Lower central series and Alexander invariants in group extensions

Alexandru Suciu

Northeastern University

Moduli and Friends Seminar

Institute of Mathematics of the Romanian Academy, Bucharest July 26, 2023

N-series

- An *N*-series for a group *G* is a descending filtration $G = K_1 \ge \cdots \ge K_n \ge \cdots$ such that $[K_m, K_n] \subseteq K_{m+n}, \forall m, n \ge 1$.
- ▶ In particular, $\kappa = \{K_n\}_{n \ge 1}$ is a *central series*, i.e., $[G, K_n] \subseteq K_{n+1}$.
- Thus, it is also a *normal series*, i.e., $K_n \lhd G$.
- Consequently, each quotient K_n/K_{n+1} lies in the center of G/K_{n+1} , and thus is an abelian group.
- If all those quotients are torsion-free, κ is called an N_0 -series.
- Associated graded Lie algebra:

$$\operatorname{gr}^{\kappa}(G) = \bigoplus_{n \ge 1} K_n / K_{n+1},$$

with addition induced by $: G \times G \to G$, and Lie bracket $[,]: \operatorname{gr}_m \times \operatorname{gr}_n \to \operatorname{gr}_{m+n}$ induced by $[x, y] := xyx^{-1}y^{-1}$.

Lower central series

- ▶ The *lower central series*, $\gamma(G) = \{\gamma_n(G)\}_{n \ge 1}$ is defined inductively by $\gamma_1(G) = G$, $\gamma_2(G) = G'$, and $\gamma_{n+1}(G) = [G, \gamma_n(G)]$.
- It is an N-series, and the fastest descending central series for G.
- If $\varphi \colon G \to H$ is a homomorphism, then $\varphi(\gamma_n(G)) \subseteq \gamma_n(H)$.
- $\operatorname{gr}(G) := \operatorname{gr}^{\gamma}(G)$ is generated by $\operatorname{gr}_{1}(G) = G_{\operatorname{ab}}$.
- If $b_1(G) < \infty$, the *LCS ranks* of *G* are $\phi_n(G) := \dim_{\mathbb{Q}} \operatorname{gr}_n(G) \otimes \mathbb{Q}$.
- ▶ For each *N*-series κ , there is a morphism $gr(G) \rightarrow gr^{\kappa}(G)$.
- $\Gamma_n := G/\gamma_n(G)$ is the maximal (n-1)-step nilpotent quotient of G.
- $G/\gamma_2(F) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G, \mathbb{Z})$.
- *G* is residually nilpotent $\iff \gamma_{\omega}(G) := \bigcap_{n \ge 1} \gamma_n(G)$ is trivial.

Split exact sequences

A short exact sequence of groups,

$$1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1$$
 (*)

yields representations $\varphi \colon Q \to \text{Out}(K)$ and $\bar{\varphi} \colon Q \to \text{Aut}(K_{ab})$.

- ▶ If (*) admits a splitting, $\sigma: Q \to G$, then $G = K \rtimes_{\varphi} Q$, where $\varphi: Q \to Aut(K), x \mapsto conjugation by <math>\sigma(x)$.
- (*) is *ab-exact* if $0 \longrightarrow K_{ab} \xrightarrow{\iota_{ab}} G_{ab} \xrightarrow{\pi_{ab}} Q_{ab} \longrightarrow 0$ is also exact; equivalently, Q acts trivially on K_{ab} and ι_{ab} is injective.

THEOREM (FALK-RANDELL 1985/88)

Let $G = K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab} , then

- $\gamma_n(G) = \gamma_n(K) \rtimes_{\varphi} \gamma_n(Q)$, for all $n \ge 1$.
- $\operatorname{gr}(G) = \operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$, where $\tilde{\varphi} \colon \operatorname{gr}(Q) \to \operatorname{Der}(\operatorname{gr}(K))$.
- ▶ If K and Q are residually nilpotent, then G is residually nilpotent.

