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BRIEF OVERVIEW

(I) Construction of the motion groupoid MotM of a pair M = (M,A).
Morphisms are equivalence classes of continuous flows of ambient
space M which fix A, acting on PM. Recover classical definition of the
motion group associated to a manifold M and a submanifold N ∈ PM, by
looking at the morphism group at N. Obtain groups isomorphic to braid
groups, loop braid groups.

(II) Construction of mapping class groupoid MCGM.
Morphisms are now equivalence classes of homeomorphisms of M, fixing
A. The object set is again PM. Again obtain groups isomorphic to braid
groups, loop braid groups.

(III) Construction of functor F∶MotM →MCGM.
We prove that this is an isomorphism when π0 and π1 of space of
homeomorphisms of M fixing A are trivial (With compact open topology).
E.g. M = ([0, 1]n, ∂[0, 1]n).
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MOTIVATION

AIM: To construct algebraic structures useful for modelling generalised
particle motion in topological phases.

• Very general ambient space, particle types allowed.
• Study object sets in a unified way, questions about skeletons etc.
• Allows access to higher categorical structures e.g. monoidal.
• Facilitates passage between motions and generalised tangles.
• Morphisms which do not start and end in the same configuration
allowed.

• Expect interesting new algebraic structures
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MOTION GROUPOID



SPACE SELF-HOMEOMORPHISMS OF A MANIFOLD M

Let Top denote the category of topological spaces and continuous maps.
Top(X,X)
Toph(X,X)

TOPh(X,X)

Set of continuous maps from X to X
Subset of Top(X,X) of self-homeomorphisms. Note this is a
group.
Set Toph(X,X) equipped with the compact open topology

Lemma
(Hatcher) Let X be a compact space and Y a metric topological space with
metric d. Then
(i) the function

d′(f,g) ∶= sup
x∈X

d(f(x),g(x))

is a metric on Top(X,Y); and
(ii) the compact open topology on Top(X,Y) is the same as the one defined
by the metric d′.

TophA(M,M),TOP
h
A(M,M) versions with subset A ⊂ M fixed pointwise
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FLOWS

Definition
Fix a manifold, submanifold pair M = (M,A). A flow in M is a map
f ∈ Top(I,TOPhA(M,M)) with f0 = idM. Define,

FlowM = {f ∈ Top(I,TOPhA(M,M)) ∣ f0 = idM}.

Example
For any manifold M the path ft = idM for all t, is a flow. We will denote this
flow IdM.

Example
For M = S1 (the unit circle) we may parameterise by θ ∈ R/2π in the usual way.
Consider the functions τϕ ∶ S1 → S1 (ϕ ∈ R) given by θ ↦ θ + ϕ, and note that
these are homeomorphisms. Then consider the path ft = τtπ (‘half-twist’). This
is a flow.
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EXAMPLE M = D2
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OBTAINING NEW FLOWS FROM OLD

Lemma
Let M be a manifold. For any flow f in M = (M,A), then (f−1)t = f−1t is a flow.

NOTE: Proof uses that TOPh(M,M) when M is locally compact and locally
connected, is a topological group (Arens). This means the product map and
inverse map are continuous.

Lemma
Let M be a manifold. There exists a set map

∶̄FlowM → FlowM

f↦ f̄

with

f̄t = f(1−t) ○ f−11 . (1)
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OBTAINING NEW FLOWS FROM OLD

Proposition
Let M be a manifold. There exists a composition

∗∶FlowM ×FlowM → FlowM

(f,g)↦ g ∗ f

where

(g ∗ f)t =
⎧⎪⎪⎨⎪⎪⎩

f2t 0 ≤ t ≤ 1/2,
g2(t−1/2) ○ f1 1/2 ≤ t ≤ 1.

(2)

For a pair M = (M,A), (FlowM,∗) is a magma.
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OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition
Let M be a manifold. There is an associative composition

⋅ ∶FlowM ×FlowM → FlowM

(f,g)↦ g ⋅ f

where (g ⋅ f)t = gt ○ ft.

NOTE: Again proof uses that TOPh(M,M) is a topological group.

Lemma
For a manifold M, (FlowM, ⋅) is a group, with identity IdM and inverse map
(f−1)t = (ft)−1.

