
HOMOLOGICAL STABILITY FOR SUBGROUPS OF SURFACE BRAID GROUPS

TRITHANG TRAN

Abstract. In this paper we prove homological stability for certain subgroups of surface braid groups.

Alternatively, this is equivalent to proving homological stability for configurations of subsets of exactly
ξ points in a surface as we increase the number of subsets. For open surfaces, we prove the result

integrally using a variation of the arc complex which we dub the “fern complex”. We use a technique

of Randal-Williams to extend the result rationally for closed surfaces.

1. Introduction

Let S be a connected surface and ξ ∈ Z≥1. The configuration space of ξ points in S is the space of
subsets of S of size exactly ξ. A surface braid group is a fundamental group, Brξ(S) := π1(Confξ(S)).
When S = D2 is a disk, then this is the usual Artin braid group with ξ strands. In this paper, we are
interested in studying particular subgroups of surface braid groups which we define as follows.

The nth ordered ξ-configuration space of S is

PConfξn(S) := {(p1, . . . ,pn) ⊂ Confξ(S)×n | pi ∩ pj = ∅ for i 6= j}.

The symmetric group Σn acts on PConfξn(S) by: if σ ∈ Σn then σ.(p1, . . . ,pn) = (pσ(1), . . . ,pσ(n)).

Definition 1.1. The ξ-configuration space of S is the quotient

Confξn(S) :=
PConfξn(S)

Σn
.

One way to view this space is that it is the usual configuration space, Confnξ(S), of nξ points in S,
where the points have been partitioned into n subsets of size ξ. There is a covering map

Confξn(S)→ Confnξ(S)

that forgets the partition of points into subsets. This is a finite sheeted covering map whose fibres
correspond to the number of ways to group nξ points into subsets of size ξ. In our pictures, we will
represent points being in different subsets by using different shapes. It is also natural to think of points
being “coloured”.

Definition 1.2. The ξ-surface braid group of S is the fundamental group

Brξn(S) := π1(Confξn(S)).

In [FN62], Fadell and Neuwirth show that Confnξ(S) is K(π, 1). The long exact sequence in homotopy

groups then shows that Confξn(S) is also K(π, 1). There is therefore an isomorphism

H∗(Confξn(S);Z) ∼= H∗(Brξn(S);Z)

between singular homology and group homology. The upshot of this isomorphism is that studying the
homology of Confξn(S) is the same as studying the homology of Brξn(S). We will freely switch between
the two. The goal of this paper is to prove the following two theorems.

Theorem 4.1. Let S be the interior of a surface with boundary. There is a map stab : Brξn(S) →
Brξn+1(S) such that the induced map

stab∗ : Hk(Brξn(S);Z)→ Hk(Brξn+1(S);Z)

is an isomorphism for 2k ≤ n.
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Theorem 5.3. Let S be any surface (open or closed).

H∗(Brξn(S);Q) ∼= H∗(Brξn+1(S);Q)

for 2k ≤ n. The isomorphism can be realised as a transfer map

tn+1 : Hk(Brξn+1(S);Q)→ Hk(Brξn(S);Q)

which we define in Section 5.

The main technical result that we will use is a high connectivity result for certain simplicial complexes
which we call fern complexes and are defined in Section 2. The groups Brξn(S) will act on these fern
complexes and from there, the literature has a well oiled machine for proving homological stability. In
Section 4, we will make use of an axiomatisation of this machine by Hatcher and Wahl, which is Theorem
5.1 of [HW10] to prove Theorem 4.1.

1.1. A brief history. Homological stability for braid groups was first proven by Arnol’d in [Arn69].
Homological stability was then extended to configuration spaces of open manifolds by the work of Segal
and McDuff in the 70’s [Seg73, McD75, Seg79]. Randal-Williams and Church have recently shown that
configuration spaces of closed manifolds satisfy homological stability with rational coefficients [RW13,
Chu12]. This paper studies the homology of natural covering space of configuration spaces. Thus the
main theorems can be regarded as a homological stability theorem for braid groups with certain twisted
coefficients.

