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Week 11 — Mayer-Vietoris sequence, reduced homology, mapping degree Due: 25. January 2017

Exercise 11.1 (Spaces with finite type homology; homological dimension.)
The homology of a space X is called of finite type if there exists an integer N ≥ 0 such that
(F1) Hn(X) = 0 for n > N ,
(F2) Hn(X) is finitely generated for 0 ≤ n ≤ N .

(1) Show, for a space X = X1 ∪ X2, that if X1 and X2 are open subspaces of X having homology of finite type,
and the homology of X1 ∩X2 is also of finite type, then so is the homology of X.

The smallest integer N such that (F1) holds is called the homological dimension dimhom(X) of X.
(2) Using the proof of part (1), give an upper bound for dimhom(X) in terms of dimhom(X1), dimhom(X2) and
dimhom(X1 ∩X2).

Exercise 11.2 (Reduced homology and augmentation.)

Recall that the reduced homology of a space X is defined as H̃n(X) = ker
(
e∗ : Hn(X) → Hn(P )

)
, where P is

a one-point space and e : X → P the obvious map. Consider the singular chain complex S•(X) of X and the
augmentation homomorphism

ε : S0(X) −→ Z ε
(∑

i

λixi

)
=
∑
i

λi,

where we wrote, instead of a 0-simplex ai : ∆0 → X with ai(e0) = xi, just the value xi. We call

Saug
• (X) : 0← Z ε←− S0(X)

∂←− S1(X)
∂←− · · ·

with Saug
−1 (X) = Z the augmented singular chain complex of X.

(1) Show that ε ◦ ∂ = 0. So one may regard Saug
• (X) as a chain complex with one negatively indexed chain group.

(2) There is a chain map E• : Saug
• (X)→ S•(X) with En = id for n ≥ 0 and E−1 = 0:

0 Z S0(X) S1(X) · · ·

0 0 S0(X) S1(X) · · ·

ε ∂

∂

= =

(3) The chain map E• induces homomorphisms

E∗ : Hn(Saug
• (X)) −→ Hn(S•(X))

for each n. Show that E∗ is injective for n ≥ 0, an isomorphism for n ≥ 1 and H−1(Saug
• (X)) = 0 for non-empty X.

Hint : Regard ε as a chain map

0 S0(X) S1(X) S2(X) · · ·

0 Z 0 0 · · ·

∂ ∂

ε

(4)* Let A• be any chain complex and “split” it into a negative part (A−
n = An−1 for n ≤ 0 and A−

n = 0 for n > 0)
and a non-negative part (A+

n = 0 for n < 0 and A+
n = An for n ≥ 0). We have a chain map D• : A+

• → A−
• as

follows (where A• is “bent”):
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· · · 0 0 A0 A1 A2 · · ·

· · · A−3 A−2 A−1 0 0 · · ·

∂ ∂ ∂

∂ ∂ ∂

∂

with Dn = 0 for n 6= 0 and D0 = ∂ : A0 → A−1. Thus we have induced homomorphisms

D∗ : Hn(A+
• ) −→ Hn(A−

• ).

(a) Hn(A+
• ) = 0 for n < 0

(b) Hn(A+
• ) = Hn(A•) for n ≥ 1

(c) Hn(A−
• ) = 0 for n > 0

(d) Hn(A−
• ) = Hn−1(A•) for n ≤ −1

(e) H0(A•) ∼= ker
(
D∗ : H0(A+

• )→ H0(A−
• )
)

(f) H−1(A•) ∼= coker
(
D∗ : H0(A+

• )→ H0(A−
• )
)

What if we “bend” A• several times?

Exercise 11.3 (Moore spaces.)
(a) Let f : X → Y be a continuous map. Recall from Exercise 8.3 the definition of the cone of f , denoted Cone(f),
and that there is an embedding Y ↪→ Cone(f) of Y as a closed subspace of Cone(f).
(b) Show that the image of Y under this embedding has an open neighbourhood that deformation retracts onto
it. Therefore use the long exact sequence for the pair (Cone(f), Y ) and Exercise 10.4 (the Quotient Theorem) to
construct a long exact sequence of the form:

· · · → Hn(Y )→ Hn(Cone(f))→ H̃n(ΣX)→ Hn−1(Y )→ Hn−1(Cone(f))→ · · · .

