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Abstract
This is a collection of some remarks, explanations and examples that complement the main

text of the paper [Pal13a], but which have not been included (or which have been abridged)
in that paper in order to keep it reasonably compact. We will henceforth write [Pal13a] = [P].
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1. Introduction

1.a. Summary of related results. This is a more detailed version of Remark 1.5 of [P], sum-
marising twisted homological stability results related to the main result of that paper.

(a) Symmetric groups. First, there is the stability result [Bet02, Theorem 4.3] for the symmetric
groups, of which [P] is a generalisation, corresponding to setting M = R∞ and X = ∗.

(b) Braid groups. Another example is [CF13, Corollary 4.4], which concerns the braid groups
βn = π1(Cn(R2)). The local coefficient systems in this case are the rational βn-representations
Vλ[n]. Here, λ is a fixed Young diagram with |λ| boxes, λ[n] is the Young diagram obtained by
adding a new row of length n − |λ| to the top of λ and Vλ[n] is the irreducible Σn-representation
corresponding to λ[n], viewed as a βn-representation via the projection βn → Σn. A more general
example concerning the braid groups is [RW17, Theorem D], which proves homological stability
for βn with coefficients in any finite-degree functor from a certain category Uβ to the category
of abelian groups. In particular, the Burau representations βn → Aut(Z[t±1]n) (see Example 4.3
and Corollary F of [RW17]) fit into their setup (cf. also §4.b below). Note that in this example
the local coefficient systems do not factor through the projection βn → Σn. In fact, the homology
of βn with coefficients in the reduced complex Burau representations βn → Aut(C[t±1]n−1) is
explicitly computed in [Che17] (cf. §1.c below), and one can directly read off a stable range from
the computation. Interestingly, the stable range obtained in [Che17] for the reduced complex
Burau representations has slope 1, whereas the stable range obtained in [RW17] for the integral
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Burau representations has slope 1
2 . This parallels the improvements to the range of Theorem A

of [P] discussed in Remark 1.4 of [P]. The Burau representations fit into a much larger family of
representations of the braid groups, called the Lawrence representations, which are discussed in
§4.b below.

(c) Noetherian categories. There is a general theorem, due to Putman and Sam [PS14, Theo-
rem 4.2], which proves twisted homological stability for the automorphism groups of a so-called
complemented category A (this is a special case of the homogeneous categories of [RW17]) with
coefficients in any finitely-generated functor A→ R-mod, as long as the automorphism groups are
homologically stable with untwisted R-coefficients and the category Fun(A,R-mod) is Noetherian.
An example of a complemented category is FIG for any group G, whose automorphism groups are
the wreath products G oΣn. In [SS17], Sam and Snowden develop very general methods for proving
that Fun(A,R-mod) is Noetherian for certain kinds of “combinatorial categories” A, and in [SS14]
they use these to prove (see Corollary 1.2.2) that Fun(FIG, R-mod) is Noetherian as long as R is a
left-Noetherian ring and G is polycyclic-by-finite. The sequence of groups G o Σn is homologically
stable with constant integral coefficients, so by the above it is also homologically stable with any
finitely-generated twisted coefficients, as long as G is polycyclic-by-finite.

In fact, this is true for any group G — this is part of Theorem D of [RW17]. We note
that, if the dimension of M is at least 3, there is an isomorphism Bf(M,X) ∼= FIπ1(M×X) (see
§3.1 of [P] for the definition of Bf(M,X)), in particular π1(Cn(M,X)) ∼= π1(M × X) o Σn, so,
setting G = π1(M × X), we have twisted homological stability for the sequence π1(Cn(M,X))
of fundamental groups of configuration spaces, with coefficients in any finitely generated functor
Bf(M,X) → Ab. This statement is different to that of Theorem A of [P], since the configuration
spaces Cn(M,X) are not aspherical when dim(M) > 3.

(d) E2-algebras. The result of [RW17] for the braid groups mentioned above is part of a much more
general framework for proving twisted homological stability results for sequences of groups. Since
it only concerns discrete groups, it cannot apply to configuration spaces on manifolds of dimension
at least 3, since these have non-trivial higher homotopy groups. However, in very recent work,
Krannich [Kra17] extends the framework of Randal-Williams and Wahl to a topological setting:
the input is an N-graded E1-moduleM over an E2 algebra (this is related to the notion of module
over a braided monoidal category via the fundamental groupoid and classifying space functors),
and the output is a semi-simplicial space augmented over M such that, if its graded pieces have
diverging connectivity, then the graded pieces of M are homologically stable with certain finite-
degree twisted coefficients. Considering the E2-algebra C(R2) = tnCn(R2) as a module over itself,
this recovers the theorem of Randal-Williams and Wahl that Cn(R2) = Bβn is homologically stable
with finite-degree coefficients Uβ → Ab. It may also be applied to the E1-module C(M,π) over the
E2-algebra C(Rn, πtr) (for n > 2) for any open, connected manifoldM and fibre bundle π : E →M
with path-connected fibres, where πtr denotes the trivial bundle over Rn with the same fibres as
π, with the module structure determined by a choice of n-ball embedded “near infinity” in M and
a trivialisation of π over this ball. This then implies twisted homological stability for Cn(M,π)
with coefficients in any finite-degree functor defined on an analogue of the category Uβ.

