MOTION GROUPOIDS \& MAPPING CLASS GROUPOIDS

 arXiv:2103.10377, with Paul Martin, João Faria MartinsFiona Torzewska
Universität Wien

BRIEF OVERVIEW

BRIEF OVERVIEW

(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$. Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P M}$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$. Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P M}$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(II) Construction of mapping class groupoid $\mathrm{MCG}_{\underline{M}}$.

Morphisms are now equivalence classes of homeomorphisms of M, fixing A. The object set is again $\mathcal{P M}$. Again obtain groups isomorphic to braid groups, loop braid groups.
(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$. Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P M}$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(II) Construction of mapping class groupoid $\mathrm{MCG}_{\underline{M}}$.

Morphisms are now equivalence classes of homeomorphisms of M, fixing A. The object set is again $\mathcal{P M}$. Again obtain groups isomorphic to braid groups, loop braid groups.

We prove that this is an isomorphism when π_{0} and π_{1} of space of homeomorphisms of M fixing A are trivial (With compact open topology). E.g. $\underline{M}=\left([0,1]^{n}, \partial[0,1]^{n}\right)$.

MOTIVATION

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles.
- Morphisms which do not start and end in the same configuration allowed.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles.
- Morphisms which do not start and end in the same configuration allowed.
- Expect interesting new algebraic structures

Motion Groupoid

SPACE SELF-HOMEOMORPHISMS OF A MANIFOLD M

Let Top denote the category of topological spaces and continuous maps. $\operatorname{Top}(X, X) \quad$ Set of continuous maps from X to X
Top $^{h}(X, X)$ Subset of Top (X, X) of self-homeomorphisms. Note this is a group.
$\operatorname{TOP}^{h}(X, X) \quad$ Set Top ${ }^{h}(X, X)$ equipped with the compact open topology

SPACE SELF-HOMEOMORPHISMS OF A MANIFOLD M

Let Top denote the category of topological spaces and continuous maps.
Top $(X, X) \quad$ Set of continuous maps from X to X
Top $^{h}(X, X) \quad$ Subset of $\operatorname{Top}(X, X)$ of self-homeomorphisms. Note this is a group.
$\operatorname{TOP}^{h}(X, X) \quad$ Set $\operatorname{Top}^{h}(X, X)$ equipped with the compact open topology

Lemma

(Hatcher) Let X be a compact space and Y a metric topological space with metric d. Then
(i) the function

$$
d^{\prime}(f, g):=\sup _{x \in X} d(f(x), g(x))
$$

is a metric on $\operatorname{Top}(X, Y)$; and
(ii) the compact open topology on $\operatorname{Top}(X, Y)$ is the same as the one defined by the metric d^{\prime}.

SPACE SELF-HOMEOMORPHISMS OF A MANIFOLD M

Let Top denote the category of topological spaces and continuous maps.
$\operatorname{Top}(X, X) \quad$ Set of continuous maps from X to X
Top $^{h}(X, X) \quad$ Subset of $\operatorname{Top}(X, X)$ of self-homeomorphisms. Note this is a group.
$\operatorname{TOP}^{h}(X, X) \quad$ Set $\operatorname{Top}^{h}(X, X)$ equipped with the compact open topology

Lemma

(Hatcher) Let X be a compact space and Y a metric topological space with metric d. Then
(i) the function

$$
d^{\prime}(f, g):=\sup _{x \in X} d(f(x), g(x))
$$

is a metric on $\operatorname{Top}(X, Y)$; and
(ii) the compact open topology on $\operatorname{Top}(X, Y)$ is the same as the one defined by the metric d^{\prime}.
$\operatorname{Top}_{A}^{h}(M, M), \operatorname{TOP}_{A}^{h}(M, M)$ versions with subset $A \subset M$ fixed pointwise

FLows

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

FLows

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\mathrm{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\mathrm{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

Example

For $M=S^{1}$ (the unit circle) we may parameterise by $\theta \in \mathbb{R} / 2 \pi$ in the usual way.
Consider the functions $\tau_{\phi}: S^{1} \rightarrow S^{1}(\phi \in \mathbb{R})$ given by $\theta \mapsto \theta+\phi$, and note that these are homeomorphisms. Then consider the path $f_{t}=\tau_{t \pi}$ ('half-twist'). This is a flow.

ObTAINING NEW FLOWS FROM OLD

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow.

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow. NOTE: Proof uses that $\operatorname{TOP}^{h}(M, M)$ when M is locally compact and locally connected, is a topological group (Arens). This means the product map and inverse map are continuous.

ObTAINING NEW FLOWS FROM OLD

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow. NOTE: Proof uses that $\operatorname{TOP}^{h}(M, M)$ when M is locally compact and locally connected, is a topological group (Arens). This means the product map and inverse map are continuous.

Lemma

Let M be a manifold. There exists a set map

$$
\begin{aligned}
&: \text { Flow }_{\underline{M}} \rightarrow \text { Flow }_{\underline{M}} \\
& f \mapsto \bar{f}
\end{aligned}
$$

with

$$
\begin{equation*}
\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1} . \tag{1}
\end{equation*}
$$

Obtaining new flows from old

Proposition

Let M be a manifold. There exists a composition

$$
\begin{aligned}
* \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g * f
\end{aligned}
$$

where

$$
(g * f)_{t}= \begin{cases}f_{2 t} & 0 \leq t \leq 1 / 2 \tag{2}\\ g_{2(t-1 / 2)} \circ f_{1} & 1 / 2 \leq t \leq 1\end{cases}
$$

ObTAINING NEW FLOWS FROM OLD

Proposition

Let M be a manifold. There exists a composition

$$
\begin{aligned}
*: \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g * f
\end{aligned}
$$

where

$$
(g * f)_{t}= \begin{cases}f_{2 t} & 0 \leq t \leq 1 / 2 \tag{2}\\ g_{2(t-1 / 2)} \circ f_{1} & 1 / 2 \leq t \leq 1\end{cases}
$$

For a pair $\underline{M}=(M, A),\left(\right.$ Flow $\left._{\underline{M}}, *\right)$ is a magma.

OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \mathrm{Flow}_{\underline{M}} \times \mathrm{Flow}_{\underline{M}} & \rightarrow \mathrm{Flow}_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.

OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \mathrm{Flow}_{\underline{M}} \times \mathrm{Flow}_{\underline{M}} & \rightarrow \mathrm{Flow}_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\operatorname{TOP}^{h}(M, M)$ is a topological group.

OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \mathrm{Flow}_{\underline{M}} \times \mathrm{Flow}_{\underline{M}} & \rightarrow \mathrm{Flow}_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\operatorname{TOP}^{h}(M, M)$ is a topological group.

