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Configuration spaces

The nth ordered configuration space of a space

Xis X
Fa(X) == {(X1, ..., Xn) € X" : x; # x; for i # j},
S F'g(X)
topologised as a subset of X".
The n'" unordered configuration space of a
space X is the quotient v
Ch(X) := Fn(X)/Gp,
€ C5(X)

by the permutation action of the symmetric
group Gp.
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« Braid groups are , of F,(R?) and C,(RR?).
« Embedding calculus: study an embedding a few points at a time
— knot invariants. (Teichner, Watanabe, ...)

+ Homotopy equivalent but not homeomeomorphic lens spaces
can be distinguished by their configuration spaces. (L;; ~ L;,
but L; 4 % Ly ; F2(Ly4) 2 Fo(L;2).) (Longoni-Salvatore ‘04).

The homology of a space loses information. The homology of
configurations of the space retains more information.
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Mapping class group actions

 Let M be an oriented manifold, possibly with boundary. The
mapping class group of M is the group

MCG(M) = mo(Diff} (M))
= oriented self-diffeos of M, fixing M, up to isotopy.

« There is a natural action MCG(M) ~ H,.(M).
* There is also an action

Diff5 (M) ~ Fp(M), Cy(M)
which descends to

MCG(M) ~ H,(Fa(M)), Hs(Ca(M)).
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* Let X4, be the compact orientable genus g surface with one
boundary component.

Figure 1: A %, , surface.

- Write g4 := MCG(X4.).
» The natural action

Fg1 Hi(Xg) =2 Z%

has kernel called the Torelli group, denoted Ig ;. This group is
large and complicated.
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Non-trivial Torelli actions

Theorem (Bianchi “19)

If g > 2, then Iy, acts non-trivially on H,(C,(Xg1)).

+ Let X4 be the closed counterpart of 44, [{ = MCG(Xg4) and
lg = ker(Fg ™~ Hq(Xg)).

Theorem (Looijenga ‘20, S. ‘20)

If g > 3, then Iy acts non-trivially on H3(C5(Xg)).

The homology of configuration spaces of surfaces sees more of the
mapping class group than the homology of the surface. How much
more?
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The action on unordered configurations

« For unordered configurations, the answer is: not that much.

+ The Johnson kernel, K ,, is the subgroup of 'y , generated by
separating Dehn twists. In fact, Kg1 C Ig 1.

Theorem (S. ‘21)
Kg.1 acts trivially on H,(Cn(Xg4,4); Q), forall n,g > o.

Theorem (Bianchi-S. ‘23)
In faCt, Kg"l = ker(rgﬂ (% H*(Cn(ZQJ)), fOf a” n,g Z 2.

Theorem (S. ‘23)
Kg = ker(Fg ™~ H,(Cn(Xg)), foralln,g > 3.

« What about ordered configurations?
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The Johnson filtration

+ The n'" Johnson subgroup of lg. is the kernel
J(n) = ker(Fg .1 ~ m(Tg1)/m(Eg.0) "),
where GO s the i commutator subgroup of G:
G = 6,60 =[G, G7).

° NOtiCG ](O) = rg1,](1) = Ig;], 1(2) = Kg’1.
+ We have the Johnson filtration

J(0) D J(1) 2 J)(2) DJ3B) D ...

which is exhaustive: 5, J(n) = {1}.

Theorem (Bianchi-Miller-Wilson ‘21)

The n™ Johnson subgroup J(n) acts trivially on H..(F,(X4.)), for all
n=>1.
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Moriyama'’s representations

+ Pick a point p € 9%4; and define the subspaces of (¥44)"
Ap = {(X1,.... Xn) : X; = x; for i # j}

and
An = {(X1,....,Xn) : X; = p for some i}.

+ The pair ((Xg1)", An UAy) is acted on naturally by Diff(Xg4 ) and
has homology only in degree n.

Theorem (Moriyama 2007)

The kernel of the 'y 1-representation H,((Xg41)", An UAy) is J(n).
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Sketch of proof Bianchi-Miller-Wilson

Theorem (Bianchi-Miller-Wilson ‘21)
The subgroup J(n) acts trivially on H.(F,(Xg.1)).