Configuration spaces for manifolds other than points have also been studied in the literature. For
example, the configuration space of circles in R3 has been well studied (see for example [BH13]). Its
fundamental group is sometimes called the symmetric automorphism group, ΣAutFn, or just the ring
group Rn. Homological stability for Rn was proven by Hatcher and Wahl in [HW10]. Homological
stability for ξ-configuration spaces gives an example of homological stability for manifolds where the
manifold being stabilised by is disconnected. In his doctoral thesis, Palmer proves homological stability
for configurations of (possibly disconnected) manifolds in a larger ambient manifold under certain di-
mension conditions [Pal13]. However, the dimesnion conditions do not apply to the case of 0-manifolds
in a surface so that this paper serves also to fill this curious gap in the literature.

1.2. Outline. In Section 2 we define a simplicial complex on which Brξn(S) will act and show that this
simplicial complex is highly connected. In Section 3 we give a definition of the stabilisation map for
ξ-configuration spaces, which can be appropriately identified with the stabilisation map for ξ-braids. In
Section 4 we prove Theorem 4.1. In Section 5 we define the transfer map for ξ-configuration spaces and
use it to prove Theorem 5.3.

1.3. Acknowledgements. I would like to thank Nathalie Wahl and Craig Westerland for many useful
discussions relating to this work. I would also like to thank Jeffrey Bailes for reading earlier drafts of
this paper. This work formed part of my work towards a Ph.D at the University of Melbourne. It was a
wonderful place to do research.

2. Fern complexes

In this section we will define the simplicial complexes that our ξ-braids will act on and show that
they are highly connected. We will make use of some of the theory of simplicial complexes which is well
summarised in the appendix of [Wah12].

Let ξ ∈ Z≥1 be fixed. Let S be a surface with boundary with nξ marked points in its interior.
Further let ∆1, . . . ,∆n be a partition of those marked points into disjoint sets of size ξ. Lastly, fix a
base point ∗ in the boundary ∂S. By an arc, we will mean an embedded path in S with one endpoint
meeting the boundary of D at ∗ transversally and the other at one of the marked points in S. Simplicial
complexes where simplices are defined by non-intersecting arcs, called arc complexes and have been
studied extensively in the literature (see for example [Har85, Hat91]). We will study an analogous
version of this which we call the “fern complex”.

Definition 2.1. A fern is an unordered ξ-tuple of arcs that do not intersect except at ∗ and such that
their other endpoints are all in the same ∆i.

We will be considering ferns up to isotopy relative to the marked points and ∗. Two or more isotopy
classes of ferns are disjoint if there exists representative ferns that are disjoint.

Definition 2.2. The fern complex, Aξn = Aξn(S,∆1, . . .∆n), is the simplicial complex such that:
2



Figure 1. A picture of representatives of a vertex (left) and a 2-simplex (right) in
A2

4(D2). Note that a single fern must have all endpoints of arcs that are not at ∗ in the
same subset.

• vertices are isotopy classes of ferns; and
• p-simplices are collections of (p+ 1) vertices that are disjoint except at ∗.

See Fig. 1 for examples of simplices in the fern complex of a disk.

Recall that a space X is n-connected if its homotopy groups, πk(X), are trivial for k ≤ n. The goal
of this section is to prove the following connectivity theorem for fern complexes.

Theorem 2.3. Aξn is n− 2 connected.

Our method of proof will be similar to the connectivity proofs found in Section 4 of [Wah12]. In order
to prove Theorem 2.3, we will need to study the following related simplicial complex, where we allow
ferns to also agree at marked points.

Definition 2.4. FAξn = FAξn(S,∆1, . . .∆n) is the simplicial complex such that:

• vertices are isotopy classes of ferns; and
• p-simplices are collections of (p+ 1) vertices that are disjoint except possibly at their endpoints.

The following is an analogue to a special case of the main theorem of Hatcher in [Hat91], which proves
contractibility for certain arc complexes of surfaces.

Lemma 2.5. FAξn is contractible.

Proof. Fix a vertex v of FAξn, and a representative fern, which we also call v, with arcs going from ∗ to
∆1 say. Moreover fix an ordering of the arcs of v = (v1, . . . , vξ). We will show that FAξn deformation
retracts onto Star(v). Order the interior points of v so that

(1) x ≺ y if x ∈ vi, y ∈ vj , and i < j;
(2) If i = j then x ≺ y if x is closer to ∗ along vi than y.