(e) Alternating coefficients. There is a sequence of π1(Cn(M,X))-modules that does not fit into
the framework of [P] (it does not form a twisted coefficient system at all, let alone a finite-degree
one), but which nevertheless does exhibit homological stability. Every loop in Cn(M,X) induces
a permutation of its base configuration, so there is a natural projection map π1(Cn(M,X))→ Σn,
which we can compose with the sign homomorphism to obtain a map π1(Cn(M,X)) → Z/2.
This makes Z[Z/2] into a π1(Cn(M,X))-module, and its kernel corresponds to a double cover
C+
n (M,X) → Cn(M,X). The space C+

n (M,X) is the “oriented configuration space” where each
configuration is equipped with an ordering of its points up to even permutations. One can easily
see that

H∗(C+
n (M,X);Z) ∼= H∗(Cn(M,X);Z[Z/2]). (1.1)

In [Pal13b] the author proved that the sequence of spaces C+
n (M,X), with analogous stabilisation

maps, is homologically stable as n → ∞, in the range ∗ 6 n−5
3 . Via the identification (1.1) this

is twisted homological stability for Cn(M,X) with respect to the local coefficient system Z[Z/2].
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This is an example of an abelian local coefficient system, so this result is a special case of abelian
homological stability for Cn(M,X), which is proved in Theorem D(i) of [Kra17] (see Corollary E for
the special case). In the case whenM = S is a surface and X = BG is aspherical, the configuration
spaces Cn(M,X) are classifying spaces of G o βSn , where βSn denotes the surface braid group on S.
Abelian homological stability in this case (if S is the interior of a compact, connected surface with
exactly one boundary-component) also follows from the main result of [RW17].

1.b. A conjecture that is now known. An earlier draft of [P] contained a conjecture that
one should be able to extend its Theorem A to more general twisted coefficient systems, namely
those defined only on a certain subcategory Bf(M,X) of B(M,X). Recall that a twisted coefficient
system for the sequence {Cn(M,X)} is a functor from a category B(M,X) (called the partial braid
category on M) to the category of abelian groups. This has a subcategory Bf(M,X) (called the
injective braid category on M), which is related to B(M,X) in the same way that the category FI
of finite sets and injections is related to the larger category FI] of finite sets and partially-defined
injections. See §2.3 and §3.1 of [P] for the precise definitions of these categories. See also §3.1 of
[P] and §3.13 of [Pal17] for remarks about extending the notions of degree resp. height of functors
defined on B(M,X) to functors defined only on Bf(M,X).

This conjecture has recently been confirmed by Krannich [Kra17, Theorem D and §5.2], who
in fact proves twisted homological stability for Cn(M,X) for any finite-degree twisted coefficient
system defined on a certain category CX(M). There is a functor f : CX(M)→ Bf(M,X) such that
− ◦ f preserves degree (see diagram (15) of [Kra17]; cf. also Lemma 4.2 of [Pal17]), so his result
applies also to functors defined on Bf(M,X). See also §1.a(d) above.

1.c. Stable twisted homology. Once we know homological stability for a sequence of spaces, the
natural next step is to compute the stable homology, i.e., the homology in the stable range. When
the coefficients are untwisted, the answer is given by [Seg73] and [McD75] in terms of the fibrewise
one-point compactification ṪM of the tangent bundle TM ofM , namely limn→∞H∗(Cn(M,X)) ∼=
H∗(Γ◦(ṪM ∧X+)), where ṪM ∧X+ is the fibrewise smash product overM and Γ◦(−) denotes the
space of degree-zero compactly-supported sections of a bundle. The stable twisted homology is also
known for certain non-constant twisted coefficient systems, including the reduced and unreduced
Coxeter representations [Vas92, §I.5] (which is also recovered and extended in work in progress of
Arthur Soulié) and the reduced Burau representations Vn over C [Che17] (this was mentioned in
§1.a(b)). In the latter case it is shown, by directly calculating the twisted homology in all degrees,
that limn→∞H∗(Cn(R2);Vn) ∼= C in positive degrees and 0 in degree ∗ = 0.

In the articles [DV10] and [DV15], Djament and Vespa introduce a general method, using
functor homology, for computing stable twisted homology of families of groups, and carry out
this programme in the case of orthogonal and symplectic groups, and automorphism group of free
groups. Their methods may be adaptable to the case of configuration spaces on surfaces (equiva-
lently, surface braid groups); however, they are unlikely to be directly adaptable to configuration
spaces on higher-dimensional manifolds, since these are not aspherical spaces.

Stable twisted homology of Aut(Fn), as well as that of Out(Fn), has been calculated also by
Randal-Williams [Ran16]. His technique is more topological, in that he uses explicit models for
the classifying spaces of the groups under investigation, so it appears to be more adaptable to the
case of configuration spaces in general. The central idea is to introduce an extra parameter Y ,
which is a topological space, specialise it to be an Eilenberg-MacLane space K(V, `) for a rational
vector space V , and then compute the (untwisted) homology of these spaces in the stable range,
as GL(V )-modules, in two different ways, and compare these two calculations. For Aut(Fn) and
Out(Fn) Randal-Williams uses spaces of graphs in R∞ labelled by Y for this auxiliary construction.
Moreover, he explains in an appendix how to adapt his methods to the mapping class groups of
(closed, unpunctured) surfaces, for which the auxiliary spaces are spaces of embedded subsurfaces
in R∞ equipped with continuous maps to Y , introduced by Cohen and Madsen in [CM09]. For the
configuration spaces Cn(M,X), a natural candidate to play an analogous role is Cn(M,X × Y ).

We note that both approaches (Djament-Vespa and Randal-Williams) require one to know,
in advance, the untwisted stable homology of the sequence that one is investigating.1 As another

1 More precisely, the Randal-Williams approach requires one to know the untwisted stable homology of the
sequence, after introducing the parameter Y , as a functor of Y .
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remark, we note that both Randal-Williams and Djament-Vespa have calculations for stable twisted
homology of Aut(Fn) with respect to twisted coefficient systems defined either on the category gr of
finitely-generated free groups or on its opposite grop. See Theorem A(ii) of [Ran16] and Theorem 4
of [Ves15] for such “contravariant” calculations (the latter result is a consequence of combining the
main theorems of both [Ves15] and [Dja15]).

