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Configuration spaces

The nth ordered configuration space of a space
X is

Fn(X) := {(x1, ..., xn) ∈ Xn : xi ̸= xj for i ̸= j},

topologised as a subset of Xn.

The nth unordered configuration space of a
space X is the quotient

Cn(X) := Fn(X)/Sn,

by the permutation action of the symmetric
group Sn.
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In context

• Braid groups are π1 of Fn(R2) and Cn(R2).
• Embedding calculus: study an embedding a few points at a time
→ knot invariants. (Teichner, Watanabe, ...)

• Homotopy equivalent but not homeomeomorphic lens spaces
can be distinguished by their configuration spaces. (L7,1 ≃ L7,2
but L7,1 ̸∼= L7,2; F2(L7,1) ̸≃ F2(L7,2).) (Longoni-Salvatore ‘04).

Motto
The homology of a space loses information. The homology of
configurations of the space retains more information.
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Mapping class group actions

• Let M be an oriented manifold, possibly with boundary. The
mapping class group of M is the group

MCG(M) = π0(Diff
+
∂ (M))

= oriented self-diffeos of M, fixing ∂M, up to isotopy.

• There is a natural action MCG(M) ↷ H∗(M).
• There is also an action

Diff+
∂ (M) ↷ Fn(M), Cn(M)

which descends to

MCG(M) ↷ H∗(Fn(M)),H∗(Cn(M)).
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Surfaces

• Let Σg,1 be the compact orientable genus g surface with one
boundary component.

Figure 1: A Σ2,1 surface.

• Write Γg,1 := MCG(Σg,1).
• The natural action

Γg,1 ↷ H1(Σg,1) ∼= Z2g

has kernel called the Torelli group, denoted Ig,1. This group is
large and complicated.
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Non-trivial Torelli actions

Theorem (Bianchi ‘19)
If g ≥ 2, then Ig,1 acts non-trivially on H2(C2(Σg,1)).

• Let Σg be the closed counterpart of Σg,1, Γg = MCG(Σg) and
Ig = ker(Γg ↷ H1(Σg)).

Theorem (Looijenga ‘20, S. ‘20)
If g ≥ 3, then Ig acts non-trivially on H3(C3(Σg)).

Question
The homology of configuration spaces of surfaces sees more of the
mapping class group than the homology of the surface. How much
more?
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The action on unordered configurations

• For unordered configurations, the answer is: not that much.
• The Johnson kernel, Kg,1, is the subgroup of Γg,1 generated by

separating Dehn twists. In fact, Kg,1 ⊂ Ig,1.

Theorem (S. ‘21)
Kg,1 acts trivially on H∗(Cn(Σg,1);Q), for all n,g ≥ 0.

Theorem (Bianchi–S. ‘23)
In fact, Kg,1 = ker(Γg,1 ↷ H∗(Cn(Σg,1)), for all n,g ≥ 2.

Theorem (S. ‘23)
Kg = ker(Γg ↷ H∗(Cn(Σg)), for all n,g ≥ 3.

• What about ordered configurations?
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The Johnson filtration

• The nth Johnson subgroup of Γg,1 is the kernel

J(n) = ker(Γg,1 ↷ π1(Σg,1)/π1(Σg,1)
(n+1)),

where G(i) is the ith commutator subgroup of G:

G(1) = G,G(i+1) = [G,G(i)].

• Notice J(0) = Γg,1, J(1) = Ig,1, J(2) = Kg,1.
• We have the Johnson filtration

J(0) ⊃ J(1) ⊃ J(2) ⊃ J(3) ⊃ ...

which is exhaustive:
⋂
n≥0 J(n) = {1}.

Theorem (Bianchi–Miller–Wilson ‘21)
The nth Johnson subgroup J(n) acts trivially on H∗(Fn(Σg,1)), for all
n ≥ 1.
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Moriyama’s representations

• Pick a point p ∈ ∂Σg,1 and define the subspaces of (Σg,1)
n

∆n = {(x1, ..., xn) : xi = xj for i ̸= j}

and
An = {(x1, ..., xn) : xi = p for some i}.

• The pair ((Σg,1)
n,∆n ∪ An) is acted on naturally by Diff(Σg,1) and

has homology only in degree n.

Theorem (Moriyama 2007)
The kernel of the Γg,1-representation Hn((Σg,1)

n,∆n ∪ An) is J(n).

8



Moriyama’s representations

• Pick a point p ∈ ∂Σg,1 and define the subspaces of (Σg,1)
n

∆n = {(x1, ..., xn) : xi = xj for i ̸= j}

and
An = {(x1, ..., xn) : xi = p for some i}.

• The pair ((Σg,1)
n,∆n ∪ An) is acted on naturally by Diff(Σg,1) and

has homology only in degree n.