Let σ = 〈a0, . . . , ak〉 be a simplex of FAξn. In particular the ai are ξ-tuples of arcs. Choose represen-
tatives ferns of σ so that a0 ∪ . . . ∪ ak intersect v minimally.

Consider the ferns of σ that intersect v. Suppose that there are k points of intersection and denote
by g1, . . . , gk the germs of arcs that are constituents of ferns corresponding to those intersection points.
By germ, we simply mean a small arc segment that intersects v. Moreover assume that gi ≺ gj for i < j,
where gi ≺ gj if their corresponding intersection points with v satisfy the inequality ≺. The gi are germs
of the arcs of ferns aji , where it is possible that ji = ji′ for i 6= i′ if the arc intersects v more than once.

We will now describe a sequence of k, (p+1)-simplices r1(σ), . . . , rk(σ) associated to σ. Our retraction
will then simply be a map that carries σ through these simplices.

If αi is an arc intersecting the arc vi of a fern v at a point x, and x is the first intersection point of αi
according to the ordering ≺ of v, we can define L(αi) and R(αi) to be the new path obtained by cutting
αi at x and joining the new endpoints to ∗ by travelling along the left and right hand side of vi. Note
that one of the paths of L(αi) or R(αi) will not be an arc since it will have one path with both endpoints
at ∗. Call C(αi) the one that is an arc.

Now if a = (α1, . . . , αξ) is a fern, we define C(a) to be the new fern obtained by doing C to the arc
intersecting v “first” according to the ordering ≺ on v. For example, if α1 had an intersection with v

3



Figure 2. An example (for ξ = 2) of germs of ferns of a that intersect v, on the left
followed by the simplices r1, r2, r3 of the retraction in the middle and finally the image
of germs on the right. The dotted lines represent the discarded part of arcs during the
cutting process.

that occurred first according to ≺, then C(a) = (C(α1), α2, . . . , αξ). Note that C(α1) will still be a fern
whose endpoints still go to the same ∆i as α1 since endpoints do not change when doing C.

We will now use the operator C on ferns to define our sequence of simplices. Let ri(σ) be the (p+ 1)-
simplex given by

ri(σ) = 〈b0, . . . , bp+1〉,
where bl = Cεi(l)(al) for l ≤ p, and bp+1 = Lεi(ji)+1(aji) = Lεi+1(ji)(aji), and εi(l) is the number j < i
such that gj is a germ of al. Fig. 2 gives an example for ξ = 2 of this retraction process.
Using barycentric coordinates, a point on σ can be identified with the p-tuple (t0, . . . , tp), such that∑
ti = 1. We interpret these coordinates as the fern ai having the weight ti. Assign to the ith germ gi

the weight wi = tji/2. For
∑i−1
j=1 wj ≤ s ≤

∑i
j=1 wj , define f : I × FAn → FAn by

f(s, [σ, (t0, . . . , tp)]) = [ri(σ), (v0, . . . , vp+1)],

where the weight vi = ti except for the pair

(vji , vp+1) = (tji − 2(s−
i−1∑
j=1

wj), 2(s−
i−1∑
j=1

wj)).

The weight of (bji , bp+1) changes from (tji , 0) to (0, tji) as s goes from
∑i−1
j=1 wj to

∑i
j=1 wj . This means

that the map pushes a face of a simplex through the simplex and onto another face. For
∑k
i=1 wi ≤ s ≤ 1,

define f(s, [σ, (to, . . . , tp)]) to be constant, equal to

f

(
k∑
i=1

wi, [σ, (t0, . . . , tp)]

)
.

In particular f(1, [σ, (t0, . . . , tp)]) lies in the face of rk(σ) which is in Star(v). The map is continuous
since going to a face of σ corresponds to a ti and any corresponding wj going to zero. �

We now prove Theorem 2.3 by using the contractibility of FAξn. For technical reasons we will need to
make use of the following. Given a p-simplex σ of FAξn (or Aξn), denote by Sσ the subspace1 S−(σ−∗) ⊂
S. That is, it is the surface, S, with a representative fern of σ removed, except for the point ∗ on the
boundary. For spaces of the form Sσ, we define Aξn(Sσ,∆1, . . . ,∆n) and FAξn(Sσ,∆1, . . . ,∆n) as in
Definition 2.2 and Definition 2.4 , with S replaced with Sσ in both definitions, where the marked points
of Sσ are inherited from S and the point ∗ ∈ Sσ is the point ∗ ∈ ∂S. The same arguments as in the
proof of Lemma 2.5 can also be used to show that FAξn(Sσ,∆1, . . . ,∆n) is contractible, which we will
make use of in the following proof of Theorem 2.3.

