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Twisted homological stability for configuration spaces

Martin Palmer // 17 December 2014

Abstract

Let M be an open, connected manifold. A classical theorem of McDuff and Segal states
that the sequence {Cn(M)} of configuration spaces of n unordered, distinct points in M is
homologically stable with coefficients in Z – in each degree, the integral homology is eventually
independent of n. The purpose of this note is to prove that this phenomenon also holds
for homology with twisted coefficients. We first define an appropriate notion of finite-degree
twisted coefficient system for {Cn(M)} and then use a spectral sequence argument to deduce
the result from the untwisted homological stability result of McDuff and Segal. The result
and the methods are generalisations of those of Betley [Bet02] for the symmetric groups.
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1. Introduction

For a pair of spaces M and X , the configuration space of n unordered points in M with labels

in X is defined by
Cn(M,X) := (Emb(n,M)×Xn)/Σn.

Here n is the discrete space of cardinality n, so Emb(n,M) is the subspace of Mn where no two
points coincide. The symmetric group Σn acts diagonally, permuting the points and the list of
labels, so an element of Cn(M,X) is a subset of M of cardinality n, together with an element of
X “attached” to each point. More generally, one could define a configuration space associated to
a fibre bundle π : E →M by

Cn(M,π) := {(e1, . . . , en) ∈ En | π(ei) 6= π(ej) for i 6= j}/Σn.

An element of Cn(M,π) is thus a subset of M of cardinality n, together with an element of π−1(p)
“attached” to each point p of this subset. However, with the exception of Remark 1.9, we will
restrict our attention to configuration spaces with labels in a fixed label-space X , corresponding
to the trivial bundle M ×X →M .

Assumption 1.1 Henceforth we assume that M is an open, connected manifold with dim(M) > 2,
and that X is a path-connected space. To be precise, by an open manifold we mean a manifold
with empty boundary, each of whose (path-)components is non-compact but paracompact.

Since M is open, there are well-defined “stabilisation maps” Cn(M,X)→ Cn+1(M,X), which
we define precisely in §2.2 below. They are so called because the sequence of spaces {Cn(M,X)}
is homologically stable with respect to them:
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Theorem 1.2 ([Seg73, McD75, Seg79, RW13]) Under the conditions on M and X assumed above,

the map Cn(M,X)→ Cn+1(M,X) induces an isomorphism on integral homology in degrees ∗ 6 n
2 ,

and is split-injective on homology in all degrees.

Twisted coefficients. Several other families of groups or spaces which are homologically stable
are also known to have homological stability for twisted coefficients. For example general linear
groups [Dwy80], mapping class groups of surfaces [Iva93, CM09, Bol12] and the symmetric groups
[Bet02] are known to satisfy this phenomenon. A machine for proving twisted homological stability
for many natural families of groups is constructed in [Wah14], and in particular covers the cases
of mapping class groups of non-orientable surfaces and orientable 3-manifolds.

The minimum data required in order to pose the question of twisted homological stability for a
sequence of based, path-connected spaces {Yn} is a functor π1({Yn})→ Ab, where the source is the
category (groupoid) where the objects are the natural numbers, all morphisms are automorphisms
and Aut(n) = π1(Yn). In other words, this is just a choice of π1(Yn)-module for each n. There is
of course no chance of stability with respect to such a general “twisted coefficient system”, as the
π1(Yn)-modules for differing n may be completely unrelated.

To obtain a notion of twisted coefficient system with a chance of stability, one needs to add
some (non-endo)morphisms to π1({Yn}) and require that the functor from this new source category
to Ab satisfy some finiteness conditions defined in terms of the new morphisms. The correct way
to do this depends on the particular context one is working in (although a very general context for
classifying spaces of discrete groups is introduced in [Wah14]).

In §§2,3 below we will define a twisted coefficient system of degree d for the sequence {Cn(M,X)}
to be a functor from a certain category B(M,X) to Ab satisfying a certain finiteness condition. To
state the main result, it is enough to mention that it includes the data of a π1Cn(M,X)-module
Tn for each n, and that the stabilisation map induces a natural map

H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1). (1.1)

The main result of this note is the following:

Theorem 1.3 Under Assumption 1.1, if T is a twisted coefficient system for {Cn(M,X)} of degree
d, then the map (1.1) is an isomorphism in degrees ∗ 6 n−d

2 , and is split-injective in all degrees.

This is a generalisation of the result of [Bet02], where twisted homological stability is proved
for the symmetric groups {Σn}, corresponding to the case M = R∞ and X = ∗.

Remark 1.4 (Split-injectivity) The split-injectivity statement of this theorem is fairly easy, and
has essentially the same proof as in the untwisted case. It is proved separately in §7, and its proof
does not depend on the twisted coefficient system being of finite degree – this assumption is only
required for surjectivity in the stable range.

Remark 1.5 (When ·2 is invertible) If T : B(M,X)→ Ab is a twisted coefficient system of Z[ 12 ]-
modules, i.e. its image lies in the subcategory Z[ 12 ]-mod of Ab, then the stability range in Theorem
1.3 can be improved to ∗ 6 n− d, as long as M is at least 3-dimensional. When M is a surface, a
similar improvement is possible if T is a rational twisted coefficient system, i.e. its image lies in the
subcategory VectQ of Ab. The improved range in this case is ∗ 6 n− d when M is non-orientable
and ∗ < n − d when M is orientable. This uses the improved homological stability ranges, for
untwisted coefficients, obtained in [Chu12, RW13, KM14b, Knu14]. See Remark 6.5 after the proof
of Theorem 1.3 in §6.

Remark 1.6 (Related results) Some other examples of twisted homological stability theorems for
configuration spaces are as follows. Firstly, there is the stability result [Bet02, Theorem 4.3], of
which the present note is a generalisation, corresponding to takingM = R∞ andX = ∗ in Theorem
1.3. Another example is [CF13, Corollary 4.4], which concerns the braid groups βn = π1(Cn(R

2)).
The local coefficient systems in this case are the rational βn-representations Vλ[n]. Here, λ is a
fixed Young diagram with |λ| boxes, λ[n] is the Young diagram obtained by adding a new row
of length n − |λ| to the top of λ and Vλ[n] is the irreducible Σn-representation corresponding to
λ[n], viewed as a βn-representation via the projection βn → Σn. Another example concerning the
braid groups is [Wah14, Example 5.3 and Theorem 6.13], which proves homological stability for
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βn with coefficients in the Burau representations βn → Aut(Z[t±1]n). Note that in this example
the local coefficient systems do not factor through the projection βn → Σn. In fact, the homology
of βn with coefficients in the reduced rational Burau representations βn → Aut(Q[t±1]n−1) is
explicitly computed in [Che14], and one can directly read off a stable range from the computation.
Interestingly, the stable range obtained in [Che14] for the reduced rational Burau representations
has slope 1, whereas the stable range obtained in [Wah14] for the integral Burau representations
has slope 1

2 . This parallels the improvements to the range of Theorem 1.3 discussed in Remark 1.5
above. See also Remark 4.10, which explains that the Burau representations do not fit into the
framework of the present note.

Some special cases of Theorem 1.3 are as follows. Fix a principal ideal domain R and a path-
connected based space Z with H∗(Z;R) flat over R in all degrees. For example we could take R
to be a field, or we could take R = Z and assume that the integral homology of Z is torsion-free.
Also choose non-negative integers q, h and suppose that H̃∗(Z;R) = 0 in the range ∗ 6 h. The
homology group Hq(Z

n;R) is a Z[Σn]-module given by permuting the factors of Zn, and hence
also a Z[π1(Cn(M,X))]-module via the projection π1(Cn(M,X))→ Σn.

Corollary 1.7 There are isomorphisms

H∗

(
Cn(M,X);Hq(Z

n;R)
)
∼= H∗

(
Cn+1(M,X);Hq(Z

n+1;R)
)

in the range ∗ 6 1
2

(
n−

⌊
q

h+1

⌋)
. If we take R = Q, or R is a ring in which 2 is invertible and M is

at least 3-dimensional, then this holds in the larger range ∗ 6 n−
⌊

q
h+1

⌋
(except in the case where

M is an orientable surface, in which case the larger range is ∗ < n−
⌊

q
h+1

⌋
).

Proof. The first statement follows directly from Theorem 1.3 applied to Example 4.1, using Lemma
4.2 and Remark 4.4 to compute the degree of the twisted coefficient system in this case. The
improved ranges follow from Remark 1.5 above.

For an ordered partition µ = (µ1, . . . , µk) of |µ| = µ1 + · · ·+ µk, denote by Σµ the product of
symmetric groups Σµ1

×· · ·×Σµk
, which is naturally a subgroup of Σ|µ|. Fix an ordered partition λ,

and assume that n > |λ|, so that there is an induced ordered partition λ[n] := (n− |λ|, λ1, . . . , λk)
of n. Then Σn/Σλ[n] is a (transitive) Σn-set, so that R[Σn/Σλ[n]] is a π1(Cn(M,X))-module via
the projection π1(Cn(M,X))→ Σn for any ring R.

Corollary 1.8 There are isomorphisms

H∗

(
Cn(M,X);R

[
Σn/Σλ[n]

])
∼= H∗

(
Cn+1(M,X);R

[
Σn+1/Σλ[n+1]

])

in the range ∗ 6 1
2

(
n− |λ|

)
. If we take R = Q, or R is a ring in which 2 is invertible and M is at

least 3-dimensional, then this holds in the larger range ∗ 6 n− |λ| (except in the case where M is

an orientable surface, in which case the larger range is ∗ < n− |λ|).

In particular this includes stability for coefficients in Z[Σn/Σn−k] or in Z[Σn/(Σk ×Σn−k)] in
the range ∗ 6 n−k

2 by taking λ to be (1, . . . , 1) or (k) respectively.

Proof. The first statement follows directly from Theorem 1.3 applied to Example 4.6, using Lemma
4.7 and Remark 4.8 to compute the degree of the twisted coefficient system in this case. The
improved ranges follow from Remark 1.5 above.