Lemma
For f,g ∈ FlowM, f−1

p∼ f̄ and g ⋅ f p∼ g ∗ f.
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MOTIONS

Definition
Fix a M = (M,A). A motion in M is a triple (f,N, f1(N)) consisting of a flow
f ∈ FlowM, a subset N ⊆ M and the image of N at the endpoint of f, f1(N).

We will denote such a triple by f∶NÀ N′ where f1(N) = N′, and say it is a
motion from N to N′.

MtM(N,N′) = {motions f∶NÀ N′}
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MOTIONS

TOPh(M,M)

TOPh(M,M)

idM (b)

(a)

HomeoM(N,N′)

HomeoM(N,N)
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MOTIONS

For any N ⊂ M, IdM∶NÀ N is a motion. Let f∶NÀ N′ and g∶N′ À N′′ be motions
in M, then g ⋅ f∶NÀ N′′ ((g ⋅ f)t = gt ○ ft) is a motion.

Lemma
There is a group action of (FlowM, ⋅) on PM, thus obtain an action groupoid

Mt⋅M = (PM,MtM(N,N′), ⋅, IdM, f−1).

Similarly g ∗ f∶NÀ N′′ is a motion.

Lemma
There is a magma action of (FlowM,∗) on PM we obtain an action magmoid

Mt∗M = (PM,MtM(N,N′),∗).
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MOTIONS AS MAPS M × I→ M × I

Definition
Let M be a manifold and N,N′ ⊂ M. Let MthomM (N,N′) ⊂ Toph(M × I,M × I)
denote the subset of homeomorphisms g ∈ Toph(M × I,M × I) such that

(I) g(m,0) = (m,0) for all m ∈ M,
(II) g(M × {t}) = M × {t} for all t ∈ I, and
(III) g(N × {1}) = N′ × {1}.

Theorem
Let M be a manifold and N,N′ ⊂ M. There is a bijection

Θ∶MtM(N,N′) → MthomM (N,N′),

f ↦ ((m, t)↦ (ft(m), t)).
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Let M be a manifold and N,N′ ⊆ M. There is a bijection

Θ∶MtM(N,N′) → MthomM (N,N′),

f ↦ ((m, t)↦ (ft(m), t)).

Idea of proof
(e.g. Hatcher) As M is locally compact, Hausdorff, there is a bijection

Φ∶Top(I,TOP(M,M))→ Top(M × I,M).

(Coming from an adjunction between the product functor M × − and the hom
functor TOP(M,−)). It follows that the image is continuous. To show that the
image is a homeomorphism we need that TOPh(M,M) is a topological group.
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M = I

↦
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M = I

N

N’

N

N
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M = S1

↦
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∗ COMPOSITION WHEN M = I
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CONGRUENCE BY SET-STATIONARY MOTIONS

Definition
Let M = (M,A) be a manifold, subset pair and N ⊂ M a subset. A motion
f∶NÀ N in M is said to be N-stationary if ft(N) = N for all t ∈ I. Define

SetStatNM = {f∶NÀ N ∈MtM(N,N) ∣ ft(N) = N for all t ∈ I} .

Example
Let M = D2 and let τ2π denote a flow such that (τ2π)t is a 2πt rotation of the
disk. Now let N be a circle centred on the centre of the disk. Then τ2π ∶NÀ N
is N-stationary.

Example
Let M = D2, the 2-disk and let N ⊂ M be a finite set of points. Then a motion
f∶NÀ N is N-stationary if and only if ft(x) = x for all x ∈ N and t ∈ I. More
generally this holds if N is a totally disconnected subspace of M, e.g. Q in R.
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CONGRUENCE BY SET-STATIONARY MOTIONS

Lemma
For N,N′ ⊂ M, denote by m∼ the relation

f∶NÀ N′ m∼ g∶NÀ N′ if g ∗ f ∈ [SetStatNM]p

on MtM(N,N′). This is an equivalence relation.
We call this motion-equivalence and denote by [f∶NÀ N′]m the
motion-equivalence class of f∶NÀ N′.

