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Motivation

The powerful standard approach to quantum knot invariants is
through Drinfeld’s quantum double construction:

1. Input: H (Hopf algebra with invertible antipode);

2. D(H) the quantum double (Hopf algebra with universal
R-matrix);

3. Finite dimensional representation h : D(H) → End(V );

4. Evaluation of the universal R-matrix at h;

5. A ribbon element or enhancement;

6. Output: knot/link invariants through the Reshetikhin–Turaev
functor.

Drawback: Commutative and co-commutative Hopf algebras do
not produce non-trivial invariants.
Question: Is there a shorter and/or simpler approach?
Partial answer: The three steps 2–4 can be replaced by the
construction of finite-dimensional Yetter–Drinfel’d modules and
their braided structure.
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Today’s message

A more direct approach towards quantum knot invariants:

1. Input: H (braided Hopf algebra with invertible antipode
endowed with an automorphism);

2. Y (appropriately adapted finite-dimensional Yetter–Drinfel’d
module);

3. Output: End(Y )-valued invariant of long knots.

Remark
Commutative and co-commutative Hopf algebras can produce
non-trivial invariants if they admit non-trivial automorphisms.

Example

Input: two-dimensional super Hopf algebra H = F[x ]/(x2) with
odd primitive generator x endowed with the automorphism
ϕt : H → H, ϕtx = tx , t ∈ F ̸=0.
Output: ∆K (t) idH with the (canonically normalized) Alexander
polynomial ∆K (t).
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Outline

▶ Quantum invariants of long knots

▶ Functorial Hopf objects

▶ Yetter–Drinfel’d functorial objects

▶ Nichols algebras

▶ Analysis of rank 1

▶ An example in rank 2
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Quantum invariants of long knots
A variation of the Reshetikhin–Turaev construction

An (oriented) long knot diagram K is an oriented knot diagram in
R2 with two open ends called “in” and “out”:

K = K
out

in

Examples : K = ; K =

Relation to closed diagrams: K 7→ K

Normalization: diagram K̇ obtained from K by the replacements

7→ and 7→

K is called normal if K = K̇ .

Building blocks: four types of segments , , , and
eight types of crossings

, , , , , , ,
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Rigid R-matrices

An R-matrix over a vector space V : r ∈ Aut(V ⊗ V ) satisfies the
quantum Yang–Baxter relation

r1r2r1 = r2r1r2, r1 := r ⊗ idV , r2 := idV ⊗r .

Assume dimV <∞, B ⊂ V (a basis), {b∗}b∈B ⊂ V ∗ (the dual
basis).

f ∈ End(V ⊗ V ) 7→ partial transpose f̃ : V ∗ ⊗ V → V ⊗ V ∗

f̃ (a∗⊗b) =
∑

c,d∈B
⟨a∗⊗c∗, f (b⊗d)⟩c⊗d∗, f 7→ f̃ = f

R-matrix r is called rigid if r̃±1 are invertible.
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Given r (rigid R-matrix over V , dimV <∞), B ⊂ V (basis), K
(normal long knot diagram), EK (edges of K ), CK (crossings of
K ), s : EK → B (state of K ).
Define the weight of K (in state s) ws(K ) =

∏
c∈CK

ws(c),

a b

c d

,
c a

d b

,
d c

b a
ws7−→ ⟨c∗⊗d∗, r(a⊗b)⟩,

b d

a c
ws7−→

〈
a⊗c∗,

(
r̃−1

)−1
(b⊗d∗)

〉
and likewise for negative crossings with the replacements r ↔ r−1.

Theorem
Let a normal long knot diagram K have an equal number of
negative and positive crossings. Then, the linear map

Jr (K ) : V → V , Jr (K )a =
∑

s∈BEK , sin=a

ws(K )sout

is a knot invariant.

Remark
This construction can be extended to the context of arbitrary
monoidal categories with duality.
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Hopf functorial objects

A functor F : D → C is called functorial object (or f-object) if it is
considered as an object of the functorial category CD with natural
transformations as morphisms.
Consider the group Z as a category/groupoid with one object.
Then, the objects of the functorial category CZ are the pairs (A, ϕ)
where A ∈ Ob(C) and ϕ ∈ Aut(A), and a morphism from (A, ϕ) to
(B, ψ) is a morphism f : A → B of C such that ψf = f ϕ. If C is
braided monoidal then so is CZ.