For a split extension G = K ⋊_φ Q, Guaschi and de Miranda e Pereiro define a sequence L = {L_n}_{n≥1} of subgroups of K by

 $L_1 = K$, $L_{n+1} = \langle [K, L_n], [K, \gamma_n(Q)], [L_n, Q] \rangle$.

THEOREM (GUASCHI-PEREIRO 2020)

- $\varphi \colon Q \to \operatorname{Aut}(K)$ restricts to $\varphi \colon \gamma_n(Q) \to \operatorname{Aut}(L_n)$.
- $\gamma_n(G) = L_n \rtimes_{\varphi} \gamma_n(Q).$

LEMMA

L is an N-series for K.

THEOREM

$$\operatorname{\mathsf{gr}}({\boldsymbol{G}}) = \operatorname{\mathsf{gr}}^{L}({\boldsymbol{K}})
times_{\widetilde{arphi}} \operatorname{\mathsf{gr}}({\boldsymbol{Q}})$$
, where $\widetilde{arphi} \colon \operatorname{\mathsf{gr}}({\boldsymbol{Q}}) o \operatorname{\mathsf{Der}}(\operatorname{\mathsf{gr}}({\boldsymbol{K}}))$.

Remark

If *Q* acts trivially on K_{ab} , then $L = \gamma(K)$. So these results generalize those of Falk and Randell.

ALEX SUCIU (NORTHEASTERN)

LCS AND ALEXANDER INVARIANTS IN GROUP EXTENSION

Isolators

• The *isolator* in G of a subset $S \subseteq G$ is the subset

 $\sqrt{S} := \sqrt[G]{S} = \{g \in G \mid g^m \in S \text{ for some } m \in \mathbb{N}\}$

- Clearly, S ⊆ √S and √√S = √S. Also, if φ: G → H is a homomorphism, and φ(S) ⊆ T, then φ(^G√S) ⊆ ^H√T.
- ▶ The isolator of a subgroup of *G* need not be a subgroup; for instance, $\sqrt[G]{\{1\}} = \text{Tors}(G)$, which is not a subgroup in general (although it is if *G* is nilpotent).
- ► If $N \lhd G$ is a normal subgroup, then $\sqrt[G]{N} = \pi^{-1}(\text{Tors}(G/N))$, where $\pi : G \twoheadrightarrow G/N$, and so $\sqrt[G]{N}/N \cong \text{Tors}(G/N)$.

PROPOSITION (MASSUYEAU 2007)

Suppose $\kappa = \{K_n\}_{n \ge 1}$ is an N-series for G. Then $\sqrt{\kappa} := \{\sqrt{K_n}\}_{n \ge 1}$ is an N_0 -series for G.

The rational lower central series

- The rational lower central series, γ^Q(G), is defined by γ^Q₁(G) = G and γ^Q_{n+1}(G) = √[G, γ^Q_n(G)]. (Stallings, 1965)
- $\gamma_n^{\mathbb{Q}}(G) = \sqrt{\gamma_n(G)}$ for all $n \ge 1$.
- Hence, $\gamma^{\mathbb{Q}}(G)$ is an N_0 -series (since $\gamma(G)$ is an N-series).
- G/γ_n^Q(G) = Γ_n/Tors(Γ_n) is the maximal torsion-free (n − 1)-step nilpotent quotient of G; in particular, G/γ₂^Q(G) = G_{abf}.
- Associated graded Lie algebra: $gr^{\mathbb{Q}}(G) = \bigoplus_{n \ge 1} \gamma_n^{\mathbb{Q}}(G) / \gamma_{n+1}^{\mathbb{Q}}(G)$.
- G is residually torsion-free nilpotent (RTFN) iff $\gamma_{\omega}^{\mathbb{Q}}(G) = \{1\}$.

PROPOSITION (BASS & LUBOTZKY 1994)

- $gr(G) \rightarrow gr^{Q}(G)$ has torsion kernel and cokernel in each degree.
- $\operatorname{gr}(G) \otimes \mathbb{Q} \to \operatorname{gr}^{\mathbb{Q}}(G) \otimes \mathbb{Q}$ is an isomorphism.
- Thus, if $b_1(G) < \infty$, then $\phi_n^{\mathbb{Q}}(G) = \phi_n(G)$

Split extensions

• Let $G = K \rtimes_{\varphi} Q$. Since *L* is an *N*-series, \sqrt{L} is an *N*₀-series for *K*.

