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N-series

» An N-series for a group G is a descending filtration
G=Ki = = K,=--- suchthat [Kn, Kn] € Kmsn, Vm,n=1.

v

In particular, k = {Kn}n>1 is @ central series, i.e., |G, K] < Kpi1.

v

Thus, it is also a normal series, i.e., K, < G.

v

Consequently, each quotient K,,/Kj, 1 lies in the center of G/K,. 1,
and thus is an abelian group.

v

If all those quotients are torsion-free, « is called an Ny-series.

v

Associated graded Lie algebra:

" G) = @ Kn/Kn+1a

n=1

with addition induced by -: G x G — G, and Lie bracket
[, ]: 8rm>x8rh — 8'myn mduced by [x, y] = xyx~ Ty
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Lower central series

>

>

>

>

The lower central series, v(G) = {vn(G)}n=1 is defined inductively
by 71(G) = G, 12(G) = G, and 7,,.1(G) = [G,1n(G)].

It is an N-series, and the fastest descending central series for G.
If o: G — His a homomorphism, then ¢ (v,(G)) < yn(H).

gr(G) = gr’(@G) is generated by gr{(G) = Gap.

If b1(G) < o, the LCS ranks of G are ¢,(G) = dimg gr,(G) ® Q.
For each N-series «, there is a morphism gr(G) — gr(G).

['h = G/vn(G) is the maximal (n — 1)-step nilpotent quotient of G.
G/2(F) = Gab, While G/3(G) < H<2(G, Z).

G is residually nilpotent <= ~,,(G) = (=1 1(G) is trivial.
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Split exact sequences
» A short exact sequence of groups,

1=K >G> Q— 1 ()
yields representations ¢: Q — Out(K) and ¢: Q — Aut(Kyp).

» If (*) admits a splitting, o: Q — G, then G = K %, Q, where
¢: Q — Aut(K), x — conjugation by o(x).

» (*)is ab-exactif 0 — Ky =2 Gap —5 Qup —> O is also exact;
equivalently, Q acts trivially on K, and ¢,y is injective.

THEOREM (FALK-RANDELL 1985/88)
Let G = K x, Q. If Q acts trivially on Ky, then
» 1(G) = 1n(K) x,vn(Q), foralln > 1.
» gr(G) = gr(K) xggr(Q), where $: gr(Q) — Der(gr(K)).
» If K and Q are residually nilpotent, then G is residually nilpotent.
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» For a split extension G = K x,, Q, Guaschi and de Miranda e
Pereiro define a sequence L = {L,},~1 of subgroups of K by

Li=K, Lp1= <[K, Ln]? [Kv 7’7(0)]7 [Lm Q]>

THEOREM (GUASCHI-PEREIRO 2020)
» v Q — Aut(K) restricts to v : yn(Q) — Aut(Ly).
» 1(G) = Ln x4 1n(Q).

LEMMA
L is an N-series for K.

THEOREM
gr(G) = grt(K) =3 gr(Q), where : gr(Q) — Der(gr(K)).

REMARK

If Q acts trivially on Kjp, then L = ~(K). So these results generalize
those of Falk and Randell.
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Isolators
» The isolator in G of a subset S < G is the subset

VS:=VS={geG|gm"e Sforsome me N}

» Clearly, S <+v/Sand+A/S =+/S. Also, if p: G — His a
homomorphism, and ¢(S) = T, then ¢(V/'S) = V/T.

» The isolator of a subgroup of G need not be a subgroup; for
instance, {/{1} = Tors(G), which is not a subgroup in general
(although itis if G is nllpotent).

» If N< G is a normal subgroup, then VN = 7~ (Tors(G/N)),
where 7: G — G/N, and so /N/N = Tors(G/N).
PROPOSITION (MASSUYEAU 2007)

Suppose . = {Kn}n=1 is an N-series for G. Then./r = {\/Kn}n=1 is an
No-series for G.
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The rational lower central series
» The rational lower central series, v°(G), is defined by +{(G) = G
and ;. ((G) = \/[G,75(G)]. (Stallings, 1965)

Y3(G) =+/7n(G) forall n = 1.