Definition
Let C be a braided monoidal category. A Hopf functorial object is a
Hopf object H in the braided monoidal category CZ with product
∇ : H ⊗H → H, unit η : I → H, coproduct ∆: H → H ⊗H, counit
ϵ : H → I, and antipode S : H → H.

We will always assume that S is an invertible (functorial)
morphism.
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Yetter–Drinfel’d functorial objects

A left Yetter–Drinfel’d functorial object over a Hopf functorial
object H ∈ Ob(CZ) is a triple (Y , λ, δ) where Y ∈ Ob(CZ), and
morphisms λ : H ⊗ Y → Y , δ : Y → H ⊗ Y are such that (Y , λ) is
a left H-module f-object, (Y , δ) is a left H-comodule f-object, and

(∇⊗ idY )(idH ⊗τY ,H)(δλ⊗ ϕH)(idH ⊗τH,Y )(∆⊗ idY )

= (∇⊗ λ)(idH ⊗τH,H ⊗ idY )(∆⊗ δ)

where ϕH : H → H is the functorial isomorphism that at the unique
object ∗ of Z evaluates as

(ϕH)∗ = H(1) : H(∗) → H(∗).
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A right Yetter–Drinfel’d functorial object over a Hopf functorial
object H ∈ Ob(CZ) is a triple (Y , λ, δ) where Y ∈ Ob(CZ) and
morphisms λ : Y ⊗H → Y , δ : Y → Y ⊗H are such that (Y , λ) is
a right H-module f-object, (Y , δ) is a right H-comodule f-object,
and

(idY ⊗∇)(τH,Y ⊗ idH)(ϕH ⊗ δλ)(τY ,H ⊗ idH)(idY ⊗∆)

= (λ⊗∇)(idY ⊗τH,H ⊗ idH)(δ ⊗∆).
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R-matrices

Let (Y , λ, δ) be a left, respectively right, Yetter–Drinfel’d f-object
over Hopf f-object H. Then

ρ = (λ⊗ idY )(idH ⊗τY ,Y )(δ ⊗ ϕY ),

respectively

ρ = (ϕY ⊗ λ)(τY ,Y ⊗ idH)(idY ⊗δ),

is an R-matrix, that is a solution of the following braid group type
Yang–Baxter relation in the automorphism group Aut(Y ⊗Y ⊗Y ):

(ρ⊗ idY )(idY ⊗ρ)(ρ⊗ idY ) = (idY ⊗ρ)(ρ⊗ idY )(idY ⊗ρ).

Moreover, this R-matrix is rigid if Y is rigid.
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Hopf functorial objects as Yetter–Drinfel’d functorial
objects

Let ∆(2) and ∇(2) be twice iterated coproduct and product.

Proposition

For any Hopf f-object H : Z → C, the triple (H,∇, δ) where

δ := (∇⊗ idH)(idH ⊗τH,H)(idH⊗H ⊗SϕH)∆
(2)

is a left Yetter–Drinfel’d f-object over H.

Proposition

For any Hopf f-object H : Z → C, the triple (H, λ,∆) where

λ := ∇(2)(SϕH ⊗ idH⊗H)(τH,H ⊗ idH)(idH ⊗∆)

is a right Yetter–Drinfel’d f-object over H.
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Tensor algebras

Let now C ⊂ VectF be a braided sub-category. In this case, a Hopf
functorial object and a Yetter–Drinfel’d functorial object will be
respectively called a Hopf functorial algebra and Yetter–Drinfel’d
functorial module.
For any V ∈ Ob(C), the tensor algebra T (V ) is a braided Hopf
algebra where all elements of V are primitive. We say the tensor
algebra T (V ) is of rank n if dim(V ) = n. If the braiding (τC)V ,V is
diagonal with respect to a linear basis B ⊂ V , then the braided
Hopf algebra T (V ) is called of diagonal type. It is Zn

≥0-graded and
admits braided Hopf algebra scaling automorphisms

ϕtb = tbb, ∀b ∈ B, t : B → F ̸=0.

