

The 3D index and Dehn surgery

joint work with C. Hodgson and H. Rubinstein
Moduli \& Friends seminar

Daniele Celoria

Overview

Idea: rigorous proof of a Dehn surgery formula for the 3D index.

- hyperbolic geometry in dimension 3
- the DGG 3D index
- Dehn surgery
- the proof
- applications \& open questions

Introduction

In what follows, $M=$ compact, connected, orientable 3-manifold with $\partial M=c$ tori (e.g. link complement).
M can be described via an ideal triangulation:

Thurston's Gluing equations

Edge equations (how tetrahedra fit together)

$$
\sum_{i=1}^{n} \log \left(z_{i}\right)=2 \pi i
$$

Completeness equations (holonomy)

$$
\forall \sigma \subset \partial M \sum_{i} \epsilon_{i} \log \left(z_{i}\right)=0
$$

Can be read off SnapPy's gluing_equations() command.

Thurston's Gluing equations

Edge equations (how tetrahedra fit together)

$$
\sum_{i=1}^{n} \log \left(z_{i}\right)=2 \pi i
$$

Completeness equations (holonomy)

$$
\forall \sigma \subset \partial M \sum_{i} \epsilon_{i} \log \left(z_{i}\right)=0
$$

Can be read off SnapPy's gluing_equations() command.

Pachner moves

Normal surfaces

Surfaces intersecting each tetrahedron in a 'straight' disk.

Can be described as \mathbb{N}-solutions of a linear system in $\left(\mathbb{R}^{3+4}\right)^{n}$.

3 D index

The 3D-index is an 'invariant' of cusped 3-manifolds introduced by the physicists Dimofte-Gaiotto-Gukov in 2011, which contains much information about the topology/geometry of the manifold.

$$
M \rightsquigarrow \mathcal{T}_{M}+\text { 'boundary data' } \gamma \rightsquigarrow I_{\mathcal{T}_{M}}^{\gamma}(q) \in \mathbb{Z} \llbracket q^{\frac{1}{2}} \rrbracket
$$

3 D index

The 3D-index is an 'invariant' of cusped 3-manifolds introduced by the physicists Dimofte-Gaiotto-Gukov in 2011, which contains much information about the topology/geometry of the manifold.

$$
M \rightsquigarrow \mathcal{T}_{M}+\text { 'boundary data' } \gamma \rightsquigarrow I_{\mathcal{T}_{M}}^{\gamma}(q) \in \mathbb{Z} \llbracket q^{\frac{1}{2}} \rrbracket
$$

Encodes and detects many geometric/topological properties of M :

- hyperbolicity
- is a "generating function" over normal surfaces
- coefficients related to the topology of M
- connections with \hat{A} polynomials

Definition

The tetrahedral index $I_{\Delta}: \mathbb{Z}^{2} \rightarrow \mathbb{Z} \llbracket q^{\frac{1}{2}} \rrbracket$ is defined by

$$
I_{\Delta}(m, e)(q)=\sum_{n=\max \{0,-e\}}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)-\left(n+\frac{1}{2} e\right) m}}{(q ; q)_{n}(q ; q)_{n+e}} \text { for }
$$

where $(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$ is a q-Pochhammer symbol.

Definition

The tetrahedral index $I_{\Delta}: \mathbb{Z}^{2} \rightarrow \mathbb{Z} \llbracket q^{\frac{1}{2}} \rrbracket$ is defined by

$$
I_{\Delta}(m, e)(q)=\sum_{n=\max \{0,-e\}}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)-\left(n+\frac{1}{2} e\right) m}}{(q ; q)_{n}(q ; q)_{n+e}} \text { for }
$$

where $(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$ is a q-Pochhammer symbol.
A more symmetric version is given by

$$
J_{\Delta}(a, b, c)=(-\sqrt{q})^{-b} I_{\Delta}(b-c, a-b) \text { for } a, b, c \in \mathbb{Z}
$$

which is invariant under all permutations of its arguments.

