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The Erlangen program

Felix Klein : Vergleichende Betrachtungen uber neuere geometrische
Forschungen, 1872

Erlangen program : study geometry by investigating the group of
transformations and their invariants

Euclidean Affine Projective

length ✓ ✗ ✗

ratio ✓ ✓ ✗

cross-ratio ✓ ✓ ✓
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Another example

A manifold with additional structures

Let M be a manifold with

topology τ

smooth structure (i.e. smooth atlas) A
measure µ

Riemannian metric g .

Aut(M, τ) = Homeo(M) = the group of homeomorphisms of M

Aut(M,A) = Diff(M) = the group of diffeomorphisms of M

Aut(M, µ) = the group of volume preserving diffeomorphisms of M

Aut(M, g) = Iso(M) the group of isometries of M

Assumption

We assume the structures τ,A, µ, and g are mutually compatible.
That is . . .
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Another example

Assumption

The topology induced by A is τ

g is smooth with respect to A
µ is the measure induced by g .

Iso(M) ⊂ Aut(M, µ) ⊂ Diff(M) ⊂ Homeo(M).

Rigidity Flexibility
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 4 / 29



Another example

Assumption

The topology induced by A is τ

g is smooth with respect to A
µ is the measure induced by g .

Iso(M) ⊂ Aut(M, µ) ⊂ Diff(M) ⊂ Homeo(M).

Rigidity Flexibility
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The main character in this story

Contact manifold (M, ξ)

M a smooth manifold

ξ a contact structure on M

Aut(M, ξ) =: Cont(M, ξ)

The elements of Cont(M, ξ) are called contact transformations,

or
shortly, contactomorphisms.

Diff(M) ⊃ Cont(M, ξ)

Question

How far does contact geometry go beyond smooth topology?

More specific question

Does contact geometry remember the size?
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What is a contact structure?

Definition

A contact structure ξ on a smooth manifold M is a smooth family of
hyperplanes ξp ⊂ TpM, p ∈ M that locally looks like

ξ◦ := ker

(
dz +

n∑
k=1

(xjdyj − yjdxj)

)
,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and z ∈ R.

TpM is the tangent space of M at the point p.

Figure on the right: ξ◦ in R3 [Pmassot, CC BY-SA 3.0, via
Wikimedia Commons]
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 6 / 29



What is a contact structure?

Definition

A contact structure ξ on a smooth manifold M is a smooth family of
hyperplanes ξp ⊂ TpM, p ∈ M that locally looks like

ξ◦ := ker

(
dz +

n∑
k=1

(xjdyj − yjdxj)

)
,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and z ∈ R.

TpM is the tangent space of M at the point p.

Figure on the right: ξ◦ in R3 [Pmassot, CC BY-SA 3.0, via
Wikimedia Commons]
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What is a contact structure?

Alternative definition

A contact structure on a smooth (2n+ 1)-dimensional manifold M is kerα
where α is a locally defined 1-form on M such that α ∧ (dα)n is nowhere
vanishing.

The 1-form α from the alternative definition is called cotact form.

If the contact form is globally defined (i.e. everywhere on M), than
we say that ξ is cooriented contact structure.

In this talk, all contact structures will be cooriented.

Definition

A contactomorphism ϕ : M → N between contact manifolds (M, ξ) and
(N, ζ) is a diffeomorphism such that dϕξ = ζ.

Cont(M, ξ) is the group of all contactomorphisms M → M.
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Why do we care about contact manifolds?

Geometrical optics

Classical mechanics

Thermodynamics

Geometric quantization

Kronheimer-Mrowka: proof of property P conjecture

Low-dimensional topology: invariants of knots and smooth
three-manifolds

Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 8 / 29



Why do we care about contact manifolds?

Geometrical optics

Classical mechanics

Thermodynamics

Geometric quantization

Kronheimer-Mrowka: proof of property P conjecture

Low-dimensional topology: invariants of knots and smooth
three-manifolds
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 8 / 29



Why do we care about contact manifolds?

