Configuration spaces and manifold calculus

Geoffroy Horel (USPN, ENS)

Moduli and Friends seminar, June 30th 2021

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}.$

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}.$

In fact $\Gamma_{\mathbb{Q}}$ acts on the profinite completion of X^{an} [Artin-Mazur, Sullivan, Quick, Barnea-Schlank]. One can hope to use this to understand $\Gamma_{\mathbb{Q}}$.

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}.$

In fact $\Gamma_{\mathbb{Q}}$ acts on the profinite completion of X^{an} [Artin-Mazur, Sullivan, Quick, Barnea-Schlank]. One can hope to use this to understand $\Gamma_{\mathbb{Q}}$.

Definition

Given a homotopy type U, its profinite completion \hat{U} is the inverse system of π -finite spaces with a map from U

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}$.

In fact $\Gamma_{\mathbb{Q}}$ acts on the profinite completion of X^{an} [Artin-Mazur, Sullivan, Quick, Barnea-Schlank]. One can hope to use this to understand $\Gamma_{\mathbb{Q}}$.

Definition

Given a homotopy type U, its profinite completion \hat{U} is the inverse system of π -finite spaces with a map from U

Definition

A π -finite space is a space V with finitely many path-components and such that, for any $v \in V$, the homotopy groups $\pi_i(V, v)$ are all finite and eventually zero.

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}$.

In fact $\Gamma_{\mathbb{Q}}$ acts on the profinite completion of X^{an} [Artin-Mazur, Sullivan, Quick, Barnea-Schlank]. One can hope to use this to understand $\Gamma_{\mathbb{Q}}$.

Definition

Given a homotopy type U, its profinite completion \hat{U} is the inverse system of π -finite spaces with a map from U

Definition

A π -finite space is a space V with finitely many path-components and such that, for any $v \in V$, the homotopy groups $\pi_i(V, v)$ are all finite and eventually zero.

Theorem (Belyi)

The action of $\Gamma_{\mathbb{Q}}$ on the profinite homotopy type of $\mathbb{P}^1_{\mathbb{C}}-\{0,1,\infty\}$ is faithful.

X variety over \mathbb{Q} , then $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts by outer automorphisms on $\pi_1^{et}(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}) \cong \widehat{\pi_1(X^{an})}$.

In fact $\Gamma_{\mathbb{Q}}$ acts on the profinite completion of X^{an} [Artin-Mazur, Sullivan, Quick, Barnea-Schlank]. One can hope to use this to understand $\Gamma_{\mathbb{Q}}$.

Definition

Given a homotopy type U, its profinite completion \hat{U} is the inverse system of π -finite spaces with a map from U

Definition

A π -finite space is a space V with finitely many path-components and such that, for any $v \in V$, the homotopy groups $\pi_i(V, v)$ are all finite and eventually zero.

Theorem (Belyi)

The action of $\Gamma_{\mathbb{Q}}$ on the profinite homotopy type of $\mathbb{P}^1_{\mathbb{C}} - \{0, 1, \infty\}$ is faithful.

Grothendieck's idea: Try to understand $\Gamma_{\mathbb{Q}}$ via its action on a collection of (profinite completions) of homotopy types of varieties and a collection of maps between them (Teichmüller tower).

The configuration category of a topological manifold M denoted con(M) is the following category (over Fin).

The configuration category of a topological manifold M denoted con(M) is the following category (over Fin).

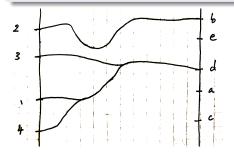
• an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \to M$.

The configuration category of a topological manifold M denoted con(M) is the following category (over Fin).

- an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \to M$.
- a morphism from (S, φ) to (T, ψ) is a map u : S → T and a "sticky path" connecting φ to ψ ∘ u in M^S.

The configuration category of a topological manifold M denoted con(M) is the following category (over Fin).

- an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \to M$.
- a morphism from (S, φ) to (T, ψ) is a map u : S → T and a "sticky path" connecting φ to ψ ∘ u in M^S.



Remark

We have $\operatorname{con}(\mathbb{R}^2)^{\cong} \simeq \sqcup_n \pi_{\leq 1}(\operatorname{Emb}(n, \mathbb{R}^2))$

Theorem (H.)

The Grothendieck-Teichmüller is the group of homotopy automorphisms of the profinite completion of $con(\mathbb{R}^2)$.

Three ingredients.

Theorem (Drinfeld)

The Grothendieck-Teichmüller group is a subgroup of the group of homotopy automorphisms of the operad of profinite parenthesized braids \widehat{PaB} .