Remark 1.9 (Configurations with twisted labels) A consequence of Corollary 1.7 is (untwisted)
homological stability for configuration spaces Cn(M,π) with labels in a fibre bundle π : E → M
with path-connected fibres, defined at the very beginning of this note. This uses the Serre spectral
sequence for the fibre bundle

Cn(M,π) −→ Cn(M)

that forgets the labels, and which has E2 page isomorphic to the twisted homology groups of
Cn(M) with coefficients in the homology groups of Fn, where F is the typical fibre of π. Corollary
1.7 says that the stabilisation maps induce a map of spectral sequences which is an isomorphism in
a range on the E2 page, as long as we take field coefficients. One can then reconstruct an integral
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homological stability result from the fields Fp and Q. This is proved in detail in Appendix B of
[CP14] and also in Appendix A of [KM14a]. We note that this result can alternatively be proved
using a generalisation of the proof of [RW13], which is concerned with configuration spaces with
labels in a fixed space. This alternative proof is also sketched in Appendix A of [KM14a].

Remark 1.10 (Coloured configuration spaces) Corollary 1.8 may in fact be deduced quickly from
untwisted homological stability, as follows. First note that

H∗

(
Cn(M,X);R

[
Σn/Σλ[n]

])
∼= H∗(Cλ[n](M,X);R),

where the coloured configuration space Cλ[n](M,X) is defined to be the covering space of Cn(M,X)

with
∣∣Σn/Σλ[n]

∣∣ =
(
n
λ1

)(
n−λ1

λ2

)
· · ·

(
n−λ1−···−λk−1

λk

)
sheets, in which the n points are coloured accord-

ing to the partition λ[n]. There is a stabilisation map

Cλ[n](M,X) −→ Cλ[n+1](M,X)

given by adding a point of the first colour to a coloured configuration (similarly to the stabilisation
map defined in Definition 2.1). This commutes up to homotopy with the projections to Cλ(M,X),
which are fibre bundles, and the map of fibres is the ordinary stabilisation map Cn−|λ|(M|λ|, X)→
Cn+1−|λ|(M|λ|, X), where M|λ| denotes the manifold M with |λ| points removed. The result then
follows by applying the relative Serre spectral sequence associated to this map of fibre bundles over
Cλ(M,X).

Remark 1.11 (Representation stability) Let Fn(M,X) denote the configuration space of n dis-
tinct, ordered points in M labelled by X . This is an (n!)-sheeted covering space of Cn(M,X), and
in the notation of the previous remark it may also be written as C(1,...,1)(M,X), where the partition
contains n instances of the number 1. The sequence of graded Q[Σn]-modules {H∗(Fn(M,X);Q)}
satisfies representation stability, a notion introduced in [CF13] and proved in this case by [Chu12].
Roughly, this says that for each fixed degree ∗ and Young diagram λ, the number of copies of the
irreducible Σn-representation Vλ[n] in the nth term H∗(Fn(M,X);Q) of the sequence is eventually
independent of n. See Remark 1.6 for an explanation of this notation. Moreover, the stability in
this case is uniform: the bound on “eventually” depends only on ∗ and not on λ.

The rational homology of Fn(M,X) is related to the groups appearing in Corollary 1.8 as
follows:

H∗(Fn(M,X);Q)⊗Q[Σn] Q[Σn/Σλ[n]] ∼= H∗(Cn(M,X);Q[Σn/Σλ[n]]). (1.2)

This follows from the collapse of the Künneth spectral sequence for the singular chain complex
C∗(Fn(M,X);Q) and the module Q[Σn/Σλ[n]] over the ring Q[Σn]. By Corollary 1.8 (c.f. also the
previous remark), this sequence of graded groups is stable in the range ∗ 6 n − |λ| (or the range
∗ < n−|λ| if M is an orientable surface). There is a proof due to Søren Galatius [personal commu-
nication], involving only the representation theory of symmetric groups, that takes stability of the
left-hand side of (1.2) as input and proves representation stability for {H∗(Fn(M,X);Q)}. This
therefore reveals a link between twisted homological stability (via Corollary 1.8) and representation
stability.

More quantitatively, the argument of Galatius proves representation stability in the range
n > 2.max{|λ|, ∗} (or n > 2.max{|λ|, ∗+1} in the case of orientable surfaces). For comparison, the
range obtained in [Chu12] is n > 2∗ for manifolds of dimension at least 3 and n > 4∗ for surfaces.
So the range obtained by Galatius’ argument improves the range of [Chu12] for surfaces when
|λ| 6 2∗ (and also works equally well for non-orientable manifolds). If we define the complexity of
a Young diagram µ to be the number of boxes below the first row, κ(µ) = |µ|−µ1, then we can say
that the range is improved for Young diagrams with low complexity, since κ(λ[n]) = |λ|. However,
it does not recover uniform representation stability, as the range depends on λ as well as on ∗.

Remark 1.12 (Alternating coefficients) There is a sequence of π1(Cn(M,X))-modules that does
not fit into the framework of this note (it does not form a twisted coefficient system at all, let
alone a finite-degree one), but which nevertheless does exhibit homological stability. Every loop
in Cn(M,X) induces a permutation of its base configuration, so there is a natural projection
map π1(Cn(M,X)) → Σn, which we can compose with the sign homomorphism to obtain a map
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π1(Cn(M,X))→ Z/2. This makes Z[Z/2] into a π1(Cn(M,X))-module, and its kernel corresponds
to a double cover C+

n (M,X) → Cn(M,X). The space C+
n (M,X) is the “oriented configuration

space” where each configuration is additionally equipped with an ordering of its points up to even
permutations. One can easily see that

H∗(C
+
n (M,X);Z) ∼= H∗(Cn(M,X);Z[Z/2]). (1.3)

In [Pal13] the author proved that the sequence of spaces C+
n (M,X), with analogous stabilisation

maps, is homologically stable as n→∞, in the range ∗ 6 n−5
3 . Via the identification (1.3) this is

twisted homological stability for Cn(M,X) with respect to the sequence of local coefficients Z[Z/2].

Remark 1.13 (Future generalisations) It would be very interesting to generalise this twisted
homological stability result to a setting which admits more examples. As mentioned before the
statement of Theorem 1.3, a twisted coefficient system for {Cn(M,X)} is a functor from a certain
category B(M,X) (the category of “partial braids” on M) to the category of abelian groups. One
way to encompass more examples would be to replace B(M,X) by the subcategory B1(M,X) of
“full braids” on M . This is analogous to the category of finite sets and partially-defined injections,
and its subcategory of everywhere-defined injections. Twisted coefficient systems in this more
general sense would include for example the Burau representations when M = R2 and X = ∗ (see
Remark 4.10). The category B(M,X) has a zero object, which is only initial (and not terminal)
in the subcategory B1(M,X). However, the methods developed in [Wah14] for proving twisted
homological stability for families of groups involve functors from a source category which is only
required to have an initial object (see also [DV13, §1.2]). This suggests that it is reasonable to
hope for a stability result for twisted coefficient systems indexed by the category B1(M,X).

A note on terminology. To keep our terminology from becoming ambiguous, we will always use
the terms “local coefficient system” and “twisted coefficient system” as follows. For a space Y , a
local coefficient system for Y will have its usual meaning as a bundle of abelian groups over Y , or
a functor from the fundamental groupoid of Y to Ab, or (when Y is based and path-connected) a
π1(Y )-module. The phrase twisted coefficient system will always be used in the sense of Definition
2.2 below; in particular it applies to a sequence of spaces.

Acknowledgements. The content of this note appeared, in a slightly different form, as part of
the author’s PhD thesis in 2012, and he would like to thank his supervisor, Ulrike Tillmann, for her
invaluable advice and guidance throughout his PhD. He would also like to thank Søren Galatius
for sharing his proof of representation stability for ordered configuration spaces, cf. Remark 1.11,
and Aurélien Djament for a discussion of cross-effect decompositions, cf. Remark 3.5.

2. Twisted coefficient systems

2.1. Setup. First we fix some data. Recall from Assumption 1.1 that M is an open, connected
manifold of dimension at least 2 and X is a path-connected space. This assumption on M means
that we may pick a connected manifold M with non-empty boundary ∂M whose interior is M
(although we must allow ∂M to be non-compact in general). Also choose a basepoint x0 for X .
Choose a point a ∈ ∂M , and let U be a coordinate neighbourhood of a with an identification
U ∼= Rd

+ = {x ∈ Rd | x1 > 0} which sends a to 0. Also choose a self-embedding e : M →֒M which
is isotopic to the identity, is equal to the identity outside U , and such that e(a) ∈ M (i.e. in the
interior of M). Moreover, we choose an isotopy I : e ≃ idM . We obtain a sequence of points in M
by defining

a1 := e(a) an := e(an−1) for n > 2.

The isotopy I provides us with canonical paths pn : [0, 1]→M between an and an+1.

2.2. The configuration space and the stabilisation map. Recall that the configuration space
of n unordered points in M with labels in X is defined to be

Cn(M,X) := ((Mn r∆)×Xn)/Σn = (Emb(n,M)×Xn)/Σn,
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where ∆ = {(p1, . . . , pn) ∈ Mn | pi = pj for some i 6= j} is the so-called fat diagonal of Mn, and
the symmetric group Σn acts diagonally, permuting the points of M along with their labels in X .
Thus a labelled configuration is an unordered set of ordered pairs in M ×X , generically denoted
by {(p1, x1), . . . , (pn, xn)}. When X is a point we will also write Cn(M) = Cn(M, ∗).

Definition 2.1 The stabilisation map sn : Cn(M,X)→ Cn+1(M,X) is defined by

{(p1, x1), . . . , (pn, xn)} 7→ {(e(p1), x1), . . . , (e(pn), xn), (a1, x0)}.

Essentially, the existing configuration is “pushed” further into the interior of the manifold by e,
and the new configuration point a1 added in the newly vacated space. Up to homotopy, the only
“extra data” that this map depends on is the component of M containing a.

2.3. Twisted coefficient systems. We define the category B(M,X) to have
∐

n>0 X
n as its

set of objects, and a morphism from (x1, . . . , xm) to (y1, . . . , yn) is a choice of k 6 min{m,n}
and a path in Ck(M,X) from a k-element subset of {(a1, x1), . . . , (am, xm)} to a k-element subset
of {(a1, y1), . . . , (am, yn)} up to endpoint-preserving homotopy. The identity is given by k =
m = n and the constant path. Composition of two morphisms is given by concatenating paths
and deleting configuration points for which the concatenated path is defined only half-way. For
example (omitting the labels in X):

◦ = (2.1)

Again, when X is a point we will also write B(M) = B(M,X).

Definition 2.2 A twisted coefficient system, associated to the direct system of spaces {Cn(M,X)},
is a functor from B(M,X) to the category Ab of abelian groups.