Proof of Theorem 2.3. Recall we are trying to prove that Aξn(S,∆1, . . . ,∆n) is n− 2 connected. We will
actually prove the theorem for S a surface or of the form Sσ, where σ ∈ (Aξn)p is a p-simplex. The proof

will proceed by induction on n. The base case of our induction requires us to show that Aξ1(S,∆1) is
nonempty which is true as long as S is connected.

For the inductive step, let k ≤ n− 2. Consider a map

f : Sk → Aξn.

1Sσ may not be a surface (with boundary) because of the point ∗. On the other hand, this will not be a problem since
many of our constructions will still work in this setting.

4



We want to show that f factors through a (k+1)-disk. By contractibility of FAξn we have a commutative
diagram

Sk
f //� _

��

Aξn� _

��
Dk+1 f̂ // FAξn

By simplicial approximation, we can triangulate Sk and Dk+1 and take our maps to be simplicial. We

want to deform f̂ so that its image lies in Aξn. A fern is coloured by ∆i if the endpoints of its arcs are at

∆i. Call a simplex σ = 〈a0, . . . , ap〉 ∈ Dk+1 bad if the colour of each f̂(ai) already appears as a colour

of one of the f̂(aj) for i 6= j.

Let σ ∈ Dk+1 be a bad simplex of maximal dimension, say p. Then f̂ restricts to a map

f̂ |Link(σ) : Link(σ)→ Jσ := Aξn′(Sσ,∆
′
0, . . . ,∆

′
n′)

where the ∆′i are the remaining partitions of marked points not at the endpoints of ferns in f̂(σ). The

image of the map f̂ restricts to Aξn′(Sσ,∆
′
0, . . . ,∆

′
n′) because if τ ∈ Link(σ) was bad, then σ ∗ τ would

be a bad simplex in Dk+1 of larger dimension than σ contradicting maximality of σ.
Now n′ ≥ n− b(p+ 1)/2c, since a bad p-simplex can use up at most b(p+ 1)/2c ∆i’s. Also note that

p ≥ 1 since there are no bad vertices. By induction the connectivity of Jσ is

conn(Jσ) = n′ − 2

≥ n−
⌊
p+ 1

2

⌋
− 2

≥ n− 2− p+

⌊
p− 1

2

⌋
≥ k − p.

Since the link of σ is a k − p sphere, we have a commutative diagram

Link(σ) //
� _

��

Jσ // Aξn(S,∆0, . . .∆n)

K
f̂ ′

;;

where K is a (k−p+1)-disk with boundary ∂K = Link(σ) and the right map is the map that identifies
arcs on S′ with arcs on S. In the triangulation of Dk+1, replace the (k + 1)-disk, Star(σ) = σ ∗ Link(σ)

with ∂σ ∗K. We can do this since ∂σ ∗K and Star(σ) have the same boundary. Modify the map f̂ by

f̂ ∗ f̂ ′ : ∂σ ∗K → FAξn(S,∆0, . . . ,∆n).

New simplices in ∂σ ∗K are of the form τ = α ∗ β, where α is a proper face of σ and β is mapped to Jσ.

Thus, if τ is a bad simplex in ∂σ ∗K then τ = α since ferns of f̂ ′(β) do not share colours with other ferns

of f̂ ′(β) or f̂(α), so cannot contribute to a bad simplex. Since α is a proper face of σ, we have decreased
the number of top dimensional bad simplices. The result follows by inducting on top dimensional bad
simplices. �

3. The stabilisation map

In this section, we will define the stabilisation maps of Theorem 4.1. The basic example that one
should have in mind is the stabilisation map for braid groups stab : Brn → Brn+1 which adds an
unbraided strand.