Definition

The tetrahedral index $I_{\Delta}: \mathbb{Z}^{2} \rightarrow \mathbb{Z} \llbracket q^{\frac{1}{2}} \rrbracket$ is defined by

$$
I_{\Delta}(m, e)(q)=\sum_{n=\max \{0,-e\}}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)-\left(n+\frac{1}{2} e\right) m}}{(q ; q)_{n}(q ; q)_{n+e}} \text { for }
$$

where $(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$ is a q-Pochhammer symbol.
A more symmetric version is given by

$$
J_{\Delta}(a, b, c)=(-\sqrt{q})^{-b} I_{\Delta}(b-c, a-b) \text { for } a, b, c \in \mathbb{Z}
$$

which is invariant under all permutations of its arguments.
Remark

$$
I_{\Delta}(m, e)=\frac{q^{-\frac{m e}{2}}\left(q^{e+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}{ }_{1} \phi_{1}\left[\begin{array}{c}
0 \\
q^{e+1} ; q, q^{1-m}
\end{array}\right] .
$$

(In this form it is a specialised Hahn-Exton q-Bessel function)

q-hypergeometric series

Definition
For $0<q<1$, define
${ }_{r} \phi_{s}\left[\begin{array}{lll}a_{1} & \ldots & a_{r} \\ b_{1} & \ldots & b_{s}\end{array} q, z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s}, q ; q\right)_{n}}\left((-1)^{n} q^{\binom{n}{2}}\right)^{1+s-r} z^{n}$
where

$$
(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right) \text { and }\left(a_{1}, \ldots, a_{m} ; q\right)_{n}=\prod_{i=1}^{m}\left(a_{i} ; q\right)_{n}
$$

q-hypergeometric series

Definition
For $0<q<1$, define
${ }_{r} \phi_{s}\left[\begin{array}{lll}a_{1} & \ldots & a_{r} \\ b_{1} & \ldots & b_{s}\end{array} ; q, z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s}, q ; q\right)_{n}}\left((-1)^{n} q^{\binom{n}{2}}\right)^{1+s-r} z^{n}$
where

$$
(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right) \text { and }\left(a_{1}, \ldots, a_{m} ; q\right)_{n}=\prod_{i=1}^{m}\left(a_{i} ; q\right)_{n}
$$

Example:
$e_{q}(z)=\sum_{n \geq 0} \frac{z^{n}}{(q ; q)_{n}}={ }_{1} \phi_{0}\left[\begin{array}{c}0 \\ - \\ \left.-q, z]=\frac{1}{(z ; q)_{\infty}} \text { then } \lim _{q \rightarrow 1^{-}} e_{q}(z)=e^{z}{ }^{z}{ }^{2}\right]\end{array}\right.$

Some useful identities

- symmetry $I_{\Delta}(m, e)=I_{\Delta}(-e,-m)$
- 3 term relations

$$
\begin{align*}
& q^{\frac{e}{2}} I_{\Delta}(m+1, e)+q^{-\frac{m}{2}} I_{\Delta}(m, e+1)-I_{\Delta}(m, e)=0 \\
& q^{\frac{e}{2}} I_{\Delta}(m-1, e)+q^{-\frac{m}{2}} I_{\Delta}(m, e-1)-I_{\Delta}(m, e)=0 \tag{1}
\end{align*}
$$

- quadratic identity

$$
\sum_{e \in \mathbb{Z}} I_{\Delta}(m, e) I_{\Delta}(m, e+c) q^{e}=\delta_{c, 0}
$$

- pentagon identity

$$
\begin{aligned}
& \sum_{e \in \mathbb{Z}} q^{e} I_{\Delta}\left(m_{1}, e+x_{1}\right) I_{\Delta}\left(m_{2}, e+x_{2}\right) I_{\Delta}\left(m_{1}+m_{2}, e+x_{3}\right)= \\
& q^{-x_{3}} I_{\Delta}\left(m_{1}-x_{2}+x_{3}, x_{1}-x_{3}\right) I_{\Delta}\left(m_{2}-x_{1}+x_{3}, x_{2}-x_{3}\right) .
\end{aligned}
$$

Definition of the 3D-index

$\mathcal{T}_{M}=$ ideal triangulation of M with n tetrahedra and set of n edges denoted by \mathcal{E}.

Definition of the 3D-index

$\mathcal{T}_{M}=$ ideal triangulation of M with n tetrahedra and set of n edges denoted by \mathcal{E}.

- Each $k: \mathcal{E} \rightarrow \mathbb{Z}$ assigns an integer weight $k(e)$ to each edge class e in \mathcal{T}; this gives a weight on each edge of each tetrahedron Δ_{j}.

Definition of the 3D-index

$\mathcal{T}_{M}=$ ideal triangulation of M with n tetrahedra and set of n edges denoted by \mathcal{E}.

- Each $k: \mathcal{E} \rightarrow \mathbb{Z}$ assigns an integer weight $k(e)$ to each edge class e in \mathcal{T}; this gives a weight on each edge of each tetrahedron Δ_{j}.
- Add up these weights on each pair of opposite edges in Δ_{j} to get a vector of quad weights $q_{j}(k)=\left(a_{j}(k), b_{j}(k), c_{j}(k)\right) \in \mathbb{Z}^{3}$.

