(ṪM)k+2 for any M .

Proposition 2.10 also shows that, when M is an odd-dimensional sphere, The-
orem A cannot be improved by finding a fibrewise homotopy equivalence of Ṫ Sn(`).

The following proposition (cf. [Hansen, 1974, Theorem 3.1] and [Hansen, 1981])
generalises the computation of H1(Ck(S2);Z) (which follows from the presentation
of π1(Ck(S2)) given by [Fadell and Van Buskirk, 1962]) and shows that Theorem
A is sharp when M is an even-dimensional sphere.

Proposition 2.12 If n is even and k belongs to the stable range with respect to
homological degree n− 1, then

Hn−1(Ck(Sn);Z) ∼= τHn−1(Ωn0S
n)⊕ Z/(2k − 2),

where τG is the torsion of G. If M is a closed manifold of even dimension, then
any fibrewise endomorphism of ṪM(`) of degree r 6= 0 sends sections of degree k to
sections of degree r(k − χ/2) + χ/2.

Proof. The target of the scanning map in this case is Γ(Ṫ Sn), and since Sn is

stably parallelisable, Ṫ Sn can be trivialised. The trivialisation gives a homotopy
equivalence Γ(Ṫ Sn) → Map(Sn, Sn) that sends sections of degree k to maps of
degree k − χ/2, where χ is the Euler characteristic of Sn (this corresponds to a
change of basis in Lemma 2.3, and is stated explicitly in [Bendersky and Miller,
2014, Proposition 3.6]). We let now r = k − χ/2.

The space of maps fits into the evaluation fibration

ΩnrS
n −→ Mapr(S

n, Sn) −→ Sn (2.5)

for which we may consider the corresponding Wang sequence

· · · −→ H0(ΩnrS
n)

δr−→ Hn−1(ΩnrS
n) −→ Hn−1(Mapr(S

n, Sn)) −→ 0.

The map named δr is the transgression

Hn(Sn;H0(ΩnrS
n)) −→ H0(Sn;Hn−1(ΩnrS

n))

in the Serre spectral sequence of the evaluation fibration, and therefore under the
identification Hn(Sn;H0(ΩnrS

n)) = Hn(Sn) it fits into the commutative diagram

πn(Sn)

��

∂r // πn−1(ΩnrS
n)

��

Hn(Sn)
δr // Hn−1(ΩnrS

n),
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where ∂r is the boundary homomorphism in the long exact sequence of homotopy
groups. As recalled in the previous proof, ∂r was identified by Whitehead as the
adjoint of the operation of taking Whitehead product with −rι, where ι is the
generator of Sn. Additionally, the left vertical arrow is an isomorphism and the
rightmost vertical arrow sends the class [ι, ι] to the Browder square of the generator
of H0(ΩnrS

n) (see Remark 1.2 in the third chapter of [Cohen et al., 1976]) (here
we are using a canonical identification of ΩnrS

n and Ωn1S
n to define the Browder

square and the Whitehead product).

We claim, when n is even, that this Browder square has infinite order and
is divisible by two (but not by four). To see this, consider the scanning map
C(Rn) → ΩnSn. Both spaces have an action of the little n-discs operad, and the
scanning map is equivariant with respect to this action, hence it takes Browder
squares to Browder squares. The adjoint α of the class ι ∈ πn(Sn) is a generator
of π0(Ωn1S

n), so the Browder square λ(β, β) of the Hurewicz image β of α lives
naturally (that is, before using the identification between the different components
of ΩnSn) in Hn−1(Ωn2S

n). We will now describe this class.

The generator γ of H0(C1(Rn)) is mapped under the scanning map to β,
hence λ(γ, γ) is mapped to λ(β, β). The class λ(γ, γ) ∈ Hn−1(C2(Rn)) corre-
sponds to moving one of the points around the other point in all possible directions,
parametrised by Sn−1. The inclusion of the space RPn−1 of antipodal points in
Sn−1 into C2(Rn) is a homotopy equivalence, and our class λ(γ, γ) is the image
of the fundamental class of Sn−1 under the double covering map Sn−1 → RPn−1,
hence it is twice a generator of the group Hn−1(C2(Rn)) ∼= Hn−1(RPn−1) ∼= Z (cf.
the class τ on page 24). Now, since the scanning map is split-injective on homology
(see [McDuff, 1975, p. 103] and the proof of Corollary 3.2 in this article), it follows
that λ(β, β) also has infinite order and is divisible exactly by two.

Observe that, when n is odd, the above argument shows that λ(β, β) is zero,
since RPn−1 is non-orientable for n− 1 even.

By results of Serre [Serre, 1951] on the homotopy groups of spheres, and the
rational Hurewicz theorem, Hn−1(ΩnrS

n) has rank 1, so

Hn−1(Mapr(S
n, Sn)) ∼= Hn−1(ΩnrS

n)/(−rλ(β, β)) ∼= τHn−1(ΩnrS
n)⊕ Z/2r.

The first statement now follows from McDuff’s theorem.

Let f : ṪM(`) → ṪM(`) be any fibrewise endomorphism of ṪM(`), where we

view the bundle ṪM(`) → M as a fibration. We can consider the fibrewise ratio-

nalisation f(0) : ṪM(0) → ṪM(0), and observe that [f ](k) = [f(0)](k) for k ∈ Z(`)

(using the canonical inclusion of Z(`) in Q). Therefore the function [f ], describing

the effect of f on degrees of sections of ṪM(`), is determined by the function [f(0)].

If dimM is even, there is a unique fibrewise endomorphism of ṪM(0) of fibre-
wise degree r up to homotopy. This is because such fibrewise endomorphisms are
sections of a bundle over M with fibre Mapr(S

n
(0), S

n
(0)), which, using the evalua-

tion fibration (2.5), is (2n− 2)-connected since [ι, rι] 6= 0. Therefore, if f and g are

fibrewise endomorphisms of ṪM(`) with the same (non-zero) fibrewise degree, we
have that [f ](k) = [f(0)](k) = [g(0)](k) = [g](k) for all k ∈ Z(`), so they act in the
same way on the path-components of the section space.

Let r = p/q be a non-zero rational number, with p, q ∈ Z r {0}, and let fr
be any fibrewise endomorphism of ṪM(0) of degree r. Since p and q are integers,
Corollary 2.7 implies that there are fibrewise endomorphisms φp and φq of degrees
p and q respectively. Let fp = φqfr, which is a fibrewise endomorphism of degree
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p. By the previous paragraph, there is a unique fibrewise endomorphism of each
degree, so it follows that fp is fibrewise homotopic to φp. We therefore have the
equation:

[φq][fr](k) = [φp](k).

The last formula of Corollary 2.7 determines the functions [φp] and [φq], from which
we deduce that

q([fr](k)− χ/2) + χ/2 = p(k − χ/2) + χ/2

and the result follows after solving the equation. �

3. The extrinsic replication map

3.1. Scanning maps. Let M be a connected manifold, for which we choose a
Riemannian metric with injectivity radius bounded below by δ > 0. Let T 1M
denote the open unit disc bundle of the tangent bundle of M , and let Ṫ 1M and
ṪM denote the fibrewise one point compactifications of T 1M and TM . Let δ > 0
be smaller than the injectivity radius of M . Define the linear scanning map

S : Cδk(M) −→ Γc(Ṫ
1M)k

to the space of degree k compactly supported sections of Ṫ 1M as

S (q, ε)(x) =

{
∞ if x /∈ Bε(q) ∀q ∈ q,
exp−1

x (q)
ε if x ∈ Bε(q), q ∈ q.

The degree of a section s is the fibrewise intersection, counted with multiplicity, of
s and the zero section (see also §2.2).

Let D be the unit n-dimensional open disc, let Ḋ be its one point compactifi-
cation and define ψδ(D) to be the quotient of

⋃
k C

δ
k(Rn), where two configurations

(q, ε) and (q′, ε′) are identified if q ∩D = q′ ∩D and either ε = ε′ or q ∩D = ∅.
We write ψδ(T 1M) for the result of applying this construction fibrewise to T 1M .

Let γ be a number smaller than the injectivity radius of M . The radius γ
non-linear scanning map

s : Cδk(M)→ Γc(ψ
δ(T 1M))

sends a configuration q to 1
γ exp−1

x (q) — which may consist of more than one point.

There is an inclusion i : Ḋ ↪→ ψδ(D) given by i(q) = (q, δ/2) as the subspace
of configurations with at most one point. This inclusion has a homotopy inverse

h(q, ε) = q
qsecond

where qfirst is the norm of a closest point in q to the origin, and qsecond is defined
to be 1 if |q| = 1 and (q′)first otherwise, where q′ is the result of removing a single
closest point of q to the origin. The composite hi is the identity and Ht(q, ε) =(

q
(1−t)+tqsecond

, tδ/2 + (1− t)ε
)

gives a homotopy between the identity and ih.

Each of i, h and Ht is O(n)-equivariant, so they can be defined on the vector
bundle TM , obtaining homotopy equivalences

i : Ṫ 1M ←→ ψδ(T 1M) : h

which induce by composition homotopy equivalences

i : Γc(Ṫ
1M)←→ Γc(ψ

δ(T 1M)) : h
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that commute with the linear and non-linear scanning maps:

Cδk(M) Γc(ψ
δT 1M)

Γc(Ṫ
1M).

sγ

S
hi ' (3.1)

3.2. Homological stability.

Theorem B. Let M be a connected, smooth manifold and let v be a non-vanishing
section of TM . Then there exists a map φr ∈ Endrc(Ṫ

1M) that makes the following
diagram commute up to homotopy:

Cδk(M)
S //

ρr[v]

��

Γc(Ṫ
1M →M)k

φr
��

Cδrk(M)
S // Γc(Ṫ

1M →M)rk.

(3.2)

Hence the r-replication map induces an isomorphism on Z(`)-homology in the stable
range with Z(`) coefficients as long as r is not divisible by any prime in `.

Remark 3.1 One can prove that the map φr constructed below is homotopic to
Φ`r(ι, v) with ` = SpecZ.

Proof. The proof has three steps. First, since Cδk(M) is independent of δ up to
homotopy, we let 2δ be smaller than the injectivity radius of M . We claim that the
following diagram commutes:

Cδk(M)
s2δ //

ρr[v]

��

Γc(ψ
δ(T 1M))

ςr

��

Cδrk(M)
sδ // Γc(ψ

δ(T 1M))

where ςr is given by postcomposition with the bundle map ρr[exp∗2δ(v)] : ψδ(T 1M)→
ψδ(T 1M) followed by the expansion 2 : ψδ(T 1M) → ψδ(T 1M) that sends each
point q in the configuration to 2q. Observe that the bundle map ρr[exp∗2δ(v)] is not
continuous but it becomes continuous after composing with 2.

In order to understand this square, we check what happens with the adjoint
of the scanning map M × Ck(M)→ ψδ(T 1M) over each point x ∈M :

{x} × Cδk(M)
s2δx //

ρr[v]

��

ψδ(T 1
xM)

ςr

��

{x} × Cδrk(M)
sδx // ψ(T 1

xM).

The square commutes on the nose unless there exists some q ∈ q such that

ςr(q) ∩Bδ(x) 6= ∅, and q /∈ B2δ(x).