Idea of proof
Quotient first by path-homotopy. Then classes which intersect SetStatNM(N,N)
form a totally disconnected normal subgroupoid. Can be proved in general
that for any totally disconnected, normal subgroupoid H of a groupoid G
there is a congruence given by the relation g1 ∼ g2 if g−12 ∗G g1 ∈H. This leads
to an equivalent relation to the given relation.
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to an equivalent relation to the given relation.
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CONGRUENCE BY SET-STATIONARY MOTIONS

Lemma
For N,N′ ⊂ M, denote by m∼ the relation
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MOTION GROUPOID

Theorem
Let M = (M,A) where M is a manifold and A ⊂ M a subset. There is a groupoid

MotM = (PM, MtM(N,N′)/ m∼,∗, [IdM]m, [f]m ↦ [̄f]m)

where
(I) objects are subsets of M;
(II) morphisms between subsets N,N′ are motion-equivalence classes
[f∶NÀ N′]m of motions;

(III) composition of morphisms is given by

[g∶N′ À N′′]m ∗ [f∶NÀ N′]m = [g ∗ f∶NÀ N′′]m.

(IV) the identity at each object N is the motion-equivalence class of
IdM∶NÀ N, (IdM)t(m) =m for all m ∈ M;

(V) the inverse for each morphism [f∶NÀ N′]m is the motion-equivalence
class of f̄∶N′ À N where f̄t = f(1−t) ○ f−11 .
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MOTION GROUPOID

Proposition
Let M = (M,A) where M is a manifold and A ⊂ M a subset, then

MotM = (PM, MtM(N,N′)/ m∼, ⋅, [IdM]m, [f]m ↦ [f−1]m).

Proof
It is sufficient to observe that motions which are path equivalent are motion
equivalent. Let g, f be flows satisfying f p∼ g, then ḡ ∗ f p∼ g−1 ⋅ f p∼ g−1 ⋅ g, using
that ḡ p∼ g−1, and g ∗ f p∼ g ⋅ f. Then for all t ∈ I, (g−1 ⋅ g)t(N) = N, hence it is
stationary.
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ON MotI

Suppose N ⊂ I ∖ {0, 1} is a compact subset with a finite number of connected
components i.e. N is a union of points and closed intervals.

We can assign a word in {a,b} to N by representing each point in N by a and
each interval by b, ordered in the obvious way using the natural ordering on I.
Let N′ ⊂ I ∖ {0, 1} be another subset defined in the same way. If the word
assigned to N and N′ is the same, ∣MotI(N,N′)∣ = 1. Otherwise MotI(N,N′) = ∅.

Let N = I ∩Q, then MotI(N,N) is uncountably infinite.
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BRAID GROUPS AND LOOP BRAID GROUPS

Theorem (T., Faria Martins, Martin)
Let n be a positive integer. Consider M = D2. Given any finite subset K, with n
elements, in the interior of D2, then MotD2(K,K) is isomorphic to the braid
group in n strands (as in Artin, Theory of Braids). In particular the image of
the class of a motion which moves points as below is an elementary braid on
two strands.

Also if D3 = (D3, ∂D3) and L ⊂ D3 is an unlink in the interior with n
components, then MotD3(L, L) is isomorphic to the extended loop braid group
(as in Damiani, a journey through loop braid groups).
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RELATING MOTION GROUPOIDS

Lemma
Let (M,A) and (M′,A′) be pairs such that there exists a homeomorphism
ψ∶M→ M′ satisfying ψ(A) = A′. Then there is a isomorphism of categories

Ψ∶MotM →MotM′

defined as follows. On objects N ⊂ M, Ψ(N) = ψ(N). For a motion f∶NÀ N′ in
M, let (ψ ○ f ○ ψ−1)t = ψ ○ ft ○ ψ−1. Then Ψ sends the equivalence class
[f∶NÀ N′]m to the equivalence class [ψ ○ f ○ ψ−1∶ψ(N)→ ψ(N′)]m.
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RELATING AUTOMORPHISM GROUPS

Proposition
For any pair (M,A) and subset N ⊆ M there is an involutive endofunctor on
MotM defined by

MotM(N,N) ≅MotM(M ∖N,M ∖N),
f∶NÀ N′ ↦ f∶M ∖NÀ M ∖N′.

Notice that generally these automorphism groups are not connected in the
motion groupoid - this would imply N homeomorphic to M ∖N.
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ALTERNATIVE EQUIVALENCE
RELATIONS ON THE MOTION
GROUPOID



WORLDLINES OF MOTIONS

Definition
The worldline of a motion f∶NÀ N′ in a manifold M is

W (f∶NÀ N′) ∶= ⋃
t∈[0,1]

ft(N) × {t} ⊆ M × I.