Lemma

For a manifold $M,\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ is a group, with identity Id_{M} and inverse map $\left(f^{-1}\right)_{t}=\left(f_{t}\right)^{-1}$.

OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
& \cdot{: \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}}} \rightarrow \text { Flow }_{\underline{M}} \\
&(f, g) \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\operatorname{TOP}^{h}(M, M)$ is a topological group.

Lemma

For a manifold $M,\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ is a group, with identity Id_{M} and inverse map $\left(f^{-1}\right)_{t}=\left(f_{t}\right)^{-1}$.

Lemma
For $f, g \in \operatorname{Flow}_{\underline{M}}, f^{-1} \stackrel{p}{\sim} \bar{f}$ and $g \cdot f \stackrel{p}{\sim} g * f$.

MOTIONS

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)$.

MOTIONS

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f_{\text {, }} f_{1}(N)$.

We will denote such a triple by $f: N \backsim N^{\prime}$ where $f_{1}(N)=N^{\prime}$, and say it is a motion from N to N^{\prime}.

MOTIONS

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)$. We will denote such a triple by $f: N \backsim N^{\prime}$ where $f_{1}(N)=N^{\prime}$, and say it is a motion from N to N^{\prime}.

$$
M t_{M}\left(N, N^{\prime}\right)=\left\{\text { motions } f: N \backsim N^{\prime}\right\}
$$

MOTIONS

MOTIONS

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

MOTIONS

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\mathrm{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus obtain an action groupoid

$$
\operatorname{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right)
$$

MOTIONS

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\mathrm{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus obtain an action groupoid

$$
\operatorname{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right)
$$

Similarly $g * f: N \backsim N^{\prime \prime}$ is a motion.

Motions

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\mathrm{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus obtain an action groupoid

$$
\operatorname{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right)
$$

Similarly $g * f: N \backsim N^{\prime \prime}$ is a motion.

Lemma

There is a magma action of $\left(\operatorname{Flow}_{\underline{M}}, *\right)$ on $\mathcal{P M}$ we obtain an action magmoid

$$
\mathrm{Mt}_{\underline{\underline{M}}}^{*}=\left(\mathcal{P M}, \mathrm{Mt}_{\underline{\underline{M}}}\left(N, N^{\prime}\right), *\right) .
$$

MOTIONS AS MAPS $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Definition

Let M be a manifold and $N, N^{\prime} \subset M$. Let $\operatorname{Mt}_{\underline{\underline{M}}}^{\text {hom }}\left(N, N^{\prime}\right) \subset \operatorname{Top}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ denote the subset of homeomorphisms $g \in \operatorname{Top}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ such that
(I) $g(m, 0)=(m, 0)$ for all $m \in M$,
(II) $g(M \times\{t\})=M \times\{t\}$ for all $t \in \mathbb{I}$, and
(III) $g(N \times\{1\})=N^{\prime} \times\{1\}$.

MOTIONS AS MAPS $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Definition

Let M be a manifold and $N, N^{\prime} \subset M$. Let $\operatorname{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right) \subset \operatorname{Top}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ denote the subset of homeomorphisms $g \in \operatorname{Top}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ such that
(I) $g(m, 0)=(m, 0)$ for all $m \in M$,
(II) $g(M \times\{t\})=M \times\{t\}$ for all $t \in \mathbb{I}$, and
(III) $g(N \times\{1\})=N^{\prime} \times\{1\}$.

Theorem
Let M be a manifold and $N, N^{\prime} \subset M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \operatorname{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

MOTIONS AS MAPS $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Theorem

Let M be a manifold and $N, N^{\prime} \subseteq M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \operatorname{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

MOTIONS AS MAPS $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Theorem

Let M be a manifold and $N, N^{\prime} \subseteq M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \operatorname{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

Idea of proof
(e.g. Hatcher) As M is locally compact, Hausdorff, there is a bijection

$$
\Phi: \operatorname{Top}(\mathbb{I}, \operatorname{TOP}(M, M)) \rightarrow \operatorname{Top}(M \times \mathbb{I}, M) .
$$

(Coming from an adjunction between the product functor $M \times-$ and the hom functor $\operatorname{TOP}(M,-))$. It follows that the image is continuous. To show that the image is a homeomorphism we need that $\operatorname{TOP}^{h}(M, M)$ is a topological group.
$+1$

$M=S^{1}$

CONGRUENCE BY SET-STATIONARY MOTIONS

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion $f: N \backsim N$ in \underline{M} is said to be N-stationary if $f_{t}(N)=N$ for all $t \in \mathbb{I}$. Define

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{\underline{M}}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

CONGRUENCE BY SET-STATIONARY MOTIONS

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion $f: N \backsim N$ in \underline{M} is said to be N-stationary if $f_{t}(N)=N$ for all $t \in \mathbb{I}$. Define

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{M}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

Example

Let $M=D^{2}$ and let $\tau_{2 \pi}$ denote a flow such that $\left(\tau_{2 \pi}\right)_{t}$ is a $2 \pi t$ rotation of the disk. Now let N be a circle centred on the centre of the disk. Then $\tau_{2 \pi}: N \backsim N$ is N -stationary.

CONGRUENCE BY SET-STATIONARY MOTIONS

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion $f: N \backsim N$ in \underline{M} is said to be N-stationary if $f_{t}(N)=N$ for all $t \in \mathbb{I}$. Define

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{M}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

Example

Let $M=D^{2}$ and let $\tau_{2 \pi}$ denote a flow such that $\left(\tau_{2 \pi}\right)_{t}$ is a $2 \pi t$ rotation of the disk. Now let N be a circle centred on the centre of the disk. Then $\tau_{2 \pi}: N \backsim N$ is N -stationary.

Example

Let $M=D^{2}$, the 2-disk and let $N \subset M$ be a finite set of points. Then a motion $f: N \backsim N$ is N-stationary if and only if $f_{t}(x)=x$ for all $x \in N$ and $t \in \mathbb{I}$. More generally this holds if N is a totally disconnected subspace of M, e.g. \mathbb{Q} in \mathbb{R}.

CONGRUENCE BY SET-STATIONARY MOTIONS

CONGRUENCE BY SET-STATIONARY MOTIONS

Lemma

For $N, N^{\prime} \subset M$, denote by $\stackrel{m}{\sim}$ the relation

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \in\left[\operatorname{SetStat}_{\underline{M}}^{N}\right]_{p}
$$

on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$. This is an equivalence relation.
We call this motion-equivalence and denote by $\left[f: N \backsim N^{\prime}\right]_{m}$ the motion-equivalence class of $f: N \backsim N^{\prime}$.