But this is not possible, as d(ςr(q), x) > d(q, x)−maxq′∈ςr(q) d(q, q′) > 2δ − ε > δ.
Second, observe that since the exponential map is homotopic to the projection

π : TM →M , the maps ςr = 2ρr[exp∗2δ(v)] and σr = 2ρr[π
∗v] are homotopic.
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Third, consider now the diagram

Γc(ψ
δ(T 1M))

σr

��

Γc(Ṫ
1M)

��

ioo

Γc(ψ
δ(T 1M))

h // Γc(Ṫ
1M)

whose maps are induced by the fibrewise maps which on each fibre are

ψδ(T 1
xM)

σr

��

Ṫ 1
xM

��

ioo

ψδ(T 1
xM)

h // Ṫ 1
xM

Let us denote by v the value of the vector field v at the point x. Then σr(q, 1) =
q ∪ q + v ∪ . . . ∪ q + (r − 1)v and

hσri(q) =

{
2 q+jv
‖q+(j−1)v‖ if q + jv is the closest point and 〈v, q + jv〉 > 0

2 q+jv
‖q+(j+1)v‖ if q + jv is the closest point and 〈v, q + jv〉 < 0.

The inverse image of a point (for instance the origin) consists of r points ({−jv}r−1
j=0),

all of them oriented according to the sign of r. Hence hσri induces a map of degree
r on fibres. �

Corollary 3.2 If M is a connected open manifold of dimension at least 2, then the
homomorphism induced on Z[ 1

r ]-homology by the r-replication map is split-injective.

Proof. The scanning map is split-injective on homology in all degrees, as may be
deduced from [McDuff, 1975]. To see this, recall the following facts from the refer-
enced paper: (a) the stabilisation maps Ck(M) → Ck+1(M) are split-injective on
homology in all degrees (see p. 103), (b) the analogous stabilisation maps for section

spaces Γc(ṪM)k → Γc(ṪM)k+1 are homotopy equivalences, (c) the scanning map

Ck(M) → Γc(ṪM)k is a homology equivalence in the colimit as k → ∞ and (d)
the homology in the colimit is finitely-generated. It then follows from the fact that
stabilisation and scanning commute that the homomorphism induced on homology
by the scanning map is the composition of a finite sequence of split-injections, and
therefore itself a split-injection.

Thus, in the commutative square (3.2), the composite φr ◦S is split-injective
on Z[ 1

r ]-homology, hence S ◦ ρr[v] is split-injective on Z[ 1
r ]-homology, and so ρr[v]

is also split-injective on Z[ 1
r ]-homology. �

4. The intrinsic replication map

4.1. Stabilisation, replication and scanning maps with labels. Let θ : E →
M be a fibre bundle, and define the following spaces (the first two were also de-
fined in the introduction; the third space is defined whenever γ is smaller than the
injectivity radius of M , in particular when γ < δ):

Ck(M ; θ) = {(q, f) | q ∈ Cn(M), f ∈ Γ(θ|q)}

Cδk(M ; θ) = {(q, ε, f) | (q, ε) ∈ Cδk(M), f ∈ Γ(θ|Bq(ε))}

Cδ,γk (M ; θ) = {(q, ε, {fq}q∈q) | (q, ε) ∈ Cδk(M), fq ∈ Γ(θ|Bq(γ))}.
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Lemma 4.1 The forgetful maps

Cδ,γk (M ; θ) −→ Cδk(M ; θ) −→ Ck(M ; θ)

that restrict the section first from balls of radius γ to balls of radius ε, and then to
the centres of the balls, are weak homotopy equivalences.

Proof. A point in Cδk(M ; θ) consists of a configuration q with prescribed pairwise
separation, together with a choice of label on a small contractible neighbourhood
of each configuration point. On the other hand, the pullback Ċδk(M ; θ) of Cδk(M)
along the map Ck(M ; θ)→ Ck(M) which forgets the labels consists of a configura-
tion with prescribed pairwise separation, together with a choice of label just over
each configuration point. Since Cδk(M)→ Ck(M) is a fibre bundle with contractible

fibres, so is its pullback Ċδk(M ; θ) → Ck(M ; θ), which is therefore a weak equiva-

lence. There is also a forgetful map Cδk(M ; θ) → Ċδk(M ; θ) which just remembers
the label at the centre of each ball. This is also a fibre bundle with contractible
fibres, so a weak equivalence. Hence the composition Cδk(M ; θ)→ Ck(M ; θ) which
completely forgets the labels (the second map in Lemma 4.1) is a weak equivalence.
The first map in Lemma 4.1 is a fibre bundle with contractible fibres, so it is also
a weak equivalence. �

Definition 4.2 If the manifold M is open, a choice of an embedding of a ray,
together with a point y in the ray and a label fy ∈ θ−1(y) of this point defines a
stabilisation map with labels

sθ : Ck(M ; θ) −→ Ck+1(M ; θ)

by pushing the configuration outside the ray and adding the labelled point (y, fy).

Definition 4.3 If the manifold M is open or has trivial Euler characteristic, a
choice of a non-vanishing vector field defines a replication map with labels

ρθr : Cδk(M) −→ Cδrk(M ; θ)

ρθ,γr : Cδ,γk (M ; θ) −→ C
δ,γ/r
rk (M ; θ)

by sending a configuration ((q, ε), f) to the configuration ρr(q, ε) together with the
restriction of the section f to the balls of radius ε

2r (and radius γ
r ) centered at the

points in the new configuration.

The pullback θ∗TM → E is also fibred over M , and the fibres are vector
bundles. We denote by Ṫ θM the fibrewise Thom construction of θ∗TM viewed as
a bundle over M . The inclusion of the points at infinity define a cofibre sequence
over M

E −→ θ∗ṪM −→ Ṫ θM. (4.1)

The pullback map θ∗ṪM → ṪM factors through the bundle maps

θ∗ṪM −→ Ṫ θM
ξ−→ ṪM. (4.2)

We define the degree of a section s as the degree of ξ(s). If the fibres of θ are path

connected, then the n-skeleton of the fibres of Ṫ θM is homotopic to Sn, therefore
the forgetful map

Γc(Ṫ
θM) −→ Γc(ṪM)

induces a bijection on connected components. We write Ṫ 1,θM for the analogous
construction with T 1M .
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Definition 4.4 Define the linear scanning map

S θ : Cδk(M ; θ) −→ Γ(Ṫ 1,θM)

by sending a configuration (q, ε, f) to the section whose value at a point x ∈M is
S (q, ε)(x) together with the label f |x if S (q, ε)(x) 6=∞.

Let D be the unit n-dimensional open disc, let Ḋ be its one-point com-
pactification and let F be a space. Define ψδ(D;F ) to be the quotient of the
space

⋃
k C

δ
k(Rn; θ : F × Rn → Rn), where two labeled configurations (q, ε, f) and

(q′, ε′, f ′) are identified if q ∩D = q′ ∩D, f |Bε(q) = f ′|Bε(q) for all q ∈ q ∩D, and
either q ∩D = ∅ or ε = ε′.

Let ψδ(T 1M ; θ) be the result of applying this construction fibrewise to the unit
ball of the tangent bundle of M and the fibre bundle θ, so that

ψδ(T 1M ; θ) =
⋃
x∈M

ψδ(T 1
xM ; θ−1(x)).

Definition 4.5 The non-linear scanning map with labels in θ

sθ,γ : Cδ,γk (M ; θ) −→ Γ(ψδ(T 1M ; θ))

sends a configuration (q, ε, {fq}q∈q) to the section that assigns to the point x ∈M
the triple (q′, ε′, {f ′}q′∈q′), where (q′, ε′) = s(q, ε) ∈ ψδ(T 1

xM), and f ′q′ is constant

with value fq(x) if q′ = 1
γ exp−1(q).

There are fibrewise maps

i : Ṫ 1,θM ↪→ ψδ(T 1M ; θ)

h : ψδ(T 1M ; θ) −→ Ṫ 1,θM

defined by i(∞) =∞, h(∞) =∞ and

i(q, y) = (q, δ/2, f) with f constant with value y

h(q, ε, {fq}q∈q) =

{(
q

qsecond
, f (q)

)
if qfirst < qsecond and q ∈ q with ‖q‖ = qfirst,

∞ if qfirst = qsecond

which are mutually fibrewise homotopy inverses by the same argument as on page
16 (where the definition of qsecond is also given).

In Appendix B we show that the stabilisation map with labels induces an iso-
morphism in a range ∗ 6 µ[M ; θ](k), and we give lower bounds for it in Proposition
B.3 and Remark B.4 – these are either the same or one degree less than the lower
bounds given on page 2 for unlabelled configuration spaces.

In Appendix C we give a proof of McDuff’s theorem with labels, as follows
(where ν[M ; θ] is the range in which the scanning map for M is an isomorphism on
homology):

Theorem 4.6 Let θ : E →M be a fibre bundle with path-connected fibres. If M is
non-compact then we have

ν[M ; θ](k) = min
j>k
{µ[M ; θ](j)}.

The inequality ν[M ; θ] > ν[M r {∗}; θ|Mr{∗}] holds for all M , so the function
ν[M ; θ] diverges for all M .
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4.2. Homological stability. The fibrewise homotopy equivalences of Lemma 2.5
lift to fibrewise homotopy equivalences of θ∗Ṫ 1M(p), which in turn descend to fibre-

wise homotopy equivalences Ṫ 1,θM(p) if and only if they fix the section at infinity
(c.f. cofibration (4.1)). This implies that σ0 = ι in that lemma, and therefore each
of these fibrewise homotopy equivalences sends sections of degree k to sections of
degree rk. Hence we only recover part of Theorem A and the whole of Theorem B:

Theorem A′ If M is a closed, connected manifold with trivial Euler characteristic,
then H∗(Ck(M ; θ)) ∼= H∗(Cj(M ; θ)) in the stable range with labels if k and j have
the same p-adic valuation.

Theorem B′ If v is a non-vanishing vector field on a connected manifold M and p -
r, then the r-replication map ρθr with labels induces isomorphisms in Z(p)-homology
in the stable range with labels.

Proof. The relevant diagram is the following:

Cδ,γk
sθ,γ //

ρr

��

Γc(ψ
δ(T 1M ; θ))

��

Γc(Ṫ
1,θM)

��

ioo

C
δ,γ/r
rk

sθ,γ/r // Γc(ψ
δ(T 1M ; θ))

h // Γc(Ṫ
1,θM)

The argument in the proof of Theorem B generalizes step by step to give that the left
hand-side square commutes up to homotopy and that the rightmost vertical arrow
is given by postcomposition with a bundle map which on the fibre over x ∈ M
induces a map

F //

Id

��

F × Sn

Id×fr
����

// ΣnF+

��

F // F × Sn // ΣnF+

where F = θ−1(x), fr is a degree r map, hence the rightmost vertical map is a
Z[ 1

r ]-homotopy equivalence. degree r between sphere bundles. �

Let θ be the projection S(TM) → M . Recall the definition of the intrinsic
replication map ろr : Cδk(M ; θ) −→ Cδrk(M ; θ) from page 4.

Theorem C If M is a connected smooth manifold and ` is a set of primes not di-
viding an integer r, then the map ろr : Cδk(M ; θ)→ Cδrk(M ; θ) induces isomorphisms
on homology with Z(`)-coefficients in the stable range with labels.