THEOREM

- $\varphi \colon Q \to \operatorname{Aut}(K)$ restricts to $\varphi \colon \sqrt[Q]{\gamma_n(Q)} \to \operatorname{Aut}(\sqrt[K]{L_n}).$
- $\sqrt[G]{\gamma_n(G)} = \sqrt[K]{L_n} \rtimes_{\varphi} \sqrt[Q]{\gamma_n(Q)}.$
- $\operatorname{gr}^{\mathbb{Q}}(G) \cong \operatorname{gr}^{\sqrt{L}}(K) \rtimes_{\widetilde{\varphi}} \operatorname{gr}^{\mathbb{Q}}(Q).$

THEOREM

Suppose Q acts trivially on $K_{abf} := H_1(K, \mathbb{Z}) / \text{Tors.}$ Then

- $\sqrt[K]{L_n} = \sqrt[K]{\gamma_n(K)}$ for all n.
- $\sqrt[G]{\gamma_n(G)} = \sqrt[K]{\gamma_n(K)} \rtimes_{\varphi} \sqrt[Q]{\gamma_n(Q)}.$
- $\operatorname{gr}^{\mathbb{Q}}(Q) \cong \operatorname{gr}^{\mathbb{Q}}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}^{\mathbb{Q}}(Q).$

COROLLARY

Let $G = K \rtimes Q$ be a split extension of RTFN groups. If Q acts trivially on K_{abf} , then G is also RTFN.

ALEX SUCIU (NORTHEASTERN)

LCS AND ALEXANDER INVARIANTS IN GROUP EXTENSION

Alexander invariants and Chen ranks

- The Chen Lie algebra of G is gr(G/G''), where G'' = (G')'.
- ▶ If $b_1(G) < \infty$, the *Chen ranks* of *G* are defined as $\theta_n(G) := \dim_{\mathbb{Q}} \operatorname{gr}_n(G/G'') \otimes \mathbb{Q}$.
- $\theta_n(G) \leq \phi_n(G)$, with equality for $n \leq 3$.
- ► Alexander invariant: B(G) := G'/G'', viewed as a $\mathbb{Z}[G_{ab}]$ -module via $gG' \cdot xG'' = gxg^{-1}G''$ for $g \in G$ and $x \in G'$.
- (Massey) $I^n B(G) = \gamma_{n+2}(G/G'')$, where I is the augmentation ideal of $\mathbb{Z}[G_{ab}]$, and hence $\operatorname{gr}_n(B(G)) \cong \operatorname{gr}_{n+2}(G/G'')$, for all $n \ge 0$.
- If $b_1(G) < \infty$, then $\operatorname{Hilb}(\operatorname{gr}(B(G) \otimes \mathbb{Q}), t) = \sum_{n \ge 0} \theta_{n+2}(G) t^n$.

THEOREM

Suppose $1 \to K \xrightarrow{\iota} G \to Q \to 1$ is an ab-exact sequence of groups, and Q is abelian. Then,

- The induced map on Alexander invariants, B(ι): B(K) → B(G), factors through a ℤ[K_{ab}]-linear isomorphism, B(K) → B(G)_ι.
- If G_{ab} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.
- If the sequence is split exact, then *i* induces isomorphisms of graded Lie algebras,

 $\operatorname{gr}_{\geqslant 2}(K) \xrightarrow{\simeq} \operatorname{gr}_{\geqslant 2}(G)$ and $\operatorname{gr}_{\geqslant 2}(K/K'') \xrightarrow{\simeq} \operatorname{gr}_{\geqslant 2}(G/G'').$