1.d. Representation stability. Let Fn(M,X) denote the configuration space of n distinct, or-
dered points in M labelled by X, which is an (n!)-sheeted covering space of Cn(M,X). In the
notation of Remark 1.7 of [P] it may also be written as C(1,...,1)(M,X), where the partition con-
tains n instances of the number 1. The sequence of graded Q[Σn]-modules {H∗(Fn(M,X);Q)}
satisfies representation stability, a notion introduced in [CF13] and proved in this case by [Chu12].
Roughly, this says that for each fixed degree ∗ and Young diagram λ, the number of copies of the
irreducible Σn-representation Vλ[n] in the nth term H∗(Fn(M,X);Q) of the sequence is eventually
independent of n.2 See §1.a(b) for an explanation of this notation. Moreover, the stability in this
case is uniform: the bound on “eventually” depends only on ∗ and not on λ.

The rational homology of Fn(M,X) is related to the groups appearing in Corollary C of [P]
as follows:

H∗(Fn(M,X);Q)⊗Q[Σn] Q[Σn/Σλ[n]] ∼= H∗(Cn(M,X);Q[Σn/Σλ[n]]). (1.2)

This follows from the collapse of the Künneth spectral sequence for the singular chain complex
C∗(Fn(M,X);Q) and the module Q[Σn/Σλ[n]] over the ring Q[Σn]. By Corollary C of [P], this
sequence of graded groups is stable in the range ∗ 6 n − |λ| (or the range ∗ < n − |λ| if M is
an orientable surface). There is an argument due to Søren Galatius (personal communication),
involving only the representation theory of symmetric groups, that takes stability of the left-hand
side of (1.2) as input and proves representation stability for {H∗(Fn(M,X);Q)}. This therefore
reveals a link between twisted homological stability and representation stability.

More quantitatively, the argument of Galatius proves representation stability in the range
n > |λ| + max{∗ + o, |λ| + 1} (where we set o = 1 for orientable surfaces and o = 0 otherwise).
For comparison, the range obtained in [Chu12] is n > 2∗ for manifolds of dimension at least three
and n > 4∗ for surfaces. So the range obtained by Galatius’ argument improves the range of
[Chu12] for surfaces when |λ| 6 2∗ − 1 (and also works equally well for non-orientable manifolds).
If we define the complexity of a Young diagram µ to be the number of boxes below the first
row, κ(µ) = |µ| − µ1, then we can say that the range is improved for Young diagrams with low
complexity, since κ(λ[n]) = |λ|. However, it does not recover uniform representation stability, as
the range depends on λ as well as on ∗.

In fact, representation stability for {H∗(Fn(M,X);Q)} may be deduced more directly from
twisted homological stability for Cn(M,X), as long as one knows this for more general coefficient
systems. The representations Vλ[n] extend to a finitely-generated FI-module by Proposition 3.4.1
of [CEF15], which is therefore a twisted coefficient system on FI of finite degree (in the sense of
[RW17, Kra17]) by Proposition 3.4.2 of [SS14]. This may be pulled back to a twisted coefficient
system on Bf(M,X) (see §3.1 of [P] for the definition of this category) along the canonical functor
Bf(M,X) → FI, which preserves degree (cf. Lemma 4.2 of [Pal17]). Thus, by the main result of
[Kra17],3 the sequence of rational vector spaces

H∗(Fn(M,X);Q)⊗Q[Σn] Vλ[n] ∼= H∗(Cn(M,X);Vλ[n])

is stable as n→∞, which immediately implies representation stability, since the dimension of the
left-hand side is the multiplicity of the irreducible Vλ[n] in H∗(Fn(M,X);Q). See also Example
5.13(ii) and Corollary 5.17 of [Kra17]. We note that this second approach would not work using

2 This statement is stronger than it may appear at first: it is true for all n, including values of n for which λ[n] is
not a valid Young diagram (it is only a valid Young diagram if n > |λ|+λ1). By definition, the number of copies of
Vλ[n] in a Σn-representation, when λ[n] is not a valid Young diagram, is zero. Thus, if the range of stability (for a
fixed homological degree ∗ and Young diagram λ) includes values of n for which λ[n] is not a valid Young diagram,
then the multiplicity of Vλ[n] in H∗(Fn(M,X);Q) must in fact be zero for all values of n. (See also the second
paragraph after the statement of Theorem 1 in [Chu12].)

3 Or by the main result of [RW17] in the case whenM is the interior of a compact, connected surface with exactly
one boundary component and X = BG.
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Theorem A of [P], since the representations Vλ[n] assemble into a twisted coefficient system on
FI, but not on the larger category FI] = Σ. The approach described further above, using the
representations Q[Σn/Σλ[n]] instead of Vλ[n], does work with Theorem A of [P], since these do
assemble to form an FI]-module (see Example 4.6 of [P]).

2. Twisted coefficient systems

2.a. Coefficient systems on braid categories of very low degree. In this section we freely
use the notation of [P] – see that paper for any unexplained notation or terminology.

In Remark 3.4 of [P] it is shown that all functors B(M,X)→ Ab or Bf(M,X)→ Ab of degree
at most zero are isomorphic to a constant functor. In this section, we give an alternative argument
for this statement, and generalise it to the setting where we restrict the domain category to its full
subcategory on objects > κ, for a fixed non-negative integer κ. (Recall that both B(M,X) and
Bf(M,X) have all non-negative integers as objects.)

Denote these full subcategories by B(M,X)>κ and Bf(M,X)>κ respectively, and let D denote
either of them (for any κ). Since the stabilisation endofunctor S and its associated natural trans-
formation id⇒ S restrict to D, we have a notion of degree for functors D → Ab. We will show in
this section that:

Proposition 2.1 If T : D → Ab is of degree at most zero, it is isomorphic to a constant functor.

