Stable Khovanov homology of torus links and volume ${ }^{1}$

Christine Ruey Shan Lee
Texas State University

Moduli and Friends
May 29, 2023

Stable Khovanov homology of infinite torus links

Theorem (Stosic 2007)
Let $T_{n, k}$ be the torus link on n strands. For $2 \leq n<k$, and $i<n+k-3$,

$$
K h_{i, j}\left(T_{n, k}\right) \cong K h_{i, j}\left(T_{n, k+1}\right) \quad \text { (Stosic 2007) }
$$

Theorem (Rozansky 2014)

The stable homology \mathcal{H}_{∞} of infinite torus braids $\widehat{\beta_{n, k}}=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{k}$ is the direct limit of the directed system $\left\{\widetilde{K h}_{*, *}\left(T_{n, k}\right), f_{k}\right\}$ of (shifted) Khovanov homologies.

$$
\mathcal{H}_{\infty}\left(\beta_{n, k}\right):=\underset{\longrightarrow}{\lim } \widetilde{K h}_{*, *}\left(\beta_{n, k}\right) \quad \text { (Rozansky 2014) }
$$

Furthermore, Rozansky showed \mathcal{H}_{∞} gives a categorification of the Jones-Wenzl projector \mathbf{P}, an important object in quantum topology.

The Temperley-Lieb algebra

$T L_{n}:=\mathbb{C}$-vector space of formal linear sums of link/tangle diagrams in a disk D with n marked points above and below, modded out by the Kauffman bracket skein relations.

Multiplication • is done by stacking.

The Jones-Wenzl projector

Let A be an indeterminate. Then there is a unique element \biguplus_{n} such that

- $\biguplus_{n}-l_{n}$ belongs to the algebra generated by $\left\{|\smile|_{n}^{i}\right\}_{i=1}^{n-1}$
- $\dot{\omega}_{n} \cdot \dagger_{n}=\biguplus_{n}$
$-\bigvee_{n}=(-1)^{n} \frac{A^{2(n+1)}-A^{-2(n+1)}}{A^{2}-A^{-2}}$

The Jones-Wenzl projector

Let A be an indeterminate. Then there is a unique element \biguplus_{n} such that

- $\biguplus_{n}-l_{n}$ belongs to the algebra generated by $\left\{|\smile|_{n}^{i}\right\}_{i=1}^{n-1}$
- $\dot{\varphi}_{n} \cdot \overleftarrow{\varphi}_{n}=\dagger_{n}$
$-\bigcirc_{n}=(-1)^{n} \frac{A^{2(n+1)}-A^{-2(n+1)}}{A^{2}-A^{-2}}$
The complex \mathbf{P}_{n} is the categorification of \hbar_{n} (Cooper-Krushkal 2012), (Rozansky 2014).

The colored Jones polynomial

The colored Jones polynomial of a link L is obtained by cabling an nth Jones-Wenzl projector in each component.

The volume conjecture

Conjecture (Kashaev 1997, Murakami and Murakami 2001)
Let K be a hyperbolic knot, then

$$
2 \pi \lim _{n \rightarrow \infty} \frac{\log \left|\widehat{J_{K}}\left(\frac{e^{i \pi}}{2 n} ; n\right)\right|}{n}=\operatorname{vol}\left(S^{3} \backslash K\right) .
$$

The volume conjecture

Conjecture (Kashaev 1997, Murakami and Murakami 2001)
Let K be a hyperbolic knot, then

$$
2 \pi \lim _{n \rightarrow \infty} \frac{\log \left\lvert\, \widehat{J_{K}}\left(e^{\left.\frac{\pi i}{2 n} ; n\right) \mid}\right.\right.}{n}=\operatorname{vol}\left(S^{3} \backslash K\right) .
$$

The conjecture is known for

- The figure 8 knot (Ekholm).
- Whitehead chains (van der Veen 2008).
- Hyperbolic knots with up to 7 crossings (Ohtsuki-Yokota 2017, Ohtsuki 2018).

