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Overview

Idea: rigorous proof of a Dehn surgery formula for the 3D index.

® hyperbolic geometry in dimension 3

the DGG 3D index

Dehn surgery

the proof

® applications & open questions



Introduction

In what follows, M = compact, connected, orientable 3-manifold
with OM = c tori (e.g. link complement).

M can be described via an ideal triangulation:
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Thurston's Gluing equations
Edge equations (how tetrahedra fit together)

Z log(z;) = 2mi
i=1

Completeness equations (holonomy)

VYo C OM Zfi log(z;) =0

Can be read off SnapPy's gluing equations() command.



Thurston's Gluing equations
Edge equations (how tetrahedra fit together)

Z log(z;) = 2mi
i=1

Completeness equations (holonomy)

VYo C OM Zei log(z) =0

Can be read off SnapPy's gluing equations() command.

Pachner moves
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Normal surfaces

Surfaces intersecting each tetrahedron in a ‘straight’ disk.

3

Can be described as N-solutions of a linear system in (R3+4)".



3D index

The 3D-index is an ‘invariant’ of cusped 3-manifolds introduced
by the physicists Dimofte-Gaiotto-Gukov in 2011, which contains
much information about the topology/geometry of the manifold.

M ~ Tyr+'boundary data’ v ~ I7. (q) € Z[q?]



3D index

The 3D-index is an ‘invariant’ of cusped 3-manifolds introduced
by the physicists Dimofte-Gaiotto-Gukov in 2011, which contains
much information about the topology/geometry of the manifold.

M ~ Tyr+'boundary data’ v ~ I7. (q) € Z[q?]

Encodes and detects many geometric/topological properties of M:
® hyperbolicity
® is a “generating function” over normal surfaces
e coefficients related to the topology of M

e connections with A polynomials



Definition
The tetrahedral index In: 72 — Z[[q%]] is defined by

o0 %n(n—&-l)—(n—i—%e)m
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where (a;q)n, = H(l — aq’) is a g-Pochhammer symbol.
=0
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A more symmetric version is given by
Ja(a,b,¢) = (=/q)In(b — ¢c,a — b) for a,b,c € Z,

which is invariant under all permutations of its arguments.



Definition
The tetrahedral index In: 72 — Z[[q%]] is defined by

o0 %n(n—&-l)—(n—i—%e)m

_ ot r
sl =" >, (-1 (@) (@ Qe fo

n=max{0,—e}

n—1
where (a;q)n, = H(l — aq’) is a g-Pochhammer symbol.
=0

A more symmetric version is given by
Ja(a,b,¢) = (=/q)In(b — ¢c,a — b) for a,b,c € Z,
which is invariant under all permutations of its arguments.
Remark
g 7 (¢°q)
(¢ 4)oc

(In this form it is a specialised Hahn-Exton ¢-Bessel function)

0 _
In(m,e) = =191 [qu;q, q" m] .




g-hypergeometric series

Definition
For 0 < g < 1, define

ar ... Gr = (alw'-?ar;q)n n (n) e n
rPs 4, = -1
¢ [bl bsqz] Z(bla'--,bS,q;q)n(( )q2> z

n=0

where

m

n—1
=[] (1 —aq’) and (as, ..., am; n = [ [ (as; @)n-
=0

=1




g-hypergeometric series

Definition
For 0 < g < 1, define
ax ar, _
’r’¢8 |:b]_ bs, Q7 Z:| -
where
n—1

(a17' .- 7a7‘;q)n
(bla .. '7b8aq; q)n

i ((_1)nq(g)>1+s—r "

n=0

m

(@;q)n = [[(1 = ag’) and (a1, .., am; @)n = [ [ (a5 0)n-

=1

i=0
Example:

Z,n
eq(2) = Z @ =100

n>0

[O;q, z] = then lim e4(z) = €*
_ e

(23 9) o0




Some useful identities

® symmetry In(m,e) = In(—e, —m)
® 3 term relations
q%IA(m +1, 6) -+ q_%IA(m7 e+ 1) - IA(m7 6) =0 (1)
g2 Ia(m —1,e) + ¢ 2 Ia(m,e — 1) — In(m,e) =0
® quadratic identity
Z In(m,e)In(m, e+ c)q® = dcp,
eEZ
® pentagon identity

> qIa(my, e+ 21)Ia(ma, e + 32)Ia (M + My, e + 73) =
eEZ

q Ia(my — 22 + 23,21 — x3)Ia (M2 — 21 + 23, T2 — T3).



Definition of the 3D-index

Tar = ideal triangulation of M with n tetrahedra and set of n
edges denoted by £.
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e in T this gives a weight on each edge of each tetrahedron A;.
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e Each k : £ — Z assigns an integer weight k(e) to each edge class
e in T this gives a weight on each edge of each tetrahedron A;.

e Add up these weights on each pair of opposite edges in A; to
get a vector of quad weights q;(k) = (a;(k),b;(k),c;(k)) € Z3.