CONGRUENCE BY SET-STATIONARY MOTIONS

Lemma

For $N, N^{\prime} \subset M$, denote by $\stackrel{m}{\sim}$ the relation

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \in\left[\operatorname{SetStat}_{\underline{M}}^{N}\right]_{0}
$$

on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$. This is an equivalence relation.
We call this motion-equivalence and denote by $\left[f: N \backsim N^{\prime}\right]_{m}$ the motion-equivalence class of $f: N \backsim N^{\prime}$.

Idea of proof

Quotient first by path-homotopy. Then classes which intersect SetStat ${ }_{\underline{M}}^{N}(N, N)$ form a totally disconnected normal subgroupoid. Can be proved in general that for any totally disconnected, normal subgroupoid \mathcal{H} of a groupoid \mathcal{G} there is a congruence given by the relation $g_{1} \sim g_{2}$ if $g_{2}^{-1}{ }^{\mathcal{G}} g_{1} \in \mathcal{H}$. This leads to an equivalent relation to the given relation.

MOTION GROUPOID

Theorem

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P M}, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, *,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{\mathrm{m}}\right)
$$

where
(I) objects are subsets of M;
(II) morphisms between subsets N, N^{\prime} are motion-equivalence classes [$\left.f: N \backsim N^{\prime}\right]_{\mathrm{m}}$ of motions;
(III) composition of morphisms is given by

$$
\left[g: N^{\prime} \backsim N^{\prime \prime}\right]_{m} *\left[f: N \backsim N^{\prime}\right]_{m}=\left[g * f: N \backsim N^{\prime \prime}\right]_{m} .
$$

(IV) the identity at each object N is the motion-equivalence class of $\operatorname{Id}_{M}: N \backsim N,\left(\operatorname{Id}_{M}\right)_{t}(m)=m$ for all $m \in M$;
(V) the inverse for each morphism [$\left.f: N \checkmark N^{\prime}\right]_{m}$ is the motion-equivalence class of $\bar{f}: N^{\prime} \backsim N$ where $\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1}$.

Proposition

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset, then

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P M}, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, \cdot,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto\left[f^{-1}\right]_{m}\right) .
$$

Proof

It is sufficient to observe that motions which are path equivalent are motion equivalent. Let g, f be flows satisfying $f \stackrel{D}{\sim} g$, then $\bar{g} * f \stackrel{P}{\sim} g^{-1} \cdot f \stackrel{D}{\sim} g^{-1} \cdot g$, using that $\bar{g} \stackrel{p}{\sim} g^{-1}$, and $g * f \stackrel{P}{\sim} g \cdot f$. Then for all $t \in \mathbb{I},\left(g^{-1} \cdot g\right)_{t}(N)=N$, hence it is stationary.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}. Let $N^{\prime} \subset \mathbb{I} \backslash\{0,1\}$ be another subset defined in the same way. If the word assigned to N and N^{\prime} is the same, $\left|\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)\right|=1$. Otherwise $\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)=\varnothing$.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}. Let $N^{\prime} \subset \mathbb{I} \backslash\{0,1\}$ be another subset defined in the same way. If the word assigned to N and N^{\prime} is the same, $\left|\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)\right|=1$. Otherwise $\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)=\varnothing$.

Let $N=\mathbb{I} \cap \mathbb{Q}$, then $\operatorname{Mot}_{\mathbb{I}}(N, N)$ is uncountably infinite.

Theorem (T., Faria Martins, Martin)
Let n be a positive integer. Consider $M=D^{2}$. Given any finite subset K, with n elements, in the interior of D^{2}, then $\operatorname{Mot}_{D^{2}}(K, K)$ is isomorphic to the braid group in n strands (as in Artin, Theory of Braids). In particular the image of the class of a motion which moves points as below is an elementary braid on two strands.

Also if $\underline{D^{3}}=\left(D^{3}, \partial D^{3}\right)$ and $L \subset D^{3}$ is an unlink in the interior with n components, then $\operatorname{Mot}_{\underline{D^{3}}}(L, L)$ is isomorphic to the extended loop braid group ${ }_{23}$ (as in Damiani, a journey through loop braid groups).

RELATING MOTION GROUPOIDS

Lemma

Let (M, A) and $\left(M^{\prime}, A^{\prime}\right)$ be pairs such that there exists a homeomorphism $\psi: M \rightarrow M^{\prime}$ satisfying $\psi(A)=A^{\prime}$. Then there is a isomorphism of categories

$$
\Psi: \operatorname{Mot}_{\underline{M}} \rightarrow \operatorname{Mot}_{\underline{M^{\prime}}}
$$

defined as follows. On objects $N \subset M, \Psi(N)=\psi(N)$. For a motion $f: N \backsim N^{\prime}$ in M, let $\left(\psi \circ f \circ \psi^{-1}\right)_{t}=\psi \circ f_{t} \circ \psi^{-1}$. Then ψ sends the equivalence class $\left[f: N \backsim N^{\prime}\right]_{m}$ to the equivalence class $\left[\psi \circ f \circ \psi^{-1}: \psi(N) \rightarrow \psi\left(N^{\prime}\right)\right]_{m}$.

Proposition

For any pair (M, A) and subset $N \subseteq M$ there is an involutive endofunctor on $\operatorname{Mot}_{\underline{M}}$ defined by

$$
\begin{gathered}
\operatorname{Mot}_{\underline{\underline{M}}}(N, N) \cong \operatorname{Mot}_{\underline{M}}(M \backslash N, M \backslash N), \\
f: N \backsim N^{\prime} \mapsto f: M \backslash N \backsim M \backslash N^{\prime} .
\end{gathered}
$$

Proposition

For any pair (M, A) and subset $N \subseteq M$ there is an involutive endofunctor on $\operatorname{Mot}_{\underline{M}}$ defined by

$$
\begin{gathered}
\operatorname{Mot}_{\underline{\underline{M}}}(N, N) \cong \operatorname{Mot}_{\underline{M}}(M \backslash N, M \backslash N), \\
f: N \backsim N^{\prime} \mapsto f: M \backslash N \backsim M \backslash N^{\prime} .
\end{gathered}
$$

Proposition

For any pair (M, A) and subset $N \subseteq M$ there is an involutive endofunctor on $\operatorname{Mot}_{\underline{M}}$ defined by

$$
\begin{gathered}
\operatorname{Mot}_{\underline{\underline{M}}}(N, N) \cong \operatorname{Mot}_{\underline{M}}(M \backslash N, M \backslash N), \\
f: N \backsim N^{\prime} \mapsto f: M \backslash N \backsim M \backslash N^{\prime} .
\end{gathered}
$$

Notice that generally these automorphism groups are not connected in the motion groupoid - this would imply N homeomorphic to M, N.