(c) Use the Suspension Isomorphism, and analyse the above sequence carefully in degree zero, to show that we have
a long exact sequence of the form

· · · → H̃n(Y )→ H̃n(Cone(f))→ H̃n−1(X)→ H̃n−1(Y )→ H̃n−1(Cone(f))→ · · · ,

where the map H̃n−1(X)→ H̃n−1(Y ) in the sequence is the one induced by f .
(d) Apply this sequence to a map fn,k : Sn → Sn of degree k, where n > 0 and k 6= 0, to show that Hi(Cone(fn,k))
is isomorphic to Z/kZ for i = n and is zero for i 6= n.

(e) Now let n > 0 and let A be any finitely generated abelian group. Construct a space Y such that H̃n(Y ) ∼= A

and H̃i(Y ) = 0 for i 6= n. Such a space is called a Moore space for the pair (A,n).
(Hint : look at Exercise 11.5 part (1) below.)
In fact a similar construction works for any (not necessarily finitely generated) abelian group A.
(f) Now let (A0, A1, A2, . . .) be any sequence of finitely generated abelian groups with A0 free. Construct a space
Y such that Hi(Y ) ∼= Ai for all i ≥ 0.

Exercise 11.4 (The degree of a rotation.)
Let A ∈ O(n+ 1). The restriction f = A|Sn of A : Rn+1 → Rn+1 to the unit sphere Sn ⊂ Rn+1 is a self-map of Sn,
and therefore has a degree, defined as in the lectures to be the unique integer deg(f) such that f∗(x) = deg(f).x
where x is any non-zero element of Hn(Sn) ∼= Z. (We assume that n > 0 in this exercise.)
(1) Explain why f = A|Sn must have degree either +1 or −1.
(2) Show that, in fact, deg(A|Sn) = det(A).
(Hint : first construct an explicit singular n-cycle on Sn representing a non-zero element of Hn(Sn).)
(3) In particular, if A is a reflection in a k-dimensional subspace in Rn+1, deg(A|Sn) = (−1)n−k+1.

Exercise 11.5 (Applications of Mayer-Vietoris.)
(1) Show that for a wedge of spaces X ∨ Y we have Hn(X ∨ Y ) ∼= Hn(X) ⊕Hn(Y ) for n > 0. What happens in
degree zero? Thus compute the homology of S1 ∨ S1 ∨ S2.
(2) Decompose S1 × S1 into two open subsets, each homeomorphic to the open annulus S1 × (0, 1), such that their
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intersection is the disjoint union of two open annuli (see the figure on the next page). Using the Mayer-Vietoris
sequence for this decomposition, compute the homology of S1 × S1. (Cf. your answer to Exercise 10.5(c).)
(3) Note that these two spaces have isomorphic homology in each degree. Explain (using π1) why, nevertheless,
they are not homotopy equivalent spaces.
(4) Describe the universal coverings of S1 × S1 and of S1 ∨ S1 ∨ S2 and compute the homology groups of each.
(5)* Let Y be the torus S1 × S1 and let Z be the Möbius band, with A ⊂ Z its boundary. Let φ : A ∼= S1 be a
parametrisation of A. Define an embedding g : A ↪→ Y by g(a) = (φ(a), 1), where 1 ∈ S1 is the basepoint. Let
X = Z ∪g Y , as defined in Exercise 8.3. Using an open cover by “small” open neighbourhoods of Y ⊂ X and
Z ⊂ X, compute the homology of X in all degrees.
(6)* Repeat the previous exercise, but instead of the embedding g, use the embedding hk : A ↪→ Y defined by
hk(a) = (φ(a), φ(a)k), where k is a fixed integer. (Note that h0 = g.) Compute the homology of Xk = Z ∪hk

Y .

The decomposition of the torus in Exercise 11.5(2).

