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N-series

§ An N-series for a group G is a descending filtration
G “ K1 ě ¨ ¨ ¨ ě Kn ě ¨ ¨ ¨ such that rKm,Kns Ď Km`n, @m,n ě 1.

§ In particular, κ “ tKnuně1 is a central series, i.e., rG,Kns Ď Kn`1.

§ Thus, it is also a normal series, i.e., Kn Ÿ G.

§ Consequently, each quotient Kn{Kn`1 lies in the center of G{Kn`1,
and thus is an abelian group.

§ If all those quotients are torsion-free, κ is called an N0-series.

§ Associated graded Lie algebra:

grκpGq “
à

ně1
Kn{Kn`1,

with addition induced by ¨ : G ˆ G Ñ G, and Lie bracket
r , s : grm ˆ grn Ñ grm`n induced by rx , ys :“ xyx´1y´1.
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Lower central series

§ The lower central series, γpGq “ tγnpGquně1 is defined inductively
by γ1pGq “ G, γ2pGq “ G1, and γn`1pGq “ rG, γnpGqs.

§ It is an N-series, and the fastest descending central series for G.

§ If φ : G Ñ H is a homomorphism, then φpγnpGqq Ď γnpHq.

§ grpGq :“ grγpGq is generated by gr1pGq “ Gab.

§ If b1pGq ă 8, the LCS ranks of G are ϕnpGq :“ dimQ grnpGq b Q.

§ For each N-series κ, there is a morphism grpGq Ñ grκpGq.

§ Γn :“ G{γnpGq is the maximal pn ´ 1q-step nilpotent quotient of G.

§ G{γ2pF q “ Gab, while G{γ3pGq Ø Hď2pG,Zq.

§ G is residually nilpotent ðñ γωpGq :“
Ş

ně1 γnpGq is trivial.
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Split exact sequences
§ A short exact sequence of groups,

1 K G Q 1ι π (*)

yields representations φ : Q Ñ OutpK q and φ̄ : Q Ñ AutpKabq.

§ If (*) admits a splitting, σ : Q Ñ G, then G “ K ¸φ Q, where
φ : Q Ñ AutpK q, x ÞÑ conjugation by σpxq.

§ (*) is ab-exact if 0 Kab Gab Qab 0
ιab πab is also exact;

equivalently, Q acts trivially on Kab and ιab is injective.

THEOREM (FALK-RANDELL 1985/88)

Let G “ K ¸φ Q. If Q acts trivially on Kab, then
§ γnpGq “ γnpK q ¸φ γnpQq, for all n ě 1.

§ grpGq “ grpK q ¸φ̃ grpQq, where φ̃ : grpQq Ñ DerpgrpK qq.

§ If K and Q are residually nilpotent, then G is residually nilpotent.
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§ For a split extension G “ K ¸φ Q, Guaschi and de Miranda e
Pereiro define a sequence L “ tLnuně1 of subgroups of K by

L1 “ K , Ln`1 “ xrK ,Lns, rK , γnpQqs, rLn,Qsy.

THEOREM (GUASCHI–PEREIRO 2020)

§ φ : Q Ñ AutpK q restricts to φ : γnpQq Ñ AutpLnq.
§ γnpGq “ Ln ¸φ γnpQq.

LEMMA

L is an N-series for K .

THEOREM

grpGq “ grLpK q ¸φ̃ grpQq, where φ̃ : grpQq Ñ DerpgrpK qq.

REMARK

If Q acts trivially on Kab, then L “ γpK q. So these results generalize
those of Falk and Randell.
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Isolators
§ The isolator in G of a subset S Ď G is the subset

?
S :“

G
?

S “ tg P G | gm P S for some m P Nu

§ Clearly, S Ď
?

S and
a?

S “
?

S. Also, if φ : G Ñ H is a
homomorphism, and φpSq Ď T , then φp

G
?

Sq Ď
H
?

T .

§ The isolator of a subgroup of G need not be a subgroup; for
instance, G

a

t1u “ TorspGq, which is not a subgroup in general
(although it is if G is nilpotent).

§ If N Ÿ G is a normal subgroup, then G
?

N “ π´1pTorspG{Nqq,
where π : G ↠ G{N, and so G

?
N{N – TorspG{Nq.

PROPOSITION (MASSUYEAU 2007)

Suppose κ “ tKnuně1 is an N-series for G. Then
?
κ :“ t

?
Knuně1 is an

N0-series for G.
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The rational lower central series
§ The rational lower central series, γQpGq, is defined by γQ

1pGq “ G
and γQ

n`1pGq “
a

rG, γQ
npGqs. (Stallings, 1965)

§ γQ
npGq “

a

γnpGq for all n ě 1.

