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Esquisse d’un programme

X variety over Q, then ΓQ = Gal(Q/Q) acts by outer automorphisms on
πet

1 (X ×Q Q) ∼= ̂π1(X an).

In fact ΓQ acts on the profinite completion of X an [Artin-Mazur, Sullivan,
Quick, Barnea-Schlank]. One can hope to use this to understand ΓQ.

Definition

Given a homotopy type U, its profinite completion Û is the inverse system of
π-finite spaces with a map from U

Definition

A π-finite space is a space V with finitely many path-components and such
that, for any v ∈ V , the homotopy groups πi (V , v) are all finite and eventually
zero.

Theorem (Belyi)

The action of ΓQ on the profinite homotopy type of P1
C − {0, 1,∞} is faithful.

Grothendieck’s idea: Try to understand ΓQ via its action on a collection of
(profinite completions) of homotopy types of varieties and a collection of maps
between them (Teichmüller tower).

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Esquisse d’un programme

X variety over Q, then ΓQ = Gal(Q/Q) acts by outer automorphisms on
πet

1 (X ×Q Q) ∼= ̂π1(X an).
In fact ΓQ acts on the profinite completion of X an [Artin-Mazur, Sullivan,
Quick, Barnea-Schlank]. One can hope to use this to understand ΓQ.

Definition

Given a homotopy type U, its profinite completion Û is the inverse system of
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A homotopical interpretation of ĜT

Definition (Boavida-Weiss)

The configuration category of a topological manifold M denoted con(M) is the
following category (over Fin).

an object is a pair (S , φ) with S a finite set and φ an embedding S → M.

a morphism from (S , φ) to (T , ψ) is a map u : S → T and a “sticky path”
connecting φ to ψ ◦ u in MS .

Remark

We have con(R2)
∼= ' tnπ≤1(Emb(n,R2))
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A homotopical interpretation of ĜT

Theorem (H.)

The Grothendieck-Teichmüller is the group of homotopy automorphisms of the
profinite completion of con(R2).

Three ingredients.

Theorem (Drinfeld)

The Grothendieck-Teichmüller group is a subgroup of the group of homotopy
automorphisms of the operad of profinite parenthesized braids P̂aB.

Theorem (H.)

The Grothendieck-Teichmüller group is the group of homotopy automorphisms
of the profinite completion of the little 2-disks operad.

Theorem (Boavida-Weiss)

The little 2-disks operad contains the same homotopical data as the
configuration category of R2.
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A homotopical interpretation of ĜT

This result suggests an algebro-geometric construction of con(R2). This has
been done recently by Vaintrob.

More generally, if X is a smooth algebraic variety over a number field, then
con(X an) should be the Betti realization of an algebro-geometric object (work
in progress with Boavida de Brito and Kosanović).

In particular, there is an action of the absolute Galois group of the field on the
profinite completion of con(X an).
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Configuration categories and differential topology (Manifold calculus)

Given two differentiable manifolds M and N, there is a map

Emb(M,N)→ Map/Fin(con(M), con(N))

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian
square

T∞Emb(M,N) //

��

Map/Fin(con(M), con(N))

��
Imm(M,N) // Γ

with Γ the space of sections of a fiber bundle over M whose fiber over m is the
space of pairs (n, α) with n ∈ N and α : con(TmM)→ con(TnN) a map of
configuration categories.

(There is a map Imm(M,N)→ Γ′ with Γ′ the space of section of a fiber bundle
over M whose fiber over m is the space of pairs (n.β) with β an injective linear
map TmM → TnN.)
Recall that the obvious map Emb(M,N)→ T∞Emb(M,N) is a weak
equivalence if dim(N)− dim(M) ≥ 3.
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Configuration categories and differential topology (Manifold calculus)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, for all k ≥ 0 there is a
homotopy cartesian square
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Long knots

Definition

Fix a linear embedding j : R→ R3. The space of long knots, denoted
Embc(R,R3) is the space of embeddings from R to R3 that coïncide with j
outside of a compact subset of R.

Remark

We have π0Embc(R,R3) ∼= π0Emb(S1,S3).

More generally, one can consider the space Embc(R,Rd) with d ≥ 3.

Proposition

Connected sum of knots give this space the structure of a commutative
H-space.
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Knot invariants

Definition

A knot invariant with values in an abelian group A is a map

f : K := π0(Embc(R,R3))→ A.

The knot invariant I is said to be additive if it satisfies the formula

f (K1]K2) = f (K1) + f (K2)

Definition

A singular knot is a compactly supported immersion R→ R3 whose only
singularities are a finite number of double points at which the two tangent lines
are distinct. We denote by S the set of singular knots up to isotopy.

Any knot invariant v : K → A may be extended to S using the following
formula
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Finite type invariants

Definition

A knot invariant v : K → A is said to be of type ≤ n if its extension to S
vanishes on singular knots with n + 1 double points.