We obtain a Hopf functorial algebra H : Z → C defined by
H(∗) = T (V ) and H(1) = ϕt .
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Nichols algebras

A Nichols algebra over a braided vector space V ∈ Ob C is the
quotient braided Hopf algebra B(V ) = T (V )/J over the maximal
(braided) Hopf algebra ideal J trivially intersecting the part
F⊕ V ⊂ T (V ). Nilpotent Borel parts of Lustig’s small quantum
groups constitute an important class of finite dimensional braided
Hopf algebras in Heckenberger’s classification of Nichols algebras
of diagonal type. Combined with scaling automorphisms, we obtain
a large class of rigid mutiparametric R-matrices. But there are
many more examples in Heckenberger’s list which do not come
from classical Lie algebras.



15

Infinite-dimensional Nichols algebras
Recipes of constructing finite-dimensional Yetter–Drinfel’d f-modules

▶ Left Yetter–Drinfel’d f-modules: look for a vector subspace
W ⊂ B(V ) of elements x with δx = 1⊗ x . Then, take the
quotient space B(V )/B(V )W .

▶ Right Yetter–Drinfel’d f-modules: look for maximal vectors:
λ(x ⊗ y) = 0, y ∈ B(V ). It suffices to solve n equations for
rank n algebra:

λ(x ⊗ xi ) = xxi − tiq(x , xi )xix = 0, i ∈ {1, . . . , n}.
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Rank 1 tensor algebra
T (F) = F[x ] with braiding τ(x ⊗ x) = qx ⊗ x ,

∆x = x1 + x2, x1 := x ⊗ 1, x2 := 1⊗ x , x2x1 = qx1x2,

∆xk =
k∑

m=0

[
k

m

]
q

xk−m ⊗ xm

with the q-binomial coefficients[
k

m

]
q

:=
(q)k

(q)k−m(q)m
, (q)n := (q; q)n =

n∏
i=1

(1− qi ).

The antipode
Sxk = (−1)kqk(k−1)/2xk

and the scaling automorphism

ϕtx
k = tkxk .
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Left Yetter–Drinfel’d f-module
Left coaction

δxk =
k∑

m=0

[
k

m

]
q

(tqm; q)k−mx
k−m ⊗ xm

(x ; q)k :=
k−1∏
i=0

(1− xqi ).

R-matrix

ρ(xk ⊗ x l) =
k∑

m=0

[
k

m

]
q

(tqk−m; q)m(tq
k−m)lx l+m ⊗ xk−m.

When q is a root of unity of order N ∈ Z>1. Then, the primitive
element xN generates a Hopf ideal of F[x ] with finite-dimensional
quotient (Nichols) algebra F[x ]/(xN). The R-matrix in this case
coincides with the R-matrix of Akutsu–Deguchi–Ohtzuki (ADO)
polynomial.
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Right Yetter–Drinfel’d f-module

Right action
λ(xm ⊗ xn) = (tqm; q)nx

m+n.

R-matrix

ρ(xk ⊗ x l) =
l∑

m=0

[
l

m

]
q

(tqk)l−m(tqk ; q)mx
l−m ⊗ xk+m.
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The case of generic q

▶ left Yetter–Drinfel’d f-modules: Choosing t = q1−N with
N ∈ Z>0, we obtain δxN = 1⊗ xN . We have left
Yetter–Drinfel’d f-module F[x ]/(xN) of dimension N. The
corresponding R-matrix is the one of the N-colored Jones
polynomial.

▶ right Yetter–Drinfel’d f-modules: Choosing t = q1−N with

N ∈ Z>0, we have a maximal element xN−1 which generates
an N-dimensional right Yetter–Drinfel’d f-submodule of F[x ]
with linear basis xk , 0 ≤ k ≤ N − 1.
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An example of rank 2 Nichols algebra

Nichols algebra of diagonal type B(V ) = H̃ω, dimV = 2,
τ(xi ⊗ xj) = qi ,jxj ⊗ xi with respect to a basis {x1, x2} ⊂ V with
the braiding matrix of the form

(qi ,j) =

(
−1 q1,2
q2,1 −1

)
, ω := q1,2q2,1.