Theorem (H.)

The Grothendieck-Teichmüller group is the group of homotopy automorphisms of the profinite completion of the little 2-disks operad.

Theorem (Boavida-Weiss)

The little 2-disks operad contains the same homotopical data as the configuration category of $\mathbb{R}^2.$

This result suggests an algebro-geometric construction of $con(\mathbb{R}^2)$. This has been done recently by Vaintrob.

More generally, if X is a smooth algebraic variety over a number field, then $con(X^{an})$ should be the Betti realization of an algebro-geometric object (work in progress with Boavida de Brito and Kosanović).

In particular, there is an action of the absolute Galois group of the field on the profinite completion of $con(X^{an})$.

Given two differentiable manifolds M and N, there is a map

$$Emb(M, N) \rightarrow Map_{/Fin}(con(M), con(N))$$

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

Given two differentiable manifolds M and N, there is a map

$$Emb(M, N) \rightarrow Map_{/Fin}(con(M), con(N))$$

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}(T_m M) \to \operatorname{con}(T_n N)$ a map of configuration categories.

Given two differentiable manifolds M and N, there is a map

$$Emb(M, N) \rightarrow Map_{/Fin}(con(M), con(N))$$

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}(T_m M) \to \operatorname{con}(T_n N)$ a map of configuration categories.

(There is a map $Imm(M, N) \to \Gamma'$ with Γ' the space of section of a fiber bundle over M whose fiber over m is the space of pairs $(n.\beta)$ with β an injective linear map $T_m M \to T_n N$.)

Given two differentiable manifolds M and N, there is a map

$$Emb(M, N) \rightarrow Map_{/Fin}(con(M), con(N))$$

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}(T_m M) \to \operatorname{con}(T_n N)$ a map of configuration categories.

(There is a map $Imm(M, N) \to \Gamma'$ with Γ' the space of section of a fiber bundle over M whose fiber over m is the space of pairs $(n.\beta)$ with β an injective linear map $T_m M \to T_n N$.) Recall that the obvious map $Emb(M, N) \to T_{\infty} Emb(M, N)$ is a weak equivalence if $\dim(N) - \dim(M) \ge 3$.

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, for all $k \ge 0$ there is a homotopy cartesian square

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, for all $k \ge 0$ there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}_{\leq k}(T_m M) \to \operatorname{con}_{\leq k}(T_n N)$ a map of configuration categories.

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, for all $k \ge 0$ there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}_{\leq k}(T_m M) \to \operatorname{con}_{\leq k}(T_n N)$ a map of configuration categories.

Recall that the obvious map $Emb(M, N) \rightarrow T_{\infty}Emb(M, N)$ is a weak equivalence if $\dim(N) - \dim(M) \ge 3$.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Remark

We have $\pi_0 Emb_c(\mathbb{R}, \mathbb{R}^3) \cong \pi_0 Emb(S^1, S^3)$.

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ with $d \geq 3$.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Remark

We have $\pi_0 Emb_c(\mathbb{R}, \mathbb{R}^3) \cong \pi_0 Emb(S^1, S^3)$.

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ with $d \geq 3$.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Remark

We have $\pi_0 Emb_c(\mathbb{R}, \mathbb{R}^3) \cong \pi_0 Emb(S^1, S^3)$.

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative *H*-space.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Remark

We have
$$\pi_0 Emb_c(\mathbb{R}, \mathbb{R}^3) \cong \pi_0 Emb(S^1, S^3)$$
.

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative *H*-space.

A knot invariant with values in an abelian group A is a map

$$f: \mathcal{K} := \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to A.$$

The knot invariant I is said to be additive if it satisfies the formula

 $f(K_1 \sharp K_2) = f(K_1) + f(K_2)$

A knot invariant with values in an abelian group A is a map

$$f: \mathcal{K} := \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to A.$$

The knot invariant I is said to be additive if it satisfies the formula

 $f(K_1 \sharp K_2) = f(K_1) + f(K_2)$

Definition

A singular knot is a compactly supported immersion $\mathbb{R} \to \mathbb{R}^3$ whose only singularities are a finite number of double points at which the two tangent lines are distinct. We denote by S the set of singular knots up to isotopy.

A knot invariant with values in an abelian group A is a map

$$f: \mathcal{K} := \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to A.$$

The knot invariant I is said to be additive if it satisfies the formula

$$f(K_1 \sharp K_2) = f(K_1) + f(K_2)$$

Definition

A singular knot is a compactly supported immersion $\mathbb{R} \to \mathbb{R}^3$ whose only singularities are a finite number of double points at which the two tangent lines are distinct. We denote by S the set of singular knots up to isotopy.