Proposition
Let f,g∶NÀ N′ be motions with the same worldline, so we have

W(f∶NÀ N′) =W(g∶NÀ N′).

Then f∶NÀ N′ and g∶NÀ N′ are motion equivalent.

Proof
For all t ∈ I, (g−1 ⋅ f)t(N) = g−1t ○ gt(N) = N. Thus g−1 ⋅ f is N-stationary, and
hence ḡ ∗ f path-homotopic to a stationary motion.
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WORLDLINES OF MOTIONS

Theorem (T., Faria Martins, Martin)
Let M = (M,A) where M is a manifold and A ⊂ M a subset. Two motions
f, f′∶NÀ N′ in MtM are motion equivalent if, and only if, their worldlines are
level preserving ambient isotopic, relative to (M× ({0, 1}))∪ (A× I), pointwise.
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GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and A ⊆ M a subset.

Lemma
There is a (left) group action

σA∶TophA(M,M) ×PM→ PM
(f,N)↦ f(N).
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GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and A ⊆ M a subset.

Proposition
There is an action groupoid HomeoM with objects PM and morphisms
Explicitly the morphisms in HomeoM(N,N′) are triples (f,N, f(N)) where

• f is a homeomorphism M→ M,
• f(N) = N′,
• f fixes A pointwise.

We will denote triples (f,N, f(N)) ∈ HomeoM(N,N′) as f∶N ↷ N′.
Identity: idM∶N ↷ N Inverse: f∶N ↷ N′ ↦ f−1 ∶N′ ↷ N.
We will also sometimes consider HomeoM(N,N′) as the projection to the first
element of the triple. Then can equip morphism sets with a topology and
TOPhA(M,M) = HomeoM(∅,∅) = HomeoM(M,M) and every
HomeoM(N,N′) ⊆ TOPhA(M,M). Notice each self-homeomorphism f of M will
belong to many such HomeoM(N,N′).
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RELATIVE PATH-EQUIVALENCE

Definition
Fix a pair (M,A). Define a relation on MtM(N,N′) as follows. Let
f∶NÀ N′ rp∼ g∶NÀ N′ if the motions f∶NÀ N′ and g∶NÀ N′ are relative
path-homotopic. This means there exists a continuous map

H∶ I × I→ TOPh(M,M)

such that

• for any fixed s ∈ I, t↦ H(t, s) is a motion from N to N′,
• for all t ∈ I, H(t,0) = ft , and
• for all t ∈ I, H(t, 1) = gt .

We call such a homotopy a relative path-homotopy.

30



RELATIVE PATH-EQUIVALENCE

TOPhA(M,M)
idM

(b)
(a) HomeoM(N,N′)

HomeoM(N,N) (c)

31



RELATIVE PATH-EQUIVALENCE

Theorem (T. ,Faria Martins, Martin)
For a pair M = (M,A) and a motion f∶NÀ N′ in M we have

[f∶NÀ N′]rp = [f∶NÀ N′]m.

Key ingredients of proof
Direct construction of appropriate homotopies. Uses normality of stationary
motions.

Relative path equivalence is precisely the equivalence relation in the relative
fundamental group, hence

MotM(N,N) = π1(HomeoM(∅,∅),HomeoM(N,N), idM)

We will need this later!

32



RELATIVE PATH-EQUIVALENCE

Theorem (T. ,Faria Martins, Martin)
For a pair M = (M,A) and a motion f∶NÀ N′ in M we have

[f∶NÀ N′]rp = [f∶NÀ N′]m.

Key ingredients of proof
Direct construction of appropriate homotopies. Uses normality of stationary
motions.

Relative path equivalence is precisely the equivalence relation in the relative
fundamental group, hence

MotM(N,N) = π1(HomeoM(∅,∅),HomeoM(N,N), idM)

We will need this later!