This will follow easily from the following lemma.

Lemma 2.2 The classifying space BD is simply-connected.

Proof of Proposition 2.1. It is easy to see that T has degree at most zero if and only if its image
is contained in Ab∼, the underlying groupoid of Ab.

For a given category C, there is a universal functor from C to a groupoid, whose target is G(C),
the Grothendieck groupoid of C. The functor G is the left adjoint of the inclusion Groupoid ↪→ Cat
whereas the underlying groupoid functor (·)∼ mentioned above is the right adjoint. Alternatively,
we may think of G(C) as the localisation C[C−1] of C at all of its morphisms, or as Π1(BC), the
fundamental groupoid of the classifying space, or nerve, of C.

By the universal property, if T : C1 → C2 is a functor, its image will be contained in C∼2 if and
only if it factors through C1 → G(C1). In our setting, we therefore know that T factors through
G(D). In addition, we know by Lemma 2.2 that G(D) ' ∗. Thus T factors up to isomorphism
through the trivial category on one object.

It therefore remains to prove Lemma 2.2. If κ = 0 then D has an initial object, and so
BD is contractible, in particular simply-connected. If D = B(M,X)>κ (for any value of κ), then
D is a filtered category, which again implies that its classifying space is (weakly) contractible.
The remaining case is therefore D = Bf(M,X)>κ for a positive integer κ, which has no initial or
terminal object and is not filtered.

Let’s say that a category C satisfies property (P ) if for any functor T : C → G to a groupoid,
if f and g are parallel morphisms in C then Tf = Tg. In other words, T sends every diagram to
a commutative diagram. A category C has diameter one if, for each pair of objects x, y ∈ C, there
exists either a morphism x→ y or y → x.

Note that, if BC is simply-connected, then G(C) ' ∗ and thus any functor T : C → G to a
groupoid is isomorphic to a constant functor. But if T is isomorphic to a constant functor, it
is easy to check that it sends parallel morphisms in C to the same morphism in G. Thus any
simply-connected category satisfies property (P ). Conversely:

Lemma 2.3 Any category C of diameter one that satisfies property (P ) is simply-connected.

Proof. The functor ob: Cat→ Set that forgets the morphisms of a category has a left adjoint taking
a set S to the discrete category on S and a right adjoint taking S to the indiscrete category ind(S)
on S, i.e., the category whose objects are the elements of S and which has a unique morphism
between any pair of objects. We will show that any functor C → G to a groupoid factors through
the unit ηC : C → ind(ob(C)) of this adjunction. Thus ind(ob(C)) satisfies the universal property
of G(C). But ind(ob(C)) is equivalent to the trivial category ∗, so we have G(C) ∼= ind(ob(C)) ' ∗.
Thus BC is simply-connected.
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Let T : C → G be a functor to a groupoid. We need to find T ′ : ind(ob(C))→ G so that

T ′ ◦ ηC = T. (2.1)

Clearly we must define T ′(c) = T (c) on objects of C. Given objects c, d ∈ C, write 〈c, d〉 for the
unique morphism c → d in ind(ob(C)). Since C has diameter one there exists either a morphism
f : c → d or g : d → c. Define T ′(〈c, d〉) to be either Tf or (Tg)−1. This will satisfy (2.1) as long
as T ′ is a well-defined functor. But any two morphisms c→ d are sent to the same morphism in G
by property (P ), and similarly for any two morphisms d→ c. Thus to see that T ′ is well-defined it
remains to consider the case of morphisms f : c→ d and g : d→ c and show that Tf = (Tg)−1. But
this follows since gf is parallel to idc. It is similarly trivial to check that T ′ preserves composition
and identities. Hence T factors through ηC , as desired.

Clearly D has diameter one. Thus the next lemma, together with Lemma 2.3, implies that
BD is simply-connected, completing the proof of Lemma 2.2 and therefore of Proposition 2.1.

Lemma 2.4 The category D satisfies property (P ).

Proof. If D = B(M,X)>κ then it is filtered and thus BD is contractible, as observed above. Then
the observation before Lemma 2.3 tells us that D satisfies property (P ). For the rest of this proof
we therefore assume that D = Bf(M,X)>κ.

Let T : D → G be a functor to a groupoid. Write Bn = EndD(n) for the endomorphism
monoid of the object n > κ in D. Since D is an EI-category, this endomorphism monoid is in fact
a group, which acts on Tn = T (n).

Claim. The action of Bn on Tn is trivial for all n > κ.

Now let n > m > κ be two objects of D and write ιnm = ιn−1 ◦ · · ·◦ ιm : m→ n. Any morphism
f : m → n may be written as bf ◦ ιnm for some (non-unique) element bf ∈ Bn. If g is parallel
to f we need to show that Tf = Tg. But this follows from the claim above, which tells us that
Tbf = idTn

= Tbg.
It just remains to prove the claim. There is a homomorphism

sn : Bn −→ Bn+1

taking a loop γ in Cn(M,X) to the loop sn ◦ γ in Cn+1(M,X). Write snm = sn−1 ◦ · · · ◦ sm. It is
easy to check that Tιn : Tn → Tn+1 is sn-equivariant, and so Tιnm is snm-equivariant. Recall that
Bn is the fundamental group of Cn(M,X) based at the configuration {a1, . . . , an} ⊂ M with all
labels equal to x0. Each loop induces a permutation of the points in this configuration, so there is
a homomorphism Bn → Σn to the symmetric group on n letters. Choose any element ∆n ∈ B2n
whose induced permutation of {a1, . . . , a2n} swaps the subsets {a1, . . . , an} and {an+1, . . . , a2n}.
It follows that for any b ∈ Bn we have:

ι2nn = ∆n ◦ s2n
n (b) ◦∆−1

n ◦ ι2nn . (2.2)

Now fix n > κ, an element b ∈ Bn and an element x ∈ Tn.4 Our task is to show that b ·x = x.
The equation above implies that ∆n ◦ s2n

n (b) ◦∆−1
n acts trivially on the image of the morphism

Tι2nn : Tn −→ T2n.