Sketch proof.

+ Define B, = {(X4,...,Xn) : X; € 9Xg, for some i} C (Xg4)".

» By Poincaré-Lefschetz duality,
H*(Fa(Zg,1)) = Han—i((Xg,1)", An U Bn).

+ Construct a chain-complex, natural with the 'y ;-action, which
computes @n>oH.((Xg,4)", Ap U Bp).

« The part that computes H.((Xg,4)", Ay U Bp) involves, before
taking homology, only He((Zg.1)*, A UAg) for k < n.

« Therefore, J(n) acts trivially. (But after taking homology the
kernel might be bigger.)
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Group Rings and the augmentation ideal

+ Let's motivate how J(n) appear in Moriyama’s theorem.

* Write m = m(X4,), a free group of rank 2g. Consider the group
ring Z[r].

- Define the augmentation ideal | C Z[x] as the kernel of the
augmentation map

e Zr] =2
yem — 1.

« Itis the two-sided ideal generated by v — 1 for v € .
 The powers I" are also two-sided ideals generated by
(m = D2 = 1)...(yn — 1) for v; € 7.

10
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Example calculation

« Example: check that if v € 7 is a commutator then v —1 € 2.
« Write v = [o, ] = aBa 37", then

y—1= aBa” BT -1
=afBa ' — BaapTT
= (aff — Ba)a "B
=((a=1)@B-1)—-(B-1)(a-1))a""s7".

s (a=1)(B—-1),B8—-1)(ae—1) € P, thusy —1€ .

Ify € m, then v —1 € I" if and only if v € =", the nth commutator
subgroup of .
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Points travelling on loops

+ Lety: ([0,1],0{0,1}) = (Xgq.1, p) represent an element of 7.
+ Consider the n-simplex

A" = {(ty, ... ty) €[0,1]" 1 t, < t, < ... < ty}.

+ Get map

fo  Z[7] = Ho((Sg.1)", An U A)
v = [Y"A".

12
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Moriyama: proof idea

 The simultaneous kernel of f;, ..., f, is I,

« The images of fi, ..., f, generate

EBH,-((ZQJ)",A,- UA;).

i=1

« It follows that the kernel of the I'y ,-representation

Hn((Xg,1)", An UAp) is the same as the kernel of Z[x]/I"*".
« By Fox’s theorem this is the same as the kernel of 7/7("+),
« This by definition is J(n).

13
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Conjecture (Bianchi-Miller-Wilson ‘21)
The Rernel

ker(Fg1 ™ Hi(Fa(Xg.1)))

is the subgroup of Ty, generated by J(n) and the Dehn twist Dy, ,
along 04 1.

Theorem (Bianchi-S. ‘22)
For n,g > 2, the subgroup J(n —1) acts non-trivially on H,(Fn(Xq.1)).

+ ldea: Construct x € Hp(Fn(Xg1)), ¢ € J(n — 1) and a reason why
¢ * X # X.

+ The class x comes from a closed submanifold X C F,(Xg.,) of
half-dimension.

 The “reason why” is a properly embedded submanifold
Y C Fa(Xg,4) of half co-dimension that is disjoint from X, but
intersects X transverally at finitely many points, so that the

algebraic intersection number of X and Y is +1. “‘



Foggy Roller Coasters

Figure 2: (A) The submanifold X C (Xg,4)" is the n-torus supported in the pink
region, with it configuration point orbiting on the parallel curves o ifi =1,...,n — 2,
the (n — 1)t point on curve b and nth point on curve c.(B) The mapping class

¢ € J(n — 1) is the commutator of the Dehn twist along « repeated (n — 2) times and
the Dehn twist along 8. (C) The submanifold Y C Fn(X4,1) corresponds to points 1, ...,
n travelling along d in strictly increasing order. (D) The intersection of ¢ x X and Y
takes place in the yellow neighbourhood of « and §. Ignoring what happens out of it

can be thought of as putting fog. 15
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Work in progress

* Let 7 = m(Xq). The marked mapping class group Iq . acts on 7
and can define a Johnson filtration J4 .(n) as the kernels on
/7,

« The map 'y, — Iq . is surjective and has kernel generated by
Dazgj.