Definition of the 3D-index

Tar = ideal triangulation of M with n tetrahedra and set of n
edges denoted by £.

e Each k : £ — Z assigns an integer weight k(e) to each edge class
e in T this gives a weight on each edge of each tetrahedron A;.

e Add up these weights on each pair of opposite edges in A; to
get a vector of quad weights q;(k) = (a;(k),b;(k),c;(k)) € Z3.

Definition

) = > " ] Jales(k)
j=1

k:E—Z,
k|1 =0

where k(E) =" ¢ k(e) and £ is a suitable choice of r edges.
(For » =1 any edge is suitable.)




More generally:

n
D= )Y ¢ H k) +7;)
k:E—Z, Jj=1
klgr=0

where v; = (a;(7),b;(7), ¢;j(7)) € Z* depends on v € H{(OM;Z). )




More generally:

I;’(Q) = Z H k) + ;)

k:E—Z,
klgr=0

where v; = (a;j(7),bj(7),¢j(7)) € Z3 depends on v € H1(0M;Z).

Note:

® The coefficients a;, b;, c; in these expressions can be read off
easily from the gluing equations for 7 given by SnapPy.
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More generally:

I;’(Q): Z H k) +7;)

k:E—Z,
klgr=0

where v; = (a;j(7),bj(7),¢j(7)) € Z3 depends on v € H1(0M;Z).

Note:

® The coefficients a;, b;, c; in these expressions can be read off
easily from the gluing equations for 7 given by SnapPy.

* With our conventions, I7(q) is defined for
v E K = ker(Hl(ﬁM,Z) = H1<M,Z2))

® Physics predicts that /7 should be a topological invariant of
M. However, it is not defined for all triangulations 7!



Example: complement of 4,

®- P

| edge/curve [ weight | a1 | b1 [ e [ az | by |
e k 2 1 0 2 1
es 0 0 1 2 0 1
2u x 0 0 1 -1 0
oA I, T 0 | 0 | 0| 2 | 0o |2




Example: complement of 4,

®- P

| edge/curve [ weight [ a1 | b1 [ e [ az | by | 2|
e1 k 2 1 0 2 1 0
€ 0 0 1 2 0 1 2
2u x 0 0 1 -1 0 0
oA I, T 0 | 0 | 0| 2 | 0o |2

Hence, for x,y € Z,

I7(g) = > " Ia(2k,k,2)Ia(2k -z +y, k, —y)
kEZ
=Y Ia(k— 2, B)Ia(k+y k— 2 +y).
kEZ



Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

* I7(q) is well-defined (for all ~) iff T is I-efficient (i.e. no
embedded normal spheres and tori except peripheral tori.)
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Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

* I7(q) is well-defined (for all ) iff T is I-efficient (i.e. no
embedded normal spheres and tori except peripheral tori.)

* I7(q) is invariant under 2-3 moves, 0-2 moves if all
triangulations are 1-efficient.

* If M is hyperbolic we get a topological invariant I,(q).

* Can write I (q) as a sum over singular Q-normal surfaces in
T with boundary .



Dehn surgery

v(K) = S' x D?

(@)

(VA




3D-index and Dehn filling

In 2018, the physicists D. Gang and K. Yonekura proposed a
formula giving the 3D-index for Dehn fillings on a cusped
3-manifold M.

The Gang-Yonekura formula gives the 3D-index for M () as an
infinite linear combination of the 3D-indices I},(q) for M over
boundary classes v having intersection number 0 or + 2 with .



3D-index and Dehn filling

In 2018, the physicists D. Gang and K. Yonekura proposed a
formula giving the 3D-index for Dehn fillings on a cusped
3-manifold M.

The Gang-Yonekura formula gives the 3D-index for M () as an
infinite linear combination of the 3D-indices I},(q) for M over
boundary classes v having intersection number 0 or + 2 with .

If K =ker(Hy(T;Z) — H1(M;Zs)), || = # components of ~:

hue(@=3( ¥ 0P+ - ¥ )

yeK yeEK
~-a=0 y-a==£2




Main result

We wanted to show that this formula holds for Dehn fillings on
some (but not all!) cusps of a multi-cusped manifold.

Theorem [CHR]

Let M be a compact orientable 3-manifold with boundary
consisting of at least 2 tori, and let 7' be one component of M.
Let Tys be a I-efficient triangulation with a standard cusp at T.

Given a surgery curve o« C T, let T («) be the ideal triangulation of
M () obtained from 7T by replacing the standard cusp by the
layered solid torus with « bounding a meridian disc.

Then the Gang-Yonekura formula holds for the triangulations T
and T («) for all a with at most 3 exceptions.