Proof. Define σr : ψ(TM ; θ) → ψ(TM ; θ) to be the fibrewise version of ろr com-
posed with 2 as in the proof of Theorem B. The first square in the following dia-
gram

Cδ,γk (M ; θ)
sθ,γ //

ろr
��

Γc(ψ
δ(T 1M ; θ))

σr

��

Γc(Ṫ
1,θM)k

ioo

hσri

��

C
δ,γ/r
k (M ; θ)

sθ,γ/r // Γc(ψ
δ(T 1M ; θ))

h // Γc(Ṫ
1,θM)rk.

(4.3)

commutes, by the same argument as the first step the proof of Theorem B. Therefore
we obtain a fibrewise map hσri on the right hand side. The map hσri is obtained
by postcomposition with a fibrewise map g : Ṫ 1,θM → Ṫ 1,θM . The map gx on the
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fibre over the point x restricts to the identity on the points at infinity, therefore it
extends to the following diagram of cofibre sequences

S(TxM)× {∞}

Id

��

// S(TxM)× Ṫ 1
xM //

f

��

Ṫ 1,θ
x M

gx

��

S(TxM)× {∞} // S(TxM)× Ṫ 1
xM // Ṫ 1,θ

x M

where the leftmost horizontal maps are the inclusion of the points at infinity. After
localizing the diagram at `, the map f(`) is a map of sphere bundles that induces
a map of degree r on fibres (as in the proof of Theorem B). Since r is a unit in
Z(`), it follows that f(`) is a homotopy equivalence, and therefore that (gx)(`) is too.
Since g(`) induces a homotopy equivalence on fibres, it follows (using Theorem 3.3
of [Dold, 1963]) that g(`) is a fibrewise homotopy equivalence, and therefore that
(hσri)(`) is a homotopy equivalence. �

If the bundle θ : E →M factors through S(TM) and has path-connected fibres
(for instance the oriented frame bundle of TM , if M is orientable), then Theorem
C generalises to:

Theorem C′ If ` is a set of primes, none of them dividing the integer r, then the
intrinsic replication map with labels

ろr : Ck(M ; θ) −→ Crk(M ; θ)

induces isomorphisms on homology with Z(`) coefficients in the stable range with
labels.

5. Homological stability via vector fields with exactly one zero

We now use some different techniques to extend our results a bit further for
homology with field coefficients. Section spaces are not involved in this part; instead
we apply Theorem B (homological stability with respect to the r-replication map)
to M r {∗} and classical homological stability for M r {∗} to obtain Theorem D.

5.1. Vector fields. LetM be a closed connected manifold with Euler characteristic
χ.

Definition 5.1 Given a vector field v ∈ Γ(TM) with an isolated zero z ∈M , define
the degree degv(z) of z as follows. Choose a coordinate chart U ∼= Rn, with z ∈ U
corresponding to 0 ∈ Rn, such that v has no other zeros in U . The differential of the
diffeomorphism U ∼= Rn is a bundle isomorphism TM |U = TU ∼= TRn = Rn × Rn.
The restriction of v to U r {z} therefore determines a map Rn r {0} → Rn r {0}.
The degree of this map is by definition degv(z).

A simple observation is that M admits a vector field with at most one zero,
which will therefore have index χ by the Poincaré-Hopf theorem. Moreover we can
choose exactly what this zero looks like locally:

Lemma 5.2 Suppose we are given a vector field v on a closed ball B ⊆ M with
exactly one zero which lies in its interior and has index χ. Then this extends to a
vector field v̂ on M which is non-vanishing on M rB.

Proof. First choose a vector field w on M which has only isolated (and therefore
finitely many) zeros. Choose a larger closed ball B′ ⊃ B and a trivialisation of
TM |B′ . Now homotope w if necessary so that all its zeros lie in int(B′) r B. The
restriction of w to ∂B′ is a map ∂B′ → Rn r {0}, whose degree is the sum of the
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degrees of all zeros of w, which is χ by the Poincaré-Hopf theorem. The restriction
of the vector field v to ∂B is a map ∂B → Rn r {0} which also has degree χ
by assumption. Since any two maps Sn−1 → Rn r {0} of the same degree are
homotopic, there is a map x : B′r int(B) ∼= Sn−1× [0, 1]→ Rnr{0} agreeing with
w on ∂B′ and with v on ∂B. We can therefore define v̂ to be equal to v on B, x
on B′ rB and w on M rB′. �

5.2. A cofibre sequence of configuration spaces. Choose a Riemannian metric
on M and an isometric embedding D ↪→ M of the closed unit disc D ⊆ Rn.
Following [Randal-Williams, 2013a, §6] we define Uk(M) to be the subspace of
Ck(M) of configurations which have a unique closest point in D to its centre 0 ∈ D.
There is an open cover of Ck(M) given by the subsets Uk(M) and Ck(M r {0}),
with intersection Uk(M r {0}). By excision, the induced map of mapping cones

(Uk(M), Uk(M r {0})) −→ (Ck(M), Ck(M r {0})) (5.1)

is a homology equivalence. The space Uk(M) decomposes up to homeomorphism
as Dn×Ck−1(M r{0}) and similarly Uk(M r{0}) ∼= (Dnr{0})×Ck−1(M r{0}),
so the left-hand side of (5.1) is homeomorphic to

(Dn, Dn r {0}) ∧ Ck−1(M r {0})+.

Composing with the homotopy equivalence ∂Dn → Dnr{0} we obtain the following
diagram:

Ck(M r {0}) Ck(M) (Ck(M), Ck(M r {0}))

Sn−1 × Ck−1(M r {0}) Dn × Ck−1(M r {0}) Σn(Ck−1(M r {0})+)

tk−1 (?) (5.2)

where the rows are cofibre sequences and the rightmost vertical map (?) is a ho-
mology equivalence. The map tk−1 may be described as radially expanding the
configuration in Ck−1(M r {0}) away from 0 until it has no points in D, and then
adding the point in Sn−1 = ∂D to the configuration.

Remark 5.3 Note that the bottom left horizontal map of (5.2) is homotopy split-
surjective, so the maps

Σn−1(Ck−1(M r {0})+) 99K Sn−1 × Ck−1(M r {0}) −→ Dn × Ck−1(M r {0})

induce split short exact sequences on homology, corresponding to the Künneth
decomposition for Sn−1 × Ck−1(M r {0}). The dotted arrow is the connecting
homomorphism and only exists on homology.

The upshot of this discussion is the following lemma, where 99K indicates a
map which is only defined on homology.

Lemma 5.4 There are maps Ck(M r {0}) −→ Ck(M) 99K Σn(Ck−1(M r {0})+)
which induce a long exact sequence on homology. The connecting homomorphism
is the composite

Σn−1(Ck−1(M r {0})+) 99K Sn−1 × Ck−1(M r {0}) −→ Ck(M r {0}).

The first of these two maps is the inclusion of a direct summand of the homology
of Sn−1 × Ck(M r {0}) and the second is the map tk−1 described above.

5.3. Configuration spaces on cylinders. For the remainder of this section n =
dim(M) will always be assumed even.
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Some natural homology classes. We will need to do some calculations inside
the homology group Hn−1(Ck(Rn r {0});Z) of punctured Euclidean space. There
are certain natural elements of this group which one can write down. For example
we have the following elements (see also Figure 5.1):

(a) For any 0 6 j 6 k − 1 we have a map ∆j : Sn−1 → Ck(Rn r {0}) which
sends v ∈ Sn−1 to the configuration {v, p1, . . . , pk−1}, where p1, . . . , pk−1 are
arbitrary fixed points in Rn r {0} with |pi| < 1 for i 6 j and |pi| > 1 for i > j.
By abuse of notation we denote the element (∆j)∗([S

n−1]) simply by ∆j ∈
Hn−1(Ck(Rn r {0});Z). We will systematically use this abuse of notation for
maps Sn−1 → Ck(Rn r {0}).

(b) We also have a map π : RPn−1 → Ck(Rnr{0}) which sends {v,−v} ∈ RPn−1 =
Sn−1/ ∼ to the configuration {2+v, 2−v, p1, . . . , pk−2}, where 2 = (2, 0, . . . , 0)
and p1, . . . , pk−2 are fixed points in Rn r B1(2). This gives us an element
π ∈ Hn−1(Ck(Rn r {0});Z).

(c) Composing this map with the double covering Sn−1 → RPn−1 gives a map
representing 2π. This is homotopic to the map τ : Sn−1 → Ck(Rnr{0}) which
sends v ∈ Sn−1 to the configuration {p1, s(v), p2, . . . , pk−1}, where s : Sn−1 →
Rnr{0} is an embedding so that p1 is in the interior of s(Sd−1) and 0, p2, . . . , pk−1

are in its exterior.
(d) More generally, for any 1 6 j 6 k−1 we can define a map τj : Sn−1 → Rnr{0}

which sends v ∈ Sn−1 to the configuration {p1, . . . , pj , s(v), pj+1, . . . , pk−1},
where p1, . . . , pj are in the interior of s(Sn−1) and 0, pj+1, . . . , pk−1 are in its
exterior. So τ1 = τ = 2π.

∆3 π τ2

Figure 5.1. Examples of homology classes in H1(C6(R2 r {0});Z).
The small circle denotes the puncture 0 and bullets denote points of the
configuration.

Relations between homology classes. Let Pn denote the closed n-dimensional
disc Dn with two open subdiscs (whose closures are disjoint) removed; this is the
n-dimensional pair-of-pants. Consider the map r : Pn → Ck(Rn r {0}) pictured in
Figure 5.2. The image r∗([∂P

n]) of the fundamental class of its boundary is the class
∆j+1−∆j−τ1, which is therefore equal to zero in Hn−1(Ck(Rnr{0});Z). Similarly
the map r′ : Pn → Ck(Rnr{0}) pictured in Figure 5.2 shows that τj+1−τj−τ1 = 0.
Hence by induction and the fact that τ1 = 2π we have

∆j = ∆0 + 2jπ and τj = 2jπ. (5.3)

Now let ∆̂ denote the image of the fundamental class under the map Sn−1 →
Ck(Rnr {0}) which sends v to {v, 2v, . . . , kv}. This map can be homotoped to the
map

Sn−1 −→ Sn−1 ∨ · · · ∨ Sn−1 −→ Ck(Rn r {0}) (5.4)



STABILITY FOR CONFIGURATIONS IN CLOSED MANIFOLDS 25

. . . . . .

r

. . . . . .

r′

Figure 5.2. Pictures of maps r, r′ : Pn → Ck(Rn r {0}) such that
r∗([∂P

n]) = ∆j+1−∆j−τ1 and r′∗([∂P
n]) = τj+1−τj−τ1. In each case

there are j + 1 fixed points in the bounded white region and k − j − 2
fixed points in the unbounded white region. The remaining point is in
the shaded region; its position is parametrised by Pn.

which collapses k − 1 equators to get a wedge sum of k copies of Sn−1 and then
applies the maps ∆0, . . . ,∆k−1 on these summands. To see this, note that the k−1
equators divide Sn−1 into k slices (see Figure 5.3) and let qi : S

n−1 → Sn−1 be the
quotient map that collapses everything but the ith slice of the sphere to a point.
Note that the map q{1,...,k} : Sn−1 → Ck(Rnr {0}) defined by sending v ∈ Sn−1 to
{q1(v), 2q2(v), . . . , kqk(v)} is precisely the map (5.4) described above. On the other
hand, each qi is homotopic to the identity, and these homotopies assemble to give
a homotopy from q{1,...,k} to v 7→ {v, 2v, . . . , kv}.

Figure 5.3. The slices of Sn−1 when k = 5.