Alternative equivalence RELATIONS ON THE MOTION GROUPOID

WORLDLINES OF MOTIONS

WORLDLINES OF MOTIONS

Definition
The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
W\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

WORLDLINES OF MOTIONS

Definition
The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
W\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} \text {. }
$$

Proposition

Let $f, g: N \backsim N^{\prime}$ be motions with the same worldline, so we have

$$
W\left(f: N \backsim N^{\prime}\right)=W\left(g: N \backsim N^{\prime}\right) .
$$

Then $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are motion equivalent.

WORLDLINES OF MOTIONS

Definition
The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
W\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Proposition

Let $f, g: N \backsim N^{\prime}$ be motions with the same worldline, so we have

$$
W\left(f: N \backsim N^{\prime}\right)=W\left(g: N \backsim N^{\prime}\right) .
$$

Then $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are motion equivalent.
Proof
For all $t \in \mathbb{I},\left(g^{-1} \cdot f\right)_{t}(N)=g_{t}^{-1} \circ g_{t}(N)=N$. Thus $g^{-1} \cdot f$ is N-stationary, and hence $\bar{g} * f$ path-homotopic to a stationary motion.

WORLDLINES OF MOTIONS

WORLDLINES OF MOTIONS

Theorem (T., Faria Martins, Martin)

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. Two motions $f, f^{\prime}: N \backsim N^{\prime}$ in $\mathrm{Mt}_{\underline{M}}$ are motion equivalent if, and only if, their worldlines are level preserving ambient isotopic, relative to $(M \times(\{0,1\})) \cup(A \times \mathbb{I})$, pointwise.

GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and $A \subseteq M$ a subset.

Lemma

There is a (left) group action

$$
\begin{aligned}
\sigma^{A}: \operatorname{Top}_{A}^{h}(M, M) \times \mathcal{P} M & \rightarrow \mathcal{P} M \\
(\mathfrak{f}, N) & \mapsto f(N) .
\end{aligned}
$$

GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid $\mathrm{Homeo}_{\underline{\underline{M}}}$ with objects $\mathcal{P M}$ and morphisms Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, \mathfrak{f}(N)$) where

- \mathfrak{f} is a homeomorphism $M \rightarrow M$,
- $\mathfrak{f}(N)=N^{\prime}$,
- ffixes A pointwise.

GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid $\mathrm{Homeo}_{\underline{\underline{M}}}$ with objects $\mathcal{P M}$ and morphisms Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, \mathfrak{f}(N)$) where

- \mathfrak{f} is a homeomorphism $M \rightarrow M$,
- $\mathfrak{f}(N)=N^{\prime}$,
- \mathfrak{f} fixes A pointwise.

We will denote triples $(\mathfrak{f}, N, f(N)) \in \operatorname{Homeom}_{M}\left(N, N^{\prime}\right)$ as $\mathfrak{f}: N \sim N^{\prime}$. Identity: id $_{M}: N \sim N$ Inverse: $\mathfrak{f}: N \sim N^{\prime} \mapsto \mathfrak{f}^{-1}: N^{\prime} \neg N$.

GROUPOIDS OF SELF HOMEOMORPHISMS

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid $\mathrm{Homeo}_{\underline{\underline{M}}}$ with objects $\mathcal{P M}$ and morphisms Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, \mathfrak{f}(N)$) where

- \mathfrak{f} is a homeomorphism $M \rightarrow M$,
- $\mathfrak{f}(N)=N^{\prime}$,
- \mathfrak{f} fixes A pointwise.

We will denote triples $(\mathfrak{f}, N, \mathfrak{f}(N)) \in \operatorname{Homeoom}_{\underline{M}}\left(N, N^{\prime}\right)$ as $\mathfrak{f}: N \sim N^{\prime}$. Identity: $i_{M}: N \sim N$ Inverse: $\mathfrak{f}: N \sim N^{\prime} \mapsto \mathfrak{f}^{-1}: N^{\prime} \sim N$.
We will also sometimes consider $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first element of the triple. Then can equip morphism sets with a topology and $\operatorname{TOP}_{A}^{h}(M, M)=\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing)=\operatorname{Homeo}_{\underline{\underline{M}}}(M, M)$ and every $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right) \subseteq \operatorname{TOP}_{A}^{\bar{h}}(M, M)$. Notice each self-homeomorphism \mathfrak{f} of M will belong to many such $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$.

ReLATIVE PATH-EQUIVALENCE

Definition
Fix a pair (M, A). Define a relation on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$ as follows. Let $f: N \backsim N^{\prime} \stackrel{r p}{\sim} g: N \backsim N^{\prime}$ if the motions $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are relative path-homotopic. This means there exists a continuous map

$$
H: \mathbb{I} \times \mathbb{I} \rightarrow \operatorname{TOP}^{h}(M, M)
$$

such that

- for any fixed $s \in \mathbb{I}, t \mapsto H(t, s)$ is a motion from N to N^{\prime},
- for all $t \in \mathbb{I}, H(t, 0)=f_{t}$, and
- for all $t \in \mathbb{I}, H(t, 1)=g_{t}$.

We call such a homotopy a relative path-homotopy.

ReLative Path-EQUivalence

Theorem (T. ,Faria Martins, Martin)
For a pair $\underline{M}=(M, A)$ and a motion $f: N \backsim N^{\prime}$ in \underline{M} we have

$$
\left[f: N \backsim N^{\prime}\right]_{\mathrm{P}}=\left[f: N \backsim N^{\prime}\right]_{m} .
$$

Key ingredients of proof

Direct construction of appropriate homotopies. Uses normality of stationary motions.

ReLATIVE PATH-EQUIVALENCE

Theorem (T. ,Faria Martins, Martin)
For a pair $\underline{M}=(M, A)$ and a motion $f: N \backsim N^{\prime}$ in \underline{M} we have

$$
\left[f: N \backsim N^{\prime}\right]_{\mathrm{P}}=\left[f: N \backsim N^{\prime}\right]_{m} .
$$

Key ingredients of proof

Direct construction of appropriate homotopies. Uses normality of stationary motions.

Relative path equivalence is precisely the equivalence relation in the relative fundamental group, hence

$$
\operatorname{Mot}_{\underline{\underline{1}}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)
$$

We will need this later!