We denote by In the subgroup of Z[K] generated by resolutions of singular
knots with n + 1 double points. An equivalent definition is to say that a knot
invariant is of type ≤ n if it factors through Z[K]/In+1.

Proposition (Vassiliev)

There is a surjective map An → In/In+1 where An is the free abelian group
generated by chord diagrams with n-chords modulo the 4T-relation.
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Finite type invariants

Definition

We say that two knots are n-equivalent if all invariants of type ≤ n agree on
them.

We denote by ∼n this equivalence relation. An additive invariant of type ≤ n is
exactly the data of a monoid homomorphism K/ ∼n→ A. There is a similarly
defined group of indecomposable chord diagrams AI

n with a surjective map

AI
n → {K ,K ∼n 0}/ ∼n+1 .

Theorem (Kontsevich)

The map An → In/In+1 and the map AI
n → Jn/Jn+1 induce an isomorphism

after tensoring with Q.

Conjecture

There are isomorphisms

⊕k≤nAk
∼= Z[K]/In+1, ⊕k≤nAI

k
∼= K/ ∼n+1
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Finite type invariants

Definition (Gusarov, Stanford)

A map π0(Embc(R,R3)))→ A with A an abelian group is an additive invariant
of degree ≤ k if it is a monoid homomorphism and it is invariant under
infection by pure braids lying in γk+1(Pn).

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map evk+1 : K = π0(Embc(R,R3))→ π0Tk+1Embc(R,R3) is the universal
additive invariant of degree ≤ k. In other words it is identified with the
quotient map

K → K/ ∼k+1

True after tensoring with Q (Kontsevich integral). The map evk+1 is a degree
≤ k invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Finite type invariants

Definition (Gusarov, Stanford)

A map π0(Embc(R,R3)))→ A with A an abelian group is an additive invariant
of degree ≤ k if it is a monoid homomorphism and it is invariant under
infection by pure braids lying in γk+1(Pn).

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map evk+1 : K = π0(Embc(R,R3))→ π0Tk+1Embc(R,R3) is the universal
additive invariant of degree ≤ k. In other words it is identified with the
quotient map

K → K/ ∼k+1

True after tensoring with Q (Kontsevich integral). The map evk+1 is a degree
≤ k invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Finite type invariants

Definition (Gusarov, Stanford)

A map π0(Embc(R,R3)))→ A with A an abelian group is an additive invariant
of degree ≤ k if it is a monoid homomorphism and it is invariant under
infection by pure braids lying in γk+1(Pn).

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map evk+1 : K = π0(Embc(R,R3))→ π0Tk+1Embc(R,R3) is the universal
additive invariant of degree ≤ k. In other words it is identified with the
quotient map

K → K/ ∼k+1

True after tensoring with Q (Kontsevich integral). The map evk+1 is a degree
≤ k invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Finite type invariants

Definition (Gusarov, Stanford)

A map π0(Embc(R,R3)))→ A with A an abelian group is an additive invariant
of degree ≤ k if it is a monoid homomorphism and it is invariant under
infection by pure braids lying in γk+1(Pn).

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map evk+1 : K = π0(Embc(R,R3))→ π0Tk+1Embc(R,R3) is the universal
additive invariant of degree ≤ k. In other words it is identified with the
quotient map

K → K/ ∼k+1

True after tensoring with Q (Kontsevich integral). The map evk+1 is a degree
≤ k invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Finite type invariants for knots

Theorem (Kosanović)

The map evk+1 is the universal additive invariant of degree ≤ k if the spectral
sequence for Tk+1Embc(R,R3) collapses at the E 2-page along the diagonal
t = s.

Theorem (Boavida de Brito, H.)

The map evk+1 : π0(Embc(R,R3))→ π0Tk+1Embc(R,R3)⊗ Z(p) is the
universal p-local additive invariant of degree ≤ k if k ≤ p + 1. Furthermore,
there is a non-canonical isomorphism

π0Tk+1Embc(R,R3)⊗ Z(p)
∼= ⊕s≤kAI

s ⊗ Z(p)
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Manifold calculus for knots

We specialize the general theory of manifold calculus to Embc(R,Rd).

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

T∞Embc(R,Rd)→ Immc(R,Rd)→ ΩMap/Fin(con(R), con(Rd))

Remark

If d ≥ 4, we can remove T∞.

This is a corollary of the previous theorem, using the fact that the space at
the top right corner in the cartesian square is contractible in this case
(Alexander trick).