Theorem (Moriyama 2007)
The kernel of the Γg,1-representation Hn((Σg,1)

n,∆n ∪ An) is J(n).

8



Moriyama’s representations

• Pick a point p ∈ ∂Σg,1 and define the subspaces of (Σg,1)
n

∆n = {(x1, ..., xn) : xi = xj for i ̸= j}

and
An = {(x1, ..., xn) : xi = p for some i}.

• The pair ((Σg,1)
n,∆n ∪ An) is acted on naturally by Diff(Σg,1) and

has homology only in degree n.

Theorem (Moriyama 2007)
The kernel of the Γg,1-representation Hn((Σg,1)

n,∆n ∪ An) is J(n).

8



Moriyama’s representations

• Pick a point p ∈ ∂Σg,1 and define the subspaces of (Σg,1)
n

∆n = {(x1, ..., xn) : xi = xj for i ̸= j}

and
An = {(x1, ..., xn) : xi = p for some i}.

• The pair ((Σg,1)
n,∆n ∪ An) is acted on naturally by Diff(Σg,1) and

has homology only in degree n.

Theorem (Moriyama 2007)
The kernel of the Γg,1-representation Hn((Σg,1)

n,∆n ∪ An) is J(n).

8



Sketch of proof Bianchi-Miller-Wilson

Theorem (Bianchi–Miller–Wilson ‘21)
The subgroup J(n) acts trivially on H∗(Fn(Σg,1)).

Sketch proof.

• Define Bn = {(x1, ..., xn) : xi ∈ ∂Σg,1 for some i} ⊂ (Σg,1)
n.

• By Poincaré-Lefschetz duality,

H∗(Fn(Σg,1)) ∼= H2n−∗((Σg,1)
n,∆n ∪ Bn).

• Construct a chain-complex, natural with the Γg,1-action, which
computes ⊕n≥0H∗((Σg,1)

n,∆n ∪ Bn).
• The part that computes H∗((Σg,1)

n,∆n ∪ Bn) involves, before
taking homology, only Hk((Σg,1)

k,∆k ∪ Ak) for k ≤ n.
• Therefore, J(n) acts trivially. (But after taking homology the

kernel might be bigger.)
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• By Poincaré-Lefschetz duality,

H∗(Fn(Σg,1)) ∼= H2n−∗((Σg,1)
n,∆n ∪ Bn).

• Construct a chain-complex, natural with the Γg,1-action, which
computes ⊕n≥0H∗((Σg,1)

n,∆n ∪ Bn).
• The part that computes H∗((Σg,1)

n,∆n ∪ Bn) involves, before
taking homology, only Hk((Σg,1)

k,∆k ∪ Ak) for k ≤ n.
• Therefore, J(n) acts trivially. (But after taking homology the

kernel might be bigger.)

9



Sketch of proof Bianchi-Miller-Wilson

Theorem (Bianchi–Miller–Wilson ‘21)
The subgroup J(n) acts trivially on H∗(Fn(Σg,1)).

Sketch proof.

• Define Bn = {(x1, ..., xn) : xi ∈ ∂Σg,1 for some i} ⊂ (Σg,1)
n.
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Group Rings and the augmentation ideal

• Let’s motivate how J(n) appear in Moriyama’s theorem.
• Write π = π1(Σg,1), a free group of rank 2g. Consider the group

ring Z[π].
• Define the augmentation ideal I ⊂ Z[π] as the kernel of the

augmentation map

ε : Z[π] → Z

γ ∈ π → 1.

• It is the two-sided ideal generated by γ − 1 for γ ∈ π.
• The powers In are also two-sided ideals generated by
(γ1 − 1)(γ2 − 1)...(γn − 1) for γi ∈ π.
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Example calculation

• Example: check that if γ ∈ π is a commutator then γ − 1 ∈ I2.
• Write γ = [α, β] = αβα−1β−1, then

γ − 1 = αβα−1β−1 − 1
= αβα−1β−1 − βαα−1β−1

= (αβ − βα)α−1β−1

= ((α− 1)(β − 1)− (β − 1)(α− 1))α−1β−1.

• (α− 1)(β − 1), (β − 1)(α− 1) ∈ I2, thus γ − 1 ∈ I2.

Theorem (Fox)
If γ ∈ π, then γ − 1 ∈ In if and only if γ ∈ π(n), the nth commutator
subgroup of π.
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Points travelling on loops

• Let γ : ([0, 1], ∂{0, 1}) → (Σg,1,p) represent an element of π.
• Consider the n-simplex

∆n = {(t1, ..., tn) ∈ [0, 1]n : t1 ≤ t2 ≤ ... ≤ tn}.