« We have Fn(Xg4) = Fn(3g.1) = Fo(Zg..) in a Diff-equivariant way.

The kernel of the 'y .-action on H,(Fn(Xq,+)) iS Jg,(N).

« In progress: conjecture true for n = 2, 3 by replicating
Moriyama'’s work but for X,.
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Towards Johnson filtrations for all manifolds

+ Simply connected manifolds (in higher dimensions) still have
complicated mapping class groups, but no natural filtration
that allows studying them at increasing depth.

+ Perhaps we ought to define their Johnson filtration as
Ju(n) = ker(MCG(M) ~ H.(F,(M))).

+ Proving the conjecture of Bianchi-Miller-Wilson would be an
indication that this is a good idea.
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McDuff’s scanning map

+ Let 7™M be the fibrewise one-point compactification of the
tangent bundle of M.

- Let (M) be the space of sections of 7™M which take the value
oo on oM.

« There is a scanning map o, : C,(M) — (M), which lands in the
“degree-n" component [',(M) of ['(M).

Theorem (McDuff ’75, Randal-Williams "13)

The map oy, : Ch(M) — 'n(M) induces an integral homology
isomorphism in homological degrees x < 1.
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A definition of the scanning map

Fix a metric g on M. For every M.g)
configuration s € C,(M) there is
an ¢ > o such that all points of s

are at least ¢ apart. s € C3(M)

Define o, (s) to be the following section of T*M:

oo € T M, if there is no config point within e of x,
expx.(p) € TM, if p is a config point within ¢ of x.

<

xeM»—>{
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Upgraded scanning

* Let T"M Af S™ be the fibrewise one-point compactification of
the tangent bundle of M fibrewise smashed with the sphere S™.
Let I'(M,S™) be the the space of sections of T*M Af S™
supported in the interior of M.

Theorem (Bodigheimer-Cohen-Taylor ‘80s)
For any k > 1, there is an isomorphism of vector spaces

@B H*(Ca(M))[2kn] = H*(T(M, $*)).

n>o

1. How to make the RHS more computable?

2. Both LHS and RHS have an action of MCG(M). Is this
isomorphism MCG(M)-equivariant?

3. The RHS is a ring with the cup-product. Is this meaningful on
the LHS?

20
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Knudsen's theorem

Theorem (Knudsen ‘17)

There is an isomorphism of bigraded spaces

P H.(Ca(M); Q) = HE(HC ™ (M; £(Q"[d — 1))

n>o
where d = dim M, H* is Lie-algebra homology, H; *(M; £(Q"[d — 1]))
is the compactly supported cohomology of M with coefficients in
the free graded Lie algebra generated by the orientation sheaf Q"
of M in degree d — 1.
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where d = dim M, H* is Lie-algebra homology, H; *(M; £(Q"[d — 1]))
is the compactly supported cohomology of M with coefficients in
the free graded Lie algebra generated by the orientation sheaf Q"
of M in degree d — 1.

« Proof uses factorization homology.



Knudsen's theorem

Theorem (Knudsen ‘17)

There is an isomorphism of bigraded spaces

P H.(Ca(M); Q) = HE(HC ™ (M; £(Q"[d — 1))

n>o
where d = dim M, H* is Lie-algebra homology, H; *(M; £(Q"[d — 1]))
is the compactly supported cohomology of M with coefficients in
the free graded Lie algebra generated by the orientation sheaf Q"
of M in degree d — 1.

« Proof uses factorization homology.

« Computational power: used in Drummond-Cole-Knudsen ‘17 to
compute the Betti numbers of C,(X) for all compact surfaces .



