Aufgaben zur Topologie

Prof. Dr. C.-F. Bodigheimer
Wintersemester 2016,/17

Week 1 — Exercises and Revision to be done by: 25.10.2016

Exercise 0.1 (Homotopy)
Recall the definition of homotopy and relative homotopy. Homotopy classes.

Exercise 0.2 (Free and based homotopy of maps St — St)
Show that, for self-maps of S!, free and based homotopy are the same.

Exercise 0.3 (Group structure of the fundamental group)
Recall the definition and verify the group axioms of m (X, zo).

Exercise 0.4 (Dependence on the fundamental group)
(a) Formulate correctly the phrase: w1 (X, z¢) depends only on the path component of .
(b) Formulate correctly the phrase: If X is path-connected, then 71 (X, z¢) is independent of xg.

Exercise 0.5 (Degree)
Recall the definition and the basic properties of the function grad : m(S!,1) — Z.

Exercise 0.6 (Applications)

Recall the statements and proofs of

(a) the fundamental theorem of algebra,

(b) the Brouwer fixed point theorem (in dimension 2),
(¢) the Borsuk-Ulam theorem,

(d) the hairy ball theorem.
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Week 2 — Umlauf, linking and winding numbers of curves to be done by: 02.11.2016

THEOREM AUS DER GEOMETRIA SITUS.

Es sei die Amplitudo einer ganzen in sich selbst zuriickkehrenden Curve
— *+2.360"% Sie hat wenigstens Knoten
19 @0 FIVQUIIGROIRH UG 21§
firn=0 1 2 3 4 5 6 17
Der Beweis scheint nicht leicht zu sein; wahrscheinlich wird dazu dienen, dass
man die Curve ihrem Laufe nach in Theile abtheilt, deren Grenzen die Punkte

sind, in denen ihre Richtung = 90°(22-1), dann eine unendliche gerade Linie,
deren Richtung = 90°, in der Richtung 0° durch die Fliche schiebt und die
Folge der Stiicke gehorig beachtet. So ist fiir diese Curve das Schema
folgendes :
4 1 AB
B 0 DCAB
C 1 DCBA
D 2 DBCA
g R 7
ete. —

Figure 1: From the notes of C.-F. Gauf}, probably between 1823 and 1827.

Exercise 1.1 (‘Two-dimensional intermediate value theorem’)

Let f: D? — R? be a smooth function and P € R? a point such that P ¢ f(S!) = f(9D?). Recall the definition of
the umlauf number U(f, P) of the curve f|si: S — R? about the point P. Assuming that U(f, P) # 0, show that
there exists a point 2z € D? such that f(z) = P.

Exercise 1.2 (Linking numbers of curves in R?)

(a) Let L be any one-dimensional affine subspace of R3 and let f: S! — R? be a smooth curve which is disjoint from
L. By considering a projection of f onto a plane orthogonal to L, define the umlauf number U(f, L) of f about L.
(b) Show that if f and g are curves in the complement of L that are homotopic via a homotopy that never intersects
L, then U(f,L) =U(g, L).

(c) Fix a smooth curve f: S' — R?® and let H: R x [0,1] — R? be a continuous function that never intersects f
and has the property that for each fixed ¢ the function H(—,¢): R — R? is an affine injection. Denote by L; the
one-dimensional affine subspace H(R x {t}) of R3. Show that U(f, Lo) = U(f, L1).

(d) We return to the situation where we have a fixed one-dimensional affine subspace L of R? and a smooth curve
f: St — R? in its complement. Consider a two-dimensional half-space with L as its boundary. (There are many
possibilities — they are all related to each other by a rotation about L.) Define what it means for the half-space
to intersect f transversely, and, if it does, the sign of the intersection. How can one calculate U(f, L) using these
signed intersections ?

(e)* Now let C' be the unit circle in a two-dimensional affine subspace of R?. Find a continuous function K : S? x
[0,1] — S3 such that (i) each K(—,t) is a diffeomorphism of S, (ii) K(—,0) is the identity on S* and (iii) K(C,1)



is a one-dimensional affine subspace of R? together with the point at infinity.

(f)* Using this, define the umlauf number U(f,C) of any smooth curve f: S! — R3 which does not intersect C.
(g)* Consider a two-dimensional disc embedded into R? in such a way that its boundary is C. Similarly to part (d),
define a transverse intersection of f with the disc, the sign of such an intersection and show how one can compute
U(f,C) using these concepts.