Definition of the 3D-index

$\mathcal{T}_{M}=$ ideal triangulation of M with n tetrahedra and set of n edges denoted by \mathcal{E}.

- Each $k: \mathcal{E} \rightarrow \mathbb{Z}$ assigns an integer weight $k(e)$ to each edge class e in \mathcal{T}; this gives a weight on each edge of each tetrahedron Δ_{j}.
- Add up these weights on each pair of opposite edges in Δ_{j} to get a vector of quad weights $q_{j}(k)=\left(a_{j}(k), b_{j}(k), c_{j}(k)\right) \in \mathbb{Z}^{3}$.

Definition

$$
I_{\mathcal{T}}^{0}(q)=\sum_{\substack{k: \mathcal{E} \rightarrow \mathbb{Z},\left.k\right|_{\mathcal{E}^{\prime}}=0}} q^{k(\mathcal{E})} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)\right)
$$

where $k(\mathcal{E})=\sum_{e \in \mathcal{E}} k(e)$ and \mathcal{E}^{\prime} is a suitable choice of r edges. (For $r=1$ any edge is suitable.)

More generally:

$$
I_{\mathcal{T}}^{\gamma}(q)=\sum_{\substack{k: \mathcal{E} \rightarrow \mathbb{Z},\left.k\right|_{\mathcal{E}^{\prime}}=0}} q^{k(\mathcal{E})} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $\gamma_{j}=\left(a_{j}(\gamma), b_{j}(\gamma), c_{j}(\gamma)\right) \in \mathbb{Z}^{3}$ depends on $\gamma \in H_{1}(\partial M ; \mathbb{Z})$.

More generally:

$$
I_{\mathcal{T}}^{\gamma}(q)=\sum_{\substack{k: \mathcal{E} \rightarrow \mathbb{Z},\left.k\right|_{\mathcal{E}^{\prime}}=0}} q^{k(\mathcal{E})} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $\gamma_{j}=\left(a_{j}(\gamma), b_{j}(\gamma), c_{j}(\gamma)\right) \in \mathbb{Z}^{3}$ depends on $\gamma \in H_{1}(\partial M ; \mathbb{Z})$.

Note:

- The coefficients a_{j}, b_{j}, c_{j} in these expressions can be read off easily from the gluing equations for \mathcal{T} given by SnapPy.

More generally:

$$
I_{\mathcal{T}}^{\gamma}(q)=\sum_{\substack{k: \mathcal{E} \rightarrow \mathbb{Z},\left.k\right|_{\mathcal{E}^{\prime}}=0}} q^{k(\mathcal{E})} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $\gamma_{j}=\left(a_{j}(\gamma), b_{j}(\gamma), c_{j}(\gamma)\right) \in \mathbb{Z}^{3}$ depends on $\gamma \in H_{1}(\partial M ; \mathbb{Z})$.

Note:

- The coefficients a_{j}, b_{j}, c_{j} in these expressions can be read off easily from the gluing equations for \mathcal{T} given by SnapPy.
- With our conventions, $I_{\mathcal{T}}^{\gamma}(q)$ is defined for

$$
\gamma \in K=\operatorname{ker}\left(H_{1}(\partial M ; \mathbb{Z}) \rightarrow H_{1}\left(M ; \mathbb{Z}_{2}\right)\right)
$$

More generally:

$$
I_{\mathcal{T}}^{\gamma}(q)=\sum_{\substack{k: \mathcal{E} \rightarrow \mathbb{Z},\left.k\right|_{\mathcal{E}^{\prime}}=0}} q^{k(\mathcal{E})} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $\gamma_{j}=\left(a_{j}(\gamma), b_{j}(\gamma), c_{j}(\gamma)\right) \in \mathbb{Z}^{3}$ depends on $\gamma \in H_{1}(\partial M ; \mathbb{Z})$.

Note:

- The coefficients a_{j}, b_{j}, c_{j} in these expressions can be read off easily from the gluing equations for \mathcal{T} given by SnapPy.
- With our conventions, $I_{\mathcal{T}}^{\gamma}(q)$ is defined for

$$
\gamma \in K=\operatorname{ker}\left(H_{1}(\partial M ; \mathbb{Z}) \rightarrow H_{1}\left(M ; \mathbb{Z}_{2}\right)\right)
$$

- Physics predicts that $I_{\mathcal{T}}$ should be a topological invariant of M. However, it is not defined for all triangulations \mathcal{T} !