MAPPING CLASS GROUPOIDS

MAPPING CLASS GROUPOID

Recall that for a pair $\underline{M}=(M, A)$ and for subsets $N, N^{\prime} \subset M$, morphisms in $\operatorname{Homeo}_{\underline{\underline{M}}}\left(N, N^{\prime}\right)$ are triples denoted $\mathfrak{f}: N \sim N^{\prime}$ where $\mathfrak{f} \in \operatorname{Top}^{h}(M, M)$ and $\mathfrak{f}(N)=N^{\prime}$. We also think of the elements of $\operatorname{Homeoom}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first coordinate of each triple i.e. $\mathfrak{f} \in \operatorname{Top}_{A}^{h}\left(M^{-}, M\right)$ such that $\mathfrak{f}(N)=N^{\prime}$.

MAPPING CLASS GROUPOID

Recall that for a pair $\underline{M}=(M, A)$ and for subsets $N, N^{\prime} \subset M$, morphisms in $\operatorname{Homeo}_{\underline{\underline{M}}}\left(N, N^{\prime}\right)$ are triples denoted $\mathfrak{f}: N \sim N^{\prime}$ where $\mathfrak{f} \in \operatorname{Top}^{h}(M, M)$ and $\mathfrak{f}(N)=N^{\prime}$. We also think of the elements of $\operatorname{Homeoom}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first coordinate of each triple i.e. $\mathfrak{f} \in \operatorname{Top}_{A}^{h}(M, M)$ such that $\mathfrak{f}(N)=N^{\prime}$.

Definition

Let $N, N^{\prime} \subset M$. For any $\mathfrak{f}: N \sim N^{\prime}$ and $\mathfrak{g}: N \sim N^{\prime}$ in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right), \mathfrak{f}: N \sim N^{\prime}$ is said to be isotopic to $\mathfrak{g}: N \sim N^{\prime}$, denoted by $\stackrel{i}{\sim}$, if there exists a continuous map

$$
H: M \times \mathbb{I} \rightarrow M
$$

such that

- for all fixed $s \in \mathbb{I}$, the map $m \mapsto H(m, s)$ is in $\operatorname{Homeom}_{\underline{m}}\left(N, N^{\prime}\right)$,
- for all $m \in M, H(m, 0)=f(m)$, and
- for all $m \in M, H(m, 1)=\mathfrak{g}(m)$.

We call such a map an isotopy from $\mathfrak{f}: N \sim N^{\prime}$ to $\mathfrak{g}: N \sim N^{\prime}$.

Lemma

The family of relations ($\left.\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right), \stackrel{i}{\sim}\right)$ for all pairs $N, N^{\prime} \subseteq M$ are a congruence on Homeom.

Theorem

Let $\underline{M}=(M, A)$ be a manifold submanifold pair. There is a groupoid

$$
\left.\operatorname{MCG}_{\underline{\underline{M}}}=\left(\mathcal{P} M, \operatorname{Homeoo}_{\underline{\underline{M}}}\left(N, N^{\prime}\right) / \stackrel{i}{\sim}, o,\left[\operatorname{id}_{M}\right],[\mathfrak{f}]\right]_{\mathfrak{H}} \mapsto\left[\mathfrak{f}^{-1}\right]\right) .
$$

We call this the mapping class groupoid of M.

MAPPING CLASS GROUPOIDS

Using bijection

$$
\Phi: \operatorname{Top}(\mathbb{I}, \operatorname{TOP}(M, M)) \rightarrow \operatorname{Top}(M \times \mathbb{I}, M),
$$

a continuous map $M \times \mathbb{I} \rightarrow M$ which is an isotopy corresponds to a path $\mathbb{I} \rightarrow \operatorname{Homeo}_{M}\left(N, N^{\prime}\right)$ from \mathfrak{f} to \mathfrak{g}. Hence

Lemma
Let M be a manifold. We have that as sets

$$
\operatorname{MCG}_{\underline{M}}\left(N, N^{\prime}\right)=\pi_{0}\left(\operatorname{Homeo}_{\underline{\underline{M}}}\left(N, N^{\prime}\right)\right)
$$

MAPPING CLASS GROUPOIDS

MAPPING CLASS GROUPOID, $M=S^{1}$

Example
If $\underline{S^{1}}=\left(S^{1}, \varnothing\right)$, we have

$$
\mathrm{MCG}_{\underline{\underline{S}^{1}}}(\varnothing, \varnothing)=\mathbb{Z} / 2 \mathbb{Z} .
$$

$\operatorname{TOP}^{h}\left(S^{1}, S^{1}\right)$ has two path-components, containing respectively the orientation preserving and the orientation reversing homeomorphisms from S^{1} to itself. Each is homotopic to S^{1} (Hamstrom). Therefore the homomorphism $\pi_{0}\left(\operatorname{Homeo}_{\underline{S^{1}}}(\varnothing, \varnothing)\right) \rightarrow\{ \pm 1\} \cong \mathbb{Z} / 2 \mathbb{Z}$ induced by the degree homomorphism deg: $\operatorname{Top}^{h}\left(\bar{S}^{1}, S^{1}\right)=\operatorname{Homeos}_{\underline{1}}(\varnothing, \varnothing) \rightarrow\{ \pm 1\}$ is an isomorphism.

EXAMPLE

Proposition

Let $\underline{D^{2}}=\left(D^{2}, \partial D^{2}\right)$. The morphism group $\mathrm{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)$ is trivial.

EXAMPLE

Proposition

Let $\underline{D^{2}}=\left(D^{2}, \partial D^{2}\right)$. The morphism group $\mathrm{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)$ is trivial.
Proof
(This follows from the Alexander trick.) Suppose we have $\mathfrak{f}: \varnothing \sim \varnothing$ in $\underline{D^{2}}$. Define

$$
f_{t}(x)= \begin{cases}\operatorname{tf}(x / t) & 0 \leq|x| \leq t, \\ x & t \leq|x| \leq 1 .\end{cases}
$$

Notice that $f_{0}=\operatorname{id}_{D^{2}}$ and $f_{1}=\mathfrak{f}$ and each f_{t} is continuous. Moreover:

$$
\begin{aligned}
H: D^{2} \times \mathbb{I} & \rightarrow D^{2}, \\
(x, t) & \mapsto f_{t}(x)
\end{aligned}
$$

is a continuous map. So we have constructed an isotopy from any boundary preserving self-homeomorphism of D^{2} to $i d_{D^{2}}$.