Exercise 1.3 (Circumnavigating the world)

Let B be a sailing boat on the surface of the world S?, and assume that it never visits the north or the south pole.
What does it mean for B to circumnavigate the world ? If you are given a map of its journey (which starts and ends
at the basepoint Hamburg € S?), how can you use lines of longitude to detect whether it has really circumnavigated
the world ?

Exercise 1.4 (Local index of vector fields)

For each of the following sets of integers, give a vector field V on S? with precisely k zeros (i,...,(; having the
listed integers as their local indices ind(V, (;):

(a) k=2 and indices 1,1,

(b) k=1 and index 2,

(c) k= and indices 1,1,1, —1,

(d) k=2 and indices 2,0,

(e) k=7 and indices 1,1,1,1,1,—1, 2.

(

Der Beweis ist doch sehr leicht. Man nenne n die Anzahl der Knoten
und bezeichne sie in der Folge, wie man sie trifft, indem man die Curve in
einem angenommenen Sinne der Bewegung durchliuft, durch 1,2,3,....x.
Da bei dieser Bewegung jeder Knoten zweimal getroffen wird, so sei Q die
aus 27 Gliedern bestehende Reihe dieser Zahlen, indem man das Zeichen --
beischreibt, so oft man auf die innere (rechte) Seite des durchschnittenen Arms
kommt, sonst —. Man zihle die 4 und —Zeichen bloss da zusammen, wo
die Zahlen zum erstenmal vorkommen und habe so + a-, — fmal. Indem
man nun die Charactere des Theils der Curve, der zuniichst vor dem ersten
Knoten liegt, durch 7,y" ausdriickt, ist die Amplitudo der ganzen Curve

= ({+7+a—p) 360"

Figure 2: A little later in the notes of C.-F. Gau8.

Exercise 1.5 (Symmetric vector fields on spheres)

In this exercise we will take the point of view that a tangent vector field on S? C R? is a continuous function
V:S? — R3 with the property that z and V(z) are orthogonal vectors for each z € S2.

(a) Suppose that V(x) = V(—=z) for each x € S%. If = is a zero of V, what is the relationship between the local
index of V' at x and the local index of V' at —a7

(b) Now fix an angle 6 € [0,27]. Consider the following equation (where x € S?):

V(—z) = cos(0) V(z) + sin(d) (z x V(x)), (1)

where x denotes the cross product in R3. Show that (1) holds for z if and only if it holds for —z.
(c) Now assume that (1) holds for all z € S%. If x is a zero of V, what is the relationship between the local index
of V' at x and the local index of V' at —x ? How does this relationship depend on 67
(d) Now let V be an arbitrary vector field (not necessarily satisfying (1)) and define another vector field Vy for
0 € 10, 27| by

Vo(z) = cos(0) V(z) +sin(f) (x x V(z)).

What are the zeros of Vy in comparison to the zeros of V7 How is the local index of a zero of Vy determined by the
local indices of the zeros of V7



(e)* Now let F' C R® be a torus, symmetrically embedded into R? such that 2 € F implies that —2z € F and the
tangent spaces T, F and T_,F are parallel. Let us say that it is the z-axis that passes through the ‘hole’ in the
torus (so F is disjoint from the z-axis).

We will think of vector fields on F as continuous functions V: F — R? with the property that V(z) is parallel to
T, F for each x € F. Let p: R® — R? be the projection onto the (z,y)-axis. Show that, when z € F, the vector
W (z) = p(z) x (0,0, 1) always lies in the tangent plane T, F, where x is the cross product in R3. This is therefore an
example of a non-vanishing vector field on F'. Now suppose that V is any vector field on F' satisfying the following
property: for each z € F,

V(—z) = the reflection of V(z) about the axis {\.W(z) | A € R} in the tangent plane T, F.

If x is a zero of V', what is the relationship between the local index of V' at x and the local index of V' at —x? Give
an example of a vector field V' that has zeros and satisfies this property.

Figure 3: The surface F' from Exercise 1.6.

Exercise 1.6 (‘Satz vom Igel’ for higher-genus surfaces)

The orientable surface F' of genus g we imagine as smoothly embedded in R3 (see Figure 3 on page 3), symmetric
with respect to the origin and to the (z,y)-plane. The intersection with this plane consists of an outer curve Cy
and g further curves C1, ..., Cy. We have an upper resp. lower half-surface F* and F~, both a disc with an outer



boundary curve C’S’ resp. C; and g inner boundary curves Cf‘, RN C’;r resp. Cp,...,Cy .