Hence, 7%(G) is an Ny-series (since v(G) is an N-series).

v

v

v

G/vp(G) =T/ Tors(Ip) is the maximal torsion-free (n — 1)-step
nilpotent quotient of G; in particular, G/v5(G) = Gabs.

v

Associated graded Lie algebra: gr®(G) = @ =1 7n(G)/7p.1(G).
» Gis residually torsion-free nilpotent (RTFN) iff 43(G) = {1}.

PROPOSITION (BASS & LUBOTZKY 1994)

» gr(G) — gr®(G) has torsion kernel and cokernel in each degree.
» gr(G) ®Q — gr*(G) ® Q is an isomorphism.

» Thus, if by (G) < o0, then 63(G) = ¢n(G)
AR, 26 5035 TS



Split extensions
» Let G = K =, Q. Since L is an N-series, /L is an Ny-series for K.

THEOREM
» o Q — Aut(K) restricts to ¢ §/vn(Q) — Aut({/Lp).
» §/m(G) = VLn X §/1n(Q).

» grY(G) ~ grﬂ(K) x5 gri(Q).

THEOREM

Suppose Q acts trivially on Kyps := Hy(K,Z)/ Tors. Then
» X/Ly = X/vn(K) for all n.
> $/n(G) = §/7n(K) 3 §/1n(Q).

» gré(Q) = gri(K) x5 gré(Q).

COROLLARY

Let G = K x Q be a split extension of RTFN groups. If Q acts trivially
on K,us, then G is also RTFN.
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Alexander invariants and Chen ranks

v

The Chen Lie algebra of G is gr(G/G"), where G" = (G')'.

v

If b1(G) < oo, the Chen ranks of G are defined as
0n(G) = dimggr,(G/G") ® Q.

» 0n(G) < ¢n(G), with equality for n < 3.

v

Alexander invariant. B(G) := G'/G", viewed as a Z[ G, |-module
viagG - xG" = gxg~'G"forge Gand x € G..

» (Massey) I"B(G) = vn.2(G/G"), where I is the augmentation ideal
of Z[Gap], and hence gr,(B(G)) = gr,,o(G/G"), forall n > 0.

» If by(G) < o, then Hilb(gr(B(G) ® Q), £) = o0 Onr2(G)I".
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THEOREM

Suppose 1 — K - G — Q — 1 is an ab-exact sequence of groups,
and Q is abelian. Then,

» The induced map on Alexander invariants, B(.): B(K) — B(G),
factors through a 7| K, | -linear isomorphism, B(K) — B(G),.

» If G,y, Is finitely generated, then 0,(K) < 0,(G) foralln > 1.

» If the sequence is split exact, then . induces isomorphisms of
graded Lie algebras,

gr-a(K) = gro(G) and gro(K/K") = gro»(G/G").

Consequently, if b1(G) < o, then ¢n(K) = ¢n(G) and
0n(K) = 6,(G) foralln > 2.
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The rational Alexander invariant
» Let B,(G) = G,/G], viewed as a module over ZG,s, Where
G; = (G, = /G, Gi]

» I"(By(G) ®Q) = v,,,(G/G) ® Q, where | = Iy(Gaps)-
» Hence, gr,(B,(G) ® Q) = gr,,»(G/G)) ®Q, forall n > 0.

THEOREM

Let1 - K5 G — Q — 1 be an abf-exact sequence and suppose Q is
torsion-free abelian. Then,

» The map . induces a Z| K, |-linear isomorphism, B,(K) — B,(G),.
» If G.r is finitely generated, then 0,(K) < 0,(G) foralln > 1.