FUNCTOR FROM THE MOTION GROUPOID TO THE MAPPING CLASS GROUPOID

FUnCTOR F: $\operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Theorem (T., Faria Martins, Martin)

Let $\underline{M}=(M, A)$. There is a functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{\underline{M}}} \rightarrow \mathrm{MCG}_{\underline{M}}
$$

which is the identity on objects and on morphisms we have

$$
F\left(\left[f: N \backsim N^{\prime}\right]_{m}\right)=\left[f_{1}: N \sim N^{\prime}\right] .
$$

WELL DEFINEDNESS OF F

FUNCTOR F: Mot $_{M} \rightarrow$ MCG $_{M}$

Lemma
The functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{\underline{M}}} \rightarrow \mathrm{MCG}_{\underline{M}}
$$

is full if and only if $\pi_{0}\left(\operatorname{TOP}_{A}^{h}(M, M), \mathrm{id}_{M}\right)$ is trivial.

FUnCTOR F: $\operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

FUNCTOR F: $\operatorname{Mot}_{M} \rightarrow \operatorname{MCG}_{\underline{M}}$

(Hatcher) Let X be a space, $Y \subset X$ a subspace and $x_{0} \in Y$ a basepoint. There is a long exact sequence:

$$
\begin{aligned}
\ldots \rightarrow \pi_{n}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n}} \pi_{n}\left(X,\left\{x_{0}\right\}\right) \xrightarrow{\stackrel{j_{*}^{n}}{\rightarrow}} & \pi_{n}\left(X, Y,\left\{X_{0}\right\}\right) \\
& \xrightarrow{\partial^{n}} \pi_{n-1}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n-1}} \ldots \xrightarrow{i_{*}^{0}} \pi_{0}\left(X,\left\{x_{0}\right\}\right) .
\end{aligned}
$$

FUNCTOR F: Mot $_{M} \rightarrow$ MCG $_{M}$

(Hatcher) Let X be a space, $Y \subset X$ a subspace and $x_{0} \in Y$ a basepoint. There is a long exact sequence:

$$
\begin{aligned}
\ldots \rightarrow \pi_{n}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n}} \pi_{n}\left(X,\left\{x_{0}\right\}\right) \xrightarrow{\stackrel{j_{*}^{n}}{\rightarrow}} & \pi_{n}\left(X, Y,\left\{X_{0}\right\}\right) \\
& \xrightarrow{\partial^{n}} \pi_{n-1}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n-1}} \ldots \xrightarrow{i_{*}^{0}} \pi_{0}\left(X,\left\{X_{0}\right\}\right) .
\end{aligned}
$$

Maps i and j are inclusions. Maps ∂ are restrictions to single face, in particular

$$
\begin{aligned}
\partial^{1}: \pi_{1}\left(X, A,\left\{x_{0}\right\}\right) & \rightarrow \pi_{0}\left(A,\left\{x_{0}\right\}\right), \\
{[\gamma]_{p} } & \mapsto[\gamma(1)]_{\rho} .
\end{aligned}
$$

FUnCTOR F: $\operatorname{Mot}_{\underline{M}} \rightarrow$ MCG $_{\underline{M}}$

Recall $\operatorname{Mot}_{\underline{\underline{M}}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$ and $\operatorname{MCG}_{\underline{M}}(N, N)=\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$.

Functor F: $\operatorname{Mot}_{M} \rightarrow \operatorname{MCG}_{M}$

Recall $\operatorname{Mot}_{\underline{\underline{M}}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$ and
$\operatorname{MCG}_{\underline{M}}(N, N)=\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$.

Lemma

Let $\underline{M}=(M, A)$ be a manifold, subset pair, and fix a subset $N \subset M$. Then we have a long exact sequence

$$
\ldots \rightarrow \pi_{n}\left(\operatorname{Homeo}_{\underline{\underline{M}}}(N, N), \mathrm{id}_{M}\right) \xrightarrow{i_{*}^{\eta_{n}}} \pi_{n}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right) \xrightarrow{j_{j_{*}^{n}}}
$$

$$
\pi_{n}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{\partial^{n}} \pi_{n-1}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{i^{n-1}}
$$

$$
\ldots \xrightarrow{\partial^{2}} \pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{i^{1}} \pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{id}_{M}\right)
$$

$$
\xrightarrow{j_{*}^{1}} \operatorname{Mot}_{\underline{M}}(N, N) \xrightarrow{\mathrm{F}} \operatorname{MCG}_{\underline{\underline{M}}}(N, N) \xrightarrow{i_{*}^{0}} \pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{\underline{M}}\right)
$$

where all maps are group maps and F is the appropriate restriction of the functor $\mathrm{F}: \mathrm{Mot}_{\underline{\underline{M}}} \rightarrow \mathrm{MCG}_{\underline{\underline{M}}}$.

FUnCTOR F: $\operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Lemma

Suppose

- $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial, and
- $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial.

Then there is a group isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}}(N, N) \xrightarrow{\sim} \operatorname{MCG}_{\underline{M}}(N, N) .
$$

Theorem (T., Faria Martins, Martin) Let M be a manifold. If

- $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial, and
- $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial,
the functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{\underline{M}}},
$$

is an isomorphism of categories.

FUNCTOR F: Mot $_{M} \rightarrow$ MCG $_{M}$

Proof

Suppose $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ and $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ are trivial. Already proved F is full. We check F is faithful. Let $\left[f: N \backsim N^{\prime}\right]_{m}$ and $\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}$ be in $\operatorname{Mot}_{\underline{M}}\left(N, N^{\prime}\right)$. If $F\left(\left[f: N \backsim N^{\prime}\right]_{m}\right)=F\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}\right)$, then

$$
\begin{aligned}
{\left[\operatorname{id}_{M}: N \triangleleft N\right]_{i} } & =F\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}\right)^{-1} \circ F\left(\left[f: N \backsim N^{\prime}\right]_{m}\right) \\
& =F\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}^{-1} *\left[f: N \backsim N^{\prime}\right]_{m}\right) \\
& =F\left(\left[\bar{f}^{\prime} * f: N \backsim N\right]_{m}\right) .
\end{aligned}
$$

By group isomorphism this is true if and only if

$$
[\bar{f} \neq f: N \backsim N]_{m}=\left[\operatorname{Id}_{M}: N \backsim N\right]_{m}
$$

which is equivalent to saying $\operatorname{Id}_{M} *\left(\overline{f^{\prime}} * f\right)$ is path-equivalent to a stationary motion, and hence that $\bar{f} * f$ is path-equivalent to the stationary motion (since $\left.I d_{M} *\left(\overline{f^{\prime}} * f\right) \stackrel{D}{\sim} \bar{f}^{\prime} * f\right)$. So we have $\left[f: N \backsim N^{\prime}\right]_{m}=\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}$.