(a) Show that T'(F') is trivial over both F'* and F~. (Move a point ¢ towards the point on the dotted core curve
K7 resp. K~ closest to ¢ and slide the tangent plane along. The curves KT and K_ lie in planes parallel to the
(x,y)-plane, where all tangent planes have a canonical isomorphism to R?.) In the end we have for each curve a
clutching function ¢;: C; — GLy(R), i =0,1,...,g.

(b) In the case of a torus, g = 1, conclude that the tangent bundle is trivial over the whole surface.

(c) Now assume a vector field is given. This vector field is a function V: F — R3 such that V() is tangent to
F at ¢, ie., V(¢) € T¢(F). What can we conclude about the zeroes of V7 If we assume that V' has no zeroes;
then — since F is orientable — in each tangent plane we get by left-rotation of V(¢) with angle 90° a second and
linearly independent vector and thus a basis in each tangent space. Restricting to the curves C; we have functions
;2 C; = GLg(R). But these functions must satisfy relations. What are these relations, and what do they imply for
non-vanishing vector fields on F'?
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Week 2 — Covering spaces to be handed in on 09.11.2016 (before the lecture)

A 3-fold covering of the Klein bottle.

Exercise 2.1 (The higher spheres are simply-connected: 71 (S"™, zg) =1 for n > 2. )

We prove this by showing in several steps, that any closed curve a: [0,1] — S™ with «(0) = (1) = x¢ is contractible
relative to {0,1}. In most steps we use a homeomorphism (S™ — {P}, z9) — (R™,0) of pointed spaces.

(1) If & does not cover the entire sphere, then « is contractible relative to {0,1}. (N.B. There are curves (e.g. the
Peano curves), which cover an entire sphere, even for n > 1.)

(2) There are finitely many 0 = tg < t; < ... < t,, = 1, such that, for each curve «([ty,tr11]), there is (at
least) one of the 2(n+1) open half-spheres Uii = {(z1,...,7pq1) € R* | £x; > 0}, that entirely contains it,
k=0,....,m—1,i=1,...,n+ 1. (This is an application of the Lemma of Lebesgue.)

(3) Any path §: [a,b] — S™ that is contained in some half-sphere UijE is homotopic, in Uii and relative to {a, b}, to
a path running along a section of the great circle from 3(a) to 5(b).

(4) Given (2), and using (3), there is a homotopy relative to {0,1} between « and a closed path «, which runs
piecewise along sections of finitely many great circles.

(5) Since a path v as in (4) satisfies the condition of (1), we are done. Where did we use n > 1 7

Exercise 2.2 (Coverings of the figure-eight space)

Find all 2-fold and 3-fold coverings of the figure-eight space X = S' v S! : first classify all coverings, connected or
disconnected, by giving two permutations; then sort by the number of connected components.

Exercise 2.3 (Sums, products and compositions of coverings)
(1) The sum X UY of two coverings X — X and Y — Y is a covering of the sum X LY.
(2) The product X x Y of two coverings X — X and Y — Y is a covering of the product X x Y.
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Two 3-fold coverings of the Klein bottle.

(3) If X — X and X — X are two finite coverings, then the composition X5 Xisa covering.

Exercise 2.4 (Klein bottle covering itself.)

Show that the two maps in the figure above are 3-fold coverings of the Klein bottle K.

A 5-fold covering of the figure-eight space.
From A.Fomenko, D.Fuchs: Homotopical Topology, p.70.

Exercise 2.5 (A non-commutative fundamental group.)

The fundamental group 7 (X, zg) of the figure-eight space X = S'VS! is non-abelian. Assume it were commutative;
consider the commutator [y] := [a] [8] [a]~![B]7!, where a resp. 3 is the closed curve running counter-clockwise
along the right resp. clockwise along the left leaf of the bouquet S' V' S!, as in the figure above. If [y] were the trivial
element, the lift 5 of v = o % B % & * ( in any covering X — X would be a closed curve.



Exercise 2.6 (Some oo-fold coverings.)

As in the previous exercise, let X = S' VS! be the figure-eight space and let a and b be the closed curves described
above. For each of the following subgroups G of 71 (X, zg), draw a covering X — X with the property that the
image of the induced map of fundamental groups w1 (X, Zg) — 71 (X, z0) is G-

(a) G = the normal subgroup generated by [a].