Let S be the interior of a surface S̄ with boundary ∂S̄. Pick a point b ∈ ∂0 ⊂ ∂S̄, where ∂0 is a
boundary component of ∂S̄. On the level of ordered ξ-configuration spaces, we define a map

s : PConfξn(S)→ PConfξn+1(S′),

where S′ is obtained from S̄ by adding a collar neighbourhood, ∂0 × I, around ∂0. Let q be the subset
of the collared neighbourhood given by

q = {(b, 1

ξ + 1
), . . . , (b,

ξ

ξ + 1
)}.

5



Figure 3. The stabilisation map stab : Confξn(S)→ Confξn+1(S) for ξ = 2 and n = 2

Then s is defined by inserting this new subset (p1, . . . ,pm) 7→ (p1, . . . ,pm, q). Picking an isomorphism

f : S ∼= S′, with support in a small neighbourhood of ∂0, we get a map f◦s : PConfξn(S)→ PConfξn+1(S′).
Define the stabilisation map for ξ-configuration spaces to be the map

stab : Confξn(S)→ Confξn+1(S)

obtained by quotienting f ◦ s by the symmetric group action, that is, it is the map

stab :
PConfξn(S)

Σn
→

PConfξn+1(S)

Σn+1
.

Remark 3.1. The stabilisation map for ξ-configurations spaces that we have defined corresponds to the

map on the level of surface braid groups stab : Brξn(S) → Brξn+1(S) which adds ξ trivial strands. In

particular, Brξn(S) includes into Brξn+1(S) as the inclusion of a stabiliser of a fern ending at the added

marked points of Confξn+1(S).

4. Homological stability for open surfaces

The goal of this section is to prove Theorem 4.1. For convenience we recall the statement of the
theorem.

Theorem 4.1. Let S be a surface that is the interior of a surface with boundary. The map

stab∗ : H∗(Brξn(S);Z)→ H∗(Brξn+1(S);Z)

is an isomorphism for 2∗ ≤ n.

Proof. For brevity, we write Brξn for Brξn(S). By Theorem 5.1 of [HW10], it suffices to check the following
conditions to prove that we have isomorphisms in the range ∗ ≤ n/2− 1 and surjections for ∗ ≤ n/2.

(1) The action of Brξn on Aξn is transitive on vertices; the stabiliser of each simplex fixes the simplex

point wise; and Hi(A
ξ
n/Brξn) = 0 for 1 ≤ i ≤ n− 2.

(2) The subgroup of Brξn fixing a p-simplex pointwise is conjugate to Brξn−ξ(k+1) for some k ≤ p.
(3) For each edge of Aξn with vertices v and w there exists an element of Brξn that takes v to w and

that commutes with elements of Brξn that leave the edge fixed pointwise.

For the first condition, note that a vertex of Aξn can be identified uniquely with ξ-simplices in Anξ,
where Anξ := A1

nξ is the arc complex of a disk. It is well known that the action of Brn on (Anξ) is
transitive. Moreover, if the simplices have all arcs going to the same ∆i, it is possible to choose the
element of Brn take one simplex to another to preserve the ∆i so that it is in Brξn, which shows that the

action of Brξn on Aξn is transitive on vertices.
The stabiliser of a simplex fixes the simplex pointwise as the order in which arcs appear at the base

point cannot be changed. To see that Hi(A
ξ
n/Brξn) = 0 for 1 ≤ i ≤ n − 2 we use an argument from the

proof of Lemma 3.3 in [Har85]. The aim is to consider the chain complex Z(Aξn/Brξn)p (we will describe
the differentials momentarily) and construct a chain nullhomotopy.

It is possible to identify the orbit of a p-simplex σ so that there is a correspondence between Aξn/Brξn
and orderings of the multiset {0, . . . , 0, . . . , p, . . . , p} where the first 0 appears before the first 1, the first
1 appears before the first 2 and so on and each number appears ξ times. For example (0, 1, 1, 2, 0, 2) is an