32



MAPPING CLASS GROUPOIDS



MAPPING CLASS GROUPOID

Recall that for a pair M = (M,A) and for subsets N,N′ ⊂ M, morphisms in
HomeoM(N,N′) are triples denoted f∶N ↷ N′ where f ∈ Toph(M,M) and
f(N) = N′. We also think of the elements of HomeoM(N,N′) as the projection
to the first coordinate of each triple i.e. f ∈ TophA(M,M) such that f(N) = N′.

Definition
Let N,N′ ⊂ M. For any f∶N ↷ N′ and g∶N ↷ N′ in HomeoM(N,N′), f∶N ↷ N′ is said
to be isotopic to g∶N ↷ N′, denoted by i∼, if there exists a continuous map

H∶M × I→ M

such that

• for all fixed s ∈ I, the map m↦ H(m, s) is in HomeoM(N,N′),
• for all m ∈ M, H(m,0) = f(m), and
• for all m ∈ M, H(m, 1) = g(m).

We call such a map an isotopy from f∶N ↷ N′ to g∶N ↷ N′.
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MAPPING CLASS GROUPOIDS

Lemma
The family of relations (HomeoM(N,N′),

i∼) for all pairs N,N′ ⊆ M are a
congruence on HomeoM.

Theorem
Let M = (M,A) be a manifold submanifold pair. There is a groupoid

MCGM = (PM,HomeoM(N,N′)/
i∼, ○, [idM]i, [f]i ↦ [f−1]i).

We call this the mapping class groupoid of M.
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MAPPING CLASS GROUPOIDS

Using bijection
Φ∶Top(I,TOP(M,M))→ Top(M × I,M),

a continuous map M × I→ M which is an isotopy corresponds to a path
I→ HomeoM(N,N′) from f to g. Hence

Lemma
Let M be a manifold. We have that as sets

MCGM(N,N′) = π0(HomeoM(N,N′)).
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MAPPING CLASS GROUPOIDS

idM

f

g

h

h′
TOPh(M,M)

HomeoM(N,N′)

HomeoM(N,N)

HomeoM(N,N′)
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MAPPING CLASS GROUPOID, M = S1

Example
If S1 = (S1,∅), we have

MCGS1(∅,∅) = Z/2Z.

TOPh(S1,S1) has two path-components, containing respectively the
orientation preserving and the orientation reversing homeomorphisms from
S1 to itself. Each is homotopic to S1 (Hamstrom). Therefore the
homomorphism π0(HomeoS1(∅,∅))→ {±1} ≅ Z/2Z induced by the degree
homomorphism deg∶Toph(S1,S1) = HomeoS1(∅,∅)→ {±1} is an isomorphism.
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EXAMPLE

Proposition
Let D2 = (D2, ∂D2). The morphism group MCGD2(∅,∅) is trivial.

Proof
(This follows from the Alexander trick.) Suppose we have f∶ ∅ ↷ ∅ in D2. Define

ft(x) =
⎧⎪⎪⎨⎪⎪⎩

t f(x/t) 0 ≤ ∣x∣ ≤ t,
x t ≤ ∣x∣ ≤ 1.

Notice that f0 = idD2 and f1 = f and each ft is continuous. Moreover:

H∶D2 × I→ D2,
(x, t)↦ ft(x)

is a continuous map. So we have constructed an isotopy from any boundary
preserving self-homeomorphism of D2 to idD2 .
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FUNCTOR FROM THE MOTION
GROUPOID TO THE MAPPING CLASS
GROUPOID



FUNCTOR F∶MotM →MCGM

Theorem (T., Faria Martins, Martin)
Let M = (M,A). There is a functor

F∶MotM →MCGM

which is the identity on objects and on morphisms we have

F ([f∶NÀ N′]m) = [f1∶N ↷ N′]i.
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WELL DEFINEDNESS OF F

TOPhA(M,M)
idM

(b)
(a) HomeoM(N,N′)

HomeoM(N,N) (c)
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FUNCTOR F∶MotM →MCGM

Lemma
The functor

F∶MotM →MCGM

is full if and only if π0(TOPhA(M,M), idM) is trivial.
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FUNCTOR F∶MotM →MCGM

TOPh(M,M)

TOPh(M,M)

idM (b)

(a)

HomeoM(N,N′)

HomeoM(N,N)
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FUNCTOR F∶MotM →MCGM

(Hatcher) Let X be a space, Y ⊂ X a subspace and x0 ∈ Y a basepoint. There is a
long exact sequence:

. . .→ πn(Y,{x0})
in∗Ð→ πn(X,{x0})

jn∗Ð→ πn(X,Y,{x0})
∂nÐ→ πn−1(Y,{x0})

in−1∗ÐÐ→ . . .
i0∗Ð→ π0(X,{x0}).