(b) G = the normal subgroup generated by the element [c] defined in the previous exercise.

(¢) G = the subgroup generated by [c].

(d) Now let w be any finite sequence of elements of the set {a,b,a,b} and take G = the subgroup generated by [w].
In each case, once you have constructed a covering X — X which potentially corresponds to the correct subgroup
G, what you need to check is that a based loop in X lifts to a loop (not just a path) in X if and only if it represents
an element of 71 (X,z) that lies in G.

Some Covering Spaces of S'vS§!
1) (2)

b
a a
ch O a ‘ b (a%b? ab)

(a, b? bab™)
&) b <a @ b a
b a b a
(a? b? aba™!, bab™) {a, b?, ba’b™  baba'b™)
50 a 6) a

N N
(a® bdabba) (a® b3 ab, ba)
a a a a

a
b
b (a* b* ab, ba, a’b?)
a k a
(10) a a

a a a

(a? b (ab)? (ba)} ab’a)

(a? b*, ab,ba’r~ bab™?) {(b2ngb-2n-1 p2n+lgh-2n| ne Z)

(11) a (12) %

‘a a
bOb bOh AW (a)

{brab"|nez)

(13) (14) a a

v {a,bab™)

Some coverings of the figure-eight space.
From A.Hatcher: Algebraic Topology, Cambridge Univ. Press 2002, p. 58.
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Week 3 — Coverings to be done by: 15.11.2016

Exercise 3.1 (Local properties of covering spaces)

A map f: Y — X is a local homeomorphism if, for each y € Y, there exists an open neighbourhood U of y such
that f(U) is open in X and the restriction f|y: U — f(U) of f to U is a homeomorphism. Suppose that f: ¥ — X
is a local homeomorphism. Show for each of the following properties that if X has this property, then so does Y.
(a) locally connected,

(b) locally path-connected,

(c) locally compact.

Now let &: X > Xbea covering.

(d) Show that € is a local homeomorphism.

Show for each of the following properties that if X has this property, so does X.

(e) Hausdorff,

(f) compact, if — in addition — the fibre is finite.

Exercise 3.2 (A covering space of a manifold is a manifold.)
Let £: M — M is a covering with finite or countable fibre. If M is a (differentiable, C", smooth, holomorphic, ... )
manifold, then so is M. If M is orientable, then so is M (however, the reverse implication does not hold).

Universal cover of the figure-eight space S! v S*

Exercise 3.3 (Properly discontinuous group actions)

Let the discrete group G act on a space Y and denote the action by (g,y) — ¢.y. The action is said to be properly
discontinuous, if for each y € Y there is a neighbourhood U, such that (g.U) N U = ( for all but finitely many
g € G. If Y is Hausdorff and the action is free, then this is equivalent to the statement that, for each y € Y, there



is a neighbourhood U, such that (g.U)NU = {) for all g € G except the identity element. (Why is this true?)

(a) For a free and properly discontinuous action on a Hausdorff space Y, the quotient map £: Y — X :=Y/G is a
covering with fibre G.

(b) Example: G =Z and Y = C — {0}; for the action fix a complex number \ # 0 and set n .z := A" z. For which
A is this action free, for which is it properly discontinuous 7 What is the quotient 7

(c) Example: Let G = Fr(2) = (z,y| ) denote the free (non-abelian) group on two letters z,y. The figure above
shows its Cayley graph C, which is a tree and which we regard as a subspace of the plane. The vertices are reduced
words w in the letters z,y (and their inverses) and we denote this vertex by (w); an edge between the vertices (w)
and (w') we denote by (w,w’) and such an edge exists iff w='w’ is z or y or ™! or y~!. Thus there is a vertex
for each group element, and there are four edges emanating from each vertex. C is contractible and thus simply-
connected. The right-action of G on C is described for a g € G as follows: for a vertex we set (w).g = (wg); for an
edge we set (w,w’) . g = (wg,w’g). Note that as a continuous map the action by g must dilate the lengths of the
edges. Show that the action is free and properly discontinuous. And show that the quotient C/G is the figure-eight
space S! v St. Conclude 71 (S* v St) = Fr(2).