We define TkEmbc(R,Rd) by the fiber sequence

TkEmbc(R,Rd)→ Immc(R,Rd)→ ΩMap/Fin≤k
(con(R, k), con(Rd , k))

We have a weak equivalence

T∞Embc(R,Rd) ' holimkTkEmbc(R,Rd)
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The Goodwillie-Weiss spectral sequence

We write Tk = TkEmbc(R,Rd). The tower of fibrations
. . .→ Tk → Tk−1 → . . . induces a spectral sequence

(which converges for
d ≥ 4)

E 1
−s,t = πt−sLs =⇒ πt−sEmbc(R,Rd)

where Ls is the homotopy fiber of Ts → Ts−1.

Theorem (Goodwillie-Weiss,Göppl)

We have πt−s(Ls) =
⋂s−1

i=0 ker(πt(s
i )) with

s i : Emb(s,Rd)→ Emb(s − 1,Rd)

the map that forgets the i-th point.

This can be computed completely in terms of homotopy groups of spheres
using the fiber sequence∨

s−1

Sd−1 → Emb(s,Rd)→ Emb(s − 1,Rd)
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Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let E r
−s,t be the Goodwillie-Weiss spectral sequence for

T∞Emb(R,Rd). In the spectral sequence E r
−s,t ⊗ Z(p), in the range

t < 2p − 2 + (s − 1)(d − 2), the only possibly non-zero differential are the d r

with r − 1 a multiple of (p − 1)(d − 2).

Corollary

For n ≤ (p − 1)(d − 2) + 3 and i ≤ 2p − 6 + 2(d − 2) :

πi (TnEmbc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t(Tn)⊗ Z(p)

For d > 4 (resp. d = 4) and i < 2p + 2d − 4 (resp. i < 2p) :

πi (Embc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t ⊗ Z(p)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let E r
−s,t be the Goodwillie-Weiss spectral sequence for

T∞Emb(R,Rd). In the spectral sequence E r
−s,t ⊗ Z(p), in the range

t < 2p − 2 + (s − 1)(d − 2), the only possibly non-zero differential are the d r

with r − 1 a multiple of (p − 1)(d − 2).

Corollary

For n ≤ (p − 1)(d − 2) + 3 and i ≤ 2p − 6 + 2(d − 2) :

πi (TnEmbc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t(Tn)⊗ Z(p)

For d > 4 (resp. d = 4) and i < 2p + 2d − 4 (resp. i < 2p) :

πi (Embc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t ⊗ Z(p)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let E r
−s,t be the Goodwillie-Weiss spectral sequence for

T∞Emb(R,Rd). In the spectral sequence E r
−s,t ⊗ Z(p), in the range

t < 2p − 2 + (s − 1)(d − 2), the only possibly non-zero differential are the d r

with r − 1 a multiple of (p − 1)(d − 2).

Corollary

For n ≤ (p − 1)(d − 2) + 3 and i ≤ 2p − 6 + 2(d − 2) :

πi (TnEmbc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t(Tn)⊗ Z(p)

For d > 4 (resp. d = 4) and i < 2p + 2d − 4 (resp. i < 2p) :

πi (Embc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t ⊗ Z(p)

Geoffroy Horel (USPN, ENS) Configuration spaces and manifold calculus



Main theorem, sketch of proof

Definition

Let X be a simply connected finite type CW-complex. There exists a unique
space up to homotopy LpX called the p-completion of X with a map X → LpX
such that

The map X → LpX induces an isomorphism in H∗(−,Fp)

The map X → LpX induces p-completion at the level of homotopy groups.

We denote by T ⊗ Zp the tower that we get by replacing con(Rd) by its
p-completion. The associated spectral sequence is simply the Goodwillie-Weiss
spectral sequence tensored with Zp.

Theorem (Boavida, H.)

There is a non-trivial action of ΓQ = Gal(Q/Q) on the tower {Tn ⊗ Zp}n∈N.
This action is what forces some of the differentials to be zero.
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Main theorem, sketch of proof

Let χ : ΓQ → Ẑ× ∼= Aut(µ∞) be the cyclotomic character.

Definition

Let M be a finitely generated Zp-module, the ΓQ-action given by
γ.m = χ(γ)nm is called the cyclotomic action of weight n.

Theorem (Boavida, H.)

There is an action of ΓQ = Gal(Q/Q) on the tower {Tn ⊗ Zp}n∈N.
In the range t < 2p − 2 + (s − 1)(d − 2), we have E 1

−s,t ⊗ Zp = 0 unless
t = n(d − 2) + 1.

The ΓQ-action on E 1
−s,n(d−2)+1 ⊗ Zp is cyclotomic of weight n.
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Main theorem, sketch of proof

We construct this action in several steps.

Start from the ΓQ-action on the profinite completion of con(R2).

This induces a ΓQ-action on the profinite completion of con(Rd). (Follows
from a general construction of Boavida-Weiss
con(M × N) ' con(M)⊗ con(N)).

This induces a ΓQ-action on Lpcon(Rd) and hence on the tower Tn ⊗ Zp.

Thank you !
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