Hence ∆̂ = ∆0 + · · ·+ ∆k−1 and so by (5.3),

∆̂ = k∆0 + k(k − 1)π. (5.5)

Similarly we let τ̂ denote the image of the fundamental class under the map Sn−1 →
Ck(Rnr{0}) which sends v to p1+{0, v, 2v, . . . , (k−1)v}, where p1 is a fixed point in
Rn with |p1| > k. Just as above, we can homotope this to see that τ̂ = τ1 + · · · τk−1

and so by (5.3),

τ̂ = k(k − 1)π. (5.6)

One can see this very directly in the case n = 2. In this case we are talking
about H1(Ck(R2);Z) = βk/[βk, βk] = Z{π}, where βk denotes the braid group on k
strands. Any one of the standard generators σ1, . . . , σk−1 of βk, which interchange
two consecutive strands, is sent to the generator π. The element τ̂ is the image
of the full twist of all k strands, which can be written as a product of k(k − 1)
generating elements, and so after abelianisation we have τ̂ = k(k − 1)π.

We now apply the above discussion to prove the following:

Lemma 5.5 For any map f : Sn−1 → Sn−1 define σf : Sn−1 → Ck(Rn r {0}) by

sending v to {v, v+ 1
kf(v), . . . , v+ k−1

k f(v)}. Denoting the image of the fundamental
class under this map also by σf we have

σf = k∆0 + deg(f)k(k − 1)π. (5.7)
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Proof. Note that if deg(f) = 1 then σf = σid = ∆̂ so this is just (5.5). In general
this can be seen as follows. Write d = deg(f) and first assume that d > 0.

Denote the constant map to the basepoint by ∗ : Sn−1 → Sn−1 and the map
Sn−1 → Sn−1 ∨ · · · ∨ Sn−1 which collapses d − 1 equators by cd. Then σf can be
homotoped to the map

v 7→
{
s(v), s(v) + 1

kg(v), . . . , s(v) + k−1
k g(v)

}
where s = (id + ∗+ · · ·+ ∗) ◦ cd and g = (id + id + · · · + id) ◦ cd, which is in turn

homotopic to the map (∆̂ + τ̂ + · · ·+ τ̂) ◦ cd : Sn−1 → Ck(Rnr {0}). Therefore the

homology class σf is equal to ∆̂ + (d− 1)τ̂ , which is the claimed formula by (5.5)
and (5.6).

If d 6 0 we can instead take s = (id + ∗+ · · ·+ ∗) ◦ c2−d and g = (id + r+ · · ·+
r) ◦ c2−d, where r is a reflection of Sn−1, to see that σf is homotopic to the map

(∆̂+ τ̂ ◦r+ · · ·+ τ̂ ◦r)◦c2−d. The image of the fundamental class [Sn−1] under τ̂ ◦r
is just −τ̂ , so we again get that the homology class σf is equal to ∆̂ + (d− 1)τ̂ . �

Remark 5.6 Rationally, the (n − 1)st homology of Ck(Rn r {0}) is known to be
two-dimensional by the presentation of the bigraded Q-algebra H∗(C∗(Rnr{0});Q)
given in Proposition 3.4 of [Randal-Williams, 2013b]. Specifically, it is generated
by the elements ∆0 and ∆1, corresponding to [k − 1] ·∆ and [k − 2] ·∆ · [1] in the
notation of the cited paper.

5.4. Proof of Theorem D. Abbreviate Cl(M r {0}) by just Cl. Fix a field F of

characteristic p > 0 and write H̃∗(−) = H̃∗(−;F). Recall from Lemma 5.4 that we
have a long exact sequence on homology

· · · −→ H̃∗(Σ
n−1((Ck−1)+)) −→ H̃∗(Ck) −→ H̃∗(Ck(M)) −→ · · ·

and denote the left-hand map above by Tk,∗. By exactness we have:

dim(H̃∗(Ck(M))) = dim(codomain(Tk,∗)) + dim(domain(Tk,∗−1))

− rank(Tk,∗)− rank(Tk,∗−1).
(5.8)

Hence in order to identify H̃∗(Ck(M)) and H̃∗(Crk(M)) in a range it suffices to
identify the linear maps Tk,∗ and Trk,∗ in a range.

Proof of Theorem D. Fix a positive integer r > 2 coprime to p. We will construct
maps a, b and c such that the square

Sn−1 × Ck−1 Sn−1 × Crk−r Sn−1 × Crk−1

Ck Crk

a b

c

tk−1 trk−1 (5.9)

commutes on homology with coefficients in F. Applying H̃∗(−) and restricting to
a direct summand (see Remark 5.3) on the top row gives a commutative square

H̃∗+1(Σn(Ck−1)+) H̃∗+1(Σn(Crk−r)+) H̃∗+1(Σn(Crk−1)+)

H̃∗(Ck) H̃∗(Crk).

α β

c∗

Tk,∗ Trk,∗ (5.10)
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Throughout this section we will abbreviate µ = µ[M r {0}] and ν = ν[M r {0}].
Recall that we defined the function

λ(k) = λ[M ](k) = min{ν(k), ν(k − 1) + n− 1, µ(rk − i) | i = 2, . . . , r},

where n is the dimension of M . We will show that α, β and c∗ are isomorphisms
in the range ∗ 6 λ(k), therefore identifying the maps Tk,∗ and Trk,∗ in this range.

Hence by (5.8) the vector spaces H̃∗(Ck(M)) and H̃∗(Crk(M)) have the same di-
mension for ∗ 6 λ(k), which is Theorem D.

Remark 5.7 The first two terms of λ(k) come from our use of the replication map
and Theorem B, which tells us that the r-replication map induces isomorphisms
in the stable range ν. The remaining terms come from our use of the classical
stabilisation map, which by definition induces isomorphisms in the range µ. If we
assume that µ is non-decreasing (so ν = µ) and r, k > 2 then the range ∗ 6 λ(k)
simplifies to

∗ 6 min{µ(k), µ(k − 1) + n− 1}.
For example if µ(k) = ak + b then this is

∗ 6 ak + b if n > a+ 1

∗ 6 ak + b− (a+ 1− n) if n < a+ 1,

i.e. the same as the stable range, except possibly shifted down by a constant if the
manifold is low-dimensional compared to the slope of the stable range.

Constructing the maps. Fix a basepoint 0 ∈M . By Lemma 5.2 we can choose
a vector field v on M which is non-vanishing except possibly at 0. This has an
associated one-parameter family of diffeomorphisms φt. Define the r-replication
map

ρr,k : Ck(M r {0}) −→ Crk(M r {0})
to take a configuration c = {x1, . . . , xk} to the configuration

{φit/r(x1), . . . , φit/r(xk) | 0 6 i 6 r − 1},

where t = t(c) > 0 is sufficiently small that φs(xi) 6= φu(xj) for s, u ∈ (0, t)
unless i = j and s = u. This agrees up to homotopy with the earlier definition of
the r-replication map under the identifications Cδk(M r {0}) ' Ck(M r {0}) and
Cδrk(M r {0}) ' Crk(M r {0}). We now define

a = id× ρr,k−1

b = (pr1, trk−2) ◦ · · · ◦ (pr1, trk−r)

c = ρr,k.

In other words a and c replace each point of the configuration by r copies in the
direction determined by the vector field, whereas b adds r − 1 new points near the
missing point 0 in the direction determined by the vector in Sn−1.

Isomorphisms in a range. The vector field is non-vanishing on M r {0}, so
Theorem B tells us that the r-replication map ρr,k induces isomorphisms in the
stable range on homology with Z(p) coefficients, and hence also with F coefficients.
Hence c∗ is an isomorphism in the stable range ∗ 6 ν(k).

The map ρr,k−1 induces isomorphisms on F-homology up to degree ν(k − 1),
so its suspension Σn((ρr,k−1)+) induces isomorphisms up to degree ν(k − 1) + n.

The map that this induces on H̃∗+1(−) is α, which is therefore an isomorphism in
the range ∗ 6 ν(k − 1) + n− 1.
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For the map β consider the map of (trivial) fibre bundles

Sn−1 × Crk−i Sn−1 × Crk−i+1

Sn−1

(pr1, trk−i)

for i = 2, . . . , r. Its fibre over a point in Sn−1 is the classical stabilisation map and
therefore induces isomorphisms on F-homology up to degree µ(rk − i). Hence by
the relative Serre spectral sequence the map (pr1, trk−i) also induces isomorphisms
on F-homology in this range. So the map b induces isomorphisms on F-homology
up to degree min{µ(rk − i) | 2 6 i 6 r}.

In general, for a map f : Sd × A → Sd × B over Sd, the map on homology
under the Künneth isomorphism, f∗ : H∗(A) ⊕ H∗−d(A) → H∗(B) ⊕ H∗−d(B), is
triangular – more precisely the component H∗(A) → H∗−d(B) is zero. To see this
note that a representing cycle c for an element in the H∗(A) component can be
taken to have support in a single fibre. Since f is a map over Sd the image f](c)
will also have support in a single fibre, and therefore the image f∗([c]) will be in the
H∗(B) component of the Künneth decomposition of the right-hand side. Hence if
f induces an isomorphism on homology, it also restricts to isomorphisms between
each of the direct summands in the Künneth decompositions of the source and
target. Applying this fact to the map b we obtain that β is an isomorphism in the
range ∗ 6 min{µ(rk − i) | 2 6 i 6 r}.

Hence each of α, β and c∗ are isomorphisms in the range ∗ 6 λ(k).

Commutativity. It therefore remains to show that the square (5.9) commutes on
F-homology. Choose a coordinate neighbourhood U ∼= Rn of 0 ∈M and define the
map

ζ : Cr(Rn r {0})× Ck−1(M r {0}) −→ Crk(M r {0}) (5.11)

to first apply the map ρr,k−1 to the configuration in M r {0}, i.e. replace each
point by r copies according to the vector field, then push the resulting configuration
radially away from 0 so that it is disjoint from U , and finally insert the configuration
of r points in Rnr {0} = U r {0} into the vacated space. Choosing a trivialisation
of TM over U ∼= Rn, the vector field v restricts to a map Rn → Rn which is non-
vanishing on Sn−1, so we may rescale it to obtain a map f : Sn−1 → Sn−1. Recall
from Lemma 5.5 that such a map induces a map σf : Sn−1 → Cr(Rn r {0}). One
can then easily see that the two ways c ◦ tk−1 and trk−1 ◦ b ◦ a around the square
(5.9) are homotopic to

ζ ◦ (σf × id) and ζ ◦ (σid × id) : Sn−1 × Ck−1(M r {0}) −→ Crk(M r {0})

respectively. It suffices to show that σf and σid : Sn−1 → Cr(Rn r {0}) induce the
same map on F-homology, and we only need to check this on the fundamental class.
Using our abuse of notation from §5.3 this means that we just need to check that
the homology classes σf and σid in Hn−1(Cr(Rn r {0});F) are equal.