For generic values of ω, the algebra is presented by the relations
x21 = x22 = 0 with linear basis given by alternating words in letters
x1 and x2.
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The case of roots of unity

Let ω be a root of unity of order N. Then, the primitive element
cN := (x2x1)

N +(−q2,1x1x2)
N generates a Hopf ideal I := H̃ωcNH̃ω

with 4N-dimensional quotient (Nichols) algebra Hω = H̃ω/I .
By taking the scaling automorphism ϕt , ϕtxi = tixi , i ∈ {1, 2}, we
obtain a two-parameter R-matrix corresponding to the left
Yetter–Drinfel’d f-module structure on Hω.
We get a knot invariant MK (Hω, t1, t2) ∈ End(Hω).

Conjecture

There exists a Laurent polynomial (2-variable ADO)

QK (ω, t1, t2) ∈ Z[ω, t1, t−1
1 , t2, t

−1
2 ]

such that
MK (Hω, t1, t2) = QK (ω, t1, t2) idHω .
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The case ω = −1

Eight-dimensional Nichols algebra H−1 (nilpotent Borel part of
small Uq(sl3) at q =

√
−1).

The Laurent polynomial QK (−1, t21 , t
2
2 ) coincides with the

polynomial ∆sl3(t1, t2) (M. Harper, 2020, arXiv:2008.06983).

Conjecture

There exists a polynomial PK (u,w) ∈ Z[u,w ] such that

QK (−1, t1, t2) = PK (u(t1, t2),w(t1, t2)),

u(t1, t2) = zh(t1) + zh(t2)− zh(t1t2)− 2,

w(t1, t2) = zh(t21 t2)+zh(t1t
2
2 )−zh(t1/t2)−2, zh(x) := x+x−1.

It does not distinguish mirror images, and the special case u = 0
reproduces the Alexander–Conway polynomial

PK (0, z
2) = ∇K (z).
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Polynomial PK (u,w) for some knots
K PK (u,w)

31 1 + 4u + u2 + w

41 1− 6u + u2 − w

51 1 + 12u + 19u2 + 8u3 + u4 + (3 + 7u + 3u2)w + w2

52 1 + 10u + 6u2 + 2w

61 1− 10u + 6u2 − 2w

62 1− 8u − 15u2 + 2u3 + u4 + (−1− 9u + u2)w − w2

63 1 + 2u + 15u2 + 6u3 + u4 + (1 + 9u + u2)w + w2

74 (1 + 2u)(1 + 18u) + 4w

88 1 + 10u + 36u2 + 28u3 + 6u4 + 2(1 + 9u + 3u2)w + 2w2

92 1 + 20u + 24u2 + 4w

10129 1 + 10u + 32u2 + 36u3 + 6u4 + 2(1 + 8u + 2u2)w + 2w2

11n34
1 + 12u + 8u2 + 60u3 + 48u4 + 8u5

+2u(1 + 2u)(−1 + 6u)w + 2u2w2

11n42 1 + 12u + 8u2 − 12u3 − 2uw

11n73
1+20u+10u2+4u3+u4+2(1+4u+u2)w+w2

11n74
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The case of generic ω
Finite-dimensional right Yetter–Drinfel’d f-modules over H̃ω

Bi-degree = Z2
≥0-degree of H̃ω.

Degree = Z≥0-degree = sum of the components of bi-degree.
There are no maximal vectors of odd degree.
Maximal vectors of even degree:

vn,α = (x1x2)
n + α(x2x1)

n, α ∈ F

Proposition

Assume 1 ̸∈ ωZ>1 . Then vn,α is a maximal vector if and only if

α = t2(−q1,2)
n, t1t2ω

n = 1

and, if (1− t1)(1− t2) ̸= 0, the right Yetter–Drinfel’d f-module Yn

generated by vn,α is 4n-dimensional given by the linear span of vn,α
and all vectors of degree ≤ 2n − 1.
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Two-variable coloured Jones polynomials

For any n ∈ Z≥1 we obtain an R-matrix over the 4n-dimensional
vector space Yn which produces a knot invariant
WK (Yn, ω, t1) ∈ End(Yn).

Conjecture

There exists a Laurent polynomial

Qn,K (ω, t1) ∈ Z[ω, ω−1, t1, t
−1
1 ] (1)

such that
WK (Yn, ω, t1) = Qn,K (ω, t1) idYn . (2)

Calculations for n = 1 indicate that Q1,K (ω, t1) coincides with the
Links–Gould two-variable knot polynomial coming from the
quantum super algebra Uq(gl(2|1)).