The volume conjecture

Conjecture (Kashaev 1997, Murakami and Murakami 2001)
Let K be a hyperbolic knot, then

$$
2 \pi \lim _{n \rightarrow \infty} \frac{\log \left\lvert\, \widehat{J_{K}}\left(e^{\left.\frac{\pi i}{2 n} ; n\right) \mid}\right.\right.}{n}=\operatorname{vol}\left(S^{3} \backslash K\right) .
$$

The conjecture is known for

- The figure 8 knot (Ekholm).
- Whitehead chains (van der Veen 2008).
- Hyperbolic knots with up to 7 crossings (Ohtsuki-Yokota 2017, Ohtsuki 2018).
For links it is known for Whitehead doubles (Zheng 2007) and a version of the volume conjecture is known for augmented Knotted Trivalent Graphs (van der Veen 2009).

Relationship to hyperbolic geometry

Let M be a manifold with c cusps, and let $M_{\left(k_{1}, \ldots, k_{c}\right)}$ for $k_{i} \in \mathbf{Q} \cup \infty$ denote the result of doing k_{i}-Dehn surgery on the i th cusp of M.

Theorem (Thurston hyperbolic Dehn surgery)
For all $\vec{k}=\left(k_{1}, \ldots, k_{c}\right)$ such that $k_{i} \gg 0$,

$$
\lim _{\vec{k} \rightarrow \infty} M_{\vec{k}}=M
$$

so

$$
\lim _{\vec{k} \rightarrow \infty} \operatorname{vol}\left(M_{\vec{k}}\right)=\operatorname{vol}(M)
$$

and

$$
\operatorname{Vol}\left(M_{\vec{k}}\right)<\operatorname{Vol}(M) \quad(\vec{k} \neq \infty)
$$

Surgery on the crossing circles produces the figure 8 knot

Question

(How) does this reflect in the quantum picture?

Theorem (Champanekar-Kofman 2005)
The coefficient vector of the Jones polynomial and the colored Jones polynomial decomposes into fixed blocks that separate as the number of twisting increases.

Theorem (Champanekar-Kofman 2005)

The coefficient vector of the Jones polynomial and the colored Jones polynomial decomposes into fixed blocks that separate as the number of twisting increases.

Src: Champanekar-Kofman

A quantum Dehn surgery-type theorem

For a fully augmented link L_{∞} with c twist regions, the skein element L_{j}^{n} is obtained by replacing every 2 -tangle encircled by a crossing circle by a $2 n$ Jones-Wenzl projector.

A quantum Dehn surgery-type theorem

For a fully augmented link L_{∞} with c twist regions, the skein element L_{J}^{n} is obtained by replacing every 2-tangle encircled by a crossing circle by a $2 n$ Jones-Wenzl projector.

Theorem (L.)
Let $k_{i} \gg 0$ and fix an integer $n \geq 1$, the homology groups $\left\{K H\left(L_{k_{1}, \ldots, k_{c}} ; n\right)\right\}$ form a directed system, and its direct limit as $k \rightarrow 0$ is given by $K H\left(L_{j}^{n}\right)$.

- The proof iterates Rozansky's construction,
- combined with Willis-Islambouli's (2018) result on being able to recover the Jones-Wenzl idempotent from any infinite positive braid.
- The proof iterates Rozansky's construction,
- combined with Willis-Islambouli's (2018) result on being able to recover the Jones-Wenzl idempotent from any infinite positive braid.

Connection with volume

Let G be a $\mathbb{Z} \backslash\{0\}$-weighted planar graph, and let F_{G} be the surface obtained by replacing each weighted edge by a twisted band, and each vertex with a disk. Let $L=\partial\left(F_{G}\right)$.

G

F_G

Connection with volume

Let G be a $\mathbb{Z} \backslash\{0\}$-weighted planar graph, and let F_{G} be the surface obtained by replacing each weighted edge by a twisted band, and each vertex with a disk. Let $L=\partial\left(F_{G}\right)$.

G

F_G

Theorem (L.)
Let T be the number of triangular moves in a sequence S of moves to obtain G, then

$$
2 \pi(T+1) v_{8} \leq 2 \pi \lim _{n \rightarrow \infty} \frac{\log \left|\widehat{J_{G}}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|}{n}
$$

with equality if there are no fusion moves in S.

Connection with volume

Let G be a $\mathbb{Z} \backslash\{0\}$-weighted planar graph, and let F_{G} be the surface obtained by replacing each weighted edge by a twisted band, and each vertex with a disk. Let $L=\partial\left(F_{G}\right)$.