Consequently, if $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

The rational Alexander invariant

- ► Let $B_{\mathbb{Q}}(G) := G'_{\mathbb{Q}}/G''_{\mathbb{Q}}$, viewed as a module over $\mathbb{Z}G_{abf}$, where $G''_{\mathbb{Q}} = (G'_{\mathbb{Q}})'_{\mathbb{Q}} = \sqrt{[G'_{\mathbb{Q}},G'_{\mathbb{Q}}]}$.
- $I^n(B_{\mathbb{Q}}(G)\otimes\mathbb{Q}) = \gamma_{n+2}^{\mathbb{Q}}(G/G_{\mathbb{Q}}'')\otimes\mathbb{Q}$, where $I = I_{\mathbb{Q}}(G_{\mathsf{abf}})$.
- ▶ Hence, $\operatorname{gr}_n(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}) \cong \operatorname{gr}_{n+2}(G/G''_{\mathbb{Q}}) \otimes \mathbb{Q}$, for all $n \ge 0$.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an abf-exact sequence and suppose Q is torsion-free abelian. Then,

- The map ι induces a $\mathbb{Z}[K_{abf}]$ -linear isomorphism, $B_{\mathbb{Q}}(K) \to B_{\mathbb{Q}}(G)_{\iota}$.
- If G_{abf} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.
- If the sequence is split exact, then *ι* induces isos of graded Lie algebras, gr^Q_{≥2}(K) → gr^Q_{≥2}(G) and gr^Q_{≥2}(K/K") → gr^Q_{≥2}(G/G").

• Consequently, if $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

Characteristic varieties

- Let G be a finitely generated group. Then T_G := Hom(G, C^{*}) is an algebraic group, with identity 1 the trivial character, g → 1.
- Clearly, $\mathbb{T}_G = \mathbb{T}_{G_{ab}}$ and $\mathbb{T}_G^0 = \mathbb{T}_{G_{abf}}$.
- Characteristic varieties: $\mathcal{V}_k(G) := \{ \rho \in \mathbb{T}_G \mid \dim H^1(G, \mathbb{C}_\rho) \ge k \}.$
- Set $\mathcal{W}_k(G) := \mathcal{V}_k(G) \cap \mathbb{T}_G^0$.
- For each $k \ge 1$, we have

 $\mathcal{V}_k(G) = V(\operatorname{ann}(\bigwedge^k B(G) \otimes \mathbb{C}))$

 $\mathcal{W}_k(G) = V(\operatorname{ann}(\bigwedge^k B_{\mathbb{Q}}(G) \otimes \mathbb{C})),$

12/29

at least away from $1 \in \mathbb{T}_{G}^{0}$.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups.

- If the sequence is ab-exact and Q is abelian, then the map $\iota^* : \mathbb{T}_G \twoheadrightarrow \mathbb{T}_K$ restricts to maps $\iota^* : \mathcal{V}_k(G) \to \mathcal{V}_k(K)$ for all $k \ge 1$; furthermore, $\iota^* : \mathcal{V}_1(G) \to \mathcal{V}_1(K)$ is a surjection.
- If the sequence is abf-exact and Q is torsion-free abelian, then the map *ι**: T⁰_G → T⁰_K restricts to maps *ι**: W_k(G) → W_k(K) for all k ≥ 1; furthermore, *ι**: W₁(G) → W₁(K) is a surjection.

Holonomy Lie algebra

- Assume G_{abf} is finitely generated, and let L = Lie(G_{abf}) be the free Lie algebra on G_{abf}, so that L₁ = G_{abf} and L₂ = G_{abf} ∧ G_{abf}.
- ▶ The holonomy Lie algebra of G is $\mathfrak{h}(G) := \operatorname{Lie}(G_{\operatorname{abf}})/(\operatorname{im}(\cup_G^{\vee}))$, where $\cup_G^{\vee} : H^2(G)^{\vee} \to (H^1(G) \wedge H^1(G))^{\vee} \cong G_{\operatorname{abf}} \wedge G_{\operatorname{abf}}$.
- ► There is a natural epimorphism $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$, which induces epimorphisms $\mathfrak{h}(G)/\mathfrak{h}(G)'' \twoheadrightarrow \mathfrak{gr}(G/G'')$.
- Let $\bar{\theta}_n(G) := \operatorname{rank} \left(\mathfrak{h}(G)/\mathfrak{h}(G)'' \right)_n$. Then: $\bar{\theta}_n(G) \ge \theta_n(G), \, \forall n \ge 1$.
- If b₁(G) < ∞, we may also define h(G; Q). If G_{abf} is finitely generated, h(G; Q) = h(G) ⊗ Q.
- ▶ The *infinitesimal Alexander invariant* is $\mathfrak{B}(G) := \mathfrak{h}(G)'/\mathfrak{h}(G)''$, viewed as a graded module over $\operatorname{Sym}(G_{abf})$ via $g \cdot \overline{x} = [\overline{g}, \overline{x}]$ for $g \in \mathfrak{h}/\mathfrak{h}' = G_{abf}$ and $x \in \mathfrak{h}'$.
- If $b_1(G) < \infty$, then $\overline{\theta}_n(G) = \dim_{\mathbb{Q}} \mathfrak{B}_{n-2}(G; \mathbb{Q})$, for all $n \ge 2$.