Geometrical optics

Classical mechanics

Thermodynamics

Geometric quantization

Kronheimer-Mrowka: proof of property P conjecture

Low-dimensional topology: invariants of knots and smooth
three-manifolds
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Examples

(R2n+1, ξ◦)
(S2n+1, ξst) where ξst is defined as follows:

▶ See S2n+1 as a subset of C2n+2

▶ Denote by J the complex structure on C2n+2

▶ ξstp := TpS2n+1 ∩ JTpS2n+1.

Fact

The contact manifolds (R2n+1, ξ◦) and (S2n+1 \ {pt}, ξst) are
contactomorphic.
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Examples

(
R2n × S1, ξ

)
where ξ := ker

(
dθ +

∑n
k=1(xjdyj − yjdxj)

)
Let M be a smooth manifold. Then, the space of 1-jets J1(M,R) has
a natural contact structure.

J1(M,R) := C∞(M)/ ∼, where f ∼ g iff f and g have the same
derivatives up to order 1.

Theorem (Martinet, 1971)

Every compact, orientable 3-dimensional manifold admits a contact
structure.

Let (M, g) be a Riemannian manifold. The, the unit cotangent
bundle S∗M has a natural contact structure.

▶ T ∗M :=
⋃
p∈M

(TpM)∗

▶ S∗M :=
{
v∗ ∈ T ∗M | |v∗|g = 1

}
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Brieskorn manifolds

Links of singularities are contact manifolds.

▶ f : Cn → C holomorphic function
▶ Assume f (0) = 0
▶ Assume 0 is an isolated singularity of f
▶ Link of f at 0: f −1(0) ∩ S2n−1

ε

Definition

Let a0, . . . , an ∈ N. The Brieskorn manifold Σ(a0, . . . , an) is the link
associated to the singularity 0 of the function

f : Cn+1 → C : (z0, . . . , zn) 7→ za00 + · · ·+ zann .

Brieskorn 1966: Σ(2, 2, 2, 3, 6k − 1) for k = 1, 2, . . . , 28 is a model for
all possible smooth structures (up to a diffeomorphism) on S7.
Ustilovsky 1999: If n is odd and p = ±1 (mod 8), then Σ(p, 2, . . . , 2)
are not contactomorphic for different choices on p, but they are all
diffeomorphic to the standard smooth sphere.
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Brieskorn manifolds

Σ(2, 2) ⊂ C2

Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 12 / 29



Brieskorn manifolds

Σ(2, 2) ⊂ C2
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How big is Cont(M)?

Let (M, ξ) be a closed contact manifold.

Fix a contact form α on M.

That is, pick α such that kerα = ξ.

The contact form α determines a vector field Rα on M by the
following relations: α(Rα) = 1 and dα(Rα, ·) = 0.

The vector field Rα is called the Reeb vector field.

Fact

The flow ϕα
t : M → M of the Reeb vector field Rα consists of

contactomorphisms.

In particular, Cont(M, ξ) is “infinite-dimensional”.

More generally, every smooth function h : M × R → R gives rise to a
contact isotopy, i.e. a family of contactomorphisms, ϕh

t : M → M.

The function h is called a contact Hamiltonian.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 13 / 29



How big is Cont(M)?

Let (M, ξ) be a closed contact manifold.

Fix a contact form α on M. That is, pick α such that kerα = ξ.

The contact form α determines a vector field Rα on M by the
following relations: α(Rα) = 1 and dα(Rα, ·) = 0.

The vector field Rα is called the Reeb vector field.

Fact

The flow ϕα
t : M → M of the Reeb vector field Rα consists of

contactomorphisms.

In particular, Cont(M, ξ) is “infinite-dimensional”.

More generally, every smooth function h : M × R → R gives rise to a
contact isotopy, i.e. a family of contactomorphisms, ϕh

t : M → M.

The function h is called a contact Hamiltonian.
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Contact Hamiltonians

Definition

Let M be a manifold with a contact form α. A contact Hamiltonian is a
smooth function h : M → R. A time dependent contact Hamiltonian is a
smooth function h : M × R → R.

A (time-dependent) contact Hamiltonian ht gives rise to a
(time-dependent) vector field Y ht defined by

α(Y ht ) = −ht , dα(Y ht , ·) = dht − dh(Rα) · α.
The flow of Y ht is a smooth family of contactomorphisms, denoted
by ϕh

t : M → M.