But this is an isomorphism, since G is a groupoid, and hence surjective. So ∆n ◦ s2n
n (b) ◦∆−1

n acts
trivially on T2n, and therefore so does s2n

n (b). Hence

Tι2nn (x) = s2n
n (b) · Tι2nn (x) = Tι2nn (b · x),

where the second step follows from s2n
n -equivariance of Tι2nn . But Tι2nn is injective, so x = b ·x.

4 Since Tn is an object of an arbitrary groupoid G, we cannot strictly speak about elements of its objects. To make
the argument correct in general, the elements should be interpreted as generalised elements. The justification for
writing the argument in terms of actual elements is that, in practice, we are interested in the fact that all functors
D → Ab∼ are isomorphic to a constant functor, and Ab∼ is a concrete groupoid.

6



4. Examples of twisted coefficient systems

4.a. A generalisation of Example 4.6. Example 4.6 of [P] may be generalised as follows. Fix
` > 0 and write

Λ` = {λ | λ ∈ Nk for some k > 0 and λ ` `′ for some `′ 6 `}.

This set has a partial order where (λ1, . . . , λk) 6 (µ1, . . . , µl) if and only if there exists an injection
α : {1, . . . , k} ↪→ {1, . . . , l} such that λi 6 µα(i) for each i ∈ {1, . . . , k}. For λ 6 µ, write [λ, µ] for
the interval {ν ∈ Λ` | λ 6 ν 6 µ}. We may then define a functor P[λ,µ] : Σ→ Sefin as follows. On
objects it is defined by

P[λ,µ](n) =
{
{ordered decompositions of n with type ∈ [λ, µ]} n > |λ|
∅ n < |λ|.

Given a partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n}, we define P[λ,µ](j) to be the empty
function if either m < |λ| or n < |λ|; otherwise it takes (S1, . . . , Sk) to (j(S1), . . . , j(Sk)) if this is
an ordered decomposition with type ∈ [λ, µ], and is undefined on (S1, . . . , Sk) if not.

As in Remark 4.8 of [P], we may compose this with the functor R(−) : Sefin → Ab for any
ring R to obtain a twisted coefficient system RP[λ,µ] : Σ → Ab, which has degree |µ| by a similar
argument to Lemma 4.7 and Remark 4.8 of [P].

4.b. Examples of twisted coefficient systems: Lawrence representations. In this section
we briefly introduce a viewpoint on the Lawrence representations of the braid groups (a family of
representations of the braid groups including the Burau representation and the Lawrence-Krammer-
Bigelow representation). We will investigate these further in future work.

The construction. To describe the Lawrence representations we will use twisted homology as
described in §5.1 of [P] (see in particular Remark 5.2) as a continuous functor TopR → gr-R-mod,
where an object of TopR is a locally path-connected and semi-locally simply-connected space
equipped with a bundle R-modules, and morphisms are continuous maps covered by bundle maps
(restricting to an R-linear isomorphism on each fibre). For each k > 0 we can pick out the k-graded
piece of a graded R-module, so we get a continuous functor

Hk : TopR −→ R-mod.

For a group G, we may define TopG exactly like TopR, using bundles of G-sets instead of R-modules.
If S is a G-set, the free R-module R〈S〉 with basis S is an R[G]-module. Applying this construction
to each fibre of a bundle defines a continuous functor

R〈·〉 : TopG −→ TopR[G].

Now fix a positive integer m and let G = Z if m = 1 and G = Z2 if m > 2. Let βn be the classical
n-th braid group, in other words βn = π1(Cn(D2)). Another description of βn is as a mapping class
group: let Bn be the topological group of self-diffeomorphisms of D2 restricting to the identity on
the boundary and sending a chosen subset {p1, . . . , pn} ⊂ int(D2) to itself. Then βn = π0(Bn), the
group of path-components of Bn. Let β be the groupoid with objects 0, 1, 2, . . . and automorphisms
Autβ(n) = βn and with no morphisms between distinct objects (cf. [RW17, Sou17]). Similarly let
B be the topological groupoid with the same objects and with automorphisms AutB(n) = Bn and
with no morphisms between distinct objects. Our viewpoint on the Lawrence construction is that
it is a continuous functor (defined in a moment)

Lm : B −→ TopG,

which we then compose with Z〈·〉 and Hm to obtain a functor B → Z[G]-mod. Since the target is
a discrete category, this continuous functor descends to a well-defined functor

Lm : β = π0(B) −→ Z[G]-mod
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which is the Lawrence representation at level m. We now define the continuous functor Lm. The
space Lm(n) is defined to be the configuration space Cm(Dn), where Dn denotes the closed 2-disc
with n interior points p1, . . . , pn removed. Choose a configuration in the boundary of the disc as
a basepoint. There is a surjective homomorphism π1(Cm(Dn)) → G defined as follows. When
m = 1 the group G is Z, and we send a loop in C1(Dn) = Dn to the sum of the winding numbers
of the loop around each of the punctures p1, . . . , pn. When m = 2 the group G is Z2, and we
send a loop γ of configurations to the pair (t(γ), w(γ)), where w(γ) is the total winding number
of all points of the configuration around all punctures,5 and t(γ) is the total winding number
of all points of the configuration around each other — more precisely, the latter means that we
ignore the punctures, view γ as an element of βm and take its image under the abelianisation map
βm → Z. See also [Bud05, §2] for a description of this quotient homomorphism. The covering
space C̃m(Dn) → Cm(Dn) corresponding to the kernel of this quotient is a principal G-bundle
(since it is a regular covering space with deck transformation group G), and therefore in particular
a bundle of G-sets. This defines the object Lm(n) of TopG. It remains to define the functor Lm on
automorphisms (recall that the only morphisms of B are automorphisms). There is a continuous
action of Bn on Cm(Dn) by applying a diffeomorphism to each point of a configuration. One
can check that the quotient π1(Cm(Dn)) → G is invariant under the induced action of Bn on
π1(Cm(Dn)). This implies that the action of Bn on the space Cm(Dn) lifts (uniquely) to an action
on the object Lm(n) of TopG — in other words, it acts by automorphisms of bundles of G-sets. This
defines the functor Lm on automorphisms. Note that all actions of Bn that we have considered
are continuous actions, so this is indeed a continuous functor, as stated above.