§ Hence, γQpGq is an N0-series (since γpGq is an N-series).

§ G{γQ
npGq “ Γn{TorspΓnq is the maximal torsion-free pn ´ 1q-step

nilpotent quotient of G; in particular, G{γQ
2pGq “ Gabf .

§ Associated graded Lie algebra: grQpGq “
À

ně1 γ
Q
npGq{γQ

n`1pGq.

§ G is residually torsion-free nilpotent (RTFN) iff γQ
ωpGq “ t1u.

PROPOSITION (BASS & LUBOTZKY 1994)

§ grpGq Ñ grQpGq has torsion kernel and cokernel in each degree.
§ grpGq b Q Ñ grQpGq b Q is an isomorphism.

§ Thus, if b1pGq ă 8, then ϕQ
npGq “ ϕnpGq
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Split extensions
§ Let G “ K ¸φ Q. Since L is an N-series,

?
L is an N0-series for K .

THEOREM

§ φ : Q Ñ AutpK q restricts to φ : Q
a

γnpQq Ñ Aut
`

K
?

Ln
˘

.

§ G
a

γnpGq “ K
?

Ln ¸φ
Q
a

γnpQq.

§ grQpGq – gr
?

LpK q ¸φ̃ grQpQq.

THEOREM

Suppose Q acts trivially on Kabf :“ H1pK ,Zq{Tors. Then
§ K

?
Ln “ K

a

γnpK q for all n.
§ G

a

γnpGq “ K
a

γnpK q ¸φ
Q
a

γnpQq.
§ grQpQq – grQpK q ¸φ̃ grQpQq.

COROLLARY

Let G “ K ¸ Q be a split extension of RTFN groups. If Q acts trivially
on Kabf , then G is also RTFN.
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Alexander invariants and Chen ranks

§ The Chen Lie algebra of G is grpG{G2q, where G2 “ pG1q1.

§ If b1pGq ă 8, the Chen ranks of G are defined as
θnpGq :“ dimQ grnpG{G2q b Q.

§ θnpGq ď ϕnpGq, with equality for n ď 3.

§ Alexander invariant: BpGq :“ G1{G2, viewed as a ZrGabs-module
via gG1 ¨ xG2 “ gxg´1G2 for g P G and x P G1.

§ (Massey) InBpGq “ γn`2pG{G2q, where I is the augmentation ideal
of ZrGabs, and hence grnpBpGqq – grn`2pG{G2q, for all n ě 0.

§ If b1pGq ă 8, then HilbpgrpBpGq b Qq, tq “
ř

ně0 θn`2pGqtn.
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THEOREM

Suppose 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 is an ab-exact sequence of groups,

and Q is abelian. Then,
§ The induced map on Alexander invariants, Bpιq : BpK q Ñ BpGq,

factors through a ZrKabs-linear isomorphism, BpK q Ñ BpGqι.

§ If Gab is finitely generated, then θnpK q ď θnpGq for all n ě 1.

§ If the sequence is split exact, then ι induces isomorphisms of
graded Lie algebras,

grě2pK q »ÝÑ grě2pGq and grě2pK {K 2q »ÝÑ grě2pG{G2q.

Consequently, if b1pGq ă 8, then ϕnpK q “ ϕnpGq and
θnpK q “ θnpGq for all n ě 2.
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The rational Alexander invariant
§ Let BQpGq :“ G1

Q{G2
Q, viewed as a module over ZGabf , where

G2
Q “ pG1

Qq1
Q “

b

“

G1
Q,G1

Q

‰

.

§ InpBQpGq b Qq “ γQ
n`2pG{G2

Qq b Q, where I “ IQpGabfq.

§ Hence, grnpBQpGq b Qq – grn`2pG{G2
Qq b Q, for all n ě 0.

THEOREM

Let 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 be an abf-exact sequence and suppose Q is

torsion-free abelian. Then,
§ The map ι induces a ZrKabfs-linear isomorphism, BQpK q Ñ BQpGqι.

§ If Gabf is finitely generated, then θnpK q ď θnpGq for all n ě 1.

§ If the sequence is split exact, then ι induces isos of graded Lie
algebras, grQ

ě2pK q »ÝÑ grQ
ě2pGq and grQ

ě2pK {K 2q »ÝÑ grQ
ě2pG{G2q.

˝ Consequently, if b1pGq ă 8, then ϕnpK q “ ϕnpGq and
θnpK q “ θnpGq for all n ě 2.
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Characteristic varieties

§ Let G be a finitely generated group. Then TG :“ HompG,C˚q is an
algebraic group, with identity 1 the trivial character, g ÞÑ 1.