Example: complement of 4_{1}

edge/curve	weight	a_{1}	b_{1}	c_{1}	a_{2}	b_{2}	c_{2}
e_{1}	k	2	1	0	2	1	0
e_{2}	0	0	1	2	0	1	2
2μ	x	0	0	1	-1	0	0
2λ	$\frac{1}{2} y$	0	0	0	2	0	-2

Example: complement of 4_{1}

edge/curve	weight	a_{1}	b_{1}	c_{1}	a_{2}	b_{2}	c_{2}
e_{1}	k	2	1	0	2	1	0
e_{2}	0	0	1	2	0	1	2
2μ	x	0	0	1	-1	0	0
2λ	$\frac{1}{2} y$	0	0	0	2	0	-2

Hence, for $x, y \in \mathbb{Z}$,

$$
\begin{aligned}
I_{\mathcal{T}}^{(x, y)}(q) & =\sum_{k \in \mathbb{Z}} q^{k} J_{\Delta}(2 k, k, x) J_{\Delta}(2 k-x+y, k,-y) \\
& =\sum_{k \in \mathbb{Z}} I_{\Delta}(k-x, k) I_{\Delta}(k+y, k-x+y)
\end{aligned}
$$

Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

- $I_{\mathcal{T}}^{\gamma}(q)$ is well-defined (for all γ) iff \mathcal{T} is 1-efficient (i.e. no embedded normal spheres and tori except peripheral tori.)

Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

- $I_{\mathcal{T}}^{\gamma}(q)$ is well-defined (for all γ) iff \mathcal{T} is 1-efficient (i.e. no embedded normal spheres and tori except peripheral tori.)
- $I_{\mathcal{T}}^{\gamma}(q)$ is invariant under 2-3 moves, 0-2 moves if all triangulations are 1-efficient.

Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

- $I_{\mathcal{T}}^{\gamma}(q)$ is well-defined (for all γ) iff \mathcal{T} is 1-efficient (i.e. no embedded normal spheres and tori except peripheral tori.)
- $I_{\mathcal{T}}^{\gamma}(q)$ is invariant under 2-3 moves, 0-2 moves if all triangulations are 1-efficient.
- If M is hyperbolic we get a topological invariant $I_{M}^{\gamma}(q)$.

Some results

[S. Garoufalidis, C. Hodgson, N. Hoffmann, J.H. Rubinstein, H. Segerman]

- $I_{\mathcal{T}}^{\gamma}(q)$ is well-defined (for all γ) iff \mathcal{T} is 1-efficient (i.e. no embedded normal spheres and tori except peripheral tori.)
- $I_{\mathcal{T}}^{\gamma}(q)$ is invariant under 2-3 moves, 0-2 moves if all triangulations are 1-efficient.
- If M is hyperbolic we get a topological invariant $I_{M}^{\gamma}(q)$.
- Can write $I_{\mathcal{T}}^{\gamma}(q)$ as a sum over singular Q-normal surfaces in \mathcal{T} with boundary γ.

Dehn surgery

3D-index and Dehn filling

In 2018, the physicists D. Gang and K. Yonekura proposed a formula giving the 3D-index for Dehn fillings on a cusped 3-manifold M.

The Gang-Yonekura formula gives the 3D-index for $M(\alpha)$ as an infinite linear combination of the 3D-indices $I_{M}^{\gamma}(q)$ for M over boundary classes γ having intersection number 0 or ± 2 with α.

3D-index and Dehn filling

In 2018, the physicists D. Gang and K. Yonekura proposed a formula giving the 3D-index for Dehn fillings on a cusped 3-manifold M.

The Gang-Yonekura formula gives the 3D-index for $M(\alpha)$ as an infinite linear combination of the 3D-indices $I_{M}^{\gamma}(q)$ for M over boundary classes γ having intersection number 0 or ± 2 with α.

If $K=\operatorname{ker}\left(H_{1}(T ; \mathbb{Z}) \rightarrow H_{1}\left(M ; \mathbb{Z}_{2}\right)\right),|\gamma|=\#$ components of γ :

$$
I_{M(\alpha)}(q)=\frac{1}{2}\left(\sum_{\substack{\gamma \in K \\ \gamma \cdot \alpha=0}}(-1)^{|\gamma|}\left(q^{\frac{|\gamma|}{2}}+q^{-\frac{|\gamma|}{2}}\right) I_{M}^{\gamma}(q)-\sum_{\substack{\gamma \in K \\ \gamma \cdot \alpha= \pm 2}} I_{M}^{\gamma}(q)\right)
$$

Main result

We wanted to show that this formula holds for Dehn fillings on some (but not all!) cusps of a multi-cusped manifold.