Resonance varieties

- Let *G* be a group with $b_1(G) < \infty$. Let $H^* = H^*(G; \mathbb{C})$.
- For each $a \in H^1$, left-multiplication by a yields a cochain complex,

$$(H, \delta_a): H^0 \xrightarrow{\delta_a^0} H^1 \xrightarrow{\delta_a^1} H^2.$$

The resonance varieties of G:

$$\mathcal{R}_k(G) \coloneqq \{ a \in H^1 \mid \dim_{\mathbb{C}} H^1(H, \delta_a) \ge k \}.$$

- ► They are homogeneous algebraic subvarieties of the affine space $H^1 \cong \mathbb{C}^{b_1(G)}$. Note: $0 \in \mathcal{R}_k(G)$ iff $b_1(G) \ge k$.
- $\mathcal{R}_k(G) = V(\operatorname{ann}(\bigwedge^k \mathfrak{B}(G; \mathbb{C})))$, away from 0.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups. Suppose that either

- ► The sequence is split exact, gr(G) is quadratic, Q is abelian, and Q acts trivially on H₁(K, Q).
- ▶ The sequence if ab-exact, G and K are 1-formal, and Q is abelian.
- ► The sequence if abf-exact, G and K are 1-formal, and Q is torsion-free abelian.

Then $\iota^* : H^1(G, \mathbb{C}) \twoheadrightarrow H^1(K, \mathbb{C})$ restricts to maps $\iota^* : \mathcal{R}_k(G) \twoheadrightarrow \mathcal{R}_k(K)$ for all $k \ge 1$; furthermore, $\iota^* : \mathcal{R}_1(G) \twoheadrightarrow \mathcal{R}_1(K)$ is surjective.

COROLLARY

With hypothesis as above, suppose that $\mathcal{R}_1(G) \subseteq \{0\}$. Then

- $\mathcal{R}_1(K) \subseteq \{\mathbf{0}\}.$
- $\bar{\theta}_n(K) \leq \bar{\theta}_n(G)$ for all $n \geq 1$.
- $\bar{\theta}_n(G) = 0$ for $n \gg 0$ and $\bar{\theta}_n(K) = 0$ for $n \gg 0$.

Right-angled Artin groups

- Let G_Γ = ⟨v ∈ V : [v, w] = 1 if {v, w} ∈ E⟩ be the RAAG associated to a finite (simple) graph Γ = (V, E).
- There is a finite $K(G_{\Gamma}, 1)$ which is formal; thus, G_{Γ} is 1-formal.
- ► $H^*(G_{\Gamma}, \mathbb{Z})$ is the exterior Stanley–Reisner ring, $\bigwedge (v^* : v \in V) / (v^* w^* : \{v, w\} \notin E).$
- ► (Papadima–S. 2006) $\mathfrak{h}(G_{\Gamma}) = \operatorname{Lie}(V)/([v, w] = 0 \text{ if } \{v, w\} \in E)$ and $\mathfrak{h}(G_{\Gamma}) \xrightarrow{\simeq} \operatorname{gr}(G_{\Gamma}).$
- (Duchamp–Krob 1992, PS06) Each group gr_n(G_Γ) is torsion-free, of rank φ_n given by

$$\prod_{n=1}^{\infty} (1-t^n)^{\phi_n} = P_{\Gamma}(-t),$$

where $P_{\Gamma}(t) = \sum_{k \ge 0} f_k(\Gamma) t^k$ is the clique polynomial of Γ , with $f_k(\Gamma) = \#\{k \text{-cliques in } \Gamma\}.$