Maps i and j are inclusions. Maps ∂ are restrictions to single face, in
particular

∂1∶π1(X,A,{x0})→ π0(A,{x0}),
[γ]rp ↦ [γ(1)]p.
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FUNCTOR F∶MotM →MCGM

Recall MotM(N,N) = π1(HomeoM(∅,∅),HomeoM(N,N), idM) and
MCGM(N,N) = π0(HomeoM(N,N), idM).

Lemma
Let M = (M,A) be a manifold, subset pair, and fix a subset N ⊂ M. Then we
have a long exact sequence

. . .→ πn(HomeoM(N,N), idM)
in∗Ð→ πn(HomeoM(∅,∅), idM)

jn∗Ð→

πn(HomeoM(∅,∅),HomeoM(N,N), idM)
∂nÐ→ πn−1(HomeoM(N,N), idM)

in−1∗ÐÐ→

. . .
∂2Ð→ π1(HomeoM(N,N), idM)

i1∗Ð→ π1(HomeoM(∅,∅), idM)
j1∗Ð→MotM(N,N)

FÐ→MCGM(N,N)
i0∗Ð→ π0(HomeoM(∅,∅), idM)

where all maps are group maps and F is the appropriate restriction of the
functor F∶MotM →MCGM.
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FUNCTOR F∶MotM →MCGM

Lemma
Suppose

• π1(HomeoM(∅,∅), idM) is trivial, and
• π0(HomeoM(∅,∅), idM) is trivial.

Then there is a group isomorphism

F∶MotM(N,N)
∼Ð→MCGM(N,N).
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FUNCTOR F∶MotM →MCGM

Theorem (T., Faria Martins, Martin)
Let M be a manifold. If

• π1(HomeoM(∅,∅), idM) is trivial, and
• π0(HomeoM(∅,∅), idM) is trivial,

the functor
F∶MotM →MCGM,

is an isomorphism of categories.
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FUNCTOR F∶MotM →MCGM

Proof
Suppose π1(HomeoM(∅,∅), idM) and π0(HomeoM(∅,∅), idM) are trivial.
Already proved F is full. We check F is faithful. Let [f∶NÀ N′]m and [f′∶NÀ N′]m
be in MotM(N,N′). If F ([f∶NÀ N′]m) = F ([f′∶NÀ N′]m), then

[idM∶N ↷ N]i = F([f′∶NÀ N′]m)−1 ○ F([f∶NÀ N′]m)
= F([f′∶NÀ N′]−1m ∗ [f∶NÀ N′]m)
= F([f̄′ ∗ f∶NÀ N]m).

By group isomorphism this is true if and only if

[f̄′ ∗ f∶NÀ N]m = [IdM∶NÀ N]m

which is equivalent to saying IdM ∗ (f̄′ ∗ f) is path-equivalent to a stationary
motion, and hence that f̄′ ∗ f is path-equivalent to the stationary motion
(since IdM ∗ (f̄′ ∗ f)

p∼ f̄′ ∗ f). So we have [f∶NÀ N′]m = [f′∶NÀ N′]m.
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EXAMPLES: M = Dn

Proposition
Let Dn be the n-disk, and Dn = (Dn, ∂Dn). Then we have an isomorphism

F∶MotDn →MCGDn .

Idea of proof
We proved that MCGD2(∅,∅) = π0(HomeoD2(∅,∅), idM) is trivial. Alexander
trick gives same result for all n. Also HomeoDn(∅,∅) is contractible
(Hamstrom).
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EXAMPLES: M = D2

Suppose we don’t fix the boundary.