Proposition

Let D^{n} be the n-disk, and $\underline{D^{n}}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{\underline{D}^{n}}} .
$$

Proposition

Let D^{n} be the n-disk, and $\underline{D^{n}}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{\underline{D}^{n}}} .
$$

Proposition

Let D^{n} be the n-disk, and $\underline{D^{n}}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{D^{n}}} .
$$

Idea of proof

We proved that $\operatorname{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)=\pi_{0}\left(\operatorname{Homeo}_{\underline{D^{2}}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial. Alexander trick gives same result for all n. Also $\operatorname{Homeo}_{\underline{D^{n}}}(\varnothing, \varnothing)$ is contractible (Hamstrom).

EXAMPLES: $M=D^{2}$

Suppose we don't fix the boundary.

Suppose we don't fix the boundary. Let $P_{2} \subset D^{2}$ be a subset consisting of two points equidistant from the centre of the disk. Let τ_{π} be the path in $\operatorname{TOP}^{h}\left(D^{2}, D^{2}\right)$ such that $\tau_{\pi t}$ is a πt rotation of the disk.

Suppose we don't fix the boundary. Let $P_{2} \subset D^{2}$ be a subset consisting of two points equidistant from the centre of the disk. Let τ_{π} be the path in $\operatorname{TOP}^{h}\left(D^{2}, D^{2}\right)$ such that $\tau_{\pi t}$ is a πt rotation of the disk.
The motion $\tau_{\pi}: P_{2} \backsim P_{2}$ represents a non-trivial equivalence class in $\operatorname{Mot}_{D^{2}}$, and its end point also represents a non trivial element of $\mathrm{MCG}_{D^{2}}$. Now consider the motion $\tau_{\pi} * \tau_{\pi}: P_{2} \backsim P_{2}$.

In fact, the map $\mathrm{F}: \mathrm{Mot}_{D^{2}} \rightarrow \mathrm{MCG}_{D^{2}}$ is neither full nor faithful. The space Homeo $_{D^{2}}$ is homotopy equivalent to $S^{1} \sqcup S^{1}$, where the first connected component corresponds to orientation preserving homeomorphisms and the second orientation reversing (Hamstrom). Hence we have that $\pi_{1}\left(\operatorname{Homeo}_{D^{2}}(\varnothing, \varnothing), \mathrm{id}_{D^{2}}\right)=\mathbb{Z}$ where the single generating element corresponds to the 2π rotation. And $\pi_{0}\left(\operatorname{Homeo}_{D^{2}}(\varnothing, \varnothing), i_{D^{2}}\right)=\mathbb{Z} / 2 \mathbb{Z}$. So we have an exact sequence:

$$
\ldots \rightarrow \pi_{1}\left(\operatorname{Homeo}_{D^{2}}(N, N), \operatorname{id}_{D^{2}}\right) \xrightarrow{i_{*}^{1}} \mathbb{Z} \rightarrow \operatorname{Mot}_{D^{2}}(N, N) \rightarrow \operatorname{MCG}_{D^{2}}(N, N) \rightarrow \mathbb{Z} / 2 \mathbb{Z} .
$$

Let $P \subset S^{1}$ be a subset containing a single point in S^{1}. Similarly to the disk, there is a non-trivial morphism in $\operatorname{Mot}_{\underline{s^{1}}}(P, P)$ represented by a 2π rotation of the circle.

Figure 1: Example of motion of circle which is a 2π rotation carrying a point to itself.

Note that the connected component containing id st $^{\prime}$ of $\operatorname{Homeo}_{S^{1}}(P, P)$ is contractible, (Hamstrom). In particular $\pi_{1}\left(\operatorname{Homeo}_{S^{1}}(P, P), \mathrm{id}_{S^{1}}\right)$ is trivial. We also have that $S^{1} \sqcup S^{1}$ is a strong deformation retract of $\operatorname{Homeo}_{S^{1}}(\varnothing, \varnothing)$, with the first copy of S^{1} corresponding to orientation preserving homeomorphisms and the second to orientation reversing. Hence the sequence becomes

$$
\ldots \rightarrow\{1\} \rightarrow \mathbb{Z} \rightarrow \operatorname{Mot}_{S^{\prime}}(P, P) \rightarrow \operatorname{MCG}_{S^{\prime}}(P, P) \rightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

The exact sequence gives an injective map $\mathbb{Z} \cong \pi_{1}\left(\right.$ Homeo $\left._{\underline{S_{1}}}(\varnothing, \varnothing), \mathrm{id}_{S^{1}}\right) \rightarrow \operatorname{Mot}_{S^{1}}(P, P)$, sending $n \in \mathbb{Z}$ to the equivalence class of the flow tracing a $2 n \pi$ rotation of the circle S^{1}. The space $\operatorname{Homeo}_{\underline{\mathbf{1}^{1}}}(P, P)$ only has two connected components, consisting of orientations preserving and orientation reversing homeomorphisms of S^{1} fixing P. Hence the exact sequence becomes:

$$
\ldots \rightarrow\{1\} \rightarrow \mathbb{Z} \xrightarrow{\cong} \operatorname{Mot}_{S^{1}}(P, P) \xrightarrow{0} M C G_{S^{1}}(P, P) \stackrel{\cong}{\Rightarrow} \mathbb{Z} / 2 \mathbb{Z}
$$

THE LOOP BRAID CATEGORY L

OBJECTS IN THE LOOP BRAID CATEGORY L

For each $n \in \mathbb{N}, n$ evenly spaced circles in a plane in $[0,1]^{3}$.
For example for $n=4$:

COMPOSITION IN L

Category composition is given by performing one motion followed by the next.

COMPOSITION IN L

Category composition is given by performing one motion followed by the next.

COMPOSITION IN L

Category composition is given by performing one motion followed by the next.

There is a function $\mathbb{I}^{3} \sqcup \mathbb{I}^{3}$ to \mathbb{I}^{3} that takes the corresponding $l_{n} \sqcup l_{m}$ to l_{n+m} :

This extends to morphisms to give monoidal composition.

The category L' is the strict monoidal (diagonal, groupoid) category with object monoid the natural numbers, and two generating morphisms (and inverses) both in $\mathrm{L}^{\prime}(2,2)$, call them σ and s , obeying

$$
s^{2}=1 \otimes 1
$$

where (as a morphism) 1 denotes the unit morphism in rank one;

$$
\begin{equation*}
S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2} \tag{3}
\end{equation*}
$$

where $s_{1}=s \otimes 1$ and $s_{2}=1 \otimes s$,
(I) $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,
(II) $\sigma_{1} \sigma_{2} S_{1}=S_{2} \sigma_{1} \sigma_{2}$,
(III) $\sigma_{1} S_{2} S_{1}=S_{2} S_{1} \sigma_{2}$.