- $\mathfrak{h}_{\Gamma}/\mathfrak{h}_{\Gamma}'' \xrightarrow{\simeq} \operatorname{gr}(G_{\Gamma}/G_{\Gamma}'').$
- ► The graded pieces of $gr(G_{\Gamma}/G_{\Gamma}'')$ are torsion-free, with ranks θ_n given by

$$\sum_{n=2}^{\infty} \theta_n t^n = Q_{\Gamma} \left(\frac{t}{1-t} \right),$$

where $Q_{\Gamma}(t) = \sum_{j \ge 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{W \subset V : |W|=j} \tilde{b}_0(\Gamma_W).$$

- *R*₁(*G*_Γ) is the union of the coordinate subspaces C^W ⊂ C^V for which the induced subgraph Γ_W is disconnected.
- *V*₁(*G*_Γ) is the union of the coordinate subtori (ℂ^{*})^W ⊂ (ℂ^{*})^V for which the induced subgraph Γ_W is disconnected.

BESTVINA-BRADY GROUPS

- ► The *Bestvina–Brady group* associated to Γ is defined as $N_{\Gamma} = \ker(\pi: G_{\Gamma} \to \mathbb{Z})$, where $\pi(v) = 1$, for each $v \in V(\Gamma)$.
- (Meier–Van Wyck 1995) N_{Γ} is finitely generated iff Γ is connected.
- (Bestvina–Brady 1997) N_{Γ} is finitely presented iff the flag complex Δ_{Γ} is simply connected.
- (BB97) A counterexample to either the Eilenberg–Ganea conjecture or the Whitehead asphericity conjecture can be constructed from these groups.
- ► The cohomology ring H*(N_Γ, Z) was computed in (Papadima–S. 2007) and (Leary–Saadetoğlu 2011).

THEOREM (PAPADIMA-S. 2007/2009, S. 2021)

Suppose *Γ* is connected. Then

- $1 \to N_{\Gamma} \xrightarrow{\iota} G_{\Gamma} \xrightarrow{\pi} \mathbb{Z} \to 1$ is a split, ab-exact sequence.
- $\bullet \ \operatorname{gr}_{\geqslant 2}(\mathit{N}_{\Gamma}) \cong \operatorname{gr}_{\geqslant 2}(\mathit{G}_{\Gamma}).$
- $\operatorname{gr}_{\geqslant 2}(N_{\Gamma}/N_{\Gamma}'') \cong \operatorname{gr}_{\geqslant 2}(G_{\Gamma}/G_{\Gamma}'').$
- $\phi_k(N_{\Gamma}) = \phi_k(G_{\Gamma})$ and $\theta_k(N_{\Gamma}) = \theta_k(G_{\Gamma})$ for all $k \ge 2$.
- ► The map ι^* : $H^1(G_{\Gamma}, \mathbb{C}^*) \twoheadrightarrow H^1(N_{\Gamma}, \mathbb{C}^*)$ restricts to a surjection, $\iota^* : \mathcal{V}_1(G_{\Gamma}) \twoheadrightarrow \mathcal{V}_1(N_{\Gamma}).$
- The map $\iota^* : H^1(G_{\Gamma}, \mathbb{C}) \twoheadrightarrow H^1(N_{\Gamma}, \mathbb{C})$ restricts to a surjection, $\iota^* : \mathcal{R}_1(G_{\Gamma}) \twoheadrightarrow \mathcal{R}_1(N_{\Gamma}).$