6



Figure 4. Two ferns in the orbit labelled by (0, 1, 1, 2, 0, 2)

allowed ordering but (0, 2, 0, 1, 1, 2) is not. To see this correspondence, we put an ordering on the vertices
of Aξn so that for two ferns σ and τ in minimal position, σ < τ if the leftmost arc of σ is further to the left
than the leftmost arc of τ . Here by leftmost we refer to the left to right ordering of the tangent vectors
of the arcs at the base point ∗. With this ordering, Aξn is an ordered simplicial complex. Let 〈a0, . . . ap〉
be a p-simplex in Aξn. Labelling all the arcs of ai by the number i and reading these labels off from left
to right at ∗ gives rise to the corresponding ordering of the multiset {0, . . . , 0, . . . , p, . . . , p}. Two ferns

that give rise to different orderings of multisets are in different Brξn orbits since the action of Brξn cannot
change the ordering of arcs at ∗. On the other hand, simplices giving rise to the same ordering are in
the same orbit by an argument similar to the transitivity argument for vertices. See Fig. 4 for a picture
of two ferns in the same orbit.

For 0 ≤ i ≤ p, with the above description of simplices in the ordered fern complex Aξn, the face maps
of Aξn as an ordered simplicial complex are given by

fi(σ) = forgeti(σ)

where forgeti forgets the i’s in σ and then subtracts 1 from all the numbers greater than i. For example,

f1(0, 0, 2, 3, 2, 1, 1, 3) = (0, 0, 1, 2, 1, 2). Thus the differentials of the chains on Aξn, d : Z(Aξn/Brξn)p →
Z(Aξn/Brξn)p−1 are given by the map

d(σ) =
∑
j

(−1)jfj(σ).

For 0 ≤ p ≤ n− ξ, define D : (Aξn/Brξn)p → (Aξn/Brξn)p+1 by taking a p-simplex σ, adding one to every
entry and then putting ξ zeroes in front. For example D(0, 0, 2, 2, 1, 1) = (0, 0, 1, 1, 3, 3, 2, 2). We now
have that Dd+dD = id so the identity map is chain homotopic to zero in the range 0 ≤ p ≤ n− ξ. Thus
Hi(A

ξ
n/Brξn) = 0 for 1 ≤ i ≤ n− ξ.

For the second condition, we get the conjugation by identifying the stabiliser of a p-simplex with the
ξ-braid group that acts on the cut surface where we cut along the arcs of the p-simplex.

Finally for the last condition, the action of Brξn that takes a vertex v to a vertex w is supported on a
tubular neighbourhood of v ∪ w.

Theorem 5.1 of [HW10] now implies that we have isomorphisms in the range ∗ ≤ n/2 − 1 and an
epimorphism for ∗ ≤ n/2. In Proposition 5.2, we will in fact show that the maps

stab : Brξn(S)→ Brξn+1(S)

are always injective in homology and this gives the full result. �

5. Homological stability for closed surfaces

When S is a closed surface, it is not possible to define the stabilisation maps that we have been using
to prove our homological stability theorems. The main issue is that we no longer have a boundary from
which to push in new points. Indeed, even for the usual configuration space, integral homological stability
for configuration spaces of closed manifolds does not hold (see for example [FVB62] from which one can
compute H1(Confn(S2);Z) ∼= Z/(2n − 2)). On the other hand if one considers rational homology, then
Church and Randal-Williams [Chu12, RW13] prove that homological stability for configuration spaces
of closed manifolds holds rationally.
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In this section, we will prove the analogous result for closed surfaces and ξ-configuration spaces
(or equivalently ξ-braid groups). We use a technique of Randal-Williams in [RW13] where he proves
homological stability for configuration spaces of closed manifolds, using homological stability for open
ones. This will involve defining transfer maps which realise the homology isomorphisms. These maps
will be more naturally defined in terms of ξ-confiugration spaces rather than ξ-braids. We define these
transfer maps as follows.

For m < n, let Confξn,m(S) be the ξ-configuration space where the n subsets have been partitioned
into subsets of size m and n−m. There is a covering map

p : Confξn,m(S)→ Confξn(S)

obtained by forgetting the partitioning. There is a transfer map

tn,m : H∗(Confξn(S);Z)→ H∗(Confξn,m(S);Z)→ H∗(Confξm(S);Z)

where the first map is the transfer map associated to the covering p, and the second is the map induced
by

f : Confξn,m(S)→ Confξm(S),

which forgets down to m subsets. We use the notation tn to denote tn,n−1

Remark 5.1. There is also a way to describe the transfer map on the level of spaces using the identification
H∗(X) ∼= π∗(Sym∞(X)) from the Dold-Thom theorem. Given an n-fold covering π : E → B, there is a
map τ : B → Symn(E), given by sending a point in b to π−1(b). The transfer map on homology is defined

as the map H∗(B)
τ∗−→ H∗(E), given by the induced map on π∗ of Sym∞(τ) : Sym∞B → Sym∞(E),

where we have identified Sym∞(Symn(E)) with Sym∞(E) and then used the Dold-Thom theorem. We
will make use of this description of the transfer map in the proof of Theorem 5.3.