For each n, take {(a1, x0), . . . , (an, x0)} as the basepoint of Cn(M,X). Then the automor-
phism group of the object (x0)

n = (x0, . . . , x0) (a tuple of length n) in B(M,X) is precisely the
fundamental group π1Cn(M,X). So if we are given a functor T : B(M,X) → Ab this induces an
action of π1Cn(M,X) on Tn := T ((x0)

n), and we can define the local homologyH∗(Cn(M,X);Tn).
For every object x = (x1, . . . , xn) of B(M,X) there is a natural morphism ιx : (x1, . . . , xn)→

(x0, x1, . . . , xn) as follows. It is represented by the path in Cn(M,X) from {(a1, x1), . . . , (an, xn)}
to {(a2, x1), . . . , (an+1, xn)} where each configuration point ai travels along the path pi (see §2.1)
and the labels xi stay constant. Schematically, this may be pictured as:

...

a1

a2

an

a1

a2

an

an+1

x1

x2

xn

(2.2)

When x = (x0)
n we will write ιx =: ιn for this canonical morphism (x0)

n → (x0)
n+1. For any

γ ∈ π1Cn(M,X) = AutB(M,X)((x0)
n) it is easy to check that

ιn ◦ γ = (sn)∗(γ) ◦ ιn,

so for any T the map T ιn : Tn → Tn+1 is equivariant with respect to the group-homomorphism
(sn)∗ : π1Cn(M,X)→ π1Cn+1(M,X). Hence we have an induced map

(sn;T ιn)∗ : H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1).

This is the map (1.1) which induces the isomorphism in Theorem 1.3.

Notation 2.3 From now on, by abuse of notation, we will denote the induced map T ιn : Tn → Tn+1

also by ιn : Tn → Tn+1. Similarly for the left-inverse πn : (x0)
n+1 → (x0)

n of ιn (see §3.1): we
denote its image under T also by πn : Tn+1 → Tn.
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2.4. A special case. Let X = ∗ and assume that M is simply-connected and of dimension at
least 3. Since X is just a point, the objects of B(M,X) = B(M) are (in canonical bijection with)
the non-negative integers. The conditions on M imply that π1Cn(M) ∼= Σn, in other words a path
in Cn(M) from the basepoint {a1, . . . , an} to itself is determined by the permutation it induces
on the set {a1, . . . , an}. More generally, a morphism from {a1, . . . , am} to {a1, . . . , an} in B(M) is
determined by the partially-defined injection {a1, . . . , am} 99K {a1, . . . , an} it induces. Hence there
is a canonical isomorphism of categories B(M) ∼= Σ, where Σ is the category defined as follows:

Definition 2.4 The category Σ has objects {0, 1, 2, . . .}, and a morphism from m to n in Σ is a
partially-defined injection m 99K n. Composition is then composition of partially-defined functions
(where the composite function is defined exactly where it is possible to define it). Note that Σ is
an inverse category, i.e. every morphism f has a morphism g such that fgf = f and gfg = g. It is
a subcategory of the category with objects {0, 1, 2, . . .} and morphisms partially-defined functions,
which is precisely Γop, a skeleton of the category Set

fin
∗ of finite pointed sets. Partially-defined

injections are also sometimes called partially-defined bijections. The category Σ is also sometimes
called finPInj [Heu09], FI♯ [CEF12] or Θ [CDG13].

In particular we have B(R∞) ∼= Σ. Of course, R∞ is not a finite-dimensional manifold, as was
assumed of M , but the definitions make sense for arbitrary spaces M and X , and Cn(R

∞) is the
colimit of the spaces Cn(R

d) under the obvious inclusions. The space Emb(n,R∞) is a contractible
Hausdorff space on which the natural action of Σn is free, so its quotient Cn(R

∞) is a model for
the classifying space BΣn.

Any embeddingM →֒ N taking ∂M into ∂N , together with a continuous mapX → Y , induces
a functor B(M,X)→ B(N, Y ). Any manifold M has a unique-up-to-isotopy embedding into B∞,
the closed unit ball in R∞. This embedding, together with the map X → ∗, induces a canonical
functor B(M,X) → B(B̊∞) ∼= B(R∞) ∼= Σ. Another description of this functor is that it forgets
both the labels of the paths and the paths themselves, remembering only the partially-defined
injection induced by the paths.

In particular this means that any twisted coefficient system Σ → Ab canonically induces a
twisted coefficient system B(M,X)→ Σ→ Ab.

2.5. A more general case. Instead of configurations of points (closed 0-dimensional submani-
folds), one may consider configurations of closed submanifolds of higher dimension. Let M be a
connected manifold with non-empty boundary and of dimension at least 2, as before. Also fix a
closed manifold P and an embedding ι0 : P →֒ ∂M . Choose an embedding e : M →֒ M which is
isotopic to the identity and such that e(M) is disjoint from ι0(P ). We obtain a sequence of pairwise-
disjoint embeddings of P into M by defining ιn := en ◦ ι0. Writing the disjoint union P ⊔· · · ⊔P of
n copies of P as nP for short, define CnP (M) to be the path-component of Emb(nP,M)/Diff(nP )
containing [ι1 ⊔ · · · ⊔ ιn]. A stabilisation map CnP (M) → C(n+1)P (M) may then be defined by
sending [φ1 ⊔ · · · ⊔ φn] to [(e ◦ φ1) ⊔ · · · ⊔ (e ◦ φn) ⊔ ι1]. One may also define more complicated
versions of this setup, in which the submanifolds in CnP (M) are parametrised modulo a subgroup
of Diff(P ) and come equipped with labels in some bundle over Emb(P,M).

Everything in this note generalises to this setting, including an analogous notion of twisted co-

efficient system for {CnP (M)}. In an article in preparation [Pal] we prove (untwisted) homological
stability for these more general kinds of configuration spaces, as long as dim(P ) 6 1

2 (dim(M)− 3).
The arguments of this note then immediately imply a twisted homological stability result for these
spaces too.

3. Height and degree of a twisted coefficient system

3.1. Degree. First we will define the degree of a functor T : B(M,X) → Ab. Recall from §2.3
the natural morphisms ιx : x → (x0, x). The adjective “natural” suggests that they should form
a natural transformation, and in fact they do: For every morphism φ of B(M,X) we have a
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commutative square

(x1, . . . , xm) (x0, x1, . . . , xm)

(y1, . . . , yn) (x0, y1, . . . , yn)

ιx̄

ιȳ

φ Sφ (3.1)

where the morphism Sφ is defined as follows: if φ is represented by a path p in Ck(M,X) for
some k 6 min{m,n}, then Sφ is represented by the path sk ◦ p in Ck+1(M,X). Thus we have
an endofunctor S : B(M,X)→ B(M,X) (which could be called the stabilisation endofunctor) and
a natural transformation ι : id ⇒ S. Note that each ιx has an obvious left-inverse πx, and these
morphisms fit together to form a left-inverse π : S ⇒ id for ι.

So, given any T : B(M,X)→ Ab we get a natural transformation T ◦ ι : T ⇒ T ◦S, or in other

words a morphism in the abelian category AbB(M,X). Denote its cokernel by ∆T : B(M,X)→ Ab.

Definition 3.1 The degree of a functor T : B(M,X)→ Ab is defined recursively by

deg(0) = −1 deg(T ) = deg(∆T ) + 1,

where 0 is the identically-zero functor.

Example 3.2 The degree of T is 6 0 exactly when ∆T = 0, i.e. when T ιx : Tx→ T (x0, x) is an
isomorphism for all x ∈ B(M,X). But the category B(M,X) is generated by the morphisms ιx,
their left-inverses πx and isomorphisms. Hence deg(T ) 6 0 if and only if T is constant in the sense
that it sends every morphism to an isomorphism.

See §4 for some less trivial examples.

3.2. Height. Denote the homomorphism π1Cn(M,X) → Σn which only remembers the permu-
tation of the basepoint configuration by u (this is part of the canonical functor B(M,X) → Σ
from §2.4). Write Gn := π1Cn(M,X) and define Gk

n := u−1(Σn−k × Σk). To define the height of
a functor T : B(M,X)→ Ab we need the following decomposition result:

Proposition 3.3 Let T : B(M,X)→ Ab be any functor, and recall that we write Tn := T ((x0)
n).

Then for k = 0, . . . , n there is a direct summand (as abelian groups) T k
n of Tn such that the action

of Gk
n 6 Gn on Tn preserves it : so it is also a direct summand as a Gk

n-module. Moreover, there

is a decomposition of Tn as a Gn-module:

Tn
∼=

n⊕

k=0

(
ZGn ⊗ZGk

n
T k
n

)
. (3.2)

This identification is natural in the sense that ιn : Tn → Tn+1 sends T k
n into T k

n+1, and the map of

the right-hand side induced by ιn and (sn)∗ corresponds under (3.2) to ιn on the left-hand side.

Remark 3.4 (Related decompositions) This is similar to the cross-effect decomposition of a functor
from a pointed monoidal category (a monoidal category whose unit object is also initial and
terminal) to an abelian category, which appears in [HPV12, Proposition 2.4] (see also [DV13,
Proposition 1.6]), and the idea of which goes back to Eilenberg and MacLane [EML54, §9]. However,
our category B(M,X) is not in general monoidal (it is when M is of the form R×N), so this setup
does not cover our situation. A similar cross-effect decomposition appears in [HV11, Proposition
1.4] for functors from a source category which has finite coproducts – however, B(M,X) also does
not have finite coproducts. Yet another similar decomposition appears in [CDG13, Lemme 2.7(3)]
for functors from a source category which is a wreath product C ≀ Λ, where C is any category and
Σ 6 Λ 6 Se

fin. Here, Sefin is the category of finite sets and partially-defined functions and Σ is
its subcategory of partially-defined injections, as in Definition 2.4. Our category B(M,X) may be
written as a wreath product PX ≀ B(M), where PX is the path category of X and the wreath
product is defined using the projection B(M)→ Σ. This is however not of the form considered in
[CDG13], unless M is simply-connected and of dimension at least 3 (see §2.4).

8



Since none of the existing decompositions in the literature covers the general case that we
require, we give a complete proof of the decomposition (3.2) in our situation (i.e. Proposition 3.3).
This is a little technical, so the reader may wish to skip directly to Definition 3.12 at this point.
Before embarking upon the proof of Proposition 3.3, we point out a correction.