The complement of a hyperplane arrangement

- ▶ Let \mathcal{A} be a central arrangement of m hyperplanes in \mathbb{C}^d . For each $H \in \mathcal{A}$ let α_H be a linear form with ker $(\alpha_H) = H$; set $f = \prod_{H \in \mathcal{A}} \alpha_H$.
- ► The complement, M(A) := C^d \ U_{H∈A} H, is a Stein manifold, and so it has the homotopy type of a (connected) *d*-dimensional CW-complex.
- ▶ In fact, M = M(A) has a minimal cell structure. Consequently, $H_*(M, \mathbb{Z})$ is torsion-free (and finitely generated).
- ▶ In particular, $H_1(M, \mathbb{Z}) = \mathbb{Z}^m$, generated by meridians $\{x_H\}_{H \in \mathcal{A}}$.
- ► The cohomology ring H*(M, Z) is determined solely by the intersection lattice, L(A).
- *M* is \mathbb{Q} -formal, but not \mathbb{Z}_p -formal, in general.

21/29

Fundamental groups of arrangements

- For an arrangement A, the group G = π₁(M(A)) admits a finite presentation, with generators {x_H}_{H∈A} and commutator-relators.
- $\mathcal{V}_k(M)$ is a finite union of torsion-translated subtori of $\mathbb{T}_G = (\mathbb{C}^*)^m$.
- $G/\gamma_2(G)$ and $G/\gamma_3(G)$ are determined by $L_{\leq 2}(\mathcal{A})$.
- $G/\gamma_4(G)$ —and thus G—is not necessarily determined by $L_{\leq 2}(\mathcal{A})$.
- Since *M* is formal, *G* is 1-formal, i.e., its pronilpotent completion, m(*G*), is quadratic.
- Hence, $gr(G) \otimes \mathbb{Q} = gr(\mathfrak{m}(G))$ is determined by $L_{\leq 2}(\mathcal{A})$.

▶ The holonomy Lie algebra of G = G(A) is determined by $L_{\leq 2}(A)$,

$$\mathfrak{h}(G) = \operatorname{Lie}(x_H : H \in \mathcal{A}) \big/ \operatorname{ideal} \left\{ \left[x_H, \sum_{K \in \mathcal{A}, K \supset Y} x_K \right] : \frac{H \in \mathcal{A}, Y \in L_2(\mathcal{A})}{H \supset Y} \right\}.$$

- Then $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q}$ (since G is 1-formal).
- An explicit combinatorial formula is lacking in general for the LCS ranks $\phi_n(G)$, although such formulas are known when
 - \mathcal{A} is supersolvable $\Rightarrow H^*(M, \mathbb{Q})$ is Koszul
 - $\circ \mathcal{A}$ is decomposable
 - $\circ \mathcal{A}$ is a graphic arrangement

and in some more cases just for $\phi_3(G)$.

- gr_n(G) may have torsion (at least for n ≥ 4), but the torsion is not necessarily determined by L_{≤2}(A).
- The map h₃(G) → gr₃(G) is an isomorphism [Porter–S.], but it is not known whether h₃(G) is torsion-free.
- (Papadima–S. 2004) The Chen ranks $\theta_n(G)$ are determined by $L_{\leq 2}(\mathcal{A})$.

ALEX SUCIU (NORTHEASTERN)

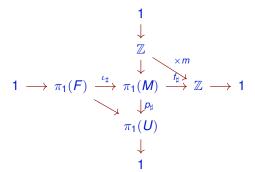
The Milnor fibration

- ▶ The map $f: \mathbb{C}^d \to \mathbb{C}$ restricts to a smooth fibration, $f: M \to \mathbb{C}^*$, called the *Milnor fibration* of \mathcal{A} .
- ► The *Milnor fiber* is $F(A) := f^{-1}(1)$. The monodromy, $h: F \to F$, is given by $h(z) = e^{2\pi i/m}z$, where m = |A|.
- ► F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension d - 1 (connected if d > 1).
- MHS on *F* may not be pure; $\pi_1(F)$ may be non-1-formal [Zuber].
- $H_1(F,\mathbb{Z})$ may have torsion [Yoshinaga].