• Get map

fn : Z[π] → Hn((Σg,1)
n,∆n ∪ An)

γ 7→ [γn|∆n].
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Moriyama: proof idea

• The simultaneous kernel of f1, ..., fn is In+1.
• The images of f1, ..., fn generate

n⊕
i=1

Hi((Σg,1)
i,∆i ∪ Ai).

• It follows that the kernel of the Γg,1-representation
Hn((Σg,1)

n,∆n ∪ An) is the same as the kernel of Z[π]/In+1.
• By Fox’s theorem this is the same as the kernel of π/π(n+1).
• This by definition is J(n).
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A conjecture

Conjecture (Bianchi–Miller–Wilson ‘21)
The kernel

ker(Γg,1 ↷ H∗(Fn(Σg,1)))

is the subgroup of Γg,1 generated by J(n) and the Dehn twist D∂Σg,1

along ∂Σg,1.

Theorem (Bianchi–S. ‘22)
For n,g ≥ 2, the subgroup J(n− 1) acts non-trivially on Hn(Fn(Σg,1)).

• Idea: Construct x ∈ Hn(Fn(Σg,1)), ϕ ∈ J(n− 1) and a reason why
ϕ ∗ x ̸= x.

• The class x comes from a closed submanifold X ⊂ Fn(Σg,1) of
half-dimension.

• The “reason why” is a properly embedded submanifold
Y ⊂ Fn(Σg,1) of half co-dimension that is disjoint from X, but
intersects X transverally at finitely many points, so that the
algebraic intersection number of X and Y is ±1.
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Foggy Roller Coasters

b

β

β′

α

α′

A
a1a2

...
an−2

c

d

•
P

RA,α

Rc,β

Rd,α

Rd,αβ

Rd,b

Figure 2: (A) The submanifold X ⊂ (Σg,1)n is the n-torus supported in the pink
region, with ith configuration point orbiting on the parallel curves αi if i = 1, ..., n− 2,
the (n− 1)th point on curve b and nth point on curve c.(B) The mapping class
ϕ ∈ J(n− 1) is the commutator of the Dehn twist along α repeated (n− 2) times and
the Dehn twist along β. (C) The submanifold Y ⊂ Fn(Σg,1) corresponds to points 1, ...,
n travelling along d in strictly increasing order. (D) The intersection of ϕ ∗ X and Y
takes place in the yellow neighbourhood of α and β. Ignoring what happens out of it
can be thought of as putting fog. 15



Work in progress

• Let π̄ = π1(Σg). The marked mapping class group Γg,∗ acts on π̄

and can define a Johnson filtration Jg,∗(n) as the kernels on
π̄/π̄(n+1).

• The map Γg,1 → Γg,∗ is surjective and has kernel generated by
D∂Σg,1 .

• We have Fn(Σg,1) ≃ Fn(Σ̊g,1) ∼= Fn(Σg,∗) in a Diff-equivariant way.

Conjecture
The kernel of the Γg,∗-action on H∗(Fn(Σg,∗)) is Jg,∗(n).

• In progress: conjecture true for n = 2, 3 by replicating
Moriyama’s work but for Σg.
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Towards Johnson filtrations for all manifolds

• Simply connected manifolds (in higher dimensions) still have
complicated mapping class groups, but no natural filtration
that allows studying them at increasing depth.

• Perhaps we ought to define their Johnson filtration as

JM(n) := ker(MCG(M) ↷ H∗(Fn(M))).

• Proving the conjecture of Bianchi-Miller-Wilson would be an
indication that this is a good idea.
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Another story: Scanning



McDuff’s scanning map

• Let τ+M be the fibrewise one-point compactification of the
tangent bundle of M.

• Let Γ(M) be the space of sections of τ+M which take the value
∞ on ∂M.

• There is a scanning map σn : Cn(M) → Γ(M), which lands in the
“degree-n” component Γn(M) of Γ(M).

Theorem (McDuff ’75, Randal-Williams ’13)
The map σn : Cn(M) → Γn(M) induces an integral homology
isomorphism in homological degrees ∗ ≤ n

2 .
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A definition of the scanning map

Fix a metric g on M. For every
configuration s ∈ Cn(M) there is
an ε > 0 such that all points of s
are at least ε apart.

• Define σn(s) to be the following section of T+M:

x ∈ M 7−→

{
∞ ∈ T+x M, if there is no config point within ε of x,
exp−1

x,ε(p) ∈ TxM, if p is a config point within ε of x.

•
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Upgraded scanning

• Let T+M ∧f Sm be the fibrewise one-point compactification of
the tangent bundle of M fibrewise smashed with the sphere Sm.
Let Γ(M, Sm) be the the space of sections of T+M ∧f Sm

supported in the interior of M.