Figure 12.3. A tiling of the
hyperbolic plane modelled
by the circular disk. From
the hyperbolic point of
view, all the ‘triangles’ are
exactly the same shape. The
(orientation-preserving)
symmetries are Mobius
maps which preserve this
tiling and map any
coloured triangle onto any
other. This and the
following figure were
drawn by our DFS tiling
program with the aid of an
automaton provided by the
program KBMAG by Derek
Holt. The pattern of the
colouring relates to the
automaton.

A properly discontinuous and free action on the hyperbolic plane H2. Each semicircle S in the picture (together with
a choice of orientation) defines an isometry of H? given by translation parallel to S by an amount such that each
vertex on S is moved forwards by two steps, i.e., it is sent to the next-but-one vertex in the direction given by the
orientation. These hyperbolic translations generate a discrete subgroup G of the group Isom(H?) of all hyperbolic
isometries of H?, which acts properly discontinuously and freely. Image credit: Indra’s Pearls, David Mumford,
Caroline Series and David Wright.




Exercise 3.4 (The pull-back of a covering is a covering.)

Let &: X — X be a covering and f:Y — X be any map. The pull-back of § along f consists of the space
Y = (X ) ={(y,2) €Y x X | f(y) = &(&)} (with the subspace topology of the product topology) together with
two maps € = f*(€): Y = f*(X) = Y, defined by (y,%) — y and f: Y = f*(X) — X, defined by (y, &) — &. Thus
we have a commutative square:

Vo= X)) — X
E=17(¢) 13
Y ! X

a) 5 Y 5Yisa covering with the same fibre as &.
b) The followmg formulae hold, where g: Z =Y and f: Y — X:

(

( ~

(1) ¢*(f*(X)) = (f o 9)*(X) and g*(£*(£)) = (£ © 9)*(&);

(2) id"(X) = X and id"(¢) = £, ~
(c) If £: S? — RP? is the antipodal projection and f: RP? — {P} — RP? the inclusion, then the pull-back ¢ is the
covering of the Mdébius-band by a band.

(d) Let &,: S* — S! denote the n-fold covering z — 2™. What is £5(¢,,) ? And what is &, o &, from Exc. 2.3 ?

Exercise 3.5 (Maps out of spaces with finite fundamental group)

Let X be a path-connected (locally path-connected) space with basepoint xg such that m (X, x¢) is finite.

(a) Show that any continuous map X — S' must be nullhomotopic.

(b) Using part (a), show that any continuous map X — Hk S! to a product of k copies of the circle S! must be
nullhomotopic.

(¢) Show that any continuous map X — \/e S! to a wedge of copies of £ copies of the circle S' must be nullhomotopic.
(Use Exercise 3.3(c) when ¢ = 2. For larger values of ¢ you will need an appropriate generalisation of that exercise.)

Exercise 3.6* (The fundamental groupoid and fibre-transport)

A groupoid is a category in which every morphism is invertible. It earns its name from the following example. If
G is a discrete group, then it may be considered as a groupoid BG with one object ® and with the morphism set
Hompg (e, ) = Autpg(e) equal to G. Another example that one may build from G is £G, which has one object for
each element of G, and exactly one morphism between any pair of objects (there is then only one possible way in
which composition may be defined).

If we imagine a category C (and therefore in particular a groupoid) as having a vertex for each object, an edge for
each morphism, a triangle for each pair (f,g) of morphisms such that source(f) = target(g), etc.. One should think
of f as a ‘connection’ between two objects, materialized as an edge, g likewise as another edge and f o g as a third
edge; and the fact that the third edge stands for the compostion fog and not just for any morphisms, we materilaize
as a triangle — etc., etc.. The resulting space is called the classifying space BC of the category C. For C = EG this
space turns out to be a simplex of cardinality |G| (which may be infinite).

A third example, which may be built out of any topological space X, is the following. We take one object for each
point z € X. A morphism from z to y is then defined to be a homotopy class of paths in X starting at « and ending
at y, where “homotopy” means homotopy of maps [0,1] — X relative to {0,1}. It is obvious, what the identity
morphisms are and what the composition of two morphisms is. The result is a groupoid (why 7), denoted IT(X).
(1) What is the group of automorphisms of the object z € X ?

(2) Show that any continuous map f: X — Y induces a functor II(f): II(X) — II(Y). We have (g o f) =
II(g)oII(f). Furthermore, if F': X x[0,1] — Y is a homotopy between the maps fo(z) = F(z,0) und fi(z) = F(z, 1),
the F' allows us to define a transformation from the functor II(f) to the functor II(f;).