» If the sequence is split exact, then . induces isos of graded Lie
algebras, gr ,(K) = gri,(G) and gri,(K/K") = gri,(G/G").

o Consequently, if by(G) < oo, then ¢n(K) = ¢,(G) and
0n(K) = 0,(G) foralln = 2.

v
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Characteristic varieties

» Let G be afinitely generated group. Then Tg := Hom(G, C*) is an
algebraic group, with identity 1 the trivial character, g — 1.

v

Clearly, Tg = Tg,, and TS = Tg,,,

v

Characteristic varieties: Vx(G) = {p € Tg | dim H'(G,C,) > k}.

v

Set Wi(G) := Vi(G) n TS,

For each k > 1, we have

Vk(G) = V(ann(A\"B(G) ® C))

v

Wi(G) = V(ann(A\*B,(G) ® 0)),

0
at least away from 1 € T¢.
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THEOREM
Let1 - K5 G — Q — 1 be an exact sequence of f.g. groups.
» If the sequence is ab-exact and Q is abelian, then the map
1*: Tg — Tk restricts to maps v*: Vi(G) — Vk(K) forall k > 1;
furthermore, .*: V1(G) — V1(K) is a surjection.
» If the sequence is abf-exact and Q is torsion-free abelian, then the
map o*: TS — T% restricts to maps v*: Wy(G) — Wi(K) for all
k = 1; furthermore, .*: W1(G) — Wy (K) is a surjection.
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Holonomy Lie algebra

» Assume G, is finitely generated, and let L = Lie(G.yf) be the
free Lie algebra on G,pf, so that Ly = G,pr and Lo = Gapr A Gaps-

» The holonomy Lie algebra of G is h(G) := Lie(Gapr)/(im(U5)),
where ug: H2(G)Y — (H'(G) A H'(G))Y = Gabf A Gabr.

» There is a natural epimorphism h(G) — gr(G), which induces
epimorphisms h(G)/h(G)" — gr(G/G").

» Let ,(G) = rank (h(G)/H(G)"),,. Then: G(G) = 0n(G), ¥n > 1.

» If bi(G) < oo, we may also define h(G; Q). If G,y is finitely
generated, h(G; Q) = h(G) ® Q.

» The infinitesimal Alexander invariant is B(G) := h(G)'/b(G)",
viewed as a graded module over Sym(G,pf) via g - X = [g, x| for
geh/h = Gaprand x e by'.

» If b1 (G) < o0, then 0,(G) = dimg B, »(G; Q), foralln=> 2.
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Resonance varieties
» Let G be a group with by (G) < . Let H* = H*(G; C).
» For each ae H', left-multiplication by a yields a cochain complex,

5 5

(H,8,): H° H! H2.

» The resonance varieties of G:
Ri(G) = {aec H' | dimc H'(H,6,) > k}.
» They are homogeneous algebraic subvarieties of the affine space
H' =~ C?(G), Note: 0 € Rx(G) iff by(G) > k.

» Rx(G) contains every isotropic subspace of H' of dimension
< k + 1; moreover, R+(G) is the union of all isotropic planes in H'.

k
» Ri(G) = V(ann(\¥B(G; C)), away from 0.
AR, V26 50555



THEOREM
Let1 - K5 G — Q — 1 be an exact sequence of f.g. groups.
Suppose that either
» The sequence is split exact, gr(G) is quadratic, Q is abelian, and
Q acts trivially on Hy (K, Q).
» The sequence if ab-exact, G and K are 1-formal, and Q is abelian.

» The sequence if abf-exact, G and K are 1-formal, and Q is
torsion-free abelian.
Then *: H'(G,C) — H'(K,C) restricts to maps .*: Rx(G) — Rx(K)
for all k = 1; furthermore, .*: R1(G) — R+(K) is surjective.

COROLLARY
With hypothesis as above, suppose that R1(G) < {0}. Then
» Rq1(K) < {0}.
» On(K) < 0p(G) foralln > 1.
» 0p(G) =0 forn > 0 and 6,(K) = 0 for n » 0.
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Right-angled Artin groups
» Let Gr =(ve V:[v,w] =1if {v,w} € E) be the RAAG
associated to a finite (simple) graph I = (V, E).
» There is a finite K(Gr, 1) which is formal; thus, Gr is 1-formal.