Theorem (Bödigheimer–Cohen–Taylor ‘80s)
For any k ≥ 1, there is an isomorphism of vector spaces⊕

n≥0
H∗(Cn(M))[2kn] ∼= H∗(Γ(M, S2k)).

Questions:

1. How to make the RHS more computable?
2. Both LHS and RHS have an action of MCG(M). Is this

isomorphism MCG(M)-equivariant?
3. The RHS is a ring with the cup-product. Is this meaningful on

the LHS?
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Knudsen’s theorem

Theorem (Knudsen ‘17)
There is an isomorphism of bigraded spaces⊕

n≥0
H∗(Cn(M);Q) ∼= HL(H−∗

c (M;L(Qw[d− 1])))

where d = dimM, HL is Lie-algebra homology, H−∗
c (M;L(Qw[d− 1]))

is the compactly supported cohomology of M with coefficients in
the free graded Lie algebra generated by the orientation sheaf Qw

of M in degree d− 1.

• Proof uses factorization homology.
• Computational power: used in Drummond-Cole–Knudsen ‘17 to

compute the Betti numbers of Cn(Σ) for all compact surfaces Σ.
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Equivariant untwisted rational scanning

Theorem (S. ‘21)
Let M be a compact, connected, oriented manifold of dimension d,
and k ≥ 1 an arbitrary integer. There is aMCG(M)-equivariant
isomorphism of graded vector spaces⊕

i,n≥0
Hi(Cn(M);Q)[2kn] ∼= H∗(map∂(M, Sd+2k);Q).

• Mapping spaces are easier than section spaces.
• A second bidegree can be put on the RHS using the weights of

the Z×-action of automorphisms of the sphere, which makes
this a bigraded isomorphism.

• Applied to compute H∗(Cn(Σg,1);Q) together with the Γg,1 action.
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Superposition of configurations

• For any compact manifold M with boundary Cn(M) ≃ Cn(M̊). In
the one-point compactification Cn(M̊)+ you go to the
“∞-configuration” if either:

• two configuration points are colliding, or
• one configuration point goes to ∂M.

• Define the superposition map

supn,m : Cn(M̊)+ × Cm(M̊)+ −→ Cn+m(M̊)+

(s, t) 7−→

{
s ∪ t, if s, t ̸= ∞ and s ∩ t = ∅
∞, otherwise.

• Using Poincaré-Lefschetz duality, we obtain the map µm,n:
Hi(Cn(M))⊗ Hj(Cm(M)) Hi+j(Cn+m(M))

Hdn−i(Cn(M̊)+)⊗ Hdm−j(Cn(M̊)+) Hd(n+m)−(i+j)(Cn+m(M̊)+)

PD∼=

µm,n

PD∼=
supn,m∗
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• Using Poincaré-Lefschetz duality, we obtain the map µm,n:
Hi(Cn(M))⊗ Hj(Cm(M)) Hi+j(Cn+m(M))

Hdn−i(Cn(M̊)+)⊗ Hdm−j(Cn(M̊)+) Hd(n+m)−(i+j)(Cn+m(M̊)+)

PD∼=

µm,n

PD∼=
supn,m∗

23



Superposition of configurations

• For any compact manifold M with boundary Cn(M) ≃ Cn(M̊). In
the one-point compactification Cn(M̊)+ you go to the
“∞-configuration” if either:

• two configuration points are colliding, or
• one configuration point goes to ∂M.

• Define the superposition map

supn,m : Cn(M̊)+ × Cm(M̊)+ −→ Cn+m(M̊)+

(s, t) 7−→
{
s ∪ t, if s, t ̸= ∞ and s ∩ t = ∅
∞, otherwise.
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• Using Poincaré-Lefschetz duality, we obtain the map µm,n:
Hi(Cn(M))⊗ Hj(Cm(M)) Hi+j(Cn+m(M))

Hdn−i(Cn(M̊)+)⊗ Hdm−j(Cn(M̊)+) Hd(n+m)−(i+j)(Cn+m(M̊)+)

PD∼=

µm,n

PD∼=
supn,m∗

23



The superposition product

• The maps µm,n, for m,n ≥ 0, compile to make
⊕

n≥0 H∗(Cn(M))
into a ring.

Theorem (S. ‘23)
Both of the following isomorphisms⊕

n≥1
H∗(Cn(M))[2kn] ∼= H∗(Γ(M, S2k))

and ⊕
i,n≥0

Hi(Cn(M);Q)[2kn] ∼= H∗(map∂(M, Sd+2k);Q)

are, in fact, ring isomorphisms with the cup product on the right
and the superposition product on the left.

• The proof is completely elementary!
• The superposition product is crucial in Moriyama’s work.
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THANK YOU

and have a good evening!
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	Another story: Scanning