The degree of f : Sn−1 → Sn−1 is χ by the Poincaré-Hopf theorem (c.f. Defi-
nition 5.1) so by Lemma 5.5 we have

σf = r∆0 + χr(r − 1)π

σid = r∆0 + r(r − 1)π
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in Hn−1(Cr(Rn r {0});Z). Their difference is (χ − 1)r(r − 1)π, which is divisible
by p = char(F) by hypothesis. Hence the difference σf − σid is indeed zero in
Hn−1(Cr(Rn r {0});F), and so the square (5.9) commutes on F-homology. �

5.5. The case of the two-sphere. For M = S2 we have the well-known calcu-
lation H1(Ck(S2);Z) ∼= Z/(2k − 2)Z for k > 2 obtained from a presentation for
π1(Ck(S2)) (see [Fadell and Van Buskirk, 1962]). The degree-one Fp-homology
is therefore either one- or zero-dimensional, depending on whether p | 2k − 2 or
not. So the statement of Theorem D in degree 1 for M = S2 for mod-p coeffi-
cients reduces to the following purely number-theoretic statement: if p is a prime
and r is a positive integer such that p | r − 1 then p | 2k − 2 if and only if
p | 2rk − 2. This is of course obviously true: we have r − 1 = ap for some a, so
2rk − 2 = 2k + 2kap− 2 ≡ 2k − 2 (mod p).

5.6. Generalisation to configurations with labels in a bundle. Theorem
D generalises directly to configuration spaces Ck(M ; θ) with labels in a bundle
θ : E →M with path-connected fibres.

Theorem D′ Let M be a closed, connected, smooth manifold with Euler charac-
teristic χ and let θ : E → M be a fibre bundle with path-connected fibres. Choose
a field F of positive characteristic p and let r > 2 be an integer coprime to p such
that p divides (χ− 1)(r − 1). Then there are isomorphisms

H∗(Ck(M ; θ);F) ∼= H∗(Crk(M ; θ);F)

in the range ∗ 6 λ[M ; θ](k).

The function λ[M ; θ] is defined just as λ[M ], namely:

λ[M ; θ](k) = min{ν(k), ν(k − 1) + n− 1, µ(rk − i) | i = 2, . . . , r},

where µ = µ[M?; θ?], ν = ν[M?; θ?] and M?, θ? denote M r {∗} and θ|Mr{∗}
respectively. These two functions are defined analogously to Definition 1.1, using
the stabilisation and scanning maps for configuration spaces with labels in a bundle.

In the remainder of this subsection we sketch how to generalise the proof of
Theorem D to a proof of Theorem D′. The proof follows the same steps. In §5.2
one has to additionally choose a trivialisation of θ over the embedded disc D ⊆M ,
and analogously to Lemma 5.4 there is a cofibre sequence

Ck(M?; θ?) −→ Ck(M ; θ) 99K Σn((F × Ck−1(M?; θ?))+),

where F is the typical fibre of θ. The description of the connecting homomorphism
for the long exact sequence on homology is exactly analogous, using the triviali-
sation of θ over D to determine the label of the new point which is added to the
configuration near 0 ∈ D.

In the diagram (5.9) the top three spaces are replaced by their cartesian prod-
ucts with F . The maps c∗ and α are isomorphisms in the range ∗ 6 λ(k) for the
same reasons as before, using Theorem B′ instead of Theorem B. The map b is a
composition of maps of fibre bundles over F × Sn−1 and the maps of fibres are
classical stabilisation maps for configuration spaces with labels in a bundle, and so
are isomorphisms on homology in the stable range for the stabilisation map (c.f.
Proposition B.3 and the appendix of [Kupers and Miller, 2014a]). The rest of the
argument that β is an isomorphism in the range ∗ 6 λ(k) goes through as before.

For commutativity: the map ζ can be defined similarly, using the chosen triv-
ialisation of θ over D. The input is now a configuration of k− 1 points in M r {0}
with labels in θ and a configuration of r points in Rnr{0} with labels in the trivial
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bundle with fibre F , and the output is a configuration of rk points in M r {0}
with labels in θ. The map f : Sn−1 → Sn−1, corresponding to the restriction of the
vector field to ∂D, induces a map σf : F ×Sn−1 → Cr(Rnr {0};F ). The two ways
around the square (5.9) are homotopic to ζ ◦ (σf × id) and ζ ◦ (σid × id). Hence we
just need to show that σf and σid : F × Sn−1 → Cr(Rn r {0};F ) induce the same
map on F-homology.

Now as in §5.3 we need to find formulas, in terms of more basic classes, for
(σf )∗(x), for any class x ∈ H∗(F × Sn−1). Previously we showed that when F = ∗
and x = [Sn−1] we have

(σf )∗([S
n−1]) = r∆0 + deg(f)r(r − 1)π ∈ Hn−1(Cr(Rn r {0});Z).

By the Künneth decomposition H∗(F ×Sn−1) = H∗(F )⊕H∗−n+1(F ) it suffices to
show that (σf )∗(x× [∗])− (σid)∗(x× [∗]) and (σf )∗(x× [Sn−1])− (σid)∗(x× [Sn−1])
are zero on F-homology for any class x ∈ H∗(F ). It is easy to see that in fact

(σf )∗(x× [∗]) = (σid)∗(x× [∗]) ∈ H∗(Cr(Rn r {0};F );Z)

and therefore also on F-homology. One can define classes π(x),∆i(x), τi(x) etc. in
H∗+n−1(Cr(Rn r {0};F );Z) just as in §5.3 and by the same arguments as before
we have

(σf )∗(x× [Sn−1]) = r∆0(x) + deg(f)r(r − 1)π(x) ∈ H∗+n−1(Cr(Rn r {0};F );Z).

Hence (σf )∗(x× [Sn−1])− (σid)∗(x× [Sn−1]) is equal to (deg(f)− 1)r(r− 1)π(x) =
(χ−1)r(r−1)π(x) and is therefore zero on F-homology since p divides (χ−1)(r−1).
This completes the sketch of the proof of Theorem D′.

5.7. Combining Theorems A and D. We now prove Corollary E, concerning the
homology of configuration spaces on even-dimensional manifolds with coefficients
in a field of odd characteristic. In fact, our methods also partially recover the
known homological stability results for odd-dimensional manifolds and for fields of
characteristic 2 or 0. The complete statement of what may be deduced by combining
Theorems A and D is as follows:

Corollary 5.8 Let M be a closed, connected, smooth manifold with Euler charac-
teristic χ and let F be a field of characteristic p. Then, in the stable range (resp.
the range ∗ 6 λ(k) for lines 4–9 ), the homology group H∗(Ck(M);F) depends only
on the quantity stated in Table 5.1.

Proof. The first two lines follow directly from the odd part of Theorem A, noting
that a map of spaces which induces an isomorphism with Z[ 1

2 ] coefficients also
induces isomorphisms with coefficients in any field of characteristic different from
2. The third line follows directly from the even part of Theorem A, since a map
of spaces inducing isomorphisms on homology with Z(p) coefficients also induces
isomorphisms with Q or Fp coefficients, and therefore with coefficients in any field
of characteristic 0 or p. (Given j, k in the stable range and not equal to χ

2 , choose
any prime p which divides neither 2j − χ nor 2k − χ and apply Theorem A to get
an isomorphism with Z(p) coefficients.)

For the fourth line there are two cases to consider. For the first case suppose
that (2j − χ)p = (2k − χ)p 6 (χ)p. In this case the result follows from Theorem

A. Now suppose that (2j − χ)p, (2k − χ)p > (χ)p and write x′ for x/p(x)p for each
number x. The assumption implies that (j)p = (χ)p = (k)p and that p divides both
2k′ − χ′ and 2j′ − χ′, so that j′ ≡ k′ 6≡ 0 mod p. Hence we may choose l such that
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dimension conditions H∗(Ck(M);F) depends only on ]

odd p 6= 2 — — 1 A
p = 2 — parity of k 2 A

even p = 0 — whether 2k = χ 1 or 2∗ A

p odd — min{(2k − χ)p, (χ)p + 1} (χ)p + 2 A,D
χ 6≡ 0 mod p whether p divides 2k − χ 2 A,D
χ ≡ 1 mod p — 1 A,D

p = 2 — (k)2 ∞ D
(χ)2 > 1 min{(k)2, (χ)2} (χ)2 + 1 A,D
(χ)2 = 1 parity of k 2 A,D

Table 5.1. The second-from-right column is the maximum number
of different values of H∗(Ck(M);F) in the stable range (resp. the range
∗ 6 λ(k) in lines 4–9). The rightmost column indicates which theorem(s)
each line follows from.
∗ There is only one “stable homology” on the third line, although when χ
is even there may be a single exception in the stable range when k = χ

2
.

lk′ ≡ 1 mod p, so that by Theorem D we have:

p|(lj′ − 1) so H∗(Ck(M);Fp) ∼= H∗(Clj′k(M);Fp) for ∗ 6 min(λ(k), λ(lj′k)),

p|(lk′ − 1) so H∗(Cj(M);Fp) ∼= H∗(Clk′j(M);Fp) for ∗ 6 min(λ(j), λ(lk′j)).

Since lj′k = lk′j we have the required isomorphism in the intersection of these two
ranges. Note that l may be chosen arbitrarily large and λ is divergent, so this is
precisely the range ∗ 6 min(λ(k), λ(j)).

The fifth line is the special case of the fourth line when (χ)p = 0.

Sixth line: Suppose that ∗ 6 min(λ(k), λ(j)); we will consider three cases.
First, if j and k are both in pZ then (2j − χ)p = 0 = (2k − χ)p, so we have an
isomorphism H∗(Cj(M);F) ∼= H∗(Ck(M);F) by Theorem A. Second, if j and k are
both not in pZ then (j)p = 0 = (k)p and the isomorphism follows from Theorem
D (since p | χ − 1, we may take r in Theorem D to be any integer coprime to p).
Finally, suppose that j ∈ pZ and k /∈ pZ. Then

(2j − χ)p = 0 = (2(jkl + χ)− χ)p and (jkl + χ)p = 0 = (k)p

for any l. Since λ diverges and l may be chosen arbitrarily large we have an
isomorphism H∗(Cj(M);F) ∼= H∗(Ck(M);F) by Theorems A and D.

The seventh line follows directly from Theorem D: when p = 2 we may take r
to be any odd integer, so there are isomorphisms in the range ∗ 6 min(λ(j), λ(k))
between any j, k with the same 2-adic valuation. To deduce the eighth line from the
seventh we need to show that there are isomorphisms in this range whenever (j)2

and (k)2 are both at least (χ)2. In this case we have (2k− χ)2 = (χ)2 = (2j − χ)2,
and so we can apply Theorem A (since we assumed that χ is even). Finally, the
ninth line is a special case of the eighth line. �

Appendix A. The stability range for the torsion in configuration
spaces

In this appendix we show that the stable range for homological stability of
unordered configuration spaces may be improved to have slope 1 when taking Z[ 1

2 ]
coefficients. We note that this has also recently been proved by a different method
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by [Kupers and Miller, 2014b]. We begin by proving this in a larger range when
M = Rn using Salvatore’s description [Salvatore, 2004] of Cohen’s calculations
[Cohen et al., 1976], and then use this to deduce the slope 1 statement for general
open, connected manifolds M . Our method for this second step is a slight variation
of an argument due to Oscar Randal-Williams in [Randal-Williams, 2013a, §8].

From Salvatore’s description [Salvatore, 2004, page 537] of the homology of
C(Rn) (based on [Cohen et al., 1976, page 227]), we obtain the following. A non-
empty sequence of positive integers I = (i1, . . . , i`(I)) with `(I) > 0 is said to be
(n, p)-admissible if it is weakly monotone and strictly bounded above by n. If p is
odd, an admissible function for I is a function ε : {1, . . . , `(I)} → {0, 1} satisfying

ε(j) ≡ ij + ij−1 mod 2 for 2 6 j 6 `(I).