» H*(Gr,Z) is the exterior Stanley—Reisner ring,

AWV*:ve V)/(v¥w*: {v,w} ¢ E).

» (Papadima-S. 2006) h(Gr) = Lie(V)/([v, w] = 0 if {v, w} € E)
and h(Gr) = gr(Gr).

» (Duchamp-Krob 1992, PS06) Each group gr,(Gr) is torsion-free,
of rank ¢, given by

ﬁ 1— "% = Pr(—1),
n=1

where Pr(t) = > -¢ fx (M)t is the clique polynomial of T, with
f () = #{k-cliques in T'}.
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» br/bf = gr(Gr/Gy).

» The graded pieces of gr(Gr/Gf) are torsion-free, with ranks 6,

given by
n t
Z Ont" = (1 —t

where Qr(t) = 225 ci(M)t is the “cut polynomial” of T, with

g = > bo(Tw)

WeV: |W|=j

» R1(Gr) is the union of the coordinate subspaces C" < C" for
which the induced subgraph Iy is disconnected.

» V1(Gr) is the union of the coordinate subtori (C*) < (C*)Y for
which the induced subgraph Iy is disconnected.
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BESTVINA—-BRADY GROUPS

» The Bestvina—Brady group associated to I' is defined as
Nr = ker(m: Gr — Z), where w(v) =1, foreach v e V(I).

» (Meier—Van Wyck 1995) N is finitely generated iff I' is connected.

» (Bestvina—Brady 1997) N is finitely presented iff the flag complex
Ar is simply connected.

» (BB97) A counterexample to either the Eilenberg—Ganea
conjecture or the Whitehead asphericity conjecture can be
constructed from these groups.

» The cohomology ring H* (N, Z) was computed in (Papadima-S.
2007) and (Leary—Saadetoglu 2011).
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THEOREM (PAPADIMA-S. 2007 /2009, S. 2021)
Suppose I is connected. Then
» 1> Nr 5 Gr 5 Z — 1 is a split, ab-exact sequence.

v

gr-2(Nr) = gro»(Gr).
gr-o(Nr/Ny) = gr-o(Gr/Gy).
6k (NF) = dk(Gr) and 6x(NE) = 6x(Gr) for all k > 2.

v

v

v

The map v*: H'(Gr,C*) — H'(Nr, C*) restricts to a surjection,
V1(Gr) = Vi(Nr).

The map v*: H'(Gr,C) — H'(Nr, C) restricts to a surjection,
e R1 (Gr) — R1 (Nr)

v
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The complement of a hyperplane arrangement
» Let A be a central arrangement of m hyperplanes in C¢. For each
H e Alet ay be a linear form with ker(ay) = H; set f = [ [, 4 an-

» The complement, M(A) := (Cd\ Unea H, is a Stein manifold, and
so it has the homotopy type of a (connected) d-dimensional
CW-complex.

» In fact, M = M(.A) has a minimal cell structure. Consequently,
H.(M,Z) is torsion-free (and finitely generated).

» In particular, Hi(M,Z) = Z™, generated by meridians {xy}e.-

» The cohomology ring H*(M, Z) is determined solely by the
intersection lattice, L(.A).

v

M is Q-formal, but not Z,-formal, in general.
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Fundamental groups of arrangements

» For an arrangement A, the group G = w1 (M(A)) admits a finite
presentation, with generators {xy}c4 and commutator-relators.

» V(M) is a finite union of torsion-translated subtori of Tg = (C*)™.
» G/72(G) and G/~3(G) are determined by Lo(A).
» G/v4(G)—and thus G—is not necessarily determined by L >(.A).

» [Porter-S. 2020] Suppose A is decomposable, i.e.,
h3(G) = Dxery(a) ba(Fix|—1). Then all nilpotent quotients are
combinatorially determined.

