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Week 12 — Suspensions, coefficient rings, (co)invariants, surgery. Due: 1. February 2017

Exercise 12.1 (Sums of maps.)
Let Σ̃X denote the reduced suspension ΣX/Σx0 of a based space X with x0 the basepoint; and denote by

∇ : Σ̃X −→ Σ̃X ∨ Σ̃X

the so-called co-multiplication defined by

∇([x, t]) =

{
[x, 2t] in the left summand, if 0 6 t 6 1

2 ,

[x, 2t− 1] in the right summand, if 1
2 6 t 6 1.

Here we denote the points of Σ̃X = X × [0, 1]/A with A = (X × {0, 1}) ∪ ({x0} × [0, 1]) by [x, t], using their
X-coordinate and their height t in the double cone. We denote by pi : Σ̃X ∨ Σ̃X → Σ̃X for i = 1, 2 the projection
onto the left resp. right summand, which collapses the other summand to a point. And by ιi : Σ̃X → Σ̃X ∨ Σ̃X we
denote the inclusions of the left resp. right summand.

(1) Show that pi ◦ ∇ ' idΣ̃X for i = 1, 2.

(2) Show that (a, b) 7→ ι1∗(a) + ι2∗(b) is an isomorphism Φ: Hn(Σ̃X)⊕Hn(Σ̃X)→ Hn(Σ̃X ∨ Σ̃X), for n > 0.

(3) Conclude that the homomorphism Φ−1 ◦ ∇∗ : Hn(Σ̃X)→ Hn(Σ̃X)⊕Hn(Σ̃X) is the diagonal.

Now we write the n-sphere Sn = ΣSn−1 (for n ≥ 1) as a suspension of Sn−1. For two based maps f, g : Sn → Sn we
declare their sum f + g : Sn → Sn by f + g := F ◦ (f ∨ g) ◦ ∇, where F: Σ̃X ∨ Σ̃X → Σ̃X is the folding map.

(4) Prove the formula:
deg(f + g) = deg(f) + deg(g).

(5)* More generally, prove that (f + g)∗ = f∗ + g∗ : Hn(Σ̃X)→ Hn(Σ̃X).

Exercise 12.2 (An application of mapping degree: fixed and antipodal points of self-maps of spheres.)
Let n > 1 and let f : Sn → Sn be a self-map of the n-sphere.
(a) If n is even, show that f must have either a fixed point or an antipodal point (x ∈ Sn such that f(x) = −x).
(b) More generally, if n is even, any two self-maps f, g of Sn must have either an incidence point (x ∈ Sn such that
f(x) = g(x)) or an opposite point (x ∈ Sn such that f(x) = −g(x)), unless they both have degree 0.
(c) For n odd, give an example of a self-map f : Sn → Sn with no fixed point and no antipodal point.
(d) More generally, given a self-map f : Sn → Sn, construct (when n is odd) another self-map g : Sn → Sn such that
f and g have no incidence points and no opposite points.

Exercise 12.3 (Coefficient rings.)
Let Z be the space D2×{0, 1}, i.e., the disjoint union of two closed 2-discs, and let A ⊂ Z be its boundary S1×{0, 1}.
Let Y = S1 and consider a map f : A→ Y that sends S1 × {0} to Y by a map of degree m and sends S1 × {1} to
Y by a map of degree n. See the figure on the next page.
(a) Using the Mayer-Vietoris sequence for an appropriate open covering of X = Z ∪f Y , show that there is an exact
sequence

0→ H2(X)→ Z2 φ−→ Z→ H1(X)→ 0,

where φ is given by the matrix (m n), and hence that H2(X) ∼= Z (unless m = n = 0, in which case H2(X) ∼= Z2)
and H1(X) ∼= Z/hZ, where h = gcd(m,n) is the greatest common divisor of m and n if they are both non-zero,
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and is max(|m|, |n|) otherwise.
(b) What happens when we compute homology not with Z coefficients, but rather with R coefficients, where
(i) R = Q,
(ii) R = Fp, for a prime p,
(iii) R = Z[ 1

p ], for a prime p, where Z[ 1
p ] = {ab ∈ Q | a and b are coprime and b = pc for some integer c > 0}?

(c)* Now take Y ′ = S1 ∨ S1 and consider a map g : A→ Y ′ that sends S1 × {0} to Y ′ as a loop that winds 3 times
around the left-hand circle of the “figure-of-eight” and twice around the right-hand circle, and sends S1×{1} to Y ′

as a loop that winds 5 times around the left-hand circle and 7 times around the right-hand circle. Let X ′ = Z∪g Y ′.
Similarly to part (a), show that there is an exact sequence

0→ H2(X ′)→ Z2 ψ−→ Z2 → H1(X ′)→ 0,

where ψ is given by the matrix
(

3 5
2 7

)
, and hence that H2(X ′) = 0 and H1(X ′) ∼= Z/11Z.

(d)* What happens if we change the ring of coefficients as in part (b)?

The attaching map f for the space X = Z ∪f Y in Exercise 12.3(a).

Exercise 12.4 (Invariants and coinvariants.)
Let X be a space with an action of a group G. We write XG for the subspace of X consisting of all fixed points
under the action (the invariants) and X/G for the quotient space {x.G | x ∈ X} (the orbit space).
Fix a commutative ring R with unit. If M is an R-module with a G-action by R-linear automorphisms, we define
the invariants MG, as above, to be the submodule of all elements that are fixed under the action. The module of
coinvariants MG is the quotient of M by the submodule generated by the set {m−m.g | m ∈M, g ∈ G}.
(a) If X is a space with a G-action, then M = Hn(X;R) is an R-module with a G-action. There are inclusion and
quotient maps XG ↪→ X � X/G and also MG ↪→ M � MG. Complete the following commutative diagram by
defining the dotted arrows:

Hi(X
G) Hi(X)G

Hi(X)

Hi(X)G Hi(X/G)

fi gi

(b) Take R = Z and let X = Sn (n > 2) with G = Z/2Z acting by a reflection. Show that
(i) gi is an isomorphism for i < n, but gn is not injective;
(ii) fn−1 is also not injective.