Any knot invariant $v: \mathcal{K} \to A$ may be extended to $\mathcal S$ using the following formula

$$\hat{v}(\bigotimes) = \hat{v}(\bigotimes) - \hat{v}(\bigotimes)$$

A knot invariant $v : \mathcal{K} \to A$ is said to be of type $\leq n$ if its extension to S vanishes on singular knots with n + 1 double points.

A knot invariant $v : \mathcal{K} \to A$ is said to be of type $\leq n$ if its extension to S vanishes on singular knots with n + 1 double points.

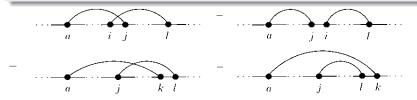
We denote by I_n the subgroup of $\mathbb{Z}[\mathcal{K}]$ generated by resolutions of singular knots with n + 1 double points. An equivalent definition is to say that a knot invariant is of type $\leq n$ if it factors through $\mathbb{Z}[\mathcal{K}]/I_{n+1}$.

A knot invariant $v : \mathcal{K} \to A$ is said to be of type $\leq n$ if its extension to S vanishes on singular knots with n + 1 double points.

We denote by I_n the subgroup of $\mathbb{Z}[\mathcal{K}]$ generated by resolutions of singular knots with n + 1 double points. An equivalent definition is to say that a knot invariant is of type $\leq n$ if it factors through $\mathbb{Z}[\mathcal{K}]/I_{n+1}$.

Proposition (Vassiliev)

There is a surjective map $A_n \rightarrow I_n/I_{n+1}$ where A_n is the free abelian group generated by chord diagrams with n-chords modulo the 4T-relation.



We say that two knots are *n*-equivalent if all invariants of type \leq *n* agree on them.

We say that two knots are *n*-equivalent if all invariants of type \leq n agree on them.

We denote by \sim_n this equivalence relation. An additive invariant of type $\leq n$ is exactly the data of a monoid homomorphism $\mathcal{K}/\sim_n \rightarrow A$. There is a similarly defined group of indecomposable chord diagrams \mathcal{A}'_n with a surjective map

$$\mathcal{A}'_n \to \{K, K \sim_n 0\} / \sim_{n+1}$$
.

We say that two knots are *n*-equivalent if all invariants of type \leq n agree on them.

We denote by \sim_n this equivalence relation. An additive invariant of type $\leq n$ is exactly the data of a monoid homomorphism $\mathcal{K}/\sim_n \rightarrow A$. There is a similarly defined group of indecomposable chord diagrams \mathcal{A}'_n with a surjective map

$$\mathcal{A}'_n \to \{K, K \sim_n 0\} / \sim_{n+1}$$
.

Theorem (Kontsevich)

The map $\mathcal{A}_n \to I_n/I_{n+1}$ and the map $\mathcal{A}_n^I \to J_n/J_{n+1}$ induce an isomorphism after tensoring with \mathbb{Q} .

We say that two knots are *n*-equivalent if all invariants of type \leq n agree on them.

We denote by \sim_n this equivalence relation. An additive invariant of type $\leq n$ is exactly the data of a monoid homomorphism $\mathcal{K}/\sim_n \rightarrow A$. There is a similarly defined group of indecomposable chord diagrams \mathcal{A}'_n with a surjective map

$$\mathcal{A}'_n \to \{K, K \sim_n 0\} / \sim_{n+1}$$
.

Theorem (Kontsevich)

The map $A_n \to I_n/I_{n+1}$ and the map $A'_n \to J_n/J_{n+1}$ induce an isomorphism after tensoring with \mathbb{Q} .

Conjecture

There are isomorphisms

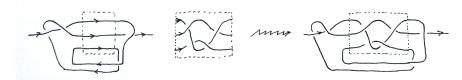
$$\oplus_{k\leq n}\mathcal{A}_k\cong \mathbb{Z}[\mathcal{K}]/I_{n+1}, \ \oplus_{k\leq n}\mathcal{A}_k^I\cong \mathcal{K}/\sim_{n+1}$$

Definition (Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.

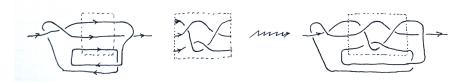
Definition (Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.



Definition (Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.



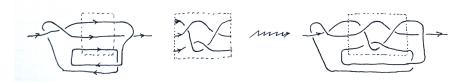
Conjecture (Goodwillie-Weiss, Budney-Conant-Koytcheff-Sinha)

The map ev_{k+1} : $\mathcal{K} = \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the universal additive invariant of degree $\leq k$. In other words it is identified with the quotient map

$$\mathcal{K} \to \mathcal{K} / \sim_{k+1}$$

Definition (Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.