Observe that ε is determined by I and ε(1). If p = 2, define ε to be constant with
value 0.

If p = 2, then H∗(C(Rn);F2) is isomorphic to the free commutative graded
algebra generated by the symbols Qε(1),I(ι) where I is an (n, p)-admissible sequence
and ε is an admissible function.

If p is odd, then H∗(C(Rn);Fp) is isomorphic to the free commutative graded
algebra generated by the symbols Qε(1),I(ι) where I is an (n, p)-admissible sequence
with i`(I) even and ε is an admissible function for I, and also (if n is even) the
symbols Qε(1),I([ι, ι]) where I is an (n, p)-admissible sequence with i`(I) odd and ε
is an admissible function for I.

The homological degrees of ι := Q∅,∅(ι) and [ι, ι] := Q∅,∅([ι, ι]) are 0 and
n−1, and the configuration degrees are 1 and 2. The homological and configuration
degrees of the other generators are

h(Qε(1),(i1,...,ik)(α)) = ph(Qε(2),(i2,...,ik)(α)) + i1(p− 1)− ε(1)

ν(Qε(1),(i1,...,ik)(α)) = pν(Qε(2),(i2,...,ik)(α)),

where α = ι or [ι, ι]. The degrees of a product of generators are:

h(xy) = h(x) + h(y), ν(xy) = ν(x) + ν(y).

Multiplication by the class ι raises the configuration degree by 1 and hence defines
a homomorphism

H∗(Ck−1(Rn)) −→ H∗(Ck(Rn)),

which is the same as that induced by the stabilisation map.

We say that a class in H∗(Ck(Rn);Fp) is p-inceptive if it is not in the image
of the stabilisation map Ck−1(Rn)→ Ck(Rn) on mod-p homology. By the above a
class is p-inceptive if and only if it is not in the principal ideal generated by ι.

Lemma A.1 In H∗(Ck(Rn);Fp) the first p-inceptive class in a fixed configuration
degree k is given in Table A.1, where a = bk/pc and mp(k) is the remainder af-
ter dividing k by p. Any case not covered in the table has no p-inceptive classes.
Hence by the above discussion the stabilisation map Ck−1(Rn) → Ck(Rn) induces
an isomorphism on H∗(−;Fp) for smaller homological degrees.
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p n k class homological degree

even all even Q0,(1)(ι)
a a

odd odd ∈ pZ Q1,(2)(ι)
a a(2(p− 1)− 1)

odd

3, 5

> 6, even

4
> p, odd Q1,(2)(ι)

a[ι, ι]mp(k)/2 a(2(p− 1)− 1) + (n− 1)mp(k)/2

odd

3, 5

> 6, even

4
even Q1,(2)(ι)

a−1[ι, ι](p+mp(k))/2 (a− 1)(2(p− 1)− 1) + (n− 1)(p+mp(k))/2

6= 2, 3, 5 4
even

> p, odd
Q1,(2)(ι)

m2(k)[ι, ι]bk/2c m2(k)(2(p− 1)− 1) + (n− 1)bk/2c

odd 2 even [ι, ι]k/2 k/2

Table A.1. The first p-inceptive class in degree k.

Proof. First observe that

h(Qε(1),(i1,...,ik)(ι)) > h(Qε(i2),(i2,...,ik)(ι)
p)

ν(Qε(1),(i1,...,ik)(ι)) = ν(Qε(i2),(i2,...,ik)(ι)
p)

h(Qε(1),(i1,...,ik)([ι, ι])) > h(Qε(i2),(i2,...,ik)([ι, ι])
p)

ν(Qε(1),(i1,...,ik)([ι, ι])) = ν(Qε(i2),(i2,...,ik)([ι, ι])
p)

h(Q1,(i)(ι)) 6 h(Qε,(j)(ι))

ν(Q1,(i)(ι)) = ν(Qε,(j)(ι))

where i 6 j in the bottom two rows. Hence the lowest p-inceptive class in a fixed
configuration degree is a product whose factors are

Q1(ι) if p = 2

Q1,(2)(ι) if p odd and n odd

Q1,(2)(ι), [ι, ι] if p odd and n even

[ι, ι] if p is odd and n = 2.

This is enough to deduce the first two rows of the table, as well as the sixth. Second
observe that, if p is odd and n is even, the first configuration degree in which a
power of Q1,(2)(ι) and a power of [ι, ι] both live is 2p, where ν(Q1,(2)(ι)

2) = ν([ι, ι]p),
and

h(Q1,(2)(ι)
2) = 4p− 6 < p(n− 1) = h([ι, ι]p)⇔ n > 6 or n = 4, p = 3, 5,

from which the third, fourth and fifth rows of the table follow. �

Lemma A.1 tells us in particular that for odd primes p the stabilisation map
Ck(Rn) → Ck+1(Rn) induces an isomorphism on homology with Fp coefficients in
the range ∗ 6 k. We now show that this implies that the same is true for the
stabilisation map Ck(M) → Ck+1(M) for any smooth, connected, open manifold
M of dimension at least 3. Our method for this is a slight variation of an argument
due to Oscar Randal-Williams in [Randal-Williams, 2013a, §8].

Proposition A.2 Let M be a smooth, connected, open n-manifold with n > 3 and
let A be an abelian group. If the stabilisation map on A-homology

H∗(Ck(Rn);A) −→ H∗(Ck+1(Rn);A)

is an isomorphism in the range ∗ 6 k then so is the stabilisation map on A-homology

H∗(Ck(M);A) −→ H∗(Ck+1(M);A).
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So by Lemma A.1 the stabilisation map Ck(M)→ Ck+1(M) induces isomorphisms
on homology with Fp coefficients in the range ∗ 6 k for any odd prime p.

This result has also been recently proved by [Kupers and Miller, 2014b] using
a different method along the lines of [Segal, 1979].

Proof. We will just write H∗(−) for H∗(−;A). Define Rk(M) to be the homotopy
cofibre of the stabilisation map Ck(M) → Ck+1(M). Now the stabilisation map
Ck(M)→ Ck+1(M) is split-injective on homology (see [McDuff, 1975, page 103]) so

it induces an isomorphism on homology in degree ∗ if and only if H̃∗(Rk(M)) = 0.

So the hypothesis of the proposition says that H̃∗(Rk(Rn)) = 0 for ∗ 6 k and we

would like to show that H̃∗(Rk(M)) = 0 for ∗ 6 k. We refer to [Randal-Williams,
2013a] for background and any details which we omit in this proof – the line of
argument is very similar. The proof is by induction on k. The base case k = 0 is
obvious so we now fix k > 1 for the inductive step.

For i > 0 let Cl(M)i be the space of l-point subsets c of M together with an
injection {0, . . . , i} → c. These fit together to form an semi-simplicial space Cl(M)•

augmented by Cl(M). The stabilisation map lifts to a map Cl(M)• → Cl+1(M)• of

augmented semi-simplicial spaces. There is a fibre bundle π : Cl(M)i → C̃i+1(M),

where C̃ denotes the ordered configuration space, given by sending an injection
{0, . . . , i} → c to its image and remembering the induced ordering. Its fibre over a
point is homeomorphic to Cl−i−1(Mi+1), where Mi+1 denotes the manifold M with
i + 1 points removed. Moreover the projection π commutes with the stabilisation
map Cl(M)i → Cl+1(M)i and the map of fibres over a point is the stabilisation
map Cl−i−1(Mi+1) → Cl−i(Mi+1). Any map of Serre fibrations over a fixed base
space has an associated relative Serre spectral sequence; in this case it has second
page

iẼ2
s,t
∼= Hs(C̃i+1(M); H̃t(Rl−i−1(Mi+1)))

and converges to H̃∗(Rl(M)i), where Rl(M)i denotes the homotopy cofibre of the
lift Cl(M)i → Cl+1(M)i of the stabilisation map.

For 1 6 j 6 k there are maps of augmented semi-simplicial spaces Ck−j(M)×
Cj(Rn)• → Ck(M)• defined similarly to the stabilisation map, except one stabilises
by adding the given configuration in Rn instead of just a single point. In [Randal-
Williams, 2013a, §8] it is explained how these induce maps of semi-simplicial spaces
Rk−j−1(M) ∧ Rj(Rn)• → Rk(M)• for 1 6 j 6 k. Note that when j = k we
have R−1(M) = S0 and this is just the map Rk(Rn)• → Rk(M)• induced by
an embedding Rn ↪→ M . Each semi-simplicial space has an associated spectral
sequence so we obtain a map jĒ → E of spectral sequences whose first pages are

jĒ1
s,t
∼= H̃t(Rk−j−1(M) ∧Rj(Rn)s)

E1
s,t
∼= H̃t(Rk(M)s).

Note that these are first quadrant plus an extra column {s = −1, t > 0}.

The spectral sequence E converges to H̃∗+1 of the homotopy cofibre of the map
‖Rk(M)•‖ → Rk(M) induced by the augmentation map. Since taking homotopy
cofibres commutes with taking geometric realisation of semi-simplicial spaces this
space can also be obtained as follows: first take the homotopy cofibres of the maps
‖Ck(M)•‖ → Ck(M) and ‖Ck+1(M)•‖ → Ck+1(M); these are related by a map
induced by stabilisation; then take the homotopy cofibre of this map. Now the
augmented semi-simplicial space Ck(M)• is a (k − 1)-resolution [Randal-Williams,
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2013a, Proposition 6.1], i.e. the map ‖Ck(M)•‖ → Ck(M) is (k − 1)-connected.
Hence the spectral sequence E converges to zero in total degree ∗ 6 k − 1.

The inductive hypothesis says that

H̃∗(Rl(M)) = 0 for ∗ 6 l < k (IH)

and the hypothesis of the proposition says that

H̃∗(Rl(Rn)) = 0 for ∗ 6 l. (Hyp)

From (IH) we deduce that iẼ2
s,t = 0 for t 6 l − i − 1 so the spectral sequence iẼ

converges to zero in total degree ∗ 6 l − i− 1, so

H̃∗(Rl(M)i) = 0 for ∗ 6 l − i− 1 and i > 0. (A.1)

In other words:
E1
s,t = 0 for t 6 k − s− 1 and s > 0. (A.2)

Also, using the Künneth theorem, (A.1) and (IH) we deduce that

jĒ1
s,t = 0 for t 6 k − s− 1, (A.3)

where for the case {s = −1 and j = k} we also need to use (Hyp). We now make
the following:

Claim For 1 6 j 6 k the map jĒ1
j,k−j → E1

j,k−j is surjective.

The verification of this claim is delayed until the end of the proof. Now a
diagram chase in the following:

jĒ1
j,k−j

jĒj+1
j,k−j

jĒj+1
−1,k

jĒ1
−1,k

E1
j,k−j Ej+1

j,k−j Ej+1
−1,k

E1
−1,k

= 0
d̄j+1

dj+1

shows that the differential dj+1 : Ej+1
j,k−j → Ej+1

−1,k is zero for 1 6 j 6 k.

Now we can deduce that the first differential d1 : E1
0,t → E1

−1,t is surjective in

a range. First, for t 6 k − 1 note that the differentials hitting E�−1,t have source

Ejj−1,t−j+1 for 1 6 j 6 t+ 1. By (A.2) these groups are all zero, so E1
−1,t = E∞−1,t.