Remark 3.5 (A correction) We should mention that the proof of the decomposition in Lemme
2.7(3) of [CDG13] contains an error. We will briefly explain the error and sketch a corrected proof
of their decomposition. See [CDG13, §2.1] for any unexplained notation. The first part of their
proof establishes a decomposition

T (C) =
⊕

P⊆P(E)

⋂

A∈P

TA,M (C), (3.3)

where TA,S(C) is defined to be ker(T (dC,A))∩ im(T (dC,S)), M = MP is defined to be
⋂
(P(E)rP )

and the notation P(E) means the power set of E.1 The aim is then to show that this is equal to
⊕

S⊆E

⋂

A∈QS

TA,S(C), (3.4)

where we define QS := {A ∈ P(E) | A ( S}. Define also RS := {A ∈ P(E) | A 6⊇ S} and note that
QS ⊆ RS with equality exactly when S = E. They state that TA,S(C) = 0 whenever A 6∈ QS , but
in fact this is only true under the stronger assumption that A 6∈ RS . We may therefore restrict the
direct sum in (3.3) to those P such that P ⊆ RMP

(rather than P ⊆ QMP
, as claimed). The P with

this property are precisely the subsets RS for S ⊆ E. Moreover, the function R : P(E)→ P(P(E))
given by S 7→ RS is injective (in contrast to the function Q), so we see that (3.3) is equal to

⊕

S⊆E

⋂

A∈RS

TA,S(C). (3.5)

The final step of the proof is to show that restricting each intersection to the subset QS of RS

does not change it. The subset QS is coinitial in RS , but the function P(E)→ P(T (C)) given by
A 7→ TA,S(C) is non-increasing, so this does not help us. Instead, this follows from the facts that
TA,S(C) = TA∩S,S(C) and {A ∩ S | A ∈ RS} = QS.

An alternative correction to the proof of Lemme 2.7(3) of [CDG13] was pointed out to us
later by Aurélien Djament, which we also briefly sketch. The decomposition (3.3) arises from the
family of pairwise-commuting idempotents {T (dC,S) | S ⊆ E} of T (C). If we instead consider the
subfamily {T (dC,Er{s}) | s ∈ E}, the corresponding decomposition is

T (C) =
⊕

S⊆E

⋂

s∈S

TEr{s},S(C). (3.6)

Using the fact that TA,S(C) = TA∩S,S(C), we may replace TEr{s},S(C) with TSr{s},S(C) on the
right-hand side. Note that {S r {s} | s ∈ S} is cofinal in QS and the function P(E) → P(T (C))
given by A 7→ TA,S(C) is non-increasing, so this is equal to (3.4).

We now prove Proposition 3.3, for which we will need the following definitions.

Definition 3.6 For S ⊆ {1, . . . , n} =: n let fS : (x0)
n → (x0)

n be the endomorphism in B(M,X)
given by the constant path in C|S|(M,X) on the configuration {(ai, x0) | i ∈ nrS}. So this is the
endomorphism which “forgets” the points ai for i ∈ S and is the identity elsewhere.

Definition 3.7 For p > 0 and {S1, . . . , Sp} a partition of S ⊆ n define

Tn[S1|· · ·|Sp] := im(TfnrS) ∩

p⋂

i=1

ker(TfSi
).

Note that the induced maps TfS : Tn → Tn are not in general Gn-module homomorphisms, so
these are subgroups but not sub-Gn-modules.

We will write Sδ for the discrete partition of S, and define

T k
n := Tn[{n−k+1, . . . , n}δ].

1 There is a typo in [CDG13], where M is incorrectly defined to be
⋂

P , rather than
⋂
(P(E) r P ).
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Remark 3.8 A few immediate observations are the following: Each TfS : Tn → Tn is idempotent.
The composition of TfS1

and TfS2
is TfS1∪S2

, so in particular the TfS for S ⊆ n all pairwise
commute. By definition Tn[ ] = im(Tfn), and since f∅ = id we also have Tn[n] = im(Tf∅) ∩
ker(Tfn) = ker(Tfn), so:

Tn = im(Tfn)⊕ ker(Tfn) = Tn[ ]⊕ Tn[n]. (3.7)

The following lemma is less immediate but can be proved by some diagram-chasing and draw-
ing little cartoons like (2.1) and (2.2). We will give a proof in symbols.

Lemma 3.9 For k 6 m 6 n, the map

ιnm := ιn−1 ◦ · · · ◦ ιm : Tm → Tn

is split-injective and sends T k
m into T k

n . Moreover, its restriction to a map T k
m → T k

n is a bijection.

Hence any left-inverse for ιnm restricts to a bijection T k
n → T k

m.

Proof. As mentioned in §3.1, each ιx has a natural left-inverse πx – these compose to give a left-
inverse πn

m for ιnm. Just as for ιn and πn, by an abuse of notation we will denote the induced map
TfS : Tn → Tn also by fS .

We now show that ιm(T k
m) ⊆ T k

m+1, and hence by induction that ιnm(T k
m) ⊆ T k

n . Suppose x =
ιm(y) for y ∈ T k

m. Then by definition y = f{1,...,m−k}(z) for some z ∈ Tm. Since πm : Tm+1 → Tm

is split-surjective we have z = πm(w) for some w ∈ Tm+1. Hence

x = ιm ◦ f{1,...,m−k} ◦ πm(w) = f{1,...,m−k+1}(w). (3.8)

For any m− k + 2 6 i 6 m+ 1 we have

f{i}(x) = f{i} ◦ ιm(y) = ιm ◦ f{i−1}(y) = ιm(0) = 0, (3.9)

since y ∈ T k
m. The two properties (3.8) and (3.9) verify that x ∈ T k

m+1.
Now we show that the restriction of ιm to T k

m → T k
m+1 is a bijection, and hence by induction

that the restriction of ιnm to T k
m → T k

n is a bijection. Suppose x ∈ T k
m+1, and define z := πm(x) ∈

Tm. Then
ιm(z) = ιm ◦ πm(x) = f{1}(x).

But note that x = f{1,...,m−k+1}(y) for some y ∈ Tm+1, so

f{1}(x) = f{1} ◦ f{1,...,m−k+1}(y)

= f{1,...,m−k+1}(y) (by Remark 3.8 and since k 6 m)

= x.

So it remains to prove that z ∈ T k
m. Firstly,

z = πm ◦ f{1,...,m−k+1}(y) = f{1,...,m−k} ◦ πm(y).

Secondly, for any m− k + 1 6 i 6 m, we have

ιm ◦ f{i}(z) = f{i+1} ◦ ιm(z) = f{i+1}(x) = 0,

since x ∈ T k
m+1. But ιm is split-injective, so f{i}(z) = 0. These two facts verify that z ∈ T k

m.

The following lemma will allow us to construct the required decomposition by induction:

Lemma 3.10 For all {S1, . . . , Sp} partitioning S ⊆ n with p > 2, there is a split short exact

sequence

0→ Tn[S1|· · ·|Sp] →֒ Tn[S1⊔S2|· · ·|Sp] ։ Tn[S1|S3|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp]→ 0.

The first map is the inclusion, and a section of the second map is given by the inclusion of each of

the two factors. So in other words we have a decomposition

Tn[S1⊔S2|· · ·|Sp] = Tn[S1|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp] ⊕ Tn[S1|S3|· · ·|Sp].
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Proof. One can check from the definitions that the following facts are true:
1. TfS2

restricts to a map Tn[S1⊔S2|· · ·|Sp]→ Tn[S1|S3|· · ·|Sp],
and similarly TfS1

restricts to a map Tn[S1⊔S2|· · ·|Sp]→ Tn[S2|· · ·|Sp].

2. Tn[S1|S3|· · ·|Sp] and Tn[S2|· · ·|Sp] are contained in Tn[S1⊔S2|· · ·|Sp].

3. For {i, j} ⊆ {1, 2} if x ∈ Tn[Si|S3|· · ·|Sp], then TfSj
(x) is x when i 6= j and 0 when i = j.

These facts imply that the map (TfS2
, T fS1

) restricts to the required split surjection (with a section
given by inclusion of each factor). The kernel of this is

Tn[S1⊔S2|S3|· · ·|Sp] ∩ ker(TfS1
) ∩ ker(TfS2

)

= im(TfnrS) ∩

p⋂

i=3

ker(TfSi
) ∩ ker(TfS1⊔S2

) ∩ ker(TfS1
) ∩ ker(TfS2

)

= Tn[S1|· · ·|Sp],

since ker(TfS1
) ⊆ ker(TfS1⊔S2

).

We can now use this to inductively prove a more general decomposition:

Lemma 3.11 For any ∅ 6= S ⊆ n and R ⊆ nr S there is a decomposition

Tn[S|R
δ] =

⊕

∅ 6=Q⊆S

Tn[(Q⊔R)δ]. (3.10)

As before, Qδ denotes the discrete partition of the set Q, so for example Tn[{1, 2}|{3, 4, 5}
δ] means

Tn[{1, 2}|{3}|{4}|{5}]. Note that this decomposition is an equality of subgroups, not just an abstract

isomorphism of groups.

Proof. The |S| = 1 case is obvious, so we assume that |S| > 2 and assume the theorem for smaller
values of |S| by induction. Pick an element s ∈ S. Then by Lemma 3.10,

Tn[S|R
δ] = Tn[Sr{s}|(R⊔{s})

δ] ⊕ Tn[Sr{s}|R
δ] ⊕ Tn[{s}|R

δ].

Apply the inductive hypothesis to the right-hand side. The proposition then follows from the
observation that for ∅ 6= Q ⊆ S, exactly one of the following holds: (i) s ∈ Q but Q 6= {s}; (ii)
s /∈ Q; (iii) Q = {s}.

We can now use this to deduce the decomposition we want:

Proof of Proposition 3.3. Combining (3.10) (setting R := ∅ and S := n) with (3.7) we obtain:

Tn =
n⊕

k=0

⊕

Q⊆n
|Q|=k

Tn[Q
δ]. (3.11)

The action of Gn on Tn permutes the summands via the projection Gn → Σn and the obvious
action of Σn on subsets of n. So:
· T k

n = Tn[{n−k+1, . . . , n}δ] is preserved by the action of Gk
n 6 Gn on Tn.

· The Gn-action on Tn preserves the outer direct sum.
· The inner direct sum is the induced module IndGn

Gk
n
T k
n = ZGn ⊗ZGk

n
T k
n .