Theorem [CHR]

Let M be a compact orientable 3-manifold with boundary consisting of at least 2 tori, and let T be one component of ∂M. Let \mathcal{T}_{M} be a 1-efficient triangulation with a standard cusp at T.

Given a surgery curve $\alpha \subset T$, let $\mathcal{T}(\alpha)$ be the ideal triangulation of $M(\alpha)$ obtained from \mathcal{T} by replacing the standard cusp by the layered solid torus with α bounding a meridian disc. Then the Gang-Yonekura formula holds for the triangulations \mathcal{T} and $\mathcal{T}(\alpha)$ for all α with at most 3 exceptions.

Corollary [CHR]

Let M be a cusped hyperbolic 3-manifold with at least two cusps, and assume that one cusp T has a generic shape, i.e. the corresponding Euclidean torus is not rectangular. Then the Gang-Yonekura formula holds for almost all Dehn fillings $M(\alpha)$.

Corollary [CHR]

Let M be a cusped hyperbolic 3-manifold with at least two cusps, and assume that one cusp T has a generic shape, i.e. the corresponding Euclidean torus is not rectangular. Then the Gang-Yonekura formula holds for almost all Dehn fillings $M(\alpha)$.

Proof: By first expanding the cusp at T until it bumps into itself, then expanding the other cusps, we obtain a canonical
(Epstein-Penner) ideal triangulation \mathcal{T} with a standard cusp at T. Then work of Guéritaud-Schleimer shows that for almost all α, the corresponding canonical triangulation of $M(\alpha)$ is isomorphic to the triangulation $\mathcal{T}(\alpha)$.
So we obtain $I_{M}=I_{\mathcal{T}}$ and $I_{M(\alpha)}=I_{\mathcal{T}(\alpha)}$.

Explanation of the theorem

A standard cusp has a triangulation by two ideal tetrahedra:

Theorem [Howie-Mathews-Purcell] (paraphrased)
If there's more than one cusp, there exists a triangulation where all but one cusps are standard.

Layered solid tori

- start with two triangles giving a torus,
- add layers of tetrahedra on top to get a triangulation of $T^{2} \times[0,1]$,
- "fold up" the bottom torus $T^{2} \times 0$ onto a Möbius strip.
- This gives a solid torus (which is a neighbourhood of the Möbius strip).

Layered triangulations of the solid torus are parameterised by finite words in the alphabet $\{L, R\}$ giving triangles in the Farey tessellation (related to continued fraction expansion).

Gluing formulas and relative index

Let \mathcal{T} be an ideal triangulation of M and \mathcal{T}_{0} be a union of triangles in \mathcal{T} splitting \mathcal{T} into triangulations $\mathcal{T}_{1}, \mathcal{T}_{2}$ of submanifolds M_{1}, M_{2} respectively.

Let \mathcal{E} be the set of all edges of \mathcal{T}, \mathcal{E}^{\prime} a collection of r edges "omitted" in computing the index of \mathcal{T}, \mathcal{E}_{i} the set of edges in \mathcal{T}_{i}, and $\mathcal{E}_{i}^{\prime}=\mathcal{E}_{i} \cap \mathcal{E}^{\prime}$.

Relative index

For any prescribed $\gamma \in K \subset H_{1}(\partial M ; \mathbb{Z})$ and "boundary weights" $b_{0}: \mathcal{E}_{0} \rightarrow \mathbb{Z}$ with $\left.b_{0}\right|_{\mathcal{E}_{0}^{\prime}}=0$ we define relative indices for $i=1,2$ by

$$
I_{\mathcal{T}_{i}}^{\gamma}\left(q ; b_{0}\right)=\sum_{\substack{k: \mathcal{E}_{i} \rightarrow \mathbb{Z}, k\left|\mathcal{E}_{i}^{\prime}=0, k\right| \mathcal{E}_{0}=b_{0}}} q^{k\left(\mathcal{E}_{i} \backslash \mathcal{E}_{0}\right)} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $k\left(\mathcal{E}_{i} \backslash \mathcal{E}_{0}\right)=\sum_{e \in \mathcal{E}_{i} \backslash \mathcal{E}_{0}} k(e)$.