Special cases. When m = 1 the twisted homology H1(Dn;Z[Z]), equivalently, the integral ho-
mology of the covering space D̃n, is a free Z[Z]-module of rank n− 1, so we obtain representations

βn −→ GLn−1(Z[Z]).

These are the reduced Burau representations of the braid groups. When m = 2 the twisted
homology H2(C2(Dn);Z[Z2]), equivalently, the integral homology of the covering space C̃2(Dn), is
a free Z[Z2]-module of rank

(
n
2
)
(see Proposition 3.6 of [PP02] or Theorem 4.1 of [Big03]), so we

obtain representations
βn −→ GL(n

2)(Z[Z2]).

These are the Lawrence-Krammer-Bigelow representations of the braid groups, which were shown
by Bigelow [Big01] and Krammer [Kra02] to be faithful.

Variants. One may also define variants of the Lawrence construction, for example by taking
homology relative to some subspace of the configuration space, and/or by taking Borel-Moore
homology in place of ordinary homology.

If we modify the above construction using instead reduced (twisted) homology, in other words,
homology relative to a point on the boundary of the configuration space, we denote the resulting
representation of β by Lr

m. If we instead use the Borel-Moore homology (this requires us to restrict
TopG and TopR to their subcategories of of proper maps, or alternatively use the opposite of their
subcategories of open embeddings), we denote the resulting representation of β by Lbm

m . We note
that the Z[Z]-module Lr

1(n) is free of rank n, and is the unreduced Burau representation of βn (in
contrast to L1(n), which, as noted above, is the reduced Burau representation of βn).

Twisted coefficient systems extending the Lawrence representation. There are functors

β ↪−→ Uβ −→ Bf(R2) ↪−→ B(R2),

where the first and last are faithful, and the composite functor β → Bf(R2) is also faithful (although
the middle one is not). The notation U(−) denotes a construction of Quillen, studied in [RW17,

5 We are talking about unordered configurations, so not every point of the configuration returns to where it
started under the loop γ. Nevertheless, we obtain m paths in Dn, which concatenate to form ` 6 m loops, and we
take w(γ) to be the sum of the winding numbers of each of these loops around each of the punctures p1, . . . , pn.
Note that if we ignore the punctures, the loop γ determines a braid in βm, which induces a permutation in Σm.
The number ` of loops in Dn is the number of cycles in the cycle decomposition of this permutation.
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§1.1], and the category Uβ is studied in [Sou17]. The partial braid category B(R2) is defined in
§2.3 of [P] and its subcategory Bf(R2), the injective braid category, is defined in §3.1 of [P]. All
three categories have β as their underlying groupoid, and all of the above functors are the identity
on the object set (which is the set of non-negative integers in each case).

The Lawrence representation Lm : β → Z[G]-mod and its variants Lr
m and Lbm

m extend to Uβ
(see Example 4.15 of [RW17] or Example 2.27 of [Sou17] for Lr

1, see Example 2.28 of [Sou17] for
L1 and see Example 2.37 of [Sou17] for L2).6 However, they do not in general extend to Bf(R2).
In work to appear separately, we will explain these facts geometrically, using our viewpoint of the
Lawrence construction as a functor B → TopG, considering the problem of extending it to certain
topological categories containing B. We will also explore specialisations of Lm and its variants,
and investigate when they extend to Bf(R2) and when they extend to B(R2). By a specialisation
of Lm, we mean Indθ ◦ Lm, where θ : Z[G] → R is a ring homomorphism and Indθ is the functor
Z[G]-mod→ R-mod given by induction along θ. We conjecture that the extensions of Lm, Lr

m and
Lbm
m to Uβ have degree m, with two anomalous exceptions that L1 and Lbm

1 have degree 2.7 This
would imply, using the main theorem of [RW17], that the Lawrence representations, at each level
m, are homologically stable. We note that for Lr

1 this is explicitly proved in [RW17] as Corollary F,
and the representations L1 and L2 are shown to have degree 2 in Corollary 2.36 and Proposition
2.40 of [Sou17].6 We also intend to explore other variants of the Lawrence representations, varying
the construction B → TopG (and the group G) by using different kinds of configuration spaces,
and more generally studying surface braid groups. It would also be interesting to investigate the
consequences of homological stability for such representations, since the construction of Lawrence
is closely related to the Jones polynomial [Law93, Big02] and more generally the quantum sl(n)
polynomials [Law96, Big07].

References

[Bet02] S. Betley. Twisted homology of symmetric groups. Proc. Amer. Math. Soc. 130.12 (2002), 3439–
3445 (electronic) (↑ p. 1).

[Big01] S. J. Bigelow. Braid groups are linear . J. Amer. Math. Soc. 14 (2001), pp. 471–486. {arxiv:math/0005038}
(↑ pp. 8, 9).