Let P2 ⊂ D2 be a subset consisting of two
points equidistant from the centre of the disk. Let τπ be the path in
TOPh(D2,D2) such that τπt is a πt rotation of the disk.
The motion τπ ∶P2 À P2 represents a non-trivial equivalence class in MotD2 ,
and its end point also represents a non trivial element of MCGD2 . Now
consider the motion τπ ∗ τπ ∶P2 À P2.
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EXAMPLES: M = D2

In fact, the map F∶MotD2 →MCGD2 is neither full nor faithful. The space
HomeoD2 is homotopy equivalent to S1 ⊔ S1, where the first connected
component corresponds to orientation preserving homeomorphisms and the
second orientation reversing (Hamstrom). Hence we have that
π1(HomeoD2(∅,∅), idD2) = Z where the single generating element corresponds
to the 2π rotation. And π0(HomeoD2(∅,∅), idD2) = Z/2Z. So we have an exact
sequence:

. . .→ π1(HomeoD2(N,N), idD2)
i1∗Ð→ Z→MotD2(N,N)→MCGD2(N,N)→ Z/2Z.
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EXAMPLES: M = S1

Let P ⊂ S1 be a subset containing a single point in S1. Similarly to the disk,
there is a non-trivial morphism in MotS1(P,P) represented by a 2π rotation of
the circle.

Figure 1: Example of motion of circle which is a 2π rotation carrying a point to itself.
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EXAMPLES: M = S1

Note that the connected component containing idS1 of HomeoS1(P,P) is
contractible, (Hamstrom). In particular π1(HomeoS1(P,P), idS1) is trivial. We
also have that S1 ⊔ S1 is a strong deformation retract of HomeoS1(∅,∅), with
the first copy of S1 corresponding to orientation preserving homeomorphisms
and the second to orientation reversing. Hence the sequence becomes

. . .→ {1}→ Z→MotS1(P,P)→MCGS1(P,P)→ Z/2Z.

The exact sequence gives an injective map
Z ≅ π1(HomeoS1(∅,∅), idS1)→ MotS1(P,P), sending n ∈ Z to the equivalence
class of the flow tracing a 2nπ rotation of the circle S1. The space
HomeoS1(P,P) only has two connected components, consisting of
orientations preserving and orientation reversing homeomorphisms of S1
fixing P. Hence the exact sequence becomes:

. . .→ {1}→ Z ≅Ð→ MotS1(P,P)
0Ð→ MCGS1(P,P)

≅Ð→ Z/2Z.
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THE LOOP BRAID CATEGORY L



OBJECTS IN THE LOOP BRAID CATEGORY L

For each n ∈ N, n evenly spaced circles in a plane in [0, 1]3.

For example for n = 4:
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MORPHISMS IN L - EQUIVALENCE CLASS OF THE SWAP MOTION ϱi
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2
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2 1
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MORPHISMS IN L - EQUIVALENCE CLASS OF THE BRAID MOTION ςi
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COMPOSITION IN L

Category composition is given by performing one motion followed by the
next.

There is a function I3 ⊔ I3 to I3 that takes the corresponding ln ⊔ lm to ln+m:

⊗ =

This extends to morphisms to give monoidal composition.

56



COMPOSITION IN L

Category composition is given by performing one motion followed by the
next.

There is a function I3 ⊔ I3 to I3 that takes the corresponding ln ⊔ lm to ln+m:

⊗ =

This extends to morphisms to give monoidal composition.

56



COMPOSITION IN L

Category composition is given by performing one motion followed by the
next.

There is a function I3 ⊔ I3 to I3 that takes the corresponding ln ⊔ lm to ln+m:

⊗ =

This extends to morphisms to give monoidal composition.

56



COMBINATORIAL CATEGORY L′

The category L′ is the strict monoidal (diagonal, groupoid) category with
object monoid the natural numbers, and two generating morphisms (and
inverses) both in L′(2, 2), call them σ and s, obeying

s2 = 1⊗ 1

where (as a morphism) 1 denotes the unit morphism in rank one;

s1s2s1 = s2s1s2 (3)

where s1 = s⊗ 1 and s2 = 1⊗ s,

(I) σ1σ2σ1 = σ2σ1σ2, (II) σ1σ2s1 = s2σ1σ2, (III) σ1s2s1 = s2s1σ2. (4)

Proposition
The map on generators s∶ 2→ 2 ↦ ϱ∶ 2→ 2 and σ∶ 2→ 2 ↦ ς ∶ 2→ 2 is an
isomorphism L′ ≅ L.
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MONOIDAL FUNCTORS

Definition
A monoidal loop braid representation is given by a monoidal functor

F∶ L→ C

where C is a monoidal category.
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MatchN CATEGORIES



MatN CATEGORIES

Let Mat denote the category with objects n ∈ N and morphisms f∶ i→ j are j × i
matrices.