Proposition 5.2. Let S be a surface that is the interior of a surface with boundary. The map

(stabn)∗ : H∗(Confξn(S);Z)→ H∗(Confξn+1(S);Z)

is always split injective. Moreover, the transfer map tn is a rational isomorphism whenever stabn−1 is.

Proof. For brevity let sn denote the stabilisation map (stabn)∗. From the definition of the transfer, we
see that the maps s and t satisfy the relations

tj ◦ sj−1 = sj−2 ◦ tj−1 + id.

More generally, they satisfy

tj,k ◦ sj−1 = sj−2 ◦ tj−1,k−1 + tj−1,k.

Furthermore,

tk+1 ◦ · · · ◦ tj = (j − k)!tk,j .

Letting Aj = Hi(Confξn(S);Z) and Bj := coker(sj−1), we are now in the situation of [Dol62, Lemma 2],
which implies that the sj are split injective and that

tj+1 ◦ sj

is multiplication by a nonzero constant. On homology, this is rationally an isomorphism so tj+1 is an
isomorphism whenever sj is an isomorphism which gives the desired bound. �

We have now completed the proof of Theorem 4.1, using the transfer maps to show that stab :

Confξn(S)→ Confξn+1(S) is always injective and is rationally inverse to the transfer map in a range.
Since the transfer map does not require us to add points to our surface, it makes sense to talk about the

transfer map even for closed manifolds. In this way, we get a map tn : H∗(Confξn(S))→ H∗(Confξn−1(S))
and we can ask when this map is an isomorphism. In general, stability does not hold with integral
coefficients. However, if we instead work with rational coefficients then we can prove the following.

Theorem 5.3. Let S be a surface, open or closed.

t : Hk(Confξn(S);Q)→ Hk(Confξn−1(S);Q)

is an isomorphism for 2k ≤ n− 1.
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The proof of Theorem 5.3 will be similar to the proof of Proposition 9.4 in [RW13]. We will make use
of the following construction.

Let

Dξ
n(S)i := {(c, p0, . . . , pi) ∈ Confξn(S)× Si+1 | pj 6∈ c and pj 6= pk}.

The notation pj 6∈ c means the points pj do not lie in any of the subsets that make up c. There are face
maps ∂j : Dξ

n(S)i → Dξ
n(S)i−1 obtained from forgetting pj . Moreover there is an augmentation map

ε : Dξ
n(S)• → Confξn(S) which forgets all the pj so that Dξ

n(S)• is an augmented semi-simplicial space.
We can similarly define the augmented semi-simplicial space

Dξ
n,1(S)i := {(c, p0, . . . , pi) ∈ Confξn,1(S)× Si+1 | pj 6∈ c and pj 6= pk}.

We will make use of the following lemma which follows from the proof of Lemma 2.1 in [RW10].

Lemma 5.4. Let ‖X•‖ → X be an augmented (semi-)simplicial space, f : Xn → X be the unique face
map and let x ∈ X. If f is a Serre fibration, then

‖f−1(x)•‖ → ‖X•‖ → X

is a homotopy fibre sequence.

Lemma 5.5. The maps ‖Dξ
n(S)•‖ → Confξn(S) and ‖Dξ

n,1(S)•‖ → Confξn,1(S) are weak equivalences.

Proof. We prove that the first map is a weak equivalence. By Lemma 5.4 the map ‖Dξ
n(S)•‖ → Confξn(S)

is a homotopy fibre sequence with fibre over a ξ-configuration c given by ‖F (S− c)•‖, where F (S− c)• is
the semi-simplicial space whose ith term consists of unordered (i+ 1)-tuples of distinct points in S − c.
We will show that ‖F (S − c)•‖ is contractible.