Corollary [CHR]

Let M be a cusped hyperbolic 3-manifold with at least two cusps,
and assume that one cusp T has a generic shape, i.e. the
corresponding Euclidean torus is not rectangular. Then the
Gang-Yonekura formula holds for almost all Dehn fillings M («).




Corollary [CHR]

Let M be a cusped hyperbolic 3-manifold with at least two cusps,
and assume that one cusp T has a generic shape, i.e. the
corresponding Euclidean torus is not rectangular. Then the
Gang-Yonekura formula holds for almost all Dehn fillings M («).

Proof: By first expanding the cusp at 7" until it bumps into itself,
then expanding the other cusps, we obtain a canonical
(Epstein-Penner) ideal triangulation 7 with a standard cusp at T
Then work of Guéritaud-Schleimer shows that for almost all o, the
corresponding canonical triangulation of M («) is isomorphic to the
triangulation 7 (a).

So we obtain Ij; = I7 and IM(a) = IT(a)- L]



Explanation of the theorem

A standard cusp has a triangulation by two ideal tetrahedra:

Theorem [Howie-Mathews-Purcell] (paraphrased)

If there’s more than one cusp, there exists a triangulation where all
but one cusps are standard.




Layered solid tori

e start with two triangles
giving a torus,

e add layers of tetrahedra ‘

on top to get a

triangulation of 72 x [0, 1], V\L y

e “fold up” the bottom
torus T2 x 0 onto a torus
Mobius strip.

. . *fold
e This gives a solid torus
(which is a neighbourhood
of the M&bius strip). Mébius strip



Layered triangulations of the solid torus are parameterised by finite
words in the alphabet {L, R} giving triangles in the Farey
tessellation (related to continued fraction expansion).




Gluing formulas and relative index

Let 7 be an ideal triangulation of M and 7y be a union of
triangles in T splitting 7 into triangulations 71, 75 of submanifolds
My, M> respectively.

Let £ be the set of all edges of T,
&’ a collection of r edges “omitted” in computing the index of T,
& the set of edges in 7;, and &/ = & N¢E".



Relative index

For any prescribed v € K C H1(0OM;7Z) and “boundary weights”
bo : Eg — Z with bo’gé = 0 we define relative indices for i = 1,2 by

n

k(E:\&o)
(gbo) = ) ¢"&\&) H k) +75)
k:é’,‘aZ =
klgr=0,
kley=bo

where k(& \ &) = zee&\fo k(e).




Relative index

For any prescribed v € K C H1(0OM;7Z) and “boundary weights”
bo : &g — 7Z with b()’g(/) = 0 we define relative indices for i = 1,2 by

n

Fgbo) = > ") T Jalg; (k) + )
k:&—Z, j=1
klE’,:()?
klg, =bo

where k(& \ &) = Zee&\fo k(e).

Gluing formula

IHg) = > ¢"®) I (g:bo) I3, (q; bo)
bo:E0—7,
bo|€4=0

where by(&p) = > _.cg, bole).




Local version

By the gluing formula, it suffices to show:
relative index of a layered solid torus = Gang-Yonekura formula
applied to the relative index of a standard cusp.



Local version

By the gluing formula, it suffices to show:

relative index of a layered solid torus = Gang-Yonekura formula
applied to the relative index of a standard cusp.

Proof of this local version:

e Use induction on the number of tetrahedra in the solid torus.

e Inductive step is proved using the pentagon identity.

e The base case (much harder for us!) needs some new algebraic
identities.



Base case: LST(1,1,2)
Theorem [CHR]
For every b = (by, by) € Z2,

72 "+ a7 "Gy (k, k) — Gy(k, k+1) — Gy(k, k —1) = ¢ "6, 1,
kEZ

where Gb(e,m) = IA(e —bi,m+ bg)IA(—e —by,—m+ b2).




Base case: LST(1,1,2)

Theorem [CHR]
For every b = (by, by) € Z2,

,Z "+ a7 )Gk, k) — Gy(k, k+1) — Gy(k,k — 1) = ¢ "6y, 4,
kEZ

where Gb(e,m) = IA(e —bi,m+ bg)IA(—e —by,—m+ bg).

Sketch of Proof: First introduce the “diagonal” generating
functions:

q) = ZIA(e —r,e)z% where r € Z.
eEZ

Then the LHS in the theorem is the coefficient of 2° in

1

_ 1 _ 1
zm 2 (sw(zqz,q}gor(zq 2,q) — er1(2, Qpr-1(2, q)>,

where r = by + bs.



A meromorphic approach

To study ¢, (2, q), we begin with Garoufalidis-Kashaev's
meromorphic 3D index:

Definition

W q) = e(q) F Do (C40 Qoo (—az0 11 0)o

(=02 @)oo (W @)oo (W2™H¢)oe

—\2
where ¢(q) = %.