The Reeb flow is the contact isotopy of the contact Hamiltonian
h ≡ −1.

Fact

Every contact isotopy is furnished by some contact Hamiltonian.
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Contact non-squeezing

There is no natural metric in contact geometry.

There is no natural measure either.

Definition

Let (M, ξ) be a contact manifold. A subset A ⊂ M can be contactly
squeezed into a subset B ⊂ M if there exists a compactly supported
contact isotopy ϕt : M → M such that ϕ0 = id and ϕ1(A) ⊂ intB.
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Non-squeezing and first examples

Fact

In the contact manifold (R2n+1, ξ◦) every bounded subset A ⊂ R2n+1 can
be contactly squeezed into any open non-empty B ⊂ R2n+1.

Homotety-like contact isotopy ϕs : (x , y , z) 7→ (s · x , s · y , s2 · z)
ϕs is generated by the contact Hamiltonian hs(x , y , z) = −2z

s .

Fact

In the contact manifold (S2n+1, ξst) every non-dense subset A ⊂ S2n+1 can
be contactly squeezed into any non-empty open subset B ⊂ S2n+1.

Recall : R2n+1 and S2n+1 \ {pt} are contactomorphic.

Fact

There is no non-trivial contact non-squeezing on a small scale.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 16 / 29



Non-squeezing and first examples

Fact

In the contact manifold (R2n+1, ξ◦) every bounded subset A ⊂ R2n+1 can
be contactly squeezed into any open non-empty B ⊂ R2n+1.

Homotety-like contact isotopy ϕs : (x , y , z) 7→ (s · x , s · y , s2 · z)
ϕs is generated by the contact Hamiltonian hs(x , y , z) = −2z

s .

Fact

In the contact manifold (S2n+1, ξst) every non-dense subset A ⊂ S2n+1 can
be contactly squeezed into any non-empty open subset B ⊂ S2n+1.

Recall : R2n+1 and S2n+1 \ {pt} are contactomorphic.

Fact

There is no non-trivial contact non-squeezing on a small scale.
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Non-squeezing on a large scale

B(R) = closed ball of radius R in R2n

Theorem (Eliashberg-Kim-Polterovich, Chiu)

B(R)× S1 ⊂ R2n × S1 can be contactly squeezed into itself iff R < 1.

Eliashberg-Kim-Polterovich : R < 1 or R ∈ N
Chiu: not necessarily integer R

Alternative proofs: Fraser, Sandon

Fact

There is a non-trivial contact non-squeezing on a large scale.

Smoothly, B(R)× S1 can always be squeezed into itself.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 17 / 29



Non-squeezing on a large scale

B(R) = closed ball of radius R in R2n

Theorem (Eliashberg-Kim-Polterovich, Chiu)

B(R)× S1 ⊂ R2n × S1 can be contactly squeezed into itself iff R < 1.

Eliashberg-Kim-Polterovich : R < 1 or R ∈ N
Chiu: not necessarily integer R

Alternative proofs: Fraser, Sandon

Fact

There is a non-trivial contact non-squeezing on a large scale.

Smoothly, B(R)× S1 can always be squeezed into itself.
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Non-squeezing on a large scale

Full tori inside the interior of B(1)× S1 can be arbitrarily contactly
squeezed.

Full tori containing B(1)× S1 cannot be contactly squeezed (not even
a little bit).

Why is 1 special?

S1 is rescaled such that its length is 1.
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Non-squeezing of a ball in a smooth sphere

Ustilovsky spheres: Σ(p, 2, . . . , 2), p ≡ ±1 (mod 8){
zp0 + z21 + · · · z22m+1 = 0 & |z | = 1

}
⊂ C2m+2

Ustilovsky spheres are diffeomorphic to standard smooth spheres.

Contact distribution on an Ustilovsky sphere is homotopic to the
standard contact structure on the sphere if p ≡ 1 (mod 2 · (2m)!).

Theorem (U.)

In every Ustilovsky sphere there exist two smoothly embedded closed balls
B1 and B2 of maximal dimension such that B2 cannot be contactly
squeezed into B1.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 19 / 29



Non-squeezing on homotopy spheres

Liouville domains = certain compact symplectic manifolds with
boundary.