Relative index

For any prescribed $\gamma \in K \subset H_{1}(\partial M ; \mathbb{Z})$ and "boundary weights" $b_{0}: \mathcal{E}_{0} \rightarrow \mathbb{Z}$ with $\left.b_{0}\right|_{\mathcal{E}_{0}^{\prime}}=0$ we define relative indices for $i=1,2$ by

$$
I_{\mathcal{T}_{i}}^{\gamma}\left(q ; b_{0}\right)=\sum_{\substack{k: \mathcal{E}_{i} \rightarrow \mathbb{Z}, k\left|\mathcal{E}_{i}^{\prime}=0, k\right| \mathcal{E}_{0}=b_{0}}} q^{k\left(\mathcal{E}_{i} \backslash \mathcal{E}_{0}\right)} \prod_{j=1}^{n} J_{\Delta}\left(q_{j}(k)+\gamma_{j}\right)
$$

where $k\left(\mathcal{E}_{i} \backslash \mathcal{E}_{0}\right)=\sum_{e \in \mathcal{E}_{i} \backslash \mathcal{E}_{0}} k(e)$.

Gluing formula

$$
I_{\mathcal{T}}^{\gamma}(q)=\sum_{\substack{b_{0}: \mathcal{E}_{0} \rightarrow \mathbb{Z}, b_{0} \mid \mathcal{E}_{0}^{\prime}=0}} q^{b_{0}\left(\mathcal{E}_{0}\right)} I_{\mathcal{T}_{1}}^{\gamma}\left(q ; b_{0}\right) I_{\mathcal{T}_{2}}^{\gamma}\left(q ; b_{0}\right)
$$

where $b_{0}\left(\mathcal{E}_{0}\right)=\sum_{e \in \mathcal{E}_{0}} b_{0}(e)$.

Local version

By the gluing formula, it suffices to show: relative index of a layered solid torus $=$ Gang-Yonekura formula applied to the relative index of a standard cusp.

Local version

By the gluing formula, it suffices to show: relative index of a layered solid torus $=$ Gang-Yonekura formula applied to the relative index of a standard cusp.

Proof of this local version:

- Use induction on the number of tetrahedra in the solid torus.
- Inductive step is proved using the pentagon identity.
- The base case (much harder for us!) needs some new algebraic identities.

Base case: $\operatorname{LST}(1,1,2)$

Theorem [CHR]
For every $b=\left(b_{1}, b_{2}\right) \in \mathbb{Z}^{2}$,
$\frac{1}{2} \sum_{k \in \mathbb{Z}}\left(q^{k}+q^{-k}\right) G_{b}(k, k)-G_{b}(k, k+1)-G_{b}(k, k-1)=q^{-b_{1}} \delta_{b_{1}, b_{2}}$
where $G_{b}(e, m)=I_{\Delta}\left(e-b_{1}, m+b_{2}\right) I_{\Delta}\left(-e-b_{1},-m+b_{2}\right)$.

Base case: $\operatorname{LST}(1,1,2)$

Theorem [CHR]

For every $b=\left(b_{1}, b_{2}\right) \in \mathbb{Z}^{2}$,
$\frac{1}{2} \sum_{k \in \mathbb{Z}}\left(q^{k}+q^{-k}\right) G_{b}(k, k)-G_{b}(k, k+1)-G_{b}(k, k-1)=q^{-b_{1}} \delta_{b_{1}, b_{2}}$ where $G_{b}(e, m)=I_{\Delta}\left(e-b_{1}, m+b_{2}\right) I_{\Delta}\left(-e-b_{1},-m+b_{2}\right)$.

Sketch of Proof: First introduce the "diagonal" generating functions:

$$
\varphi_{r}(z, q)=\sum_{e \in \mathbb{Z}} I_{\Delta}(e-r, e) z^{e}, \text { where } r \in \mathbb{Z}
$$

Then the LHS in the theorem is the coefficient of z^{0} in

$$
z^{-2 b_{2}}\left(\varphi_{r}\left(z q^{\frac{1}{2}}, q\right) \varphi_{r}\left(z q^{-\frac{1}{2}}, q\right)-\varphi_{r+1}(z, q) \varphi_{r-1}(z, q)\right)
$$

where $r=b_{1}+b_{2}$.

A meromorphic approach

To study $\varphi_{r}(z, q)$, we begin with Garoufalidis-Kashaev's meromorphic 3D index:

Definition

$$
\psi^{0}(z, w, q)=c(q) \frac{\left(z^{-1} ; q\right)_{\infty}}{(-q z ; q)_{\infty}} \frac{(-q w ; q)_{\infty}}{\left(w^{-1} ; q\right)_{\infty}} \frac{\left(-q z w^{-1} ; q\right)_{\infty}}{\left(w z^{-1} ; q\right)_{\infty}}
$$

where $c(q)=\frac{(q ; q)^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}$.