» Since M is formal, G is 1-formal, i.e., its pronilpotent completion,
m(G), is quadratic.

» Hence, gr(G) ® Q = gr(m(@Q)) is determined by L o(A).
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» The holonomy Lie algebra of G = G(.A) is determined by L.»(.A),

s ) . ~ HeA,Yelr(A)
h(G)_Lle(xH.HeA>/|dea|{[xH,K€§bny] B }

» Then h(G) ® Q = gr(G) ® Q (since Gis 1-formal).

» An explicit combinatorial formula is lacking in general for the LCS
ranks ¢,(@G), although such formulas are known when
o Ais supersolvable = H*(M, Q) is Koszul
o A is decomposable
o A s a graphic arrangement
and in some more cases just for ¢3(G).

» gr,(G) may have torsion (at least for n > 4), but the torsion is not
necessarily determined by L >(.A).

» The map h3(G) — grz(G) is an isomorphism [Porter-S.], but it is
not known whether h3(G) is torsion-free.

» (Papadima-S. 2004) The Chen ranks 6,(G) are determined by
Leo(A).
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The Milnor fibration

\_/a
A
F
» The map f: C? — C restricts to a smooth fibration, f: M — C*,
called the Milnor fibration of A.

» The Milnor fiber is F(A) := f=1(1). The monodromy, h: F — F,is
given by h(z) = €™Mz, where m = | A|.

» F is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension d — 1 (connected if d > 1).

» MHS on F may not be pure; 71 (F) may be non-1-formal [Zuber].

» Hi(F,Z) may have torsion [Yoshinaga].
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» F is the regular, Z,-cover of U = P(M), classified by the
epimorphism 71 (U) — Zm, xy — 1.

» To study =1 (F), we may assume w.l.o.g. that d = 3.

» Let.: F — M be the inclusion. Induced maps on 7+:

]
l
z
\L xXm
1 — m(F) = m(M) =5 2 — 1
\ 1P
m(U)
l
1

» bi(F) = m— 1, and may be computed from V; (U). Combinatorial
formulas are known in some cases (e.g., if P(A) has only double
or triple points [Papadima-S. 2017]), but not in general.
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TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose h..: Hi{(F;Z) — Hy(F;Z) is the identity. Then
> greo(mi(F)) = groo(G).
> groo(mi(F)/mi(F)") = groo(G/G).

THEOREM (S. 2021)
Suppose h,.: Hi(F,Q) — H{(F,Q) is the identity. Then
> groa(mi(F)) @ Q = gr.»(G) ® Q.
> groa(m(F)/m(F)") @ Q = gr2(G/G") ® Q.
» ok(m1(F)) = ¢k (G) and Ok (71 (F)) = 0x(G) for all k = 2.
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Falk’s pair of arrangements

A A

» Both A and A’ have 2 triple points and 9 double points, yet
L(A) % L(A"). Nevertheless, M(A) ~ M(A").

» V1(M) and V;(M’) consist of two 2-dimensional subtori of (C*)8,
corresponding to the triple points; Vo(M) = Vo(M') = {1}.

» Both Milnor fibrations have trivial Z-monodromy.
» V;(F) and V;(F’) consist of two 2-dimensional subtori of (C*)°.
» (S.2017) m1(F) % m (F).

» The difference is picked by the depth-2 characteristic varieties:
VZ(F) = Z3, yet VQ(F/) = {1}
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Yoshinaga’s icosidodecahedral arrangement

» The icosidodecahedron is the convex hull of 30 vertices given by
the even permutations of (0,0, +1) and %(J_ﬂ ,+¢, +¢°), where

¢ =(1++5)/2.

It gives rise to an arrangement of 16 hyperplanes in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

M(A)is a K(G,1).

v

v

Hy(F,7Z) = 7' ® Z». Thus, the algebraic monodromy of the
Milnor fibration is trivial over Q and Z (p > 2), but not over Z.

v

v

Hence, gr(m1(F)) = gr(m (U)), away from the prime 2. Moreover,
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