Now let &: X — X be a covering.
(3) Show that the unique path-lifting property allows us to define a “fibre-transport” functor

trans: II(X) — Sym,

where Sym is the category of sets and bijections, such that a point € X, i.e., an object of II(X), is taken to its
fibre £~ (z).
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Week 4 — Coverings and deck transformations Due: 23.11.2016 (before the lecture)

Exercise 4.1 (Fundamental group of the Klein bottle)

Consider X = R? with the translation A: (x,y) — (x + 1,y) and the glide reflection B: (z,y) — (—z,y + 1). Let
G denote the subgroup of affine motions of R? generated by A and B.

(1) This action is free and properly discontinuous.

(2) A and B satisty the relation ABA = B.

(3) G is isomorphic to the semi-direct product Z x Z, where b € Z acts on Z via b.a := (—1)"a.
(4) The quotient £: X — X := X/G is the Klein bottle.

(5) Thus 71 (K) 2 7Z x Z.

Exercise 4.2 (Connectlmty and sections)

If & X1 — X and &: X2 — X are two ‘coverings of X, we denote by & P & X1 U Xg — X their sum over X or
Whitney sum. Show that a covering &: X — X has a section if and only if it is isomorphic to the sum ¢’ @ idx of

some covering ¢’ and the identity. Conclude that a connected covering with k > 1 leafs has no section. (Example:
S™ — RP™.)

e

The surface F5 C R? from Exercise 4.3(4c). The right-hand side is a bird’s-eye view from above.

Exercise 4.3 (Change of fibres)

Let the discrete group G act (from the right) freely and properly discontinuously on the Hausdorff space X thus
we have a covering £: X — X := X/G with fibre G. Now assume that G also acts (from the left) on the dlscrete
space F, not necessarily freely. We define on the space Y = X x F the “diagonal” action g. (7, u) = (v.g~ Lg.u),
and define Y to be the quotient space Y/ G, which may also be denoted X xq F.

(1) The projection ¥ — X is G-equivariant, so we have a well-defined induced map £p: Y — X.

(2) This induced map is a covering with fibre F'.

(3) If F = G with the G-action given by left-multiplication, then ¥ = X and &p = €.



(4) Examples:

(a) If X =S? with G = Z,/27 acting by the antipodal map, then X — X is the two-fold covering S? — RP2. Now
take F' = Z/47 with the generator of G acting by multiplication by —1. Show that ¥ — X is the Whitney sum
of two copies of the identity RP? — RP? and one copy of S? — RP2. What about if F = Z/nZ for other positive
integers n, with G again acting by multiplication by —17

(b) Let X = R with G = Z acting by translation; F = {627”% k=0,...,n— 1} with 1 € Z acting by rotation
by % degrees. What is the covering Y — X in this case?

(c) If we imagine the surface Fy;; embedded into R3 in a symmetrical way, with one large hole and g smaller
holes arranged around it at equal intervals, and with the z-axis running through the large hole — see the figure on
the previous page for the case g = 4 — then there is an action of the cyclic group Z/gZ on it given by rotation in
the (x,y)-plane by % degrees. This action is free and properly discontinuous and the quotient is homeomorphic
to Fy. Denote the resulting covering by ¢g41: Fyp1 — Fo.

Now take g = 4, let X = Fy and let G = Z/4Z acting as described above. So X — X is the covering @5 : Fy — Fb.
Let F be the set {—1,1} with the action of G = Z/4Z where a generator acts by multiplication by —1. Show that
the new covering ¥ — X is ¢3: F3 — F5.

(d)* More generally, if m and n are positive integers, let X = Frny1 with G = Z/mnZ acting as described above.
So X — X is rny1. Let F = {e>™% |k =0,...,n—1} with the action of G = Z/mnZ in which 1 acts by rotation
by % degrees. Then ¥ — X is ¢y, 41.

Figure 2.1 An order 5 element of Mod(S5).

The surface F5 has a 5-fold symmetry, as well as the 4-fold symmetry used in Exercise 4.3(4c).
Image credit: A Primer on Mapping Class Groups, B. Farb, D. Margalit, page 46.

Exercise 4.4 (Universal coverings of closed, orientable surfaces)

(a) Show that the action of Z% on R? given by addition in each coordinate is free and properly discontinuous.
Deduce that the universal cover of the torus S' x S! is contractible. (See part (a) of Exercise 3.3.)