By taking small neighbourhoods of the points in c, we can find a closed surface S′ ⊂ (S − c) which is
homotopy equivalent to (S − c) with some point x ∈ (S − c)− S′.

Now suppose we have map f : Sk → ‖F (S − c)•‖. By the previous homotopy equivalence, we
can deform f so that x does not lie in its image. Moreover, by simplicial approximation, we can
find a PL triangulation of Sk and take f to be simplicial. Now, we can fill in f by defining a map

f̂ : cone(Sk)→ ‖F (S − c)•‖ that sends the cone point to x.

Therefore ‖F (S − c)•‖ is contractible and so the map ‖Dξ
n(S)•‖ → Confξn(S) is an equivalence. The

argument that ‖Dξ
n,1(S)•‖ → Confξn,1(S) is a weak equivalence is similar. �

There are semi-simplicial maps

Dξ
n(S)• ← Dξ

n,1(S)• → Dξ
n+1(S)•

modelled on the maps for ξ-configurations, Confξn(S)← Confξn,1(S)→ Confξn+1(S).

Lemma 5.6. There is a map of semi-simplicial spaces

Dξ
n(S)•

τ−→ Symn
fib(D

ξ
n,1(S)•)→ Symn

fib(D
ξ
n+1(S)•)

which induces a map

‖Dξ
n(M)•‖

τ−→ Symn(‖Dξ
n,1(S)•‖)→ Symn(‖Dξ

n+1(S)•‖)

on geometric realisations. The terms in these maps are described in the proof.

Proof. There are fibration sequences given by

Confξn(S − i+ 1 points )→ Dξ
n(S)i

π−→ PConfi+1(S)

where π is the map that sends (c, p0, . . . , pi) 7→ (p0, . . . , pi). Let Symn
fib(D

ξ
n(S)i) denote the n-fold

fibrewise symmetric product with respect to this fibration. The maps Dξ
n,1(S)i → Dξ

n+1(S) are fibrewise

n-fold coverings over PConfi+1(S) which give rise to transfer maps

τ : Dξ
n+1(S)i → Symn

fib(D
ξ
n,1(S)i).

One can check that τ commutes with the face maps and so defines a transfer τ on geometric realisations
as in the statement of the lemma. �

We can now prove Theorem 5.3
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Proof of Theorem 5.3. Associated to a semi-simplicial space is a spectral sequence which computes the
homology of its geometric realisation in terms the the homology of its levels. Therefore Lemma 5.6 gives
rise to a map of spectral sequences converging to the transfer map

t : H∗(Confξn(S);Q)→ H∗(Confξn−1(S);Q)

where we have used Lemma 5.5 to identify Confξn(S) ' ‖Dξ
n(S)‖ and the Dold-Thom theorem to get a

map from H∗(‖Dξ
n(S)•‖;Q)→ H∗(‖Dξ

n−1(S)•‖;Q).

The map on E1
pq terms of the spectral sequence is

Hq(D
ξ
n(S)p;Q)→ Hq(D

ξ
n−1(S)p;Q)

and is induced by Dξ
n(M)i → Symn

fib(Dn,1(S)i) → Symn
fib(D

ξ
n−1(S)p). From the fibration in the proof

of Lemma 5.6, there is a Serre spectral sequence converging to this map. The map on E2
pq terms of this

Serre spectral sequence is

Hp(PConfi(S);Hq(Confξn(S − i+ 1 points);Q))→

Hp(PConfi(S);Hq(Confξn−1(S − i+ 1 points);Q)).

On coefficients, it is induced by the transfer map

t : Hq(Confξn(S − i+ 1 points);Q)→ Hq(Confξn−1(S − i+ 1 points);Q).

Since (S − i+ 1 points) is an open surface, Proposition 5.2 implies that this is an isomorphism for

q ≤ (n − 1)/2. Thus the map Hq(D
ξ
n(S)p;Q) → Hq(D

ξ
n−1(S)p;Q) is an isomorphism in this range. In

particular,

tn : H∗(Confξn(S);Q)→ H∗(Confξn−1(S);Q)

is an isomorphism for ∗ ≤ (n− 1)/2. �
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