Exercise 11.6* (The Brouwer Fixed Point Theorem and PageRank.)
(a) Let n be a positive integer and let f : Dn → Dn be a self-map of the n-dimensional disc. Show that f has a
fixed point.
(Hint : the one-dimensional case can be proved using the Intermediate Value Theorem. You have already seen a
proof of the two-dimensional case, using π1. The proof for n > 2 is very similar, using homology instead.)
(b) So any self-map of a space homeomorphic to Dn has (at least) one fixed point.
(c) (Theorem of Perron-Frobenius) Let A be a real n× n matrix. If all of its entries are non-negative, then it has a
non-negative eigenvalue and a corresponding eigenvector all of whose entries are non-negative. Prove this statement
in two cases: if there is a non-zero vector x with non-negative entries such that Ax = 0 then we are done; otherwise
consider the self-map f of ∆n−1 ⊆ Rn defined by

f(x) = y
y1+···+yn for y = (y1, . . . , yn) = Ax.

(First explain why this is well-defined.)
(d) (Stronger version for column-sum-one matrices.) Suppose that A has the property that the sum of the entries
in each column is 1. Using similar methods to part (c), show that, in this case, we can take the eigenvector to lie
in ∆n−1 and the eigenvalue to be equal to 1.
(e) (Solution to the PageRank problem.) Let G be a directed graph with a vertex for every webpage and an edge
from w1 to w2 if the webpage w1 contains a link to the webpage w2. We want to extract from this a measure of
the relative “importance” of each webpage. This will assign to each webpage w a non-negative real number a(w),
such that the sum of a(w) over all webpages w is 1. In other words, a is a point on the (n− 1)-simplex ∆n−1 ⊆ Rn,
where n is the number of webpages on the internet.
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The first idea is to simply set a(w) equal to the number of other webpages that link to w, and then normalise so that
the sum is equal to 1. But then webpages that link to millions of other webpages would have a disproportionate
influence on the results compared to those with relatively few links. So to make the measure more democratic, we
say that each webpage has one “vote”, which it distributes to other webpages by linking to them: if it links to 5
other webpages, each of those webpages earns 1

5 of its vote. Then a(w) is equal to the total number of votes received
by w from other websites – again we have to normalise this. The final version of the idea is to give a higher weight
to the votes from websites that are themselves more “important” according to the measure a. This sounds circular,
but what it means is just that, instead of a direct definition of the vector a ∈ ∆n−1 ⊆ Rn, we have a system of
linear equations that it must satisfy. Namely:

a(wi) =

n∑
j=1

A(i, j).a(wj),

where A(i, j) = 0 if there is no edge wj → wi and A(i, j) = 1
k if there is an edge wj → wi and k is the total number

of edges leaving the vertex wj (i.e., the total number of distinct links on the webpage wj). If we let A be the matrix
whose (i, j)th entry is A(i, j), then these equations are equivalent to:

a = Aa.

The PageRank problem is to find such a vector a ∈ ∆n−1 ⊆ Rn. This gives us our measure of the relative
“importance” of each webpage, and (ignoring the issue that some entries of the vector a might be equal!) we may
use this to rank all webpages by importance.
To do: show that the PageRank problem has a solution.
(f) (Uniqueness of the solution in a strongly connected internet.) Let us make the unreasonable assumption that
the internet is strongly connected: for any pair of webpages (w1, w2) there exists a sequence of links taking you
from w1 to w2. Prove that the vector a ∈ ∆n−1 such that a = Aa is unique in this case.
(Hint : Do this by contradiction. Non-uniqueness of this solution means that the 1-eigenspace of A intersects ∆n−1

in more than one point, so it must have dimension at least 2. But then it must also intersect the boundary of ∆n−1,
so there exists a solution a such that a(wi) = 0 for some website wi. Show that this implies that a(wj) = 0 for
every website wj that links to wi.)
(g)** What happens for a less well-connected internet?

From the introduction to the book Lineare Algebra by J. Liesen and V. Mehrmann. Note that this 4-page internet
is strongly connected (cf. part (f) above), so there is a unique solution to the PageRank problem in this case. Can
you compute it?
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