Conjecture (Goodwillie-Weiss, Budney-Conant-Koytcheff-Sinha)

The map ev_{k+1} : $\mathcal{K} = \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the universal additive invariant of degree $\leq k$. In other words it is identified with the quotient map

$$\mathcal{K} \to \mathcal{K} / \sim_{k+1}$$

True after tensoring with \mathbb{Q} (Kontsevich integral). The map ev_{k+1} is a degree $\leq k$ invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Boavida de Brito, H.)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p + 1$. Furthermore, there is a non-canonical isomorphism

$$\pi_0 T_{k+1} Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)} \cong \oplus_{s \leq k} \mathcal{A}'_s \otimes \mathbb{Z}_{(p)}$$

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Boavida de Brito, H.)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p + 1$. Furthermore, there is a non-canonical isomorphism

$$\pi_0 T_{k+1} Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)} \cong \oplus_{s \leq k} \mathcal{A}'_s \otimes \mathbb{Z}_{(p)}$$

Manifold calculus for knots

We specialize the general theory of manifold calculus to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

$$T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d})
ightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d})
ightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$$

Manifold calculus for knots

We specialize the general theory of manifold calculus to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

$$T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d})
ightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d})
ightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$$

Remark

• If $d \ge 4$, we can remove T_{∞} .

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $\mathcal{T}_{\infty}\textit{Emb}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \Omega\textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}),\operatorname{con}(\mathbb{R}^{d}))$

Remark

• If $d \ge 4$, we can remove T_{∞} .

• This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $\mathcal{T}_{\infty}\textit{Emb}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \Omega\textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}),\operatorname{con}(\mathbb{R}^{d}))$

Remark

• If $d \ge 4$, we can remove T_{∞} .

• This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

We define $T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$ by the fiber sequence

 $T_k \textit{Emb}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \textit{Imm}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \Omega \textit{Map}_{/\textit{Fin}_{<k}}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $\mathcal{T}_{\infty}\textit{Emb}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R},\mathbb{R}^{d}) \rightarrow \Omega\textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}),\operatorname{con}(\mathbb{R}^{d}))$

Remark

• If $d \ge 4$, we can remove T_{∞} .

• This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

We define $T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$ by the fiber sequence

$$T_k \textit{Emb}_c(\mathbb{R},\mathbb{R}^d)
ightarrow \textit{Imm}_c(\mathbb{R},\mathbb{R}^d)
ightarrow \Omega \textit{Map}_{/\textit{Fin}_{$$

We have a weak equivalence

$$T_{\infty} Emb_{c}(\mathbb{R}, \mathbb{R}^{d}) \simeq \operatorname{holim}_{k} T_{k} Emb_{c}(\mathbb{R}, \mathbb{R}^{d})$$

The Goodwillie-Weiss spectral sequence

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations $\ldots \to T_k \to T_{k-1} \to \ldots$ induces a spectral sequence

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations $\dots \to T_k \to T_{k-1} \to \dots$ induces a spectral sequence (which converges for $d \ge 4$) We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations $\dots \to T_k \to T_{k-1} \to \dots$ induces a spectral sequence (which converges for $d \ge 4$) $E^1_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R}, \mathbb{R}^d)$ We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations $\dots \to T_k \to T_{k-1} \to \dots$ induces a spectral sequence (which converges for $d \ge 4$) $E^1_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R}, \mathbb{R}^d)$

where L_s is the homotopy fiber of $T_s \rightarrow T_{s-1}$.

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations ... $\rightarrow T_k \rightarrow T_{k-1} \rightarrow ...$ induces a spectral sequence (which converges for $d \ge 4$)

$$E_{-s,t}^{1} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R},\mathbb{R}^d)$$

where L_s is the homotopy fiber of $T_s \rightarrow T_{s-1}$.

Theorem (Goodwillie-Weiss,Göppl)

We have $\pi_{t-s}(L_s) = \bigcap_{i=0}^{s-1} \ker(\pi_t(s^i))$ with

$$s^i: Emb(\underline{s}, \mathbb{R}^d)
ightarrow Emb(\underline{s-1}, \mathbb{R}^d)$$

the map that forgets the i-th point.

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. The tower of fibrations ... $\rightarrow T_k \rightarrow T_{k-1} \rightarrow ...$ induces a spectral sequence (which converges for $d \ge 4$)

$$E^{1}_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R},\mathbb{R}^d)$$

where L_s is the homotopy fiber of $T_s \rightarrow T_{s-1}$.