(c) Now consider the same set-up, except that G = Z/2Z acts by the antipodal map instead. Show that
(i) f0 is not surjective;
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(ii) fn is an isomorphism if and only if n is even; whereas gn is injective but not surjective for n odd and is surjective
but not injective for n even;
(iii) in degrees 0 < i < n we have: gi is an isomorphism if and only if i is even.

(d) In part (c), replace R = Z with R = Q or R = Fp for an odd prime p. Now gi is an isomorphism for all i.

Exercise 12.5 (Surgery on a manifold.)
Recall that an n-dimensional topological manifold is a Hausdorff space which is locally homeomorphic to Rn. A
framed embedded sphere S in M of dimension m is an embedding S : Sm × Dn−m ↪→ M . Write S∂ to denote the
restriction of S to Sm × ∂Dn−m = Sm × Sn−m−1 = ∂Dm+1 × Sn−m−1. We then define

M(S) =
(
Dm+1 × Sn−m−1

)
∪S∂

M◦, where M◦ = M − S(Sm × D̊n−m),

and call this the result of surgery on M along S. For example, the result of surgery along a framed embedded
1-sphere in a surface look like the following:

(a) Draw a sketch to show why this is again a manifold.
(b) Explain why we have a diagram of the form

Hi+1(M(S),M◦)

Hi+1(M,M◦) Hi(M◦) Hi(M) Hi(M,M◦)

Hi(M(S))

Hi(M(S),M◦)

(1)

with one exact row and one exact column. To relate Hi(M(S)) to Hi(M), it is important to understand the relative
homology groups appearing in (1).
(c) Using Excision, show that

Hi(M,M◦) ∼= Hi(Sm × Dn−m,Sm × Sn−m−1)

Hi(M(S),M◦) ∼= Hi(Dm+1 × Sn−m−1,Sm × Sn−m−1).

(d) Explain why the inclusion map Sa × Sb ↪→ Sa × Db+1 induces surjections on homology in every degree.
(Hint : Apart from degree 0, it is enough to show that a certain homology class in H∗(Sa × Db+1) is in the image.)
(e) You may from now on assume the following fact:

H̃i(Sa × Sb) ∼= Zδi,a ⊕ Zδi,b ⊕ Zδi,(a+b) ,

where δi,j is the Kronecker delta function: δi,i = 1 and δi,j = 0 for i 6= j.
(If you like, try to prove this inductively using the Mayer-Vietoris sequence. Find an open cover {U, V } of Sa × Sb
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such that U ' V ' Sa and U ∩ V ' Sa × Sb−1. For the base case, note that Sa × S0 = Sa t Sa.)
(f) Using parts (c)–(e), compute:

Hi(M,M◦) ∼=


Z2 i = n and m = 0

Z (i = n or i = n−m) and m 6= 0

0 otherwise

Hi(M(S),M◦) ∼=


Z2 i = n and m = n− 1

Z (i = n or i = m+ 1) and m 6= n− 1

0 otherwise

(g) Assume that n > 1 and m 6 n
2 . Use these calculations and (1) to show that in degrees i 6 m− 2,

Hi(M(S)) ∼= Hi(M).

(h)* Now we consider a more specific example. Let M be a 7-manifold and let S : S4 × D3 ↪→ M be a framed
embedded 4-sphere. Show that

H4(M(S)) ∼= H4(M)/〈[c]〉,
where [c] is the image under S∗ of a generator of H4(S4 × D3) ∼= Z.

Exercise 12.6* (H-spaces and co-H-spaces.)
A based space C is called a co-H-space, if there is a map ∇ : C → C ∨ C such that

pi ◦ ∇ ' idC for i = 1, 2

where p1 and p2 are the projections onto the first resp. second summand, which collapse the other summand to a
point. One calls C co-associative, if

(∇∨ idC) ◦ ∇ ' (idC ∨∇) ◦ ∇.
Example: the reduced suspension C = Σ̃X of a based space X is a co-associative co-H-space.

By ιi : C → C ∨ C for i = 1, 2 we will denote the inclusions of the left resp. right summand. With the same proof
as in Exercise 12.1 we see that (a, b) 7→ ι1∗(a)+ι2∗(b) is an isomorphism Φ: Hn(C)⊕Hn(C)→ Hn(C∨C), for n > 0.

(1) Show that Φ−1 ◦ ∇∗ : Hn(C)→ Hn(C)⊕Hn(C) is the diagonal map.

For any two based maps f, g : C → C we can define their sum by f + g := F ◦ (f ∨ g) ◦ ∇, where F : C ∨C → C is
the folding map.

(2) We have (f + g)∗ = f∗ + g∗ : Hn(C)→ Hn(C).

A based space M is called an H-space, if there is a map µ : M ×M →M , such that

µ ◦ ιi ' idM for i = 1, 2,

where ι1 : M →M ×M sends m to (m,m0), where m0 is the basepoint of M , and similarly ι2 sends m to (m0,m).
One calls M associative, if

µ ◦ (idM × µ) ' µ ◦ (µ× idM ).

Example: A topological group, in particular a Lie group, is an H-space.

For a co-H-space C and a based space Y , we set M := maps0(C, Y ), the space of all based maps f : C → Y . These
are important spaces when C is a sphere.

(3) Show that M is an H-space, and it is associative if C is co-associative.
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