The category L' is the strict monoidal (diagonal, groupoid) category with object monoid the natural numbers, and two generating morphisms (and inverses) both in $L^{\prime}(2,2)$, call them σ and s, obeying

$$
s^{2}=1 \otimes 1
$$

where (as a morphism) 1 denotes the unit morphism in rank one;

$$
\begin{equation*}
S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2} \tag{3}
\end{equation*}
$$

where $s_{1}=s \otimes 1$ and $s_{2}=1 \otimes s$,
(I) $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,
(II) $\sigma_{1} \sigma_{2} \mathrm{~S}_{1}=\mathrm{s}_{2} \sigma_{1} \sigma_{2}$,
(III) $\sigma_{1} S_{2} S_{1}=S_{2} S_{1} \sigma_{2}$.

Proposition
The map on generators s:2 $\rightarrow 2 \mapsto \varrho: 2 \rightarrow 2$ and $\sigma: 2 \rightarrow 2 \mapsto \varsigma: 2 \rightarrow 2$ is an isomorphism $L^{\prime} \cong L$.

MONOIDAL FUNCTORS

Definition

A monoidal loop braid representation is given by a monoidal functor

$$
\mathrm{F}: \mathrm{L} \rightarrow \mathcal{C}
$$

where \mathcal{C} is a monoidal category.

Match ${ }^{N}$ categories

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid $(\mathbb{N}, \times$).

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid $(\mathbb{N}, \times$).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots
Label the rows/columns of a matrix in $M a t^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid $(\mathbb{N}, \times$).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots
Label the rows/columns of a matrix in $\operatorname{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\operatorname{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $\operatorname{Mat}^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid $(\mathbb{N}, \times$).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots
Label the rows/columns of a matrix in $\operatorname{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\operatorname{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $\operatorname{Mat}^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Can relabel object N by $1, N^{2}$ by 2 etc., so set of objects is \mathbb{N}, and we have $n \otimes m=n+m$.

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots
Label the rows/columns of a matrix in $\operatorname{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\operatorname{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $M a t^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Can relabel object N by $1, N^{2}$ by 2 etc., so set of objects is \mathbb{N}, and we have $n \otimes m=n+m$. So Mat ${ }^{N}$ is a monoidal category with object monoid $\left(N^{\mathbb{N}}, x\right) \cong(\mathbb{N},+)$.

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by $|i j k l\rangle$ where $i, j, k, l \in\{1,2,3,4,5\}$.

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by |ijkl| where $i, j, k, l \in\{1,2,3,4,5\}$.

Definition

A matrix $M \in \operatorname{Mat}^{N}(n, n)$ is charge conserving if $M_{w, w^{\prime}}=\langle w| M\left|w^{\prime}\right\rangle \neq 0$ implies that w is a perm of w^{\prime}. That is $w=\sigma w^{\prime}$ for some $\sigma \in \Sigma_{n}$, where symmetric group Σ_{n} acts by place permutation.

Example in $\operatorname{Mat}^{2}(2,2)$
$\left.\begin{array}{l} \\ |11\rangle\rangle \\ |21\rangle \\ |12\rangle \\ |22\rangle\end{array} \begin{array}{cccc}|11\rangle & |21\rangle & |12\rangle & |22\rangle \\ a_{1} & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & a_{2}\end{array}\right)$

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by $|i j k l\rangle$ where $i, j, k, l \in\{1,2,3,4,5\}$.

Definition

A matrix $M \in \operatorname{Mat}^{N}(n, n)$ is charge conserving if $M_{w, w^{\prime}}=\langle w| M\left|w^{\prime}\right\rangle \neq 0$ implies that w is a perm of w^{\prime}. That is $w=\sigma w^{\prime}$ for some $\sigma \in \Sigma_{n}$, where symmetric group Σ_{n} acts by place permutation.

Example in $\operatorname{Mat}^{2}(2,2)$

$$
\begin{aligned}
& \quad|11\rangle \\
& |11\rangle \\
& |21\rangle \\
& |12\rangle \\
& |22\rangle \\
& \mid 22
\end{aligned}\left(\begin{array}{cccc}
a_{1} & 0 & 0 & |12\rangle \\
0 & a & b & 0 \\
0 & c & d & 0 \\
0 & 0 & 0 & a_{2}
\end{array}\right)
$$

Charge conserving matrices form a monoidal subcategory of Mat ${ }^{N}$ - denote this Match ${ }^{N}$.

CHARGE CONSERVING LOOP BRAID REPRESENTATIONS

Definition

A charge conserving monoidal loop braid representation is given by a strict monoidal functor

$$
\text { F:L } \rightarrow \text { Match }^{N}
$$

such that $F(1)=1$.

Definition

A charge conserving monoidal loop braid representation is given by a strict monoidal functor

$$
\text { F:L } \rightarrow \text { Match }^{N}
$$

such that $\mathrm{F}(1)=1$.
Since $L \cong L^{\prime}$, such functors are given by giving the images of the generators of L':

$$
F_{*}=(F(S), F(\sigma))=(S, R)
$$

such that $S, R \in \operatorname{Match}^{N}(2,2)$, and

$$
\begin{gathered}
S^{2}=1, \\
S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2}
\end{gathered}
$$

where $S_{1}=S \otimes 1$ and $S_{2}=1 \otimes S$ (where \otimes is Kronecker product),
(I) $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$,
(II) $R_{1} R_{2} S_{1}=S_{2} R_{1} R_{2}$,
(III) $R_{1} S_{2} S_{1}=S_{2} S_{1} R_{2}$.

Signed multisets

Let $\int_{N}^{ \pm}$be the set of signed multisets of compositions with at most two parts, of total rank N.

Example

$$
J_{2}^{ \pm}=\left\{\left(\square^{2},\right),\left(\mathbb{D}^{1},\right),\left(\square^{1},\right),\left(\square^{1}, \square^{1}\right),\left(, \square^{2}\right),\left(, \mathbb{D}^{1}\right),\left(, 日^{1}\right)\right\}
$$

Example
is in $J_{26}^{ \pm}$.

Theorem (Martin, Rowell, T.)

The set of all varieties of charge-conserving loop braid representations from the loop braid category L to the category Match ${ }^{N}$ of charge conserving matrices

$$
\mathrm{F}: \mathrm{L} \rightarrow \text { Match }^{N}
$$

may be indexed by $J_{N}^{ \pm}$.

MOTION GROUPOIDS \& MAPPING CLASS GROUPOIDS

 arXiv:2103.10377, with Paul Martin, João Faria MartinsFiona Torzewska
Universität Wien