The spectral sequence E converges to zero in total degree t−1 so E1
−1,t = E∞−1,t = 0

and so the first differential d1 : E1
0,t → E1

−1,t is vacuously surjective. For t = k we
use the result of the diagram chase above, which tells us that the only possible non-
zero differential hitting E�−1,k is the first differential. We know that E∞−1,k = 0 since

E converges to zero in total degree k − 1 so the first differential d1 : E1
0,k → E1

−1,k

must be surjective. This can be identified as the map on homology induced by the
augmentation map Rk(M)0 → Rk(M). Hence we have established:

Fact A.3 The augmentation map a : Rk(M)0 → Rk(M) induces surjections on
A-homology up to degree k.

Now consider the maps p : Ck(M) → Ck(M1) and u : Ck(M1) → Ck(M), de-
fined as follows. The map p is defined similarly to the stabilisation map. Write
M = int(M) for a manifold M with non-empty boundary and choose a self-
embedding e′ : M ↪→ M which is isotopic to the identity and whose image does
not contain the missing point of M1. Then p is defined by applying e′ to each
point of the configuration. The map u is simply the map induced by the inclusion
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M1 ↪→ M . Since e′ is isotopic to the identity the composition u ◦ p is homotopic
to the identity, and so the induced maps u∗ and p∗ on homology are semi-inverses:
u∗ ◦ p∗ = id. If we are careful to define p using a self-embedding e′ : M ↪→ M
whose support is disjoint from the self-embedding e : M ↪→ M used to define the
stabilisation map s, then p commutes on the nose with s and there are induced
maps p : Rk(M) → Rk(M1) and u : Rk(M1) → Rk(M) on mapping cones. Again
we have u ◦ p ' id so u∗ ◦ p∗ = id.

The methods of the proof of Proposition 6.3 in [Randal-Williams, 2013a] show
that

hconnA(u : Rk−1(M1)→ Rk−1(M)) > hconn(s : Ck−2(M)→ Ck−1(M)) + dim(M)

where hconnA(f) is the A-homology-connectivity of f , i.e. the largest ∗ such that

H̃∗(mc(f);A) = 0, where mc(f) is the mapping cone of f . By inductive hypothesis
the right-hand side is at least k−2+dim(M) > k+1 since we have assumed that M
is at least 3-dimensional. Therefore the A-homology-connectivity of p : Rk−1(M)→
Rk−1(M1) is at least k. In particular we have:

Fact A.4 The map p : Rk−1(M) → Rk−1(M1) induces surjections on A-homology
up to degree k.

For our third and final fact, consider the spectral sequence 0Ẽ with l = k and

recall from just before (A.1) that 0Ẽ2
s,t = 0 for t 6 k − 1. This is the relative

Serre spectral sequence for the map of fibre bundles Ck(M)0 → Ck+1(M)0 over

C̃1(M) = M . The inclusion of the fibre over a point ∗ ∈M is the map Ck−1(M1) =
Ck−1(M r {∗})→ Ck(M)0 which adds the point ∗ to a configuration and labels it
by 0. This induces a map f : Rk−1(M1)→ Rk(M)0 on mapping cones. The map on

H̃∗ induced by f can be identified with the composition of the edge homomorphism

H̃∗(Rk−1(M1)) = 0Ẽ2
0,∗ �

0Ẽ∞0,∗

and the inclusion
0Ẽ∞0,∗ ↪→ H̃∗(Rk(M)0)

given by all the extension problems in total degree ∗. But since the second page is
trivial for t 6 k − 1 there are no extension problems in total degree ∗ 6 k, and so
this inclusion is an isomorphism. Hence we have:

Fact A.5 The map f : Rk−1(M1) → Rk(M)0 induces surjections on A-homology
up to degree k.

The composition s′ := a ◦ f ◦ p : Rk−1(M)→ Rk(M) is defined exactly like the
stabilisation map s : Rk−1(M)→ Rk(M) except that it uses the self-embedding e′

of M instead of e. Since we chose e and e′ to have disjoint support, the maps s
and s′ commute. If we now ensure that we picked e and e′ to be isotopic, we have
that s and s′ are homotopic. The square s ◦ s′ = s′ ◦ s induces a map of long exact
sequences:

H̃t(Ck(M)) H̃t(Rk−1(M)) H̃t−1(Ck−1(M)) H̃t−1(Ck(M))

H̃t(Ck+1(M)) H̃t(Rk(M))

c b = s∗

d

s′∗ a = s′∗

s∗

s∗

Let t 6 k – our aim is to show that H̃t(Rk(M)) = 0. By Facts A.3, A.4 and A.5
above, the map a in this diagram is surjective. As mentioned at the beginning
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of the proof, the stabilisation map is split-injective on homology in all degrees
[McDuff, 1975, page 103], so the map b is injective, and so by exactness the map c
is surjective. Hence the composite a ◦ c is surjective. But

a ◦ c = d ◦ s′∗ = d ◦ s∗ = 0,

so its codomain H̃t(Rk(M)) must be trivial.

It now remains to prove the claim we made earlier in the proof, namely that
the map

jĒ1
j,k−j = H̃k−j(Rk−j−1(M) ∧Rj(Rn)j) −→ H̃k−j(Rk(M)j) = E1

j,k−j

is surjective. In fact we will show that the map Rk−j−1(M) ∧Rj(Rn)j → Rk(M)j

induces surjections on homology in degrees t 6 k − j. First note that

Rj(Rn)j = mc(Cj(Rn)j → Cj+1(Rn)j)

= mc(∅→ C̃j+1(Rn))

= C̃j+1(Rn)+

and the map Rk−j−1(M)∧C̃j+1(Rn)+ → Rk(M)j is given by taking mapping cones
of the horizontal arrows in the commutative square:

Ck−j−1(M)× C̃j+1(Rn) Ck−j(M)× C̃j+1(Rn)

Ck(M)j Ck+1(M)j

s× id

s

To do this we begin by defining some more explicit models for various maps.
As before, write M = int(M) for a manifold M with non-empty boundary and
choose two isotopic self-embeddings e, e′ : M ↪→ M which are both non-surjective
and have disjoint support. Choose an embedding φ : Rn ↪→Mre′(M) and pairwise
disjoint points p0, . . . , pj ∈ Rn. Write Mj+1 = M r {φ(p0), . . . , φ(pj)}. We have a
square of maps

Ck−j−1(M) Ck−j−1(M)× C̃j+1(Rn)

Ck−j−1(Mj+1) Ck(M)j

α

β

γ δ (A.4)

defined by

α(c) = (c, (p0, . . . , pj))

γ(c) = e′(c)

β(c) = c ∪ {φ(p0), . . . , φ(pj)}; i 7→ φ(pi)

δ(c, (q0, . . . , qj)) = e′(c) ∪ {φ(q0), . . . , φ(qj)}; i 7→ φ(qi).

Choose a point ∗ ∈M r e(M) and take an explicit model for the stabilisation
map to be defined by c 7→ e(c) ∪ {∗}. Since e and e′ have disjoint support this
induces a map of squares from (A.4) to (A.4)[k 7→ k + 1]. Taking mapping cones
along this map of squares gives us the following:
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Rk−j−1(M) Rk−j−1(M) ∧ C̃j+1(Rn)+

Rk−j−1(Mj+1) Rk(M)j

ᾱ

β̄

γ̄ δ̄

We need to show that δ̄ induces surjections on homology in degrees t 6 k − j.
This will follow if we can prove this for γ̄ and β̄. But γ̄ is the composition of
j + 1 instances of the map p from Fact A.4, and so this does induce surjections on
homology up to degree k − j by Fact A.4.2 When j = 0 the map β̄ is surjective on
homology up to degree k by Fact A.5. Moreover, the argument proving Fact A.5

generalises (using the spectral sequence jẼ instead of 0Ẽ) to prove precisely that
the map β̄ is surjective on homology up to degree k − j in general. �

Remark A.6 When dim(M) > 3 we have homological stability in the range ∗ 6 k
for Q coefficients (by [Randal-Williams, 2013a, Theorem B]) and for Z/p coeffi-
cients with p odd (by Proposition A.2 above). Using the short exact sequences of
coefficients 0→ Z/p→ Z/pl+1 → Z/pl → 0 and

0→ Z[ 1
2 ]→ Q→

⊕
p 6=2 coliml→∞ Z/pl → 0

this implies homological stability in the range ∗ 6 k − 1 for Z[ 1
2 ] coefficients. This

recovers Theorem 1.4 of [Kupers and Miller, 2014b], except without surjectivity in
degree k.

Appendix B. Homological stability for configuration spaces with
labels in a fibre bundle

Definition B.1 (Configuration spaces and stabilisation maps with labels in a fibre
bundle) Let θ : E →M be a fibre bundle with path-connected fibres F and define

Ck(M ; θ) := {{p1, . . . , pk} ⊂ E | θ(pi) 6= θ(pj) for i 6= j}.
Choose a self-embedding e : M ↪→ M which is non-surjective and isotopic to the
identity. Choose an open neighbourhood U ⊆M containing the support of e, write
V = U r ∂M and choose a trivialisation φ : θ−1(V )→ V × F of E over V . Define
a self-embedding ẽ : E ↪→ E by

p 7→

{
p p /∈ θ−1(V )

φ−1 ◦ (e× id) ◦ φ(p) p ∈ θ−1(V )

and note that θ ◦ ẽ = e ◦ θ. Also choose points ∗ ∈M r e(M) ⊆ V and x ∈ F . We
can then define the stabilisation map Ck(M ; θ)→ Ck+1(M ; θ) by

{p1, . . . , pk} 7→ {ẽ(p1), . . . , ẽ(pk), φ−1(∗, x)}.

We may generalise Proposition A.2 to configuration spaces with labels in θ
using the following fact.

Remark B.2 Configuration spaces also satisfy homological stability with respect
to finite-degree twisted coefficient systems: for the case of symmetric groups this
was proved by [Betley, 2002], and the general case was proved in [Palmer, 2013].
A twisted coefficient system for M is a functor from the partial braid category
B(M) to Z-mod. The partial braid category B(M) has objects {0, 1, 2, . . . } and

2The proofs of Facts A.4 and A.5 earlier did not depend on the claim which we are currently
proving, so this is not circular.
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a morphism from m to n is a path in Ck(M) from a subset of {p1, . . . , pm} to a
subset of {p1, . . . , pn}, up to endpoint-preserving homotopy, where {p1, p2, p3, . . . }
is a fixed injective sequence in M .

If the twisted coefficient system has degree d the stable range obtained is
∗ 6 k−d

2 , which arises since homological stability with untwisted Z coefficients in

the range ∗ 6 k
2 is an input for the proof. However, if the twisted coefficient system

takes values in the subcategory Z[ 1
2 ]-mod of Z-mod and dim(M) > 3, then we

may instead input [Kupers and Miller, 2014b] or Proposition A.2 to obtain a stable
range of ∗ 6 k − d for Ck(M) with coefficients in a functor B(M) → Z[ 1

2 ]-mod of
degree d.

Proposition B.3 Let M be a smooth, connected, open n-manifold with n > 2 and
θ : E → M a fibre bundle with path-connected fibres. Then the stabilisation map
Ck(M ; θ)→ Ck+1(M ; θ) induces isomorphisms on H∗(−;Z) in the range ∗ 6 k

2 −1.
It induces isomorphisms in the range ∗ 6 k on H∗(−;Q), unless M is an orientable
surface in which case the range is only ∗ 6 k− 1. If n > 3 it induces isomorphisms
on H∗(−;Z[ 1

2 ]) in the range ∗ 6 k − 1.