A meromorphic approach

To study ¢, (2, q), we begin with Garoufalidis-Kashaev's
meromorphic 3D index:

Definition

(271 @)oo (—qw; @)oo (—qzw ™15 ¢) oo
(=020 (W @)oo (w21 q)00

0(z,w,q) = c(q)

)

—\2
where ¢(q) = %.

Theorem [Garoufalidis-Kashaev|

(2, w,q) = Z (—q)¢Ia(m,e)(q*)z w™

e,mEZL




We then extract the “diagonal series” ¢, (z,q) as a complex line

integral, and use Cauchy'’s residue theorem to express this as an
infinite sum of residues:

or(z0) = Y (-0 Iale—r, (@) = o [ 40 (5,2) 2

ecZ 2 Jisl=p

where 1 < |£U|% < p < min{|zl,[¢7"[}.



We then extract the “diagonal series” ¢, (z,q) as a complex line
integral, and use Cauchy's residue theorem to express this as an
infinite sum of residues:

or(z0) = Y0 Iale—r, (@) = 5 [ 49 (5,2) &2

cez 2m lsi=p

where 1 < ‘l‘|% < p < min{|z|,|¢7[}.
Theorem [CHR]
or(z,q) =

1.r -1 -
uqz)m[wa O

r—1

()7 q >




After further manipulations we can apply a g-analogue of the
Pythagoras theorem proved by F. Stampach to obtain:

Proposition [CHR]
Forre€Zand z,q € C,|q| < 1

1

or(2q2,q)er(2q

1 _1
2,q) — or1(2,Q)pr-1(2,q) = 2"q 2"
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1

or(2q2,q)er(2q

1 _1
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This completes the proof of our main theorem.



After further manipulations we can apply a g-analogue of the
Pythagoras theorem proved by F. Stampach to obtain:

Proposition [CHR]
ForreZand z,q € C,|q| <1

1

or(2q2,q)er(2q

1 _1
2,q) — pr1(2, Q)pr—1(2,q) = 2"q 2"

This completes the proof of our main theorem.

Corollary

If r € Z is even, then:

> (V) Iale —re) =1
ecZ

If r € Z is odd, then:
D (=q)Iale—r,e) =1

e€Z




Example: 3D-index for alternating torus knots

(1,n)

Using some of our identities for the tetrahedral index and applying
the Gang-Yonekura formula we can show

few = [1 i () is a muttiple of (~2(20 —1),1)
T(2n—1,2) 0 otherwise



Asymptotic stability formula

Let «, B be homology classes of dual simple closed curves on
T COMwitha¢ K,pe K, (eg. a=u,5=2N\).

Theorem [CHR]
Let o, = o+ npB for n € Z. Then:

lim Tysan (@) = 13:(q) — I3] (q).

n—oo

Crucially, the result depends on the ‘direction’ we choose, unlike in
Thurston's hyperbolic filling theorem!



Asymptotic stability formula

Let «, B be homology classes of dual simple closed curves on
TCOMwitha¢ K,pe K, (eg. a=p,B=2A).
Theorem [CHR]

Let o, = o+ np for n € Z. Then:

lim Tysan (@) = 13:(q) — I3] (q).

n—oo

Crucially, the result depends on the ‘direction’ we choose, unlike in
Thurston's hyperbolic filling theorem!

Surgeries on the Whitehead link

L1 —d4g+ > +16¢% +22¢* + ¢° — 72¢° — 158¢" + ...

n

nl—q—q>+4¢>+6¢*+5¢° —11¢5 —32¢" + ...




Closed manifolds?

The index is not defined for closed manifolds. Using
Gang-Yonekura's formula, we can try to force a definition!

It appears to detect non-hyperbolic surgeries:

Sg(41) ~ 1

Sp(4) ~ 1

S5(41) ~ 1

S3(41) ~ 1

S3(41) ~ o00—2¢>—2¢3 —4¢* —4¢° +. ..
S341) ~ 1-g—-2¢*— @ —¢*+¢°+...
Sgr) ~ 1—qa—¢P? - =P+ P2+ ..

(Note the infinite constant term for (4, 1)-surgery!)



Closed manifolds?

The index is not defined for closed manifolds. Using
Gang-Yonekura's formula, we can try to force a definition!

It appears to detect non-hyperbolic surgeries:

Sg(41) ~ 1

Sp(4) ~ 1

S5(41) ~ 1

S3(41) ~ 1

S3(41) ~ o00—2¢>—2¢3 —4¢* —4¢° +. ..
S341) ~ 1-g—-2¢*— @ —¢*+¢°+...
Sgr) ~ 1—qa—¢P? - =P+ P2+ ..

(Note the infinite constant term for (4, 1)-surgery!)