[Big02] S. Bigelow. A homological definition of the Jones polynomial. Geom. Topol. Monogr. 4 (2002),
pp. 29–41. {arxiv:math/0201221} (↑ p. 9).

[Big03] S. Bigelow. The Lawrence-Krammer representation. Topology and Geometry of Manifolds. Ed.
by G. Matić and C. McCrory. Vol. 71. Proceedings of Symposia in Pure Mathematics. 2003,
pp. 51–68. {arxiv:math/0204057} (↑ p. 8).

[Big07] S. Bigelow. A homological definition of the HOMFLY polynomial. Algebr. Geom. Topol. 7
(2007), pp. 1409–1440. {arxiv:math/0608527} (↑ p. 9).

[Bud05] R. D. Budney. On the image of the Lawrence-Krammer representation. J. Knot Theory Rami-
fications 14.6 (2005), pp. 773–789. {arxiv:math/0202246} (↑ p. 8).

[CEF15] T. Church, J. S. Ellenberg and B. Farb. FI-modules and stability for representations of sym-
metric groups. Duke Math. J. 164.9 (2015), pp. 1833–1910. {arxiv:1204.4533} (↑ p. 4).

[CF13] T. Church and B. Farb. Representation theory and homological stability. Adv. Math. 245 (2013),
pp. 250–314. {arxiv:1008.1368} (↑ pp. 1, 4).

[Che17] W. Chen. Homology of braid groups, the Burau representation, and points on superelliptic curves
over finite fields. Israel J. Math. 220.2 (2017), pp. 739–762. {arxiv:1506.02189} (↑ pp. 1, 3).

[Chu12] T. Church. Homological stability for configuration spaces of manifolds. Invent. Math. 188.2
(2012), pp. 465–504. {arxiv:1103.2441} (↑ p. 4).

6 To be pedantic, we note that the version LK of the Lawrence-Krammer-Bigelow representation studied by Soulié
is not quite the same as L2. The representation LK is defined over C[Z2] by certain formulas, which are also valid
over Z[Z2], so they also define an integral version LKZ related to LK by LK ∼= LKZ ⊗ C[Z2], where ⊗ is the tensor
product over Z[Z2]. By Theorem 1.2 of [PP02], the representations LKZ and L2 : β → Z[Z2]-mod are not isomorphic,
but they become isomorphic after composing with the functor Z[Z2]-mod→ Q(x, y)-mod given by induction along
the inclusion of Z[Z2] = Z[x±1, y±1] into its field of fractions. See also Theorem 4.1 of [Big01], which says that
LKZ and L2 become isomorphic after inducing along any embedding of Z[Z2] into R given by a pair of algebraically
independent real numbers. (Of course, any such embedding factors through the field of fractions, so this also follows
from the previous statement.)

7 On the other hand, it is not hard to see that the weak degree (defined by Djament and Vespa [DV13, Définition
1.22], see also Definition 2.1 of [Pal17]) of L1 is 1, rather than 2 (this observation was pointed out to the author by
Arthur Soulié) which suggests that it may be useful to study the weak degree of Lawrence representations.

9

http://dx.doi.org/10.1090/S0002-9939-02-06763-1
http://dx.doi.org/10.1090/S0894-0347-00-00361-1
http://arxiv.org/abs/math/0005038
http://dx.doi.org/10.2140/gtm.2002.4.29
http://arxiv.org/abs/math/0201221
http://dx.doi.org/10.1090/pspum/071
http://arxiv.org/abs/math/0204057
http://dx.doi.org/10.2140/agt.2007.7.1409
http://arxiv.org/abs/math/0608527
http://dx.doi.org/10.1142/S0218216505004044
http://arxiv.org/abs/math/0202246
http://dx.doi.org/10.1215/00127094-3120274
http://dx.doi.org/10.1215/00127094-3120274
http://arxiv.org/abs/1204.4533
http://dx.doi.org/10.1016/j.aim.2013.06.016
http://arxiv.org/abs/1008.1368
http://dx.doi.org/10.1007/s11856-017-1534-7
http://dx.doi.org/10.1007/s11856-017-1534-7
http://arxiv.org/abs/1506.02189
http://dx.doi.org/10.1007/s00222-011-0353-4
http://arxiv.org/abs/1103.2441


[CM09] R. L. Cohen and I. Madsen. Surfaces in a background space and the homology of mapping
class groups. Algebraic geometry—Seattle 2005. Part 1. Vol. 80. Proc. Sympos. Pure Math.
Providence, RI: Amer. Math. Soc., 2009, pp. 43–76. {arxiv:math/0601750} (↑ p. 3).

[Dja15] A. Djament. Décomposition de Hodge pour l’homologie stable des groupes d’automorphismes
des groupes libres. ArXiv:1510.03546v4. v4: 2016, v1: 2015 (↑ p. 4).

[DV10] A. Djament and C. Vespa. Sur l’homologie des groupes orthogonaux et symplectiques à coef-
ficients tordus. Ann. Sci. Éc. Norm. Supér. (4) 43.3 (2010), pp. 395–459. {arxiv:0808.4035}
(↑ p. 3).

[DV13] A. Djament and C. Vespa. Foncteurs faiblement polynomiaux. ArXiv:1308.4106v5. v5: 2017,
v1: 2013. To appear in IMRN. (↑ p. 9).

[DV15] A. Djament and C. Vespa. Sur l’homologie des groupes d’automorphismes des groupes libres
à coefficients polynomiaux. Comment. Math. Helv. 90.1 (2015), pp. 33–58. {arxiv:1210.4030}
(↑ p. 3).

[Kra02] D. Krammer. Braid groups are linear . Ann. of Math. (2) 155.1 (2002), pp. 131–156. {arxiv:math/0405198}
(↑ p. 8).

[Kra17] M. Krannich. Homological stability of topological moduli spaces. ArXiv:1710.08484v1. 2017
(↑ pp. 2–4).