This proves the decomposition of Gn-modules (3.2). We proved in Lemma 3.9 above that ιn : Tn →
Tn+1 sends T k

n into T k
n+1, and the naturality statement is clear.

Having established this decomposition we can now define the height of a twisted coefficient
system:

Definition 3.12 The height of a functor T : B(M,X) → Ab is the height at which the decom-
position (3.2) is truncated. More precisely, we define height(T ) by: height(T ) 6 h if and only if
T k
n = 0 for all k > h and all n. (So in particular height(T ) = −1 if and only if T = 0.)
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3.3. Height and degree. These two notions are related as follows:

Lemma 3.13 For any functor T : B(M,X)→ Ab, height(T ) 6 deg(T ).

This inequality is useful because having an upper bound on the height of a twisted coefficient
system is what is needed to prove Theorem 1.3, whereas it is often easier to find an upper bound
on the degree in examples.

Proof. We will use induction on d to prove the statement

deg(T ) 6 d ⇒ height(T ) 6 d (IHd)

for all d > −1, using the decomposition (3.11) above, which we restate as:

Tn =
⊕

S⊆n

Tn[S
δ]. (3.12)

In this notation the height of T is determined by height(T ) 6 d if and only if Tn[S
δ] = 0 for all

|S| > d and all n.
When d = −1 the definitions of height and degree coincide. This deals with the base case,

so let d > 0 and assume that (IHd−1) holds. For all n we have a split short exact sequence
0→ Tn → Tn+1 → ∆Tn → 0. Applying (3.12), this is

0→
⊕

S⊆n

Tn[S
δ] −→

⊕

R⊆n+1

Tn+1[R
δ] −→

⊕

Q⊆n

∆Tn[Q
δ]→ 0.

Analysing the maps carefully we see that
(a) Tn[S

δ] is sent isomorphically onto Tn+1[(S + 1)δ] by the first map.
(b) Tn+1[(Q ⊔ {1})

δ] is sent isomorphically onto ∆Tn[(Q− 1)δ] by the second map.
Suppose that deg(T ) 6 d. Then deg(∆T ) 6 d − 1 by the definition of degree, and so by the
inductive hypothesis (IHd−1), height(∆T ) 6 d− 1. By fact (b) above this implies that

Tn+1[R
δ] = 0 whenever |R| > d and 1 ∈ R. (3.13)

For any fixed k, the subgroups {Tn+1[R
δ] | |R| = k} are all abstractly isomorphic via the action of

Gn+1 on Tn+1. Also note that d > 0, so that |R| > 0, i.e. R 6= ∅. Hence:

Tn+1[R
δ] = 0 for all |R| > d. (3.14)

Therefore by (a), Tn[S
δ] = 0 for all |S| > d; in other words, height(T ) 6 d.

Remark 3.14 To prove that height(T ) = deg(T ), one could try to reverse the argument above
to get the other inequality. This goes wrong in one place though: Above we were able to deduce
(3.14) from (3.13) because for every |R| > d, there is an R′ of the same cardinality which contains
1. However, for the converse we would need to deduce (3.14) from:

Tn+1[R
δ] = 0 whenever |R| > d and 1 /∈ R. (3.15)

Now there is a subset R ⊆ n+1 for which there does not exist R′ ⊆ n+1 of the same cardinality
and not containing 1 – namely n+1 itself. This is the basic asymmetry which prevented us from
proving an equality between height and degree.

Remark 3.15 The notion of height in this note is the same as the notion of degree in [Bet02] (for
twisted coefficient systems for symmetric groups) and [Dwy80] (for general linear groups), whereas
the notion of degree in this note is in the same spirit as the notion of degree in [Iva93], [CM09] and
[Bol12] (for mapping class groups of surfaces) and [Wah14] (for automorphism groups in a general
categorical setting). Hence Lemma 3.13 provides a link between these two notions of degree.

We finish this section with a few immediate facts about the degree of a twisted coefficient
system.
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Lemma 3.16 For twisted coefficient systems T, T ′ : B(M,X)→ Ab and a fixed abelian group A,
(a) deg(T ⊕ T ′) = max{deg(T ), deg(T ′)},
(b) deg(T ⊗A) 6 deg(T ),

and more generally, for deg(T ) and deg(T ′) non-negative,
(c) deg(T ⊗ T ′) 6 deg(T ) + deg(T ′),

where ⊕ and ⊗ are defined objectwise.

Proof. Fact (a) follows by induction from the fact that ∆(T ⊕ T ′) = ∆T ⊕∆T ′. Fact (b) follows
from the fact that ∆(T ⊗A) = ∆T ⊗A, which is true because tensoring a split short exact sequence
with A preserves split-exactness. Fact (c) is proved by induction with base case (b), and inductive
step using the fact that

∆(T ⊗ T ′) = (T ⊗∆T ′)⊕ (∆T ⊗ T ′)⊕ (∆T ⊗∆T ′).

4. Examples of twisted coefficient systems

Recall from Definition 2.4 that the category Σ has objects the natural numbers including zero,
and morphisms the partially-defined injections. We will give some examples of functors T : Σ→ Ab,
which are twisted coefficient systems for the special case M = R∞ and X = ∗ since B(R∞) ∼= Σ.
However, recall (§2.4) that there is a canonical functor U : B(M,X)→ Σ for each (M,X), so these
examples also give twisted coefficient systems in general. Moreover, one can check (see §3 for the
notation) that ∆(T ◦U) = ∆T ◦U , so by induction deg(T ◦U) = deg(T ), and also (T ◦U)kn = T k

n ,
so height(T ◦ U) = height(T ).

Example 4.1 Fix a path-connected based space (Z, ∗), an integer q > 0 and a field F . The
functor T̂Z : Σ → Top is defined on objects by n 7→ Zn, and on morphisms as follows: given a
partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n} in Σ, define T̂Z(j) : Z

m → Zn to be the
map

(z1, . . . , zm) 7→ (zj−1(1), . . . , zj−1(n)),

where z∅ is taken to mean the basepoint ∗. For example:

: (z1, z2, z3) 7→ (∗, z1, ∗, z2).

The functor TZ,q,F : Σ→ Ab is then the composite functor Hq(−;F ) ◦ T̂Z.

Lemma 4.2 The twisted coefficient system TZ,q,F has degree at most ⌊ q
h+1⌋, where for a path-

connected space Z,

h = hconnF (Z) := max{k > 0 | H̃i(Z;F ) = 0 for all i 6 k} > 0.

Proof. First note that the Künneth theorem gives us natural split short exact sequences

0→ Hq(Z
n;F ) −→ Hq(Z

n+1;F ) −→

q⊕

i=1

Hq−i(Z
n;F )⊗F Hi(Z;F )→ 0, (4.1)

which together with the fact that Hi(Z;F ) = 0 for 1 6 i 6 h implies that

∆TZ,q,F =

q⊕

i=h+1

TZ,q−i,F ⊗F Hi(Z;F ). (4.2)

So, by Lemma 3.16 above, deg(TZ,q,F ) 6 1 + max{deg(TZ,q−i,F ) | h + 1 6 i 6 q}. Abbreviating
deg(TZ,q,F ) to tq, we have the recurrence inequality

tq 6 1 + max{t0, . . . , tq−h−1}. (4.3)

Note that H0(Z
n;F ) → H0(Z

n+1;F ) is the identity map F → F for all n, so ∆TZ,0,F = 0, and
hence deg(TZ,0,F ) = 0. Also note that for 1 6 q 6 h, hconnF (Z) > q implies that hconnF (Z

n) > q
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for all n (by the Künneth theorem), so TZ,q,F (n) = Hq(Z
n;F ) = 0, and hence deg(TZ,q,F ) = −1 6

0. So we also have the initial conditions

t0, t1, . . . , th 6 0. (4.4)

It now remains to prove that the recurrence inequality (4.3) and the initial conditions (4.4) imply
that tq 6 ⌊ q

h+1⌋ for all q > 0. This will be done by induction on q. The base case is 0 6 q 6 h
which is covered by the initial conditions (4.4). Assume that q > h+ 1. Then:

tq 6 1 + max{t0, . . . , tq−h−1}

6 1 + ⌊ q−h−1
h+1 ⌋

= ⌊ q
h+1⌋

Remark 4.3 See also [Han09b, Proposition 12], where it is proved (in the terminology of this
note) that the height of TZ,q,F is at most q.

Remark 4.4 If, in Lemma 4.2, we replace F by a general principal ideal domain R (such as Z),
the short exact sequence (4.1) becomes

0→ Hq(Z
n;R) −→ Hq(Z

n+1;R) −→

q⊕

i=1

Hq−i(Z
n;R)⊗R Hi(Z;R)

⊕

q⊕

i=1

TorR(Hq−i(Z
n;R), Hi−1(Z;R))→ 0.

(4.5)

Here, as in (4.1), we have used the splitting in the Künneth short exact sequence to move some
summands from the left-hand side to the right-hand side. However, this splitting is not always
natural, and so (4.5) is not natural for general principal ideal domains R. When R = F is a field,
the Tor terms vanish and the Künneth short exact sequence is of the form 0→ A→ B → 0→ 0, so
its splitting is certainly natural in this case.2 This is the reason why the short exact sequence (4.1)
is natural – which was necessary to deduce the isomorphism of functors (4.2). More generally, the
Tor terms vanish if H∗(Z;R) is flat over R in each degree, so the most general version of Example
4.1 works for a principal ideal domain R and path-connected space Z satisfying this condition. In
particular, if H∗(Z;Z) is torsion-free, this example works for homology with integral coefficients.

Notation 4.5 Write N = Z>0. For k ∈ N and λ = (λ1, . . . , λk) ∈ Nk define |λ| := λ1 + · · ·+ λk.
For ℓ ∈ N, define λ ⊢ ℓ to be the statement

λ ∈ Nk for some k ∈ N and |λ| = ℓ.

In words, λ is an ordered partition of ℓ of length k. For a set S with |S| > ℓ, an ordered decomposition

of S of type λ is a tuple (S1, . . . , Sk) of pairwise disjoint subsets Si ⊆ S such that |Si| = λi. Note
that this decomposes S into either k or k+1 subsets, depending on whether |S| = ℓ or |S| > ℓ. As
a final piece of notation, define λ[n] = λ for n = ℓ and

λ[n] = (n− ℓ, λ1, . . . , λk)

for n > ℓ, so that λ[n] ⊢ n. We note that this notation has a slightly different meaning compared
with its appearance in Remarks 1.6 and 1.11, which involve unordered partitions (corresponding
to Young diagrams), rather than (as in this section) ordered partitions.