ALEX SUCIU (NORTHEASTERN)

LCS AND ALEXANDER INVARIANTS IN GROUP EXTENSIONS

- ► *F* is the regular, \mathbb{Z}_m -cover of $U = \mathbb{P}(M)$, classified by the epimorphism $\pi_1(U) \twoheadrightarrow \mathbb{Z}_m$, $x_H \mapsto 1$.
- To study $\pi_1(F)$, we may assume w.l.o.g. that d = 3.
- Let $\iota: F \hookrightarrow M$ be the inclusion. Induced maps on π_1 :



b₁(F) ≥ m - 1, and may be computed from V¹_k(U). Combinatorial formulas are known in some cases (e.g., if P(A) has only double or triple points [Papadima–S. 2017]), but not in general.

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose $h_*: H_1(F; \mathbb{Z}) \to H_1(F; \mathbb{Z})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \cong \operatorname{gr}_{\geq 2}(G).$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \cong \operatorname{gr}_{\geq 2}(G/G'').$

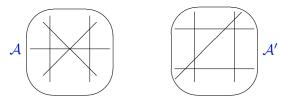
THEOREM (S. 2021)

Suppose $h_*: H_1(F, \mathbb{Q}) \to H_1(F, \mathbb{Q})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G) \otimes \mathbb{Q}.$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G/G'') \otimes \mathbb{Q}.$

• $\phi_k(\pi_1(F)) = \phi_k(G)$ and $\theta_k(\pi_1(F)) = \theta_k(G)$ for all $k \ge 2$.

Falk's pair of arrangements



▶ Both \mathcal{A} and \mathcal{A}' have 2 triple points and 9 double points, yet $L(\mathcal{A}) \cong L(\mathcal{A}')$. Nevertheless, $M(\mathcal{A}) \simeq M(\mathcal{A}')$.

- *V*₁(*M*) and *V*₁(*M'*) consist of two 2-dimensional subtori of (ℂ*)⁶, corresponding to the triple points; *V*₂(*M*) = *V*₂(*M'*) = {1}.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- 𝒱₁(𝑘) and 𝒱₁(𝑘) consist of two 2-dimensional subtori of (𝔅[∗])⁵.
- (S. 2017) $\pi_1(F) \ncong \pi_1(F')$.
- The difference is picked by the depth-2 characteristic varieties: $\mathcal{V}_2(F) \cong \mathbb{Z}_3$, yet $\mathcal{V}_2(F') = \{1\}$

ALEX SUCIU (NORTHEASTERN)

LCS AND ALEXANDER INVARIANTS IN GROUP EXTENSION

Yoshinaga's icosidodecahedral arrangement

- ► The icosidodecahedron is the convex hull of 30 vertices given by the even permutations of $(0, 0, \pm 1)$ and $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$, where $\phi = (1 + \sqrt{5})/2$.
- It gives rise to an arrangement of 16 hyperplanes in ℝ³, whose complexification is the icosidodecahedral arrangement A in C³.
- $M(\mathcal{A})$ is a K(G, 1).
- *H*₁(*F*, ℤ) = ℤ¹⁵ ⊕ ℤ₂. Thus, the algebraic monodromy of the Milnor fibration is trivial over ℚ and ℤ_p (*p* > 2), but not over ℤ.
- ▶ Hence, $gr(\pi_1(F)) \cong gr(\pi_1(U))$, away from the prime 2. Moreover,

$$\circ \ \operatorname{gr}_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$$

$$\circ \ \operatorname{gr}_2(\pi_1(F)) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$$

- $\circ \ \operatorname{gr}_3(\pi_1(F)) = \mathbb{Z}^{250} \oplus \mathbb{Z}_2^{43}$
- $\circ \ \text{gr}_4(\pi_1(\textbf{\textit{F}})) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^? \ \text{ and } \ \mathfrak{h}_4(\pi_1(\textbf{\textit{F}})) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^{20}.$

REFERENCES

Alexander I. Suciu, *Lower central series and split extensions*, arXiv:2105.14129.

Alexander I. Suciu, Alexander invariants and cohomology jump loci in group extensions, Annali della Scuola Normale Superiore di Pisa (doi), arXiv:2107.05148.