(b) Consider the diagram in the hyperbolic plane H? on the next page, which is to be visualised using the Poincaré
disc model. The tiling is constructed as follows. Start with an octagon, centred at the middle of the disc, with
90-degree internal angles. Reflecting in L and then in M as shown on the right-hand side of the figure results in
another octagon, incident to the original octagon along one edge. The composite of reflection in L and then in M
is a hyperbolic isometry. Continuing in this way indefinitely, using all possible hyperbolic isometries of this form
(using the analogues of the lines L and M in the smaller octagons) produces the full tiling on the left-hand side of



the figure. Let G be the group of hyperbolic isometries generated by the ones that we used to construct the tiling.
Then G acts properly discontinuously and freely on H?2.

Show that each orbit of the G-action intersects the (closed) octagon in the centre of the picture. Moreover, show
that each orbit either (i) intersects the octagon exactly once in its interior, (ii) intersects the octagon exactly twice
on its boundary or (iii) intersects the octagon exactly eight times on its boundary. In the latter two cases, explain
how the points of intersection are related. Deduce that the universal cover of the surface F5 is contractible, where
F, denotes the closed, orientable surface of genus g.

(c) Sketch how to adapt this proof to show that the universal cover of F} is contractible for all g > 1.

(d) An application (continuation of Exercise 3.5 from last week). Let X be a path-connected (locally path-connected)
space with basepoint xo such that 71 (X, x¢) is finite. Show that any continuous map X — F, must be nullhomotopic.
(You may assume the fact that every element of m1(F}) has infinite order.)

(a) (b)

Figure 1.13. A tiling of the hyperbolic plane by regular octagons. (a)
A tiling of the hyperbolic plane by identical regular octagons, seen in the
Poincaré disk projection. (b) To get the small octagon from the big one,
reflect in L, then in M.

The tiling of the hyperbolic plane by regular octagons used in Exercise 4.4(b).
Image credit: Three-Dimensional Geometry and Topology, Vol. 1, William P. Thurston, page 16.

Exercise 4.5 (Conjugate covering space actions)

Let Y be a Hausdorff, locally path-connected, simply-connected space and let G and H be two discrete groups
acting (on the right) on Y freely and properly discontinuously. Thus we have coverings Y — Y/G and Y — Y/H
with deck transformation groups G and H respectively. Via their actions, we may consider G and H as subgroups
of Homeo(Y), the group of all self-homeomorphisms of Y.

(1) If G and H are conjugate subgroups, then there is a homeomorphism Y/G =2 Y/H. (Suppose that H = ¢G¢~*.
Then show that a homeomorphism may be defined by y.G + y.¢~1.H.)

(2) Conversely, show that if there is a homeomorphism Y/G = Y/H, then G and H must be conjugate.



Exercise 4.6* (Coverings of SO(3) x SO(3))

(1) We know from Exercise 2.1 that S™ is simply-connected for n > 2. The action of Z/2Z on S™ via the antipodal
map is free and (vacuously, since it is a finite group) properly discontinuous. Thus m (RP") & Z/27Z.

(2) Recall that there is a homeomorphism RP? 22 SO(3) (using Euler angles, for example). Thus 71(SO(3)) = Z/2Z.
(3) Note that Z/2Z x Z/27Z has exactly five subgroups. Therefore, SO(3) x SO(3) has exactly five coverings: four
of these are simply products of S* and/or SO(3).

(4) The remaining covering of SO(3) x SO(3) is the 2-fold covering corresponding to the subgroup {(0,0),(1,1)}
of Z/2Z x 7,/27. The general theory tells us that it is the quotient of the universal cover S? x S? by the involution
corresponding to the element (1,1). This involution is given by (z,y) — (—z, —y).

(5) Consider S* as the unit sphere in the quaternions H. Each element (z,7) € S* x S? therefore gives us a map
f(z,y): H— H defined by f(,,(z) = zzy~". Show that f(, ,) is a rotation, i.e., an element of SO(4).

(6) Show also that every rotation in SO(4) is of this form for some (x,y) € S* x S* and that two elements (x,y)
and (2/,y’) induce the same rotation if and only if (2/,y") = (—z, —y). Deduce that the fifth covering space of
SO(3) x SO(3) is homeomorphic to SO(4).