The boundary of a Liouville domain is a contact manifold.

Symplectic homology SH∗(W ) is an invariant of a Luouville domain
W based on Floer theory.

The Brieskorn manifold Σ(a0, . . . , an) is the boundary of a Liouville
odmain V (a0, . . . , an), that very often has infinite-dimensional
symplectic homology.

Theorem (U.)

Let W be a Liouville domain of dimension 2n ⩾ 4 such that

dim SH∗(W ) = ∞,

∂W is a homotopy sphere.

Then, there exist two embedded closed balls B1,B2 ⊂ ∂W of dimesion
2n − 1 such that B2 cannot be contactly squeezed into B1.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 20 / 29



Non-squeezing on homotopy spheres

Liouville domains = certain compact symplectic manifolds with
boundary.

The boundary of a Liouville domain is a contact manifold.

Symplectic homology SH∗(W ) is an invariant of a Luouville domain
W based on Floer theory.

The Brieskorn manifold Σ(a0, . . . , an) is the boundary of a Liouville
odmain V (a0, . . . , an), that very often has infinite-dimensional
symplectic homology.

Theorem (U.)

Let W be a Liouville domain of dimension 2n ⩾ 4 such that

dim SH∗(W ) = ∞,

∂W is a homotopy sphere.

Then, there exist two embedded closed balls B1,B2 ⊂ ∂W of dimesion
2n − 1 such that B2 cannot be contactly squeezed into B1.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 20 / 29



Non-squeezing on homotopy spheres

Liouville domains = certain compact symplectic manifolds with
boundary.

The boundary of a Liouville domain is a contact manifold.

Symplectic homology SH∗(W ) is an invariant of a Luouville domain
W based on Floer theory.

The Brieskorn manifold Σ(a0, . . . , an) is the boundary of a Liouville
odmain V (a0, . . . , an), that very often has infinite-dimensional
symplectic homology.

Theorem (U.)

Let W be a Liouville domain of dimension 2n ⩾ 4 such that

dim SH∗(W ) = ∞,

∂W is a homotopy sphere.

Then, there exist two embedded closed balls B1,B2 ⊂ ∂W of dimesion
2n − 1 such that B2 cannot be contactly squeezed into B1.
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Homotopy spheres and smooth squeezing

Homotopy spheres are manifolds that are homotopy equivalent to
spheres.
Smale, Freedman, Perelman: homotopy spheres are homeomorphic to
spheres.
Smooth homotopy spheres, except perhaps in dimension 4, admit
Morse functions with precisely 2 critical points.

Fact

Let M be a smooth homotopy sphere of dimension ̸= 4. Then, every
non-dense subset A ⊂ M can be smoothly squeezed into any non-empty
open subset B ⊂ M.

Use the gradient flow of a Morse function with 2 critical points to do
the squeezing.

Corollary

Contact non-squeezing on homotopy spheres is genuinely contact
phenomenon.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 21 / 29



Exotic contact R4m+1 and non-squeezing

Theorem (U.)

There exist a contact structure on R4m+1 and two embedded closed balls
B1,B2 ⊂ R4m+1 such that B2 cannot be contactly squeezed into B1.

Remove a point from an Ustilovsky sphere.

Corollary

The standard contact R4m+1 is not contactomorphic to any Ustilovsky
sphere with a point removed.

Theorem (Fauteux-Chapleau and Helfer)

There exist infinitely many pairwise non-contactomorphic tight contact
structures on R2n+1 if n > 1.

Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 22 / 29



Exotic contact R4m+1 and non-squeezing

Theorem (U.)

There exist a contact structure on R4m+1 and two embedded closed balls
B1,B2 ⊂ R4m+1 such that B2 cannot be contactly squeezed into B1.

Remove a point from an Ustilovsky sphere.

Corollary

The standard contact R4m+1 is not contactomorphic to any Ustilovsky
sphere with a point removed.

Theorem (Fauteux-Chapleau and Helfer)

There exist infinitely many pairwise non-contactomorphic tight contact
structures on R2n+1 if n > 1.
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Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 22 / 29



Exotic contact R4m+1 and non-squeezing

Theorem (U.)