A meromorphic approach

To study $\varphi_{r}(z, q)$, we begin with Garoufalidis-Kashaev's meromorphic 3D index:

Definition

$$
\psi^{0}(z, w, q)=c(q) \frac{\left(z^{-1} ; q\right)_{\infty}}{(-q z ; q)_{\infty}} \frac{(-q w ; q)_{\infty}}{\left(w^{-1} ; q\right)_{\infty}} \frac{\left(-q z w^{-1} ; q\right)_{\infty}}{\left(w z^{-1} ; q\right)_{\infty}}
$$

where $c(q)=\frac{(q ; q)^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}$.
Theorem [Garoufalidis-Kashaev]

$$
\psi^{0}(z, w, q)=\sum_{e, m \in \mathbb{Z}}(-q)^{e} I_{\Delta}(m, e)\left(q^{2}\right) z^{e} w^{m}
$$

We then extract the "diagonal series" $\varphi_{r}(z, q)$ as a complex line integral, and use Cauchy's residue theorem to express this as an infinite sum of residues:
$\varphi_{r}(z, q)=\sum_{e \in \mathbb{Z}}(-q)^{e} I_{\Delta}(e-r, e)\left(q^{2}\right) x^{e-r}=\frac{1}{2 \pi i} \int_{|s|=\rho} \psi^{0}\left(s, \frac{x}{s}\right) \frac{\mathrm{d} s}{s^{r+1}}$
where $1<|x|^{\frac{1}{2}}<\rho<\min \left\{|x|,\left|q^{-1}\right|\right\}$.

We then extract the "diagonal series" $\varphi_{r}(z, q)$ as a complex line integral, and use Cauchy's residue theorem to express this as an infinite sum of residues:
$\varphi_{r}(z, q)=\sum_{e \in \mathbb{Z}}(-q)^{e} I_{\Delta}(e-r, e)\left(q^{2}\right) x^{e-r}=\frac{1}{2 \pi i} \int_{|s|=\rho} \psi^{0}\left(s, \frac{x}{s}\right) \frac{\mathrm{d} s}{s^{r+1}}$
where $1<|x|^{\frac{1}{2}}<\rho<\min \left\{|x|,\left|q^{-1}\right|\right\}$.

Theorem [CHR]

$\varphi_{r}(z, q)=$

$$
\left\{\begin{array}{lll}
\left(-z q^{-\frac{1}{2}}\right)^{\frac{r}{2}}{ }_{3} \phi_{3}\left[\begin{array}{ccc}
-z^{-1} \sqrt{q} & -z \sqrt{q} & 0 \\
-q & \sqrt{q} & -\sqrt{q}
\end{array} q, q^{1-\frac{r}{2}}\right.
\end{array}\right] \quad r \text { even } \quad\left(\begin{array}{ccc}
\\
\left.(-z)^{\frac{r-1}{2}} q^{\frac{1-r}{2} \frac{(1+z)}{1-q} 3 \phi_{3}\left[\begin{array}{ccc}
-z^{-1} q & -z q & 0 \\
-q & q^{\frac{3}{2}} & -q^{\frac{3}{2}}
\end{array} q, q^{\frac{3-r}{2}}\right.}\right] & r \text { odd. }
\end{array}\right.
$$

After further manipulations we can apply a q-analogue of the Pythagoras theorem proved by F. Štampach to obtain:

Proposition [CHR]

For $r \in \mathbb{Z}$ and $z, q \in \mathbb{C},|q|<1$

$$
\varphi_{r}\left(z q^{\frac{1}{2}}, q\right) \varphi_{r}\left(z q^{-\frac{1}{2}}, q\right)-\varphi_{r+1}(z, q) \varphi_{r-1}(z, q) \equiv z^{r} q^{-\frac{1}{2} r}
$$

After further manipulations we can apply a q-analogue of the Pythagoras theorem proved by F. Štampach to obtain:

Proposition [CHR]

For $r \in \mathbb{Z}$ and $z, q \in \mathbb{C},|q|<1$

$$
\varphi_{r}\left(z q^{\frac{1}{2}}, q\right) \varphi_{r}\left(z q^{-\frac{1}{2}}, q\right)-\varphi_{r+1}(z, q) \varphi_{r-1}(z, q) \equiv z^{r} q^{-\frac{1}{2} r}
$$

This completes the proof of our main theorem.

After further manipulations we can apply a q-analogue of the Pythagoras theorem proved by F. Štampach to obtain:

Proposition [CHR]

For $r \in \mathbb{Z}$ and $z, q \in \mathbb{C},|q|<1$

$$
\varphi_{r}\left(z q^{\frac{1}{2}}, q\right) \varphi_{r}\left(z q^{-\frac{1}{2}}, q\right)-\varphi_{r+1}(z, q) \varphi_{r-1}(z, q) \equiv z^{r} q^{-\frac{1}{2} r}
$$

This completes the proof of our main theorem.