§ Clearly, TG “ TGab
and T0

G “ TGabf
.

§ Characteristic varieties: Vk pGq :“ tρ P TG | dimH1pG,Cρq ě ku.

§ Set Wk pGq :“ Vk pGq X T0
G.

§ For each k ě 1, we have

Vk pGq “ V
`

annp
ŹkBpGq b Cq

˘

Wk pGq “ V
`

annp
ŹkBQpGq b Cq

˘

,

at least away from 1 P T0
G.
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THEOREM

Let 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 be an exact sequence of f.g. groups.

§ If the sequence is ab-exact and Q is abelian, then the map
ι˚ : TG ↠ TK restricts to maps ι˚ : Vk pGq Ñ Vk pK q for all k ě 1;
furthermore, ι˚ : V1pGq Ñ V1pK q is a surjection.

§ If the sequence is abf-exact and Q is torsion-free abelian, then the
map ι˚ : T0

G ↠ T0
K restricts to maps ι˚ : Wk pGq Ñ Wk pK q for all

k ě 1; furthermore, ι˚ : W1pGq Ñ W1pK q is a surjection.
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Holonomy Lie algebra

§ Assume Gabf is finitely generated, and let L “ LiepGabfq be the
free Lie algebra on Gabf , so that L1 “ Gabf and L2 “ Gabf ^ Gabf .

§ The holonomy Lie algebra of G is hpGq :“ LiepGabfq{pimpY_
Gqq,

where Y_
G : H2pGq_ Ñ pH1pGq ^ H1pGqq_ – Gabf ^ Gabf .

§ There is a natural epimorphism hpGq ↠ grpGq, which induces
epimorphisms hpGq{hpGq2 ↠ grpG{G

2

q.

§ Let θ̄npGq :“ rank phpGq{hpGq2qn. Then: θ̄npGq ě θnpGq, @n ě 1.

§ If b1pGq ă 8, we may also define hpG;Qq. If Gabf is finitely
generated, hpG;Qq “ hpGq b Q.

§ The infinitesimal Alexander invariant is BpGq :“ hpGq1{hpGq2,
viewed as a graded module over SympGabfq via g ¨ x̄ “ rg, xs for
g P h{h1 “ Gabf and x P h1.

§ If b1pGq ă 8, then θ̄npGq “ dimQBn´2pG;Qq, for all n ě 2 .
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Resonance varieties

§ Let G be a group with b1pGq ă 8. Let H˚ “ H˚pG;Cq.

§ For each a P H1, left-multiplication by a yields a cochain complex,

pH, δaq : H0 H1 H2.
δ0

a δ1
a

§ The resonance varieties of G:

Rk pGq – ta P H1 | dimC H1pH, δaq ě ku.

§ They are homogeneous algebraic subvarieties of the affine space
H1 – Cb1pGq. Note: 0 P Rk pGq iff b1pGq ě k .

§ Rk pGq contains every isotropic subspace of H1 of dimension
ď k ` 1; moreover, R1pGq is the union of all isotropic planes in H1.

§ Rk pGq “ V pannp
ŹkBpG;Cqq, away from 0.
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THEOREM

Let 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 be an exact sequence of f.g. groups.

Suppose that either
§ The sequence is split exact, grpGq is quadratic, Q is abelian, and

Q acts trivially on H1pK ,Qq.

§ The sequence if ab-exact, G and K are 1-formal, and Q is abelian.

§ The sequence if abf-exact, G and K are 1-formal, and Q is
torsion-free abelian.

Then ι˚ : H1pG,Cq ↠ H1pK ,Cq restricts to maps ι˚ : Rk pGq ↠ Rk pK q

for all k ě 1; furthermore, ι˚ : R1pGq ↠ R1pK q is surjective.

COROLLARY

With hypothesis as above, suppose that R1pGq Ď t0u. Then
§ R1pK q Ď t0u.

§ θ̄npK q ď θ̄npGq for all n ě 1.

§ θ̄npGq “ 0 for n " 0 and θ̄npK q “ 0 for n " 0.
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Right-angled Artin groups
§ Let GΓ “ xv P V : rv ,ws “ 1 if tv ,wu P Ey be the RAAG

associated to a finite (simple) graph Γ “ pV ,Eq.

§ There is a finite K pGΓ,1q which is formal; thus, GΓ is 1-formal.

§ H˚pGΓ,Zq is the exterior Stanley–Reisner ring,
Ź

pv˚ : v P V q{pv˚w˚ : tv ,wu R Eq.