Mat becomes a monoidal category with the Kronecker product of matrices,
and object monoid (N,×).

Let MatN ⊂ Mat denote the full subcategory with object monoid generated by
N, i.e. matrices with dimensions N,N2,N3, . . .
Label the rows/columns of a matrix in MatN(N,N) by ∣1⟩, ∣2⟩, . . . ∣N⟩ and then
the rows/columns in matrices in MatN(N⊗N,N⊗N) = MatN(N2,N2) are
labelled by pairs ∣ij⟩ with i, j ∈ {1, . . . ,N}, and in MatN(N3,N3) ∣ijk⟩...

Can relabel object N by 1, N2 by 2 etc., so set of objects is N, and we have
n⊗m = n +m. So MatN is a monoidal category with object monoid
(NN, x) ≅ (N,+).
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MatchN CATEGORIES

Matrix in Mat5(4,4) has rows and columns labelled by ∣ijkl⟩ where
i, j,k, l ∈ {1, 2, 3,4, 5}

.

Definition
A matrix M ∈ MatN(n,n) is charge conserving if Mw,w′ = ⟨w∣M∣w′⟩ ≠ 0 implies
that w is a perm of w′. That is w = σw′ for some σ ∈ Σn, where symmetric
group Σn acts by place permutation.

Example in Mat2(2, 2)
∣11⟩ ∣21⟩ ∣12⟩ ∣22⟩

⎛
⎜⎜⎜
⎝

⎞
⎟⎟⎟
⎠

∣11⟩ a1 0 0 0
∣21⟩ 0 a b 0
∣12⟩ 0 c d 0
∣22⟩ 0 0 0 a2

Charge conserving matrices form a monoidal subcategory of MatN - denote
this MatchN.
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CHARGE CONSERVING LOOP BRAID REPRESENTATIONS

Definition
A charge conserving monoidal loop braid representation is given by a strict
monoidal functor

F∶ L→ MatchN

such that F(1) = 1.

Since L ≅ L′, such functors are given by giving the images of the generators of
L′:

F∗ = (F(s), F(σ)) = (S,R)

such that S,R ∈ MatchN(2, 2), and

S2 = 1,

S1S2S1 = S2S1S2

where S1 = S⊗ 1 and S2 = 1⊗ S (where ⊗ is Kronecker product),

(I) R1R2R1 = R2R1R2, (II) R1R2S1 = S2R1R2, (III) R1S2S1 = S2S1R2.

61



CHARGE CONSERVING LOOP BRAID REPRESENTATIONS

Definition
A charge conserving monoidal loop braid representation is given by a strict
monoidal functor

F∶ L→ MatchN

such that F(1) = 1.
Since L ≅ L′, such functors are given by giving the images of the generators of
L′:

F∗ = (F(s), F(σ)) = (S,R)

such that S,R ∈ MatchN(2, 2), and

S2 = 1,

S1S2S1 = S2S1S2

where S1 = S⊗ 1 and S2 = 1⊗ S (where ⊗ is Kronecker product),

(I) R1R2R1 = R2R1R2, (II) R1R2S1 = S2R1R2, (III) R1S2S1 = S2S1R2. 61



SIGNED MULTISETS

Let J±N be the set of signed multisets of compositions with at most two parts,
of total rank N.

Example
J±2 = {(◻2, ), (◻◻1, ), ( ◻◻

1, ), (◻1,◻1), (,◻2), (,◻◻1), (, ◻◻
1)}

Example
λ = ( , )

is in J±26.
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MAIN THEOREM

Theorem ( Martin, Rowell, T.)
The set of all varieties of charge-conserving loop braid representations from
the loop braid category L to the category MatchN of charge conserving
matrices

F ∶ L→ MatchN

may be indexed by J±N.

63



MOTION GROUPOIDS & MAPPING CLASS GROUPOIDS
arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

Universität Wien


	Motion groupoid
	Alternative equivalence relations on the motion groupoid
	Mapping class groupoids
	Functor from the motion groupoid to the mapping class groupoid 
	The loop braid category L
	MatchN categories