Corollary

If $r \in \mathbb{Z}$ is even, then:

$$
\sum_{e \in \mathbb{Z}}(-\sqrt{q})^{e} I_{\Delta}(e-r, e)=1
$$

If $r \in \mathbb{Z}$ is odd, then:

$$
\sum_{e \in \mathbb{Z}}(-q)^{e} I_{\Delta}(e-r, e)=1
$$

Example: 3D-index for alternating torus knots

Using some of our identities for the tetrahedral index and applying the Gang-Yonekura formula we can show

$$
I_{T(2 n-1,2)}^{(x, y)}(q)= \begin{cases}1 & \text { if }(x, y) \text { is a multiple of }(-2(2 n-1), 1) \\ 0 & \text { otherwise }\end{cases}
$$

Asymptotic stability formula

Let α, β be homology classes of dual simple closed curves on $T \subset \partial M$ with $\alpha \notin K, \beta \in K$, (e.g. $\alpha=\mu, \beta=\lambda$).

Theorem [CHR]
Let $\alpha_{n}=\alpha+n \beta$ for $n \in \mathbb{Z}$. Then:

$$
\lim _{n \rightarrow \infty} I_{M\left(\alpha_{n}\right)}(q) \rightarrow I_{M}^{0}(q)-I_{M}^{2 \beta}(q)
$$

Crucially, the result depends on the 'direction' we choose, unlike in Thurston's hyperbolic filling theorem!

Asymptotic stability formula

Let α, β be homology classes of dual simple closed curves on $T \subset \partial M$ with $\alpha \notin K, \beta \in K$, (e.g. $\alpha=\mu, \beta=\lambda$).

Theorem [CHR]

Let $\alpha_{n}=\alpha+n \beta$ for $n \in \mathbb{Z}$. Then:

$$
\lim _{n \rightarrow \infty} I_{M\left(\alpha_{n}\right)}(q) \rightarrow I_{M}^{0}(q)-I_{M}^{2 \beta}(q)
$$

Crucially, the result depends on the 'direction' we choose, unlike in Thurston's hyperbolic filling theorem!

Surgeries on the Whitehead link

$$
\begin{aligned}
& \frac{1}{n} 1-4 q+q^{2}+16 q^{3}+22 q^{4}+q^{5}-72 q^{6}-158 q^{7}+\ldots \\
& n 1-q-q^{2}+4 q^{3}+6 q^{4}+5 q^{5}-11 q^{6}-32 q^{7}+\ldots
\end{aligned}
$$

Closed manifolds?

The index is not defined for closed manifolds. Using Gang-Yonekura's formula, we can try to force a definition!

It appears to detect non-hyperbolic surgeries:

$$
\begin{aligned}
S_{0}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{1}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{2}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{3}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{4}^{3}\left(4_{1}\right) & \rightsquigarrow \infty-2 q^{2}-2 q^{3}-4 q^{4}-4 q^{5}+\ldots \\
S_{5}^{3}\left(4_{1}\right) & \rightsquigarrow 1-q-2 q^{2}-q^{3}-q^{4}+q^{5}+\ldots \\
S_{6}^{3}\left(4_{1}\right) & \rightsquigarrow 1-\sqrt{q}-q^{3 / 2}-q^{2}-q^{5 / 2}+q^{9 / 2}+\ldots
\end{aligned}
$$

(Note the infinite constant term for $(4,1)$-surgery!)

Closed manifolds?

The index is not defined for closed manifolds. Using Gang-Yonekura's formula, we can try to force a definition!

It appears to detect non-hyperbolic surgeries:

$$
\begin{aligned}
S_{0}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{1}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{2}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{3}^{3}\left(4_{1}\right) & \rightsquigarrow 1 \\
S_{4}^{3}\left(4_{1}\right) & \rightsquigarrow \infty-2 q^{2}-2 q^{3}-4 q^{4}-4 q^{5}+\ldots \\
S_{5}^{3}\left(4_{1}\right) & \rightsquigarrow 1-q-2 q^{2}-q^{3}-q^{4}+q^{5}+\ldots \\
S_{6}^{3}\left(4_{1}\right) & \rightsquigarrow 1-\sqrt{q}-q^{3 / 2}-q^{2}-q^{5 / 2}+q^{9 / 2}+\ldots
\end{aligned}
$$

(Note the infinite constant term for $(4,1)$-surgery!)