§ (Papadima–S. 2006) hpGΓq “ LiepV q{prv ,ws “ 0 if tv ,wu P Eq

and hpGΓq »ÝÑ grpGΓq.

§ (Duchamp–Krob 1992, PS06) Each group grnpGΓq is torsion-free,
of rank ϕn given by

8
ź

n“1

p1 ´ tnqϕn “ PΓp´tq,

where PΓptq “
ř

kě0 fk pΓqtk is the clique polynomial of Γ, with
fk pΓq “ #tk -cliques in Γu.
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§ hΓ{h2
Γ

»ÝÑ grpGΓ{G2
Γq.

§ The graded pieces of grpGΓ{G2
Γq are torsion-free, with ranks θn

given by
8
ÿ

n“2

θntn “ QΓ

ˆ

t
1 ´ t

˙

,

where QΓptq “
ř

jě2 cjpΓqt j is the “cut polynomial" of Γ, with

cjpΓq “
ÿ

W ĂV : |W |“j

b̃0pΓW q.

§ R1pGΓq is the union of the coordinate subspaces CW Ă CV for
which the induced subgraph ΓW is disconnected.

§ V1pGΓq is the union of the coordinate subtori pC˚qW Ă pC˚qV for
which the induced subgraph ΓW is disconnected.
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BESTVINA–BRADY GROUPS

§ The Bestvina–Brady group associated to Γ is defined as
NΓ “ kerpπ : GΓ Ñ Zq, where πpvq “ 1, for each v P V pΓq.

§ (Meier–Van Wyck 1995) NΓ is finitely generated iff Γ is connected.

§ (Bestvina–Brady 1997) NΓ is finitely presented iff the flag complex
∆Γ is simply connected.

§ (BB97) A counterexample to either the Eilenberg–Ganea
conjecture or the Whitehead asphericity conjecture can be
constructed from these groups.

§ The cohomology ring H˚pNΓ,Zq was computed in (Papadima–S.
2007) and (Leary–Saadetoğlu 2011).
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THEOREM (PAPADIMA–S. 2007/2009, S. 2021)
Suppose Γ is connected. Then

§ 1 Ñ NΓ
ι

ÝÑ GΓ
π
ÝÑ Z Ñ 1 is a split, ab-exact sequence.

§ grě2pNΓq – grě2pGΓq.

§ grě2pNΓ{N2
Γq – grě2pGΓ{G2

Γq.

§ ϕk pNΓq “ ϕk pGΓq and θk pNΓq “ θk pGΓq for all k ě 2.

§ The map ι˚ : H1pGΓ,C˚q ↠ H1pNΓ,C˚q restricts to a surjection,
ι˚ : V1pGΓq ↠ V1pNΓq.

§ The map ι˚ : H1pGΓ,Cq ↠ H1pNΓ,Cq restricts to a surjection,
ι˚ : R1pGΓq ↠ R1pNΓq.
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The complement of a hyperplane arrangement

§ Let A be a central arrangement of m hyperplanes in Cd . For each
H P A let αH be a linear form with kerpαHq “ H; set f “

ś

HPA αH .

§ The complement, MpAq :“ Cd z
Ť

HPA H, is a Stein manifold, and
so it has the homotopy type of a (connected) d-dimensional
CW-complex.

§ In fact, M “ MpAq has a minimal cell structure. Consequently,
H˚pM,Zq is torsion-free (and finitely generated).

§ In particular, H1pM,Zq “ Zm, generated by meridians txHuHPA.

§ The cohomology ring H˚pM,Zq is determined solely by the
intersection lattice, LpAq.

§ M is Q-formal, but not Zp-formal, in general.
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Fundamental groups of arrangements

§ For an arrangement A, the group G “ π1pMpAqq admits a finite
presentation, with generators txHuHPA and commutator-relators.

§ Vk pMq is a finite union of torsion-translated subtori of TG “ pC˚qm.

§ G{γ2pGq and G{γ3pGq are determined by Lď2pAq.

§ G{γ4pGq—and thus G—is not necessarily determined by Lď2pAq.

§ [Porter–S. 2020] Suppose A is decomposable, i.e.,
h3pGq –

À

XPL2pAq h3
`

F|X |´1
˘

. Then all nilpotent quotients are
combinatorially determined.

§ Since M is formal, G is 1-formal, i.e., its pronilpotent completion,
mpGq, is quadratic.

§ Hence, grpGq b Q “ grpmpGqq is determined by Lď2pAq.
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§ The holonomy Lie algebra of G “ GpAq is determined by Lď2pAq,

hpGq “ LiepxH : H P Aq

M

ideal
!”

xH ,
ÿ

K PA,K ĄY

xK

ı

:
HPA,Y PL2pAq

HĄY

)

.