There exist a contact structure on R4m+1 and two embedded closed balls
B1,B2 ⊂ R4m+1 such that B2 cannot be contactly squeezed into B1.

Remove a point from an Ustilovsky sphere.

Corollary

The standard contact R4m+1 is not contactomorphic to any Ustilovsky
sphere with a point removed.

Theorem (Fauteux-Chapleau and Helfer)

There exist infinitely many pairwise non-contactomorphic tight contact
structures on R2n+1 if n > 1.
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Selective symplectic homology

SHΩ
∗ (W )

W a Liouville domain

In particilar, ∂W is a contact manifold.

Ω ⊂ ∂W an open subset of the boundary

Igor Uljarević (University of Belgrade) Size in Contact Geometry December, 2023 23 / 29



Selective symplectic homology

SHΩ
∗ (W )

W a Liouville domain

In particilar, ∂W is a contact manifold.

Ω ⊂ ∂W an open subset of the boundary
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Selective symplectic homology

For Ωa ⊂ Ωb ⊂ ∂W , there is a well-defined continuation map

Φb
a : SHΩa

∗ (W ) → SHΩb
∗ (W ).

Φa
a = id

Φc
b ◦ Φb

a = Φc
a

Fact

The graded vector spaces SHΩ
∗ (W ) together with the continuation maps

Φ form a directed system indexed by open subsets of ∂W with order
relation ⊂.

Proposition

Let Ωk ⊂ ∂W be an increasing sequence of open subsets. Denote
Ω :=

⋃
k Ωk .Then, the map

lim
−→
k

SHΩk
∗ (W ) → SHΩ

∗ (W )

furnished by continuation maps is an isomorphism.
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Selective symplectic homology

Proposition

Let W be a Liouville domain. Let ϕ : ∂W → ∂W be a contactomorphism
that is (contactly) isotopic to the identity. Then, there exists an
isomorphism

C(ϕ) : SHΩ
∗ (W ) → SH

ϕ(Ω)
∗ (W )

for every open subset Ω ⊂ ∂W .

C(ϕ) depends actually on a little bit more than just ϕ. There are
some additional choices involved.

Proposition

In the situation of the proposition above, if Ωa ⊂ Ωb are open subsets of
∂W , then the following diagram commutes:

SHΩa
∗ (W ) SH

ϕ(Ωa)
∗ (W )

SHΩb
∗ (W ) SH

ϕ(Ωb)
∗ (W ).

C(ϕ)

Φb
a Φb

a

C(ϕ)
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Selective symplectic homology

For Ω ⊂ ∂W open, denote

r(Ω) := rank
(
Φ : SHΩ

∗ (W ) → SH∂W
∗ (W )

)
.

If Ωa and Ωb are contact isotopic, then r(Ωa) = r(Ωb).

Theorem (U.)

If r(Ωa) < r(Ωb), then Ωb cannot be contactly squeezed into Ωa.

Compute SHΩ
∗ (W )!

SH∅
∗ (W ) ∼= H∗+n(W , ∂W ;Z2)

SH∂W
∗ (W ) = SH∗(W )
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Selective symplectic homology

Every contact manifold locally looks like (R2n+1, ξ◦).

Contact manifold can be covered by charts in which it looks like a
subset of (R2n+1, ξ◦).

These charts are called contact Darboux charts.

Proposition

Let W be a Liouville domain and let B ⊂ ∂W be a closed ball in a contact
Darboux chart. Then, the continuation map

SH∅
∗ (W ) → SH intB

∗ (W )

is an isomorphism.

Proposition

Let W be a Liouville domain with dim SH∗(W ) = ∞ and dimW ⩾ 4.
Then, for every C ∈ R, there exists a contact Darboux chart D such that

the continuation map SH
∂W \D
∗ (W ) → SH∗(W ) has rank greater than C .
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Proof of the non-squeezing

Choose ΩS such that r(ΩS) < ∞.

Choose ΩN such that r(∂W \ ΩN) > r(ΩS).

Recall r(Ω) = rk
(
SHΩ

∗ (W ) → SH∗(W )
)
.

f −1(−∞, c] ⊂ ΩS for c close to min f .

f −1(−∞, c] ⊃ ∂W \ ΩN for c close to max f .
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Thank you!
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