The worse range ∗ 6 k−1 for rational homology of configurations on orientable
surfaces is necessary: for example H1(C1(R2);Q) = 0 6∼= Q ∼= H1(C2(R2);Q).

Remark B.4 A version of Proposition B.3 is also proved in the appendix of [Kupers
and Miller, 2014a]. One of the proofs given there is essentially the same as the proof
we give below, and a sketch proof using semi-simplicial resolutions by collections of
disjoint arcs in M is also given. This latter method has the advantage that it gives
a range of ∗ 6 k

2 for Z coefficients (at least when M is orientable), rather than the

smaller range ∗ 6 k
2 − 1 for Z coefficients obtained in Proposition B.3.

Proof. This will follow by the same considerations as in Remark A.6 if we show
that it induces isomorphisms on H∗(−;A) in the range ∗ 6 k

2 when A = Fp, in the
range ∗ 6 k if either (a) A = Q and M is not an orientable surface or (b) A = Fp
for p odd and n > 3, and in the range ∗ 6 k−1 when A = Q and M is an orientable
surface. The loss of one degree from the range occurs when going from Q and Q/Z
coefficients to Z coefficients (resp. Q and Q/Z[ 1

2 ] coefficients to Z[ 1
2 ] coefficients).

Let A = Q or Fp for a prime p. There are fibre bundles Ck(M ; θ) → Ck(M),
given by forgetting labels, with fibre F k. The stabilisation maps Ck(M)→ Ck+1(M)
and Ck(M ; θ)→ Ck+1(M ; θ) commute with these fibre bundles and the map of fi-
bres is the inclusion F k ↪→ F k+1. There is then a map of Serre spectral sequences

E2
s,t
∼= Hs(Ck(M);Ht(F

k;A)) H∗(Ck(M ; θ);A)

E2
s,t
∼= Hs(Ck+1(M);Ht(F

k+1;A)) H∗(Ck+1(M ; θ);A)⇒

⇒

and our aim is to prove that the map in the limit is an isomorphism in a certain
range depending on A and M .

Now by Lemma 4.2 of [Palmer, 2013] and since A is a field the assignment k 7→
Ht(F

k;A) extends to form a twisted coefficient system of degree at most t
h+1 6 t

where h = hconnA(F ). Hence the map on the second page is an isomorphism in the
range s 6 k−t

2 by Theorem 1.3 of [Palmer, 2013]. In particular it is an isomorphism

in total degree at most k
2 and therefore the same holds for the map in the limit.
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To obtain the improved range in certain cases note that, by Remark 6.5 of
[Palmer, 2013], if homological stability with (untwisted) A coefficients holds for
(unlabelled) configuration spaces on M in the range ∗ 6 f(k), then twisted ho-
mological stability will hold in the range ∗ 6 f(k − d) for any twisted coefficient
system of degree d which factors through the forgetful functor A-mod → Z-mod
(c.f. Remark B.2).

If A = Q then the above twisted coefficient system factors through the inclusion
Q-mod→ Z-mod. By Theorem C of [Randal-Williams, 2013a] we may take f(k) =
k if n = dim(M) > 3. For orientable surfaces we may take f(k) = k − 1 by
Corollary 3 of [Church, 2012] or Theorem 1.3 of [Knudsen, 2014], and for non-
orientable surfaces we may take f(k) = k by Theorem 1.3 of [Knudsen, 2014]. By
the above paragraph the map of spectral sequences is an isomorphism on the second
page in the range s 6 f(k − t), and therefore in total degree at most k (resp. total
degree at most k − 1 for orientable surfaces). Hence so is the map in the limit.

If A = Fp for p odd and n > 3 then the twisted coefficient system factors
through the inclusion Z[ 1

2 ]-mod→ Z-mod. By Proposition A.2 (or Theorem 1.4 of
[Kupers and Miller, 2014b]) we may take f(k) = k. So as above the map of spectral
sequences is an isomorphism in total degree at most k, and therefore so is the map
in the limit. �

Appendix C. Stable homology of configuration spaces with labels in
a fibre bundle

In this appendix we prove Theorem 4.6. Another proof can be obtained adapt-
ing step by step the proof in [McDuff, 1975] for trivial labels, as pointed out in
the introduction to that paper. We give here a sketch of this proof with some
shortcuts, taking advantage of knowing the homology stability theorem with labels
(Proposition B.3) in the spirit of [Galatius et al., 2009].

Definition C.1 Let M be an open manifold, let c : Dn−1 × (0, 1] be a proper

embedding and let M1 = M ∪c (D̊n−1× (−1, 1]). Define ψδ,γ(M ; θ) to be the space

whose underlying set is Cδ,γ(M ; θ) :=
∐
k C

δ,γ
k (M ; θ) with the following topology:

Consider the quotient Y of Cδ,γ(M1; θ) under the relation ∼ where (q, ε, {fq}q∈q) ∼
(q′, ε′, {f ′q′}q′∈q′) if and only if

(1) q ∩M = q′ ∩M ,
(2) if the above intersection is non-empty, then ε = ε′,
(3) if the above intersection is non-empty, then fq = f ′q for all q ∈ q ∩M .

The natural inclusion Cδ,γ(M ; θ) → Cδ,γ(M1; θ) induces a bijection Cδ,γ(M ; θ) ∼=
Y , which we use to endow Cδ,γ(M ; θ) with a new topology.

Recall that we defined the non-linear scanning map with labels

sθ,γ : Cδ,γk (M ; θ) −→ Γc(ψ
δ(T 1M ; θ))

in §4. Following the same recipe we can define a scanning map

sθ,γ : ψδ,γ(M ; θ) −→ Γ(ψδ(T 1M ; θ))

whose target is now the whole space of sections.

Lemma C.2 ([Hesselholt, 1992, §2.3]) If M is connected, then the scanning map
is a homotopy equivalence.
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In the paper, Hesselholt considers E to be a fibre bundle of based spaces. This
lemma is a particular case of his theorem, taking a disjoint basepoint in each fibre
and the submanifold N in his theorem to be connected.

Let π1 : M 99K I be the partially defined function that sends a point in the
image of Dn−1 × I to the second coordinate. Define ψδ,γ(M ; θ)• to be the semi-
simplicial space whose space of i-simplices is the space of tuples (q, ε, {fq}q∈q, a0, . . . , ai),
where (q, ε, {fq}q∈q) ∈ ψδ,γ(M ; θ) and (a0, . . . , ai) ∈ Ii+1 and π1(q)∩{a0, . . . , ai} =
∅. The jth face map forgets aj , and there is an augmentation to ψδ,γ(M ; θ) that
forgets all the aj ’s.

Lemma C.3 The realization of the augmentation

‖ψδ,γ(M ; θ)•‖ → ψδ,γ(M ; θ)

is a weak homotoy equivalence.

Proof. This is an augmented topological flag complex [Galatius and Randal-Williams,
2014] satisfying the conditions of Theorem 6.2 in that paper, hence a weak homo-
topy equivalence. �

Proposition C.4 If θ : E → M has path-connected fibres, then the restriction of
the scanning map

sγ,θ : Cδ,γk (M r c; θ) −→ Γc(Ψ
δ(T 1M r c; θ))

is a homology isomorphism in the range in which the stabilisation map of Propo-
sition B.3 is a homology isomorphism. Since M r c ∼= M , the same holds for
M .

Proof. We have constructed the following commutative diagram:

‖ψδ,γ(M ; θ)•‖ //

��

ψδ,γ(M ; θ) //

��

Γ(Ψδ(T 1M ; θ))

��

‖ψδ,γ(Dn−1 × I; θ)•‖ // ψδ,γ(Dn−1 × I; θ) // Γ(ψδ(T 1(Dn−1 × I); θ))

(C.1)

All the horizontal maps are homotopy equivalences, by the previous two lemmas.
The rightmost vertical map is a fibration. We now choose another properly embed-
ded ray Dn−1 × (0, 1] ∼= L ⊂ ∂M r c, and take the colimit

P (M ; θ)• := colim
(
ψδ,γ(M ; θ)•

s−→ ψδ,γ(M ; θ)• −→ . . .
)

with respect to the stabilisation maps s that push the configurations outside L and
adds a point in L with some prescribed label. The scanning of this operation sγ,θ(s)
gives also a sequence of maps between spaces of sections, whose colimit we denote
by

G(M ; θ) := colim

(
Γ(ψδ(T 1M ; θ))

sθ,γ(s)−→ Γ(ψδ(T 1M ; θ)) −→ . . .

)
Observe that the maps sγ,θ(s) increase the degree by 1. We can consider instead
the maps that push the source of the scanning map away from L and glue there
the reflection of the scanning of some point in L, together with some prescribed
label. This latter map is a homotopy inverse of sγ,θ(s), hence the maps sγ,θ(s) are
homotopy equivalences.

By Proposition B.3, it follows that the semi-simplicial map

P (M ; θ)• −→ ψδ,γ(Dn−1 × I; θ)•
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satisfies the hypotheses of [McDuff and Segal, 7576, Proposition 4], so the realization

‖P (M ; θ)•‖ −→ ‖ψδ,γ(Dn−1 × I; θ)•‖

is a homology fibration. Its fibre over any point is the colimit of the space Cδ,γ(M ; θ)
with respect to the stabilisation map s. The map

G(M ; θ) −→ Γ(ψδ,γ(T 1M ; θ))

is a Serre fibration (it is a union of Serre fibrations). Its fibre over any point is the
colimit of Γc(ψ

δ(T 1M); θ) with respect to the map obtained by scanning s:

colimCδ,γ(M ; θ) //

��

colim Γc(ψ
δ(T 1M); θ)

��

‖P (M ; θ)•‖
' //

a

��

G(M ; θ)

b

��

‖ψδ,γ(Dn−1 × I; θ)•‖
' // Γ(ψδ(T 1M ; θ))

(C.2)

The fibres of (C.2) together with the maps to the fibres of (C.2) give the
following commutative diagram

Cδ,γ(M ; θ)
sγ,θ //

��

Γc(ψ
δ(T 1M); θ)

��

colimCδ,γ(M ; θ) // colim Γc(ψ
δ(T 1M); θ).

The bottom map is a homology equivalence because the horizontal maps in diagram
(C.1) are homotopy equivalences. The left vertical map is a homology equivalence
in the stable range of Proposition B.3. The right vertical map is a homotopy
equivalence. As a consequence, the upper horizontal map is a homology equivalence
in the range provided by Proposition B.3 �

The following is proved in the same way as Theorem 1.1 at the bottom of page
34 in [McDuff, 1975].

Corollary C.5 If M is a manifold with empty boundary, then the non-linear scan-
ning map

sθ,γ : Cδ,γ(M ; θ) −→ Γc(ψ
δ(T 1M ; θ))

is a homology isomorphism in the range in which the stabilisation map is a homology
isomorphism.

We showed in Section §4 that the triangle

Cδ,γk (M ; θ) Γc(ψ
δ(T 1M ; θ))

Γc(Ṫ
1,θM).

sθ,γ

S
hi ' (C.3)

commutes, hence from Corollary C.5 it follows that:

Theorem C.6 (McDuff’s Theorem with labels) The linear scanning map with
labels

S δ,θ : Ck(M ; θ) −→ Γc(Ṫ
θ(M))k
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induces an isomorphism on homology groups in the stable range provided by Propo-
sition B.3.
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