Example 4.6 Let Sefin be the category of finite sets and partially-defined functions. Note that this
is equivalent3 to the category Setfin∗ of finite pointed sets. There is a free functor Z(−) : Sefin → Ab

taking S to ZS and taking a partially-defined function j : S 99K R to the homomorphism

∑

s∈S

nss 7→
∑

s∈S

nsj(s), (4.6)

2 This just comes from the fact that a natural transformation is invertible if it is objectwise invertible.
3 Although not isomorphic, for essentially set-theoretic reasons.
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where j(s) means 0 ∈ ZR if j is undefined on s. So any functor Σ→ Sefin gives a twisted coefficient
system for Σ by composing with Z(−).

We now define a functor Pλ : Σ→ Sefin associated to any λ ⊢ ℓ. On objects, it is defined by

Pλ(n) = Pλ(n) =

{
{ordered decompositions of n of type λ} n > ℓ

∅ n < ℓ.

Given a partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n}, we define Pλ(j) : Pλ(m) 99K Pλ(n)
as follows. First, if m < ℓ or n < ℓ then Pλ(j) is the empty function. If m,n > ℓ and (S1, . . . , Sk) ∈

Pλ(m), then Pλ(j) is defined on (S1, . . . , Sk) exactly when j is defined on every element of
⋃k

i=1 Si,
in which case its value is (j(S1), . . . , j(Sk)) ∈ Pλ(n).

Note that, when λ = 1, the functor Pλ is simply the inclusion of Σ as a subcategory of Sefin.
There is a natural action of Σn on Pλ(n), since Σn is the automorphism group of n in Σ, and an
isomorphism

ZPλ(n) ∼= Z
[
Σn/Σλ[n]

]

of Z[Σn]-modules, where we write Σµ for the subgroup Σµ1
× · · · × Σµk

of Σ|µ|. Note that the
right-hand side is only defined for n > ℓ. In particular, when λ = (1, . . . , 1) with |λ| = ℓ, we have
ZPλ(n) ∼= Z[Σn/Σn−ℓ].

We have the following isomorphisms in Ab for |λ| > 2:

∆ZPλ(n) ∼= Z
{
(S1, . . . , Sk) ∈ Pλ(n+ 1) | 1 ∈

⋃k
i=1Si

}

∼= Z
(⊔k

i=1Pλ−ei(n)
)

∼=
⊕k

i=1ZPλ−ei (n),

where λ − ei is the ordered partition (λ1, . . . , λi − 1, . . . , λk).
4 The first and third isomorphisms

are obviously natural isomorphisms of functors Σ→ Ab, and one can also explicitly check that the
second isomorphism is natural. Hence we have an isomorphism

∆ZPλ
∼=

k⊕

i=1

ZPλ−ei (4.7)

for |λ| > 2. This allows us to prove:

Lemma 4.7 The twisted coefficient system ZPλ has degree |λ|.

Proof. The proof is by induction on |λ|. First, if |λ| = 1 then ∆ZPλ(n) ∼= Z for all n > 0. Hence
all morphisms in Σ are sent to endomorphisms of Z in Ab. But all morphisms in Σ have one-sided
inverses, so their images in Ab are endomorphisms of Z admitting one-sided inverses, and hence
automorphisms. Thus ∆ZPλ has degree 0 (c.f. Example 3.2) and so ZPλ has degree 1 by definition.

Now assume that |λ| > 2. By (4.7), Lemma 3.16 and the inductive hypothesis, we have:

deg(∆ZPλ) = deg
( k⊕

i=1

ZPλ−ei

)
= max

i=1,...,k
(deg(ZPλ−ei )) = |λ| − 1,

so deg(ZPλ) = |λ| by the definition of degree.

Remark 4.8 Given an arbitrary ring R, there is also a functor R(−) : Sefin → Ab taking a set S
to the free R-module generated by S (viewed as an abelian group) and with morphisms defined
by the same formula (4.6) as for Z(−). Thus we have twisted coefficient systems RPλ : Σ → Ab

associated to any ring R and ordered partition λ. Just as in the case R = Z, we have isomorphisms
RPλ(n) ∼= R[Σn/Σλ[n]] of R[Σn]-modules for all n, and the twisted coefficient system RPλ has
degree |λ|. To see this, we can adapt the proof of Lemma 4.7 directly, as long as we are slightly more
careful about the base case. It is not in general true that the monoid EndAb(R) has the property
that any one-sided inverse is a two-sided inverse (consider R =

∏∞
Z for example), so the base

case does not come for free. However, one can explicitly compute the maps ∆RPλ(m)→ ∆RPλ(n)
induced by any j : {1, . . . ,m} 99K {1, . . . , n} in Σ, and see that they are just the identity on R.

4 And where (λ1, . . . , λk) means (λ1, . . . , λa−1, λa+1, . . . , λk) if λa = 0.
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Remark 4.9 Example 4.6 may also be generalised in a different direction. Fix ℓ > 0 and write

Λℓ = {λ | λ ∈ Nk for some k > 0 and λ ⊢ ℓ′ for some ℓ′ 6 ℓ}.

This set has a partial order where (λ1, . . . , λk) 6 (µ1, . . . , µl) if and only if there exists an injection
α : {1, . . . , k} →֒ {1, . . . , l} such that λi 6 µα(i) for each i ∈ {1, . . . , k}. For λ 6 µ, write [λ, µ] for

the interval {ν ∈ Λℓ | λ 6 ν 6 µ}. We may then define a functor P[λ,µ] : Σ → Sefin as follows. On
objects it is defined by

P[λ,µ](n) =

{
{ordered decompositions of n with type ∈ [λ, µ]} n > |λ|

∅ n < |λ|.

Given a partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n}, we define P[λ,µ](j) to be the empty
function if either m < |λ| or n < |λ|; otherwise it takes (S1, . . . , Sk) to (j(S1), . . . , j(Sk)) if this is
an ordered decomposition with type ∈ [λ, µ], and is undefined on (S1, . . . , Sk) if not.

Again, we may compose this with the functor R(−) : Sefin → Ab for any ring R to obtain a
twisted coefficient system RP[λ,µ] : Σ→ Ab, which has degree |µ| by a similar argument to above.

Remark 4.10 (Burau representations) There is a presentation of the braid category B(R2) with
generators σǫ

i,n, ιn and πn+1 for n > 0, i ∈ {1, . . . , n − 1} and ǫ ∈ {+1,−1}. The objects are the
non-negative integers {0, 1, 2, . . .} and the sources and targets of the generating morphisms are as
follows:

σǫ
i,n : n→ n ιn : n→ n+ 1 πn+1 : n+ 1→ n.

The relations are:
(i) σ−1

i,n is an inverse for σi,n := σ+1
i,n

(b) the usual braid relations on {σi,n}
n−1
i=1 for each n

(c) the stabilisation and forgetful maps “commute” with the σ maps:

σǫ
i+1,n+1ιn = ιnσ

ǫ
i,n and σǫ

i,nπn+1 = πn+1σ
ǫ
i+1,n+1

(e) edge effects:

πn+1(σ1,n+1)
kιn =

{
idn for k even

ιn−1πn for k odd.
(4.8)

Write B0(R
2) for the subcategory generated by {σǫ

i,n} and B1(R
2) for the subcategory generated by

these together with {ιn}. Note that B0(R
2) is the category with objects N, where every morphism

is an automorphism and with Aut(n) = βn, the classical braid group on n strands.
The Burau representation βn → Aut(Z[t±1]n) = GLn(Z[t

±1]) is defined by sending the gener-
ator σi,n of βn to the matrix Ii−1 ⊕

(
1−t t
1 0

)
⊕ In−i−1. This defines a functor B0(R

2)→ Ab, which
easily extends to a functor bu : B1(R

2)→ Ab by sending ιn to the inclusion Z[t±1]n →֒ Z[t±1]n+1

that takes (f1, . . . , fn) to (0, f1, . . . , fn). In order to define a twisted coefficient system for {Cn(R
2)}

we would need to extend this further to the morphisms {πn+1}. However, bu does not naturally
extend in this way. We can attempt to define bu(πn+1) to be the projection Z[t±1]n+1 → Z[t±1]n

that takes (f1, . . . , fn+1) to (f2, . . . , fn+1); this satisfies the commutation relations (c), but not the
relations (e). Instead, it turns out that the right-hand side of (4.8) is In or (0)⊕ In−1 depending
on whether k is even or odd, and the left-hand side is equal to

(
(−t)k+t

t+1

)
⊕ In−1.

Note that these are equal when t = 1, but for no other values of t ∈ C (consider k = 2). So
this only defines a twisted coefficient system when t is evaluated at 1, in which case the Burau
representation is simply the projection βn → Σn followed by the permutation representation of Σn

on Z[t±1]. This twisted coefficient system has degree 1. It seems likely that bu cannot be extended
to B(R2) at all, even if we allow ourselves to restrict to bu|B0(R2) and redefine it on {ιn}.
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5. A twisted Serre spectral sequence

To prove Theorem 1.3 we will need a generalisation of the basic Serre spectral sequence,
allowing the base space to be equipped with a local coefficient system. It is a special case of (the
homology version of) an equivariant generalisation of the Serre spectral sequence constructed by
Moerdijk and Svensson in [MS93]. This section gives a brief description of their spectral sequence
and deduces the particular case that we will need.

We start by describing an alternative basepoint-independent viewpoint on (co)homology with
local coefficients (in the non-equivariant setting).

Definition 5.1 For a space Y let ∆(Y ) be the category whose objects are all singular simplices
in Y , and whose morphisms are simplicial operations (generated by face and degeneracy maps).
Denote the fundamental groupoid of Y by π(Y ), and the standard n-simplex by ∆n. There is a
canonical functor vY : ∆(Y ) → π(Y ) which takes a singular simplex ∆n → Y to the image of its

barycentre bn. A morphism ∆k α
−→ ∆n → Y is taken to the image of the straight-line path in ∆n

from α(bk) to bn.
A covariant (resp. contravariant) functor ∆(Y ) → Ab is a coefficient system for homology

(resp. cohomology); it is a local coefficient system if it factors up to natural isomorphism through
vY .