§ Then hpGq b Q »ÝÑ grpGq b Q (since G is 1-formal).

§ An explicit combinatorial formula is lacking in general for the LCS
ranks ϕnpGq, although such formulas are known when

˝ A is supersolvable ñ H˚pM,Qq is Koszul
˝ A is decomposable
˝ A is a graphic arrangement

and in some more cases just for ϕ3pGq.

§ grnpGq may have torsion (at least for n ě 4), but the torsion is not
necessarily determined by Lď2pAq.

§ The map h3pGq Ñ gr3pGq is an isomorphism [Porter–S.], but it is
not known whether h3pGq is torsion-free.

§ (Papadima–S. 2004) The Chen ranks θnpGq are determined by
Lď2pAq.
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The Milnor fibration

A

F

h

F

§ The map f : Cd Ñ C restricts to a smooth fibration, f : M Ñ C˚,
called the Milnor fibration of A.

§ The Milnor fiber is F pAq :“ f ´1p1q. The monodromy, h : F Ñ F , is
given by hpzq “ e2πi{mz, where m “ |A|.

§ F is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension d ´ 1 (connected if d ą 1).

§ MHS on F may not be pure; π1pF q may be non-1-formal [Zuber].

§ H1pF ,Zq may have torsion [Yoshinaga].
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§ F is the regular, Zm-cover of U “ PpMq, classified by the
epimorphism π1pUq ↠ Zm, xH ÞÑ 1.

§ To study π1pF q, we may assume w.l.o.g. that d “ 3.

§ Let ι : F ãÑ M be the inclusion. Induced maps on π1:

1

Z

1 π1pF q π1pMq Z 1

π1pUq

1

ˆm

ι7 f7

p7

§ b1pF q ě m ´ 1, and may be computed from V1
k pUq. Combinatorial

formulas are known in some cases (e.g., if PpAq has only double
or triple points [Papadima–S. 2017]), but not in general.
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TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)
Suppose h˚ : H1pF ;Zq Ñ H1pF ;Zq is the identity. Then

§ grě2pπ1pF qq – grě2pGq.

§ grě2pπ1pF q{π1pF q2q – grě2pG{G2q.

THEOREM (S. 2021)
Suppose h˚ : H1pF ,Qq Ñ H1pF ,Qq is the identity. Then

§ grě2pπ1pF qq b Q – grě2pGq b Q.

§ grě2pπ1pF q{π1pF q2q b Q – grě2pG{G2q b Q.

§ ϕk pπ1pF qq “ ϕk pGq and θk pπ1pF qq “ θk pGq for all k ě 2.
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Falk’s pair of arrangements' $

& %�
�
�
�@

@
@
@

A

' $

& %�
�
�
�
�

A1

§ Both A and A1 have 2 triple points and 9 double points, yet
LpAq fl LpA1q. Nevertheless, MpAq » MpA1q.

§ V1pMq and V1pM 1q consist of two 2-dimensional subtori of pC˚q6,
corresponding to the triple points; V2pMq “ V2pM 1q “ t1u.

§ Both Milnor fibrations have trivial Z-monodromy.

§ V1pF q and V1pF 1q consist of two 2-dimensional subtori of pC˚q5.

§ (S. 2017) π1pF q fl π1pF 1q.

§ The difference is picked by the depth-2 characteristic varieties:
V2pF q – Z3, yet V2pF 1q “ t1u
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Yoshinaga’s icosidodecahedral arrangement

§ The icosidodecahedron is the convex hull of 30 vertices given by
the even permutations of p0,0,˘1q and 1

2p˘1,˘ϕ,˘ϕ2q, where
ϕ “ p1 `

?
5q{2.

§ It gives rise to an arrangement of 16 hyperplanes in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

§ MpAq is a K pG,1q.

§ H1pF ,Zq “ Z15 ‘ Z2. Thus, the algebraic monodromy of the
Milnor fibration is trivial over Q and Zp (p ą 2), but not over Z.

§ Hence, grpπ1pF qq – grpπ1pUqq, away from the prime 2. Moreover,
˝ gr1pπ1pF qq “ Z15 ‘ Z2

˝ gr2pπ1pF qq “ Z45 ‘ Z7
2

˝ gr3pπ1pF qq “ Z250 ‘ Z43
2

˝ gr4pπ1pF qq “ Z1,405 ‘ Z?
2 and h4pπ1pF qq “ Z1,405 ‘ Z20

2 .
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