[Law93] R. J. Lawrence. A functorial approach to the one-variable Jones polynomial. J. Differential
Geom. 37.3 (1993), pp. 689–710 (↑ p. 9).

[Law96] R. J. Lawrence. Braid group representations associated with slm. J. Knot Theory Ramifications
5 (1996), pp. 637–660 (↑ p. 9).

[McD75] D. McDuff. Configuration spaces of positive and negative particles. Topology 14 (1975), pp. 91–
107 (↑ p. 3).

[Pal13a] M. Palmer. Twisted homological stability for configuration spaces. ArXiv:1308.4397v3. v3: 2017,
v1: 2013 (↑ p. 1).

[Pal13b] M. Palmer. Homological stability for oriented configuration spaces. Trans. Amer. Math. Soc.
365.7 (2013), pp. 3675–3711. {arxiv:1106.4540} (↑ p. 2).

[Pal17] M. Palmer. A comparison of twisted coefficient systems. ArXiv:1712.06310v1. 2017 (↑ pp. 3, 4,
9).

[PP02] L. Paoluzzi and L. Paris. A note on the Lawrence-Krammer-Bigelow representation. Algebr.
Geom. Topol. 2 (2002), pp. 499–518. {arxiv:math/0111186} (↑ pp. 8, 9).

[PS14] A. Putman and S. V. Sam. Representation stability and finite linear groups. ArXiv:1408.3694v3.
v3: 2017, v1: 2014. To appear in Duke Mathematical Journal. (↑ p. 2).

[Ran16] O. Randal-Williams. Cohomology of automorphism groups of free groups with twisted coeffi-
cients. ArXiv:1604.01701v2. v2: 2017, v1: 2016. To appear in Selecta Mathematica. (↑ pp. 3,
4).

[RW17] O. Randal-Williams and N. Wahl. Homological stability for automorphism groups. Adv. Math.
318 (2017), pp. 534–626. {arxiv:1409.3541} (↑ pp. 1–4, 7–9).

[Seg73] G. Segal. Configuration-spaces and iterated loop-spaces. Invent. Math. 21 (1973), pp. 213–221
(↑ p. 3).

[Sou17] A. Soulié. The Long-Moody construction and polynomial functors. ArXiv:1702.08279v3. 2017
(↑ pp. 7, 9).

[SS14] S. V. Sam and A. Snowden. Representations of categories of G-maps. ArXiv:1410.6054v4. v4:
2016, v1: 2014. To appear in J. Reine Angew. Math. (↑ pp. 2, 4).

[SS17] S. V. Sam and A. Snowden. Gröbner methods for representations of combinatorial categories.
J. Amer. Math. Soc. 30.1 (2017), pp. 159–203. {arxiv:1409.1670} (↑ p. 2).

[Vas92] V. A. Vassiliev. Complements of discriminants of smooth maps: topology and applications.
Vol. 98. Translations of Mathematical Monographs. Translated from the Russian by B. Gold-
farb. American Mathematical Society, Providence, RI, 1992, pp. vi+208 (↑ p. 3).

[Ves15] C. Vespa. Extensions between functors from free groups. ArXiv:1511.03098v3. v3: 2016, v1: 2015
(↑ p. 4).

10

http://dx.doi.org/10.1090/pspum/080.1
http://dx.doi.org/10.1090/pspum/080.1
http://arxiv.org/abs/math/0601750
http://arxiv.org/abs/1510.03546v4
http://smf4.emath.fr/Publications/AnnalesENS/4_43/html/ens_ann-sc_43_395-459.php
http://smf4.emath.fr/Publications/AnnalesENS/4_43/html/ens_ann-sc_43_395-459.php
http://arxiv.org/abs/0808.4035
http://arxiv.org/abs/1308.4106v5
https://doi.org/10.1093/imrn/rnx099
http://dx.doi.org/10.4171/CMH/345
http://dx.doi.org/10.4171/CMH/345
http://arxiv.org/abs/1210.4030
http://dx.doi.org/10.2307/3062152
http://arxiv.org/abs/math/0405198
https://arxiv.org/abs/1710.08484v1
http://projecteuclid.org/euclid.jdg/1214453905
http://dx.doi.org/10.1142/S0218216596000370
http://dx.doi.org/10.1016/0040-9383(75)90038-5
https://arxiv.org/abs/1308.4397v3
http://dx.doi.org/10.1090/S0002-9947-2012-05743-6
http://arxiv.org/abs/1106.4540
http://arxiv.org/abs/1712.06310v1
http://dx.doi.org/10.2140/agt.2002.2.499
http://arxiv.org/abs/math/0111186
http://arxiv.org/abs/1408.3694v3
https://arxiv.org/abs/1604.01701v2
https://doi.org/10.1007/s00029-017-0311-0
https://doi.org/10.1016/j.aim.2017.07.022
http://arxiv.org/abs/1409.3541
http://dx.doi.org/10.1007/BF01390197
http://arxiv.org/abs/1702.08279v3
http://arxiv.org/abs/1410.6054v4
https://doi.org/10.1515/crelle-2016-0045
http://dx.doi.org/10.1090/jams/859
http://arxiv.org/abs/1409.1670
http://arxiv.org/abs/1511.03098v3

	1 Introduction
	1.a Summary of related results.
	1.b A conjecture that is now known.
	1.c Stable twisted homology.
	1.d Representation stability.

	2 Twisted coefficient systems
	2.a Coefficient systems on braid categories of very low degree.

	4 Examples of twisted coefficient systems
	4.a A generalisation of Example 4.6.
	4.b Examples of twisted coefficient systems: Lawrence representations.
	The construction.
	Special cases.
	Variants.
	Twisted coefficient systems extending the Lawrence representation.



	References