The functor vY : ∆(Y ) → π(Y ) encapsulates most of the combinatorics needed to define
(co)homology with local coefficients. The definition makes sense for any (not necessarily local)
coefficient system, but it is only homotopy-invariant for local coefficient systems.

Definition 5.2 (Homology) Given a space Y and coefficient systemM : ∆(Y )→ Ab, the homology
H∗(Y ;M) is the homology of the chain complex C∗(∆(Y );M):

∂n+1

−−−−−−−→
⊕

σ∈Nn∆(Y )

M(σ0)
∂n−−−−−→

⊕

τ∈Nn−1∆(Y )

M(τ0)
∂n−1

−−−−−−−→

where N•∆(Y ) denotes the nerve of the category ∆(Y ), and for a chain of singular simplices
σ = (∆k0 → ∆k1 → · · · → ∆kn → Y ) of Nn∆(Y ), the 0th one ∆k0 → Y is denoted by σ0. The
map ∂n is the alternating sum of maps ∂i

n which are defined using the ith face map of N•∆(Y ).5

Definition 5.3 (Cohomology) Given a space Y and coefficient system M : ∆(Y )op → Ab, the
cohomology H∗(Y ;M) is the homology of the cochain complex C∗(∆(Y );M):

δn−1

−−−−−−−→
∏

σ∈Nn∆(Y )

M(σ0)
δn−−−−−→

∏

τ∈Nn+1∆(Y )

M(τ0)
δn+1

−−−−−−−→

where the map δn is the alternating sum of maps δin which are defined using the ith face map of
N•∆(Y ).6

This reduces to ordinary (untwisted) homology and cohomology when M is constant. (Al-
though it does not reduce to the usual singular (co)chain complex, one can show that it does
compute the same homology as it; cf. [MS93, Theorem 2.2].)

In [MS93] the above is generalised to the equivariant setting: they define vY : ∆G(Y ) →
πG(Y ) for a G-space Y , and equivariant twisted cohomology H∗

G(Y ;M) for any coefficient system
∆G(Y )op → Ab. Again a coefficient system is local if it factors up to natural isomorphism through
vY . Cohomology with respect to local coefficient systems is G-homotopy invariant [MS93, Theorem
2.3]. Their main theorem is the existence of a twisted equivariant Serre spectral sequence:

Theorem 5.4 ([MS93, Theorem 3.2]) For any G-fibration f : Y → X (i.e. Y H → XH is a

fibration for all H 6 G) and any local coefficient system M on Y , there is a local coefficient system

Hq
G(f ;M) on X for each q > 0 and a spectral sequence

Ep,q
2 = Hp

G

(
X ;Hq

G(f ;M)
)
⇒ H∗

G(Y ;M) (5.1)

5 For σ ∈ Nn∆(Y ), let τ be its ith face. There is a canonical map σ0 → τ0 (which is the identity except when
i = 0) inducing a map M(σ0) → M(τ0). The direct sum of these maps is ∂i

n.
6 Given an element {gσ ∈ M(σ0) | σ ∈ Nn∆(Y )}, we need to choose an element of M(τ0) for each τ ∈ Nn+1∆(Y ).

Let σ be the ith face of τ , which has a canonical map τ0 → σ0 (which is the identity except when i = 0). Apply M

to get a map M(σ0) → M(τ0) and take the image of gσ under this map.
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with the usual cohomological grading.

Remark 5.5 We will describe the local coefficient system Hq(f ;M) in the non-equivariant case.

As a functor ∆(X)op → Ab it does the following. A singular simplex ∆k σ
−→ X is taken to the

cohomology Hq(σ∗(Y );M), where σ∗(Y ) is the pullback of σ and f , and we denote any pullback

of the coefficients M also by M . A morphism ∆l α
−→ ∆k σ

−→ X induces a map of pullbacks
(σ ◦ α)∗(Y )→ σ∗(Y ) and hence a map on cohomology.

It is a local coefficient system since it factors up to natural isomorphism through vX by the
following functor π(X)op → Ab. A point x ∈ X is taken to Hq(f−1(x);M). Given a homotopy

class [I
p
−→ X ] of paths from x to y, there are induced maps of pullbacks f−1(x) →֒ p∗(Y ) ←֓ f−1(y).

These induce maps on cohomology, and since they are isomorphisms7 the first one can be inverted
to get a composite map Hq(f−1(x);M) → Hq(f−1(y);M). One can check that this map is
independent of the choice of representing path p.

In [MS93] the authors point out that there is an analogous version of the spectral sequence
(5.1) for homology. We will only need the non-equivariant (but twisted) version, which is:8

Theorem 5.6 For any fibration f : Y → X and any local coefficient system M on Y , there is a

local coefficient system Hq(f ;M) on X for each q > 0 and a spectral sequence

E2
p,q = Hp

(
X ;Hq(f ;M)

)
⇒ H∗(Y ;M) (5.2)

with the usual homological grading.

The description of the local coefficient systems Hq(f ;M) is the same as above, replacing
cohomology with homology. When the local coefficient system M on Y is pulled back from the
base X , they are built out of the untwisted homology of each fibre.

We now return to the viewpoint of local coefficient systems as an action of the fundamental
group on an abelian group. In the special case where the local coefficient system on Y is a pullback
of one on X the above can be rephrased as:

Corollary 5.7 For any fibration f : Y → X with fibre F over the basepoint x0 ∈ X, and any

π1(X)-module M , there is a spectral sequence

E2
p,q = Hp

(
X ;Hq(F ;M)

)
⇒ H∗(Y ;M) (5.3)

with the usual homological grading. Here the action of π1(Y ) on M is pulled back from that of

π1(X) via f∗ and the action of π1(F ) on M is trivial. The action of π1(X) on Hq(F ;M) is induced
by its diagonal action on the chain complex S∗(X)⊗Z M .

This is natural for maps of fibrations in the obvious way:

Proposition 5.8 Suppose we have a map of fibrations (the vertical maps are fibrations, and the

square commutes on the nose):

Y Y ′

X X ′

and a π1(X
′)-module M . Denote the fibres over the basepoints by F and F ′ respectively. Then

there is a map of spectral sequences (5.3) where:
◦ The map F → F ′ induces a map of untwisted homology Hq(F ;M) → Hq(F

′;M), which

is equivariant w.r.t. the homomorphism π1(X) → π1(X
′), so it induces a map of twisted

homology Hp(X ;Hq(F ;M))→ Hp(X
′;Hq(F

′;M)). This is the map on the E2 pages.

◦ The action of π1(Y ) on M is the pullback of the action of π1(Y
′) on M , so the map Y → Y ′

induces a map of twisted homology H∗(Y ;M)→ H∗(Y
′;M). This is the map in the limit.

7 The inclusion {0} →֒ [0, 1] is an acyclic cofibration, so its pullback along the fibration f is again an acyclic
cofibration, in particular a weak equivalence.

8 This was also stated (referencing [MS93]) as Theorem 4.1 of [Han09a].
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6. Proof of twisted homological stability

We now use the twisted Serre spectral sequence of the previous section to prove Theorem 1.3.
We first record another fact we will use:

Lemma 6.1 (Shapiro for covering spaces) Suppose we have a based space X which is locally nice

enough to have a universal cover, a subgroup H of π1(X) and an H-module A. Let X̂ be the

(based) covering space corresponding to H. Then

H∗(X̂;A) ∼= H∗(X ;Zπ1(X)⊗ZH A). (6.1)

Moreover, given a map of the above data, namely a (based) map f : X → X ′ such that f∗(H) ⊆ H ′

(so that there is a unique based lift f̂ : X̂ → X̂ ′) and a map φ : A→ A′ which is equivariant w.r.t.

f∗, the identification (6.1) is natural in the sense that

H∗(X ;Zπ1(X)⊗ZH A) H∗(X
′;Zπ1(X

′)⊗ZH′ A′)

H∗(X̂;A) H∗(X̂
′;A′)

∼= ∼=

(6.2)

commutes.

Proof. Denote the singular chain complex functor by S∗( ) and the universal cover of X by X̃.
Then we have an isomorphism of chain complexes

S∗(X̃)⊗ZH A −→ S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A

given by σ ⊗ a 7→ σ ⊗ [cx] ⊗ a, where cx is the constant loop at the basepoint x of X . Taking

homology gives the identification (6.1). Let f̃ denote the unique (based) lift of f to X̃ → X̃ ′. The
diagram (6.2) is induced by

S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A S∗(X̃
′)⊗Zπ1(X′) Zπ1(X

′)⊗ZH′ A′

S∗(X̃)⊗ZH A S∗(X̃
′)⊗ZH′ A′

∼= ∼=

and one can check that both routes around the square send σ ⊗ a to f̃♯(σ)⊗ [cx′ ]⊗ φ(a).

This will be applied to the following covering spaces of configuration spaces:

Definition 6.2 The configuration space C(k,n−k)(M,X) of k red and n − k green points in M
with labels in X is defined to be

(Emb(n,M)×Xn)/(Σn−k × Σk)

(cf. Remark 1.10), and we give it the basepoint {(a1, x0), . . . , (an, x0)} with the points a1, . . . , an−k

coloured green and the points an−k+1, . . . , an coloured red. There is also a stabilisation map
skn : C(k,n−k)(M,X) → C(k,n−k+1)(M,X), which is defined exactly as in §2.2, and adds a new
green point to the configuration.

Definition 6.3 Let f : C(k,n−k)(M,X) → Ck(M,X) be the map which forgets the green points.
We will also need the following two maps for technical reasons: Define p : Ck(M,X)→ Ck(M,X) to
be the self-homotopy-equivalence induced by the self-embedding e|M : M →֒M (see §2.1). Choose
a self-diffeomorphism of M which is isotopic to the identity and which takes ai to ai+n−k+1 for
i = 1, . . . , k. Denote by φ the self-homeomorphism Ck(M,X)→ Ck(M,X) induced by this.

The forgetful maps f are locally trivial fibre bundles, so we have a map of fibrations:

C(k,n−k)(M,X) C(k,n−k+1)(M,X)

Ck(M,X) Ck(M,X)

skn

φ−1 ◦ p

f φ−1 ◦ f (6.3)
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The p is there to ensure that it commutes on the nose, and the φ−1 is there to deal with basepoints:
on the bottom-left we have to give Ck(M,X) the basepoint {(an−k+1, x0), . . . , (an, x0)}, but on
the bottom-right we can give it its usual basepoint of {(a1, x0), . . . , (ak, x0)}.