G

F_G

Theorem (L.)
Let T be the number of triangular moves in a sequence S of moves to obtain G, then

$$
2 \pi(T+1) v_{8} \leq 2 \pi \lim _{n \rightarrow \infty} \frac{\log \left|\widehat{J_{G}}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|}{n}
$$

with equality if there are no fusion moves in S.

The geometry of fully augmented links

- !!Note!! $T v_{8}$ is not equal to $\operatorname{vol}\left(L_{\infty}\right)$.

The geometry of fully augmented links

- !!Note!! $T v_{8}$ is not equal to $\operatorname{vol}\left(L_{\infty}\right)$.

Proposition

Let L be a hyperbolic fully augmented link with c augmentation circles. Then its volume is at least $2 v_{8}(c-1)$, where $v_{8}=3.66386 \cdots$ is the volume of a regular ideal octahedron. Moreover, the volume is exactly $2 v_{8}(c-1)$ if and only if $S^{3} \backslash L$ decomposes into regular ideal octahedra.

The colored Jones polynomial of KTG's

Every L_{j}^{n} can be obtained from the n-colored unknot through a sequence of triangle and unzip moves.

The $(S O(3))$ volume conjecture for KTG's

Conjecture (van der Veen 2009)
The following form of the volume conjecture holds for all knotted trivalent graphs

$$
\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \log \left|\widehat{J}_{\Gamma}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|=\operatorname{vol}(\Gamma)
$$

where n runs over the even numbers only.

The $(S O(3))$ volume conjecture for KTG's

Conjecture (van der Veen 2009)
The following form of the volume conjecture holds for all knotted trivalent graphs

$$
\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \log \left|\widehat{J}_{\Gamma}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|=\operatorname{vol}(\Gamma)
$$

where n runs over the even numbers only.
Theorem (van der Veen 2009)
Let S be a sequence of $K T G$ moves, there exists an $n \in \mathbb{N}$ such that all n-augmented KTG's satisfy the $S O(3)$ volume conjecture, but not the original volume conjecture.

Theorem (van der Veen 2009)
In particular, let T be the number of triangle moves in S and let r be the number of crossing circles of Γ. Let θ be the number of half twists counted with sign. The colored Jones invariant of Γ satisfies

$$
J_{n}\left(\Gamma ; e^{\frac{\pi i}{2 n}}\right)=\left\{\begin{array}{l}
n^{r} \mathbf{s i x j}_{n}^{T+1} \text { if } n \text { is even } \\
0 \text { if } n \text { is odd }
\end{array}\right.
$$

Therefore, by (Constantino 2007),

$$
\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \log \left|\widehat{J}_{\Gamma}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|=2 \pi(T+1) v_{8}=\operatorname{vol}(\Gamma)
$$

Theorem (van der Veen 2009)

In particular, let T be the number of triangle moves in S and let r be the number of crossing circles of Γ. Let θ be the number of half twists counted with sign. The colored Jones invariant of Γ satisfies

$$
J_{n}\left(\Gamma ; e^{\frac{\pi i}{2 n}}\right)=\left\{\begin{array}{l}
n^{r} \mathbf{s i x j} \mathbf{j}_{n}^{\top+1} \text { if } n \text { is even } \\
0 \text { if } n \text { is odd }
\end{array}\right.
$$

Therefore, by (Constantino 2007),

$$
\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \log \left|\widehat{J}_{\Gamma}\left(e^{\frac{\pi i}{2 n}} ; n\right)\right|=2 \pi(T+1) v_{8}=\operatorname{vol}(\Gamma)
$$

Obs: If S does not contain any fusion move, then L_{J}^{n} is an augmented KTG, and so the Theorem applies.

Potential application to the volume conjecture (in progress)

Working in reverse from Rozansky's result, $K h(T(2, k))$-tangle can be recovered from a truncation of \mathbf{P}_{2}.

(Manion 2018)

Potential application to the volume conjecture (in progress)

Working in reverse from Rozansky's result, $K h(T(2, k))$-tangle can be recovered from a truncation of \mathbf{P}_{2}.

(Manion 2018) Similarly, $K h(T(n, k))$ can be recovered from a truncation of \mathbf{P}_{n}. Thus we can describe the formal difference

$$
\widehat{J}_{L_{\jmath}}\left(e^{\frac{\pi i}{2 n}} ; n\right)-\widehat{J}_{L_{k}}\left(e^{\frac{\pi i}{2 n}} ; n\right)
$$

as consisting of periodic complexes.

Thank you for listening