Theorem (Goodwillie-Weiss, Göppl)

We have $\pi_{t-s}(L_s) = \bigcap_{i=0}^{s-1} \ker(\pi_t(s^i))$ with

$$s^i: Emb(\underline{s}, \mathbb{R}^d)
ightarrow Emb(\underline{s-1}, \mathbb{R}^d)$$

the map that forgets the i-th point.

This can be computed completely in terms of homotopy groups of spheres using the fiber sequence

$$\bigvee_{s-1} S^{d-1} \to \textit{Emb}(\underline{s}, \mathbb{R}^d) \to \textit{Emb}(\underline{s-1}, \mathbb{R}^d)$$

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Corollary

• For
$$n \le (p-1)(d-2) + 3$$
 and $i \le 2p - 6 + 2(d-2)$:

$$\pi_i(T_n Emb_c(\mathbb{R}, \mathbb{R}^d)) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E^2_{-s,t}(T_n) \otimes \mathbb{Z}_{(p)}$$

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Corollary

• For
$$n \le (p-1)(d-2) + 3$$
 and $i \le 2p - 6 + 2(d-2)$:

$$\pi_i(T_n \textit{Emb}_c(\mathbb{R}, \mathbb{R}^d)) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E^2_{-s,t}(T_n) \otimes \mathbb{Z}_{(p)}$$

• For
$$d > 4$$
 (resp. $d = 4$) and $i < 2p + 2d - 4$ (resp. $i < 2p$) :

$$\pi_i(Emb_c(\mathbb{R}, \mathbb{R}^d)) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E^2_{-s,t} \otimes \mathbb{Z}_{(p)}$$

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the *p*-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-, \mathbb{F}_p)$
- The map $X \to L_p X$ induces p-completion at the level of homotopy groups.

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the *p*-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-, \mathbb{F}_p)$
- The map $X \to L_p X$ induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_p$ the tower that we get by replacing $\operatorname{con}(\mathbb{R}^d)$ by its *p*-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_p .

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the p-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-, \mathbb{F}_p)$
- The map $X \to L_p X$ induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_p$ the tower that we get by replacing $\operatorname{con}(\mathbb{R}^d)$ by its *p*-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_p .

Theorem (Boavida, H.)

There is a non-trivial action of $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$. This action is what forces some of the differentials to be zero.

Definition

Let M be a finitely generated \mathbb{Z}_p -module, the $\Gamma_{\mathbb{Q}}$ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight n.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the $\Gamma_{\mathbb{Q}}$ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

There is an action of Γ_Q = Gal(Q/Q) on the tower {T_n ⊗ Z_ρ}_{n∈ℕ}.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the $\Gamma_{\mathbb{Q}}$ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

- There is an action of $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$.
- In the range t < 2p 2 + (s 1)(d 2), we have $E^1_{-s,t} \otimes \mathbb{Z}_p = 0$ unless t = n(d 2) + 1.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the $\Gamma_{\mathbb{Q}}$ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

- There is an action of $\Gamma_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$.
- In the range t < 2p 2 + (s 1)(d 2), we have $E_{-s,t}^1 \otimes \mathbb{Z}_p = 0$ unless t = n(d 2) + 1.
- The $\Gamma_{\mathbb{Q}}$ -action on $E^1_{-s,n(d-2)+1} \otimes \mathbb{Z}_p$ is cyclotomic of weight n.

We construct this action in several steps.

- Start from the $\Gamma_{\mathbb{Q}}$ -action on the profinite completion of $\operatorname{con}(\mathbb{R}^2)$.
- This induces a Γ_Q-action on the profinite completion of con(ℝ^d). (Follows from a general construction of Boavida-Weiss con(M × N) ≃ con(M) ⊗ con(N)).
- This induces a $\Gamma_{\mathbb{Q}}$ -action on $L_p \operatorname{con}(\mathbb{R}^d)$ and hence on the tower $T_n \otimes \mathbb{Z}_p$.

We construct this action in several steps.

- Start from the $\Gamma_{\mathbb{Q}}$ -action on the profinite completion of $\operatorname{con}(\mathbb{R}^2)$.
- This induces a Γ_Q-action on the profinite completion of con(ℝ^d). (Follows from a general construction of Boavida-Weiss con(M × N) ≃ con(M) ⊗ con(N)).
- This induces a $\Gamma_{\mathbb{Q}}$ -action on $L_p \operatorname{con}(\mathbb{R}^d)$ and hence on the tower $T_n \otimes \mathbb{Z}_p$.

Thank you !