The map skn restricted to the fibres over the basepoints is a map

Cn−k(M r {an−k+1, . . . , an}, X)→ Cn−k+1(M r {an−k+2, . . . , an+1}, X),

but this can be identified, up to homeomorphism, with the stabilisation map sn−k : Cn−k(Mk, X)→
Cn−k+1(Mk, X), where Mk is M with a subset of M rU of size k removed (see §2.1 for notation).

Finally, before beginning the proof proper, we mention how a certain local coefficient system
pulls back along the maps in (6.3). The covering space C(k,n−k)(M,X)→ Cn(M,X) corresponds

to the subgroup Gk
n 6 Gn = π1Cn(M,X). Recall from Proposition 3.3 that T k

n is a Gk
n-module (it

is a sub-Gk
n-module of Tn), so it is a local coefficient system for C(k,n−k)(M,X).

Lemma 6.4 The local coefficient system T k
k on the right-hand base space pulls back to the local

coefficient systems T k
n and T k

n+1 on the total spaces of (6.3).

Proof. By Lemma 3.9, the left-inverse πn
k of ιnk : Tk → Tn restricts to a bijection T k

n → T k
k . So

this is an isomorphism of abelian groups, and it is enough to check that it is equivariant w.r.t. the
map on π1 induced by the composite φ−1 ◦ p ◦ f in (6.3). This is true because both e|M : M →֒M
(which induces p) and the diffeomorphism which induces φ are isotopic to the identity. Exactly
the same argument works for the right-hand side.

Proof of Theorem 1.3 (except the split-injectivity claim). We need to show that the map

H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1) (6.4)

induced by sn and ιn is an isomorphism in the range ∗ 6 n−d
2 . By the decomposition (3.2) of

Proposition 3.3, and the fact that T has degree d, this is the same as the map

d⊕

k=0

H∗(Cn(M,X);ZGn ⊗ZGk
n
T k
n ) −→

d⊕

k=0

H∗(Cn+1(M,X);ZGn+1 ⊗ZGk
n+1

T k
n+1) (6.5)

induced by sn, ιn and (sn)∗. By Shapiro’s Lemma for covering spaces (Lemma 6.1) this is isomor-
phic to the map

d⊕

k=0

H∗(C(k,n−k)(M,X);T k
n ) −→

d⊕

k=0

H∗(C(k,n−k+1)(M,X);T k
n+1) (6.6)

induced by skn and ιn. The map of fibrations (6.3) gives the following map of twisted Serre spectral
sequences (Corollary 5.7, Proposition 5.8 and Lemma 6.4):

E2
p,q = Hp(Ck(M,X);Hq(Cn−k(Mk, X);T k

k )) H∗(C(k,n−k)(M,X);T k
n )

E2
p,q = Hp(Ck(M,X);Hq(Cn−k+1(Mk, X);T k

k )) H∗(C(k,n−k+1)(M,X);T k
n+1).

⇒

⇒

(6.7)

The map in the limit is the kth summand of (6.6), and the map on E2 pages is induced by the
stabilisation map sn−k on the fibres and the homotopy-equivalence φ−1 ◦ p on the base. Note that
T k
k is a constant coefficient system once it has been pulled back to the fibres Cn−k(Mk, X) and

Cn−k+1(Mk, X), since it was originally pulled back from the base.
Hence, by untwisted homological stability for configuration spaces (Theorem 1.2) and the

universal coefficient theorem, the map on E2 pages is an isomorphism for q 6
n−k
2 (and all p > 0).

By the Zeeman comparison theorem9 it is therefore an isomorphism in the limit for ∗ 6 n−k
2 . So

in the range ∗ 6 n−d
2 each summand in (6.6) is an isomorphism, so (6.4) is an isomorphism.

9 The required implication is contained in the proof of Theorem 1 of [Zee57], although stronger hypotheses are
stated there. An explicit statement of the comparison theorem which applies to our case is Theorem 1.2 of [Iva93].
It is also written in Remarque 2.10 of [CDG13].
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Remark 6.5 When M is at least 3-dimensional, the stabilisation map Cn(M,X)→ Cn+1(M,X)
is an isomorphism on homology with coefficients in Z[ 12 ] in the larger range ∗ 6 n, by [KM14b].
Since Z[ 12 ] is a PID, this implies, via the universal coefficient theorem, the same for homology with
coefficients in any Z[ 12 ]-module. If T : B(M,X) → Z[ 12 ]-mod < Ab is a twisted coefficient system
of degree d of Z[ 12 ]-modules, then the constant coefficients T k

k appearing in (6.7) above are all
Z[ 12 ]-modules, and the same proof tells us that the map

H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1) (6.8)

is an isomorphism in the larger range ∗ 6 n− d (rather than just ∗ 6 n−d
2 ). When M is a surface,

there is a similar improvement to the range for rational coefficients. In this case, the stabilisation
map is an isomorphism on homology with rational coefficients in the range ∗ 6 n in the non-
orientable case and in the range ∗ < n in the orientable case, by [Chu12, Corollary 3] and [Knu14,
Theorem 1.3].10 Thus if T : B(M,X) → VectQ < Ab is a rational twisted coefficient system of
degree d, then the map (6.8) is an isomorphism in either the range ∗ 6 n − d (for non-orientable
surfaces) or the range ∗ < n− d (for orientable surfaces).

7. Split-injectivity

To prove the split-injectivity part of Theorem 1.3 we will use the following lemma which was
used implicitly by Nakaoka in [Nak60] and later written down explicitly by Dold in [Dol62]:

Lemma 7.1 ([Dol62, Lemma 2]) Given a sequence 0 → A1
φ1
−→ A2

φ2
−→ · · · of abelian groups and

homomorphisms, the following is sufficient to imply that each of the maps φi is split-injective:
There exist maps τk,n : An → Ak for 1 6 k 6 n with τn,n = id such that

im(τk,n − τk,n+1 ◦ φn) 6 im(φk−1). (7.1)

Let Un(M,X) be the universal cover of Cn(M,X). One can think of its elements as n-strand
“open-ended braids” in M × [0, 1] (n pairwise disjoint paths in M × [0, 1] which are the identity
in the second coordinate and start at {(a1, 0), . . . , (an, 0)}, up to endpoint-preserving homotopy)
with each strand labelled by the based path space PX . Let s̃n : Un(M,X)→ Un+1(M,X) be the
lift of the stabilisation map which applies e|M × id[0,1] to the braid and adds a vertical strand at
a1 labelled by the constant path cx0

.
As before, denote π1Cn(M,X) by Gn, and denote the singular chain complex of a space by

S∗( ). Let T : B(M,X) → Ab be any twisted coefficient system (we do not assume finite-degree
in this section). Then the map

(sn; ιn)∗ : H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1). (7.2)

is induced by the map of chain complexes

(s̃n)♯ ⊗ ιn : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Un+1(M,X))⊗ZGn+1

Tn+1.

Proof of Theorem 1.3 (split-injectivity claim). We want to prove that (7.2) is split-injective for all
∗ and n. By Dold’s Lemma 7.1, it is sufficient to construct chain maps

tk,n : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Uk(M,X))⊗ZGk

Tk

for 1 6 k 6 n such that tn,n = id and

tk,n ≃ tk,n+1 ◦ ((s̃n)♯ ⊗ ιn)− ((s̃k−1)♯ ⊗ ιk−1) ◦ tk−1,n. (7.3)

Let S ⊆ {1, . . . , n}. There is a unique partially-defined injection {1, . . . , n} 99K {1, . . . , |S|}
which is order-preserving and is defined precisely on S. This is a morphism n→ |S| in the category

10 The maps used in these two references to induce isomorphisms between configuration spaces are not the stabilisa-
tion maps. However, we may reduce to the case where the manifolds are of finite type, so that the rational homology
of the configuration spaces is a finite-dimensional vector space in each degree. Moreover, the stabilisation maps are
always split-injective in all degrees (see Theorem 1.2). So the fact that H∗(Cn(M,X);Q) and H∗(Cn+1(M,X);Q)
are abstractly isomorphic in a range implies that the stabilisation map is an isomorphism in this range.
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Σ. Let πS,n be the lift along B(M,X) → Σ to a morphism (x0)
n → (x0)

|S| given by travelling
along the paths pi (see §2.1) and keeping the labels constant. By our standard abuse of notation
we will denote its image under T also by πS,n : Tn → T|S|.

We also define a map pS,n : Un(M,X) → U|S|(M,X) as follows. Given an open-ended braid
in Un(M,X), forget the strands which start at (ai, 0) for i ∈ {1, . . . , n}r S, and then concatenate
this with the reverse of πS,n : (x0)

n → (x0)
|S| to get an open-ended braid in U|S|(M,X).

Directly from these definitions one can check (where the notation (S−1) means {s−1 | s ∈ S}):
(a) If 1 /∈ S then πS,n+1 ◦ ιn = π(S−1),n and pS,n+1 ◦ s̃n ≃ p(S−1),n.
(b) If 1 ∈ S then πS,n+1 ◦ ιn = ι|S|−1 ◦ π(Sr{1}−1),n and pS,n+1 ◦ s̃n = s̃|S|−1 ◦ p(Sr{1}−1),n.

We now define tk,n to be the following chain map:

σ ⊗ x 7→
∑

S⊆{1,...,n}, |S|=k

(pS,n)♯(σ) ⊗ πS,n(x).

Clearly tn,n = id, so we just need to check the identity (7.3). The right-hand side of this is:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k

(
(pS,n+1)♯ ◦ (s̃n)♯(σ)

)
⊗
(
πS,n+1 ◦ ιn(x)

)

−
∑

R⊆{1,...,n}, |R|=k−1

(
(s̃k−1)♯ ◦ (pR,n)♯(σ)

)
⊗
(
ιk−1 ◦ πR,n(x)

)
.

(7.4)

Using (a) and (b) above, we see that the top line of this decomposition is chain-homotopic to:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k, 1∈S

(
(s̃k−1)♯ ◦ (p(Sr{1}−1),n)♯(σ)

)
⊗
(
ιk−1 ◦ π(Sr{1}−1),n(x)

)

+
∑

S⊆{1,...,n+1}, |S|=k, 1/∈S

(p(S−1),n)♯(σ) ⊗ π(S−1),n(x).
(7.5)

The first line of (7.5) cancels with the second line of (7.4), leaving just the second line of (7.5),
which is precisely tk,n, as required.
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