Equivariant untwisted rational scanning
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Equivariant untwisted rational scanning

Theorem (S. ‘21)

Let M be a compact, connected, oriented manifold of dimension d,
and kR > 1 an arbitrary integer. There is a MCG(M)-equivariant
isomorphism of graded vector spaces

P H'(Ca(M); Q)[2kn] = H* (mapy(M, S*72); Q).

i,n>0
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Equivariant untwisted rational scanning

Theorem (S. ‘21)

Let M be a compact, connected, oriented manifold of dimension d,
and kR > 1 an arbitrary integer. There is a MCG(M)-equivariant
isomorphism of graded vector spaces

D H(Ca(M); Q)[2kn] = H* (map, (M, S****); Q).

i,n>0

« Mapping spaces are easier than section spaces.
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Equivariant untwisted rational scanning

Theorem (S. ‘21)

Let M be a compact, connected, oriented manifold of dimension d,
and kR > 1 an arbitrary integer. There is a MCG(M)-equivariant
isomorphism of graded vector spaces

P H'(Ca(M); Q)[2kn] = H* (mapy(M, S*72); Q).

i,n>0

« Mapping spaces are easier than section spaces.

« A second bidegree can be put on the RHS using the weights of
the Z*-action of automorphisms of the sphere, which makes
this a bigraded isomorphism.
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Equivariant untwisted rational scanning

Theorem (S. ‘21)

Let M be a compact, connected, oriented manifold of dimension d,
and kR > 1 an arbitrary integer. There is a MCG(M)-equivariant
isomorphism of graded vector spaces

P H'(Ca(M); Q)[2kn] = H* (mapy(M, S*72); Q).

i,n>0

« Mapping spaces are easier than section spaces.

« A second bidegree can be put on the RHS using the weights of
the Z*-action of automorphisms of the sphere, which makes
this a bigraded isomorphism.

+ Applied to compute H*(Cn(X4,1); Q) together with the Iy ; action.
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Superposition of configurations

- For any compact manifold M with boundary C,(M) ~ C,(M). In
the one-point compactification C,(M)* you go to the
“co-configuration” if either:

- two configuration points are colliding, or
- one configuration point goes to OM.
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Superposition of configurations

- For any compact manifold M with boundary C,(M) ~ C,(M). In
the one-point compactification C,(M)* you go to the
“co-configuration” if either:

- two configuration points are colliding, or
- one configuration point goes to OM.
« Define the superposition map

SUP, m Co(M)F % Con(M)T — Cprym(M)T
sUtifs,t£AccandsnNt=g

(s,t) »—>{

00, otherwise.
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Superposition of configurations

- For any compact manifold M with boundary C,(M) ~ C,(M). In
the one-point compactification C,(M)* you go to the
“co-configuration” if either:

- two configuration points are colliding, or
- one configuration point goes to OM.

« Define the superposition map

SUPp - Co(M)F % Con(M)T — Cprym(M)T
sUtifs,t£AccandsnNt=g
00, otherwise.

(s,t) »—>{

« Using Poincaré-Lefschetz duality, we obtain the map pm n:
Hm,n

HI(Cy(M)) ® H(C(M)) -------"---- » HH(Cpim(M))

glpD glPD

SUPp m,

Hdn—i(cn(M)Jr) & Hdm—j(cn(M)+) - Hd(n+m)—(i+j)(cn+m(l\7l)+)
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The superposition product

+ The maps pm.n, for m,n > o, compile to make @nzo H*(Ch(M))
into a ring.
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The superposition product

+ The maps pm.n, for m,n > o, compile to make EBHZO H*(Cn(M))
into a ring.

Theorem (S. ‘23)

Both of the following isomorphisms

€D H*(Ca(M))[2kn] = H*(T(M, $**))

n>1

and .
P H'(Ca(M); Q)[2kn] = H*(map,(M, S*); Q)

i,n>0

are, in fact, ring isomorphisms with the cup product on the right
and the superposition product on the left.
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are, in fact, ring isomorphisms with the cup product on the right
and the superposition product on the left.

+ The proof is completely elementary!



The superposition product

+ The maps pm.n, for m,n > o, compile to make EBHZO H*(Cn(M))
into a ring.

Theorem (S. ‘23)

Both of the following isomorphisms

€D H*(Ca(M))[2kn] = H*(T(M, $**))

n>1

and .
P H'(Ca(M); Q)[2kn] = H*(map,(M, S*); Q)

i,n>0

are, in fact, ring isomorphisms with the cup product on the right
and the superposition product on the left.

+ The proof is completely elementary!
 The superposition product is crucial in Moriyama’s work.



THANK YOU

and have a good evening!

- Cg (T2)
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	Another story: Scanning