Figure 12.3. A tiling of the
hyperbolic plane modelled
by the circular disk. From
the hyperbolic point of
view, all the ‘triangles’ are
exactly the same shape. The
(orientation-preserving)
symmetries are Mibius
maps which preserve this

tiling and map any 1
coloured triangle onto any
other. This and the
following figure were
drawn by our DFS tiling
program with the aid of an
automaton provided by the
program KBMAG by Derck
Holt. The pattern of the [

colouring relates to the
automaton.

A subdivision of the tiling of H? by regular octagons, in which each octagon has been subdivided into 16 triangles.
Image credit: Indra’s Pearls, David Mumford, Caroline Series and David Wright.
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Week 5 — Classification of coverings; Seifert-van-Kampen Theorem Due: 30. November 2016

Exercise 5.1 (Coverings and homeomorphisms.)
If £&: X — X is a covering of a locally path-connected space X all of whose path-components are 1-connected, then
X is homeomorphic to a disjoint union of copies of X; if, in addition, X is 0- connected, then ¢ is a homeomorphism.

Exercise 5.2 (Connected coverings of Lie groups are Lie groups.)

Exercise 5.3 (Fundamental groups of topological groups are abelian.)

(1) Let G be a topological group; we denote its multiplication by u =.: GxG — G, (z,y) — x.y and the inverse by
1. G = G,2— 271, and we take the neutral element 1 as basepoint. Consider for two pointed maps a,b: St — G
the pointwise multiplication (a.b)(t) := a(t).b(t), and the pointwise inversion a=!(¢) := a(t)~!. Show that this is a
group structure on the set M = maps((S,1), (G, 1)) of based maps. Convince yourself that all of this is continuous
in the compact-open topology on M.

(2) Show that this group structure induces a well-defined group structure on the set of based homotopy classes,
that is on [(S%, 1), (G,1)] = m1(G, 1), by setting [a] . [b] := [a.b] and [a] 7! := [a~!], where the homotopy class of the
constant map t + 1 is the neutral element.

(3) Recall now the old group structure on 71 (G, 1), denoted here by [a]* [b] = [a*b] and [a] ™! = [a], where a*b is the
concatenation of two paths and a is the reverse path. Show (by pictures, not by formulae) that the multiplications
satisfy the following exchange property: ([a] * [b]) . ([¢] * [d]) = ([a] « [¢]) * ([b] « [d]).

(4) Assume that S is a set with two group structures * and . satisfying the exchange property. Then the group
structures agree (x = .) and are abelian. (Not all of the group axioms are needed for the proof of this statement;
which ones are used?)

(5) Thus the statement is proved.

Exercise 5.4 (Homotopy invariance of pull-backs.)

Let £: X — X be a _covering and let fo, fi: Y — X be two maps. Denote the pullbacks (for i = 0,1) of § by
&= [1(6): Yi= [1(X) > V. ) )

(1) If fo and f1 are homotopic, there is a homeomorphism ®: f3(X) — f{(X) with & o & = &.

(Hint: Consider the pull-back F*(X) — Y x [0, 1] of ¢ along a homotopy I’ between fy and fi, and lift the path
t— (y,t) with an arbitrary starting point in f&(X) C F*(X) over (y,0).)

(2) If f: Y — X is null-homotopic, then f*(§) is a trivial covering.

(3) Application: The inclusions ¢, : S! =2 RP! < RP"™ are not null-homotopic; even better, ¢,, induces isomorphisms
on fundamental groups.

Exercise 5.5 (Branched coverings and polynomials.) Let p(z) = 2" + a,,_12" "' 4+ ...a12 + ap be a non-constant
complex polynomial. Denote by S the set of all critical points, i.e., points z with p’(z) = 0 and V the set of all
critical values v = p(¢) for ¢ € S.

(1) Show that p: C— S — C —V is an n-fold covering.

(Hint: C is locally path-connected and V' is a closed subset (why?), so for each z € C —V you may find a connected
open neighbourhood U of z in C — V. Study the preimage p~1(U) and use the Inverse Function Theorem.)

Now we consider the special cases p,(z) = 2™ for n > 2 as maps from the disc B,.(0) of radius > 0 around 0 to
the disc B,»(0). We just saw that the restriction p,|: B,(0) — 0 — B,»(0) — 0 is an n-fold covering. But what is
Pn: Br(0) = B,»(0), where ¢ = 0 has only one point in its pre-image and not n points (as do all other points) ? The



map p,, is a prototypical example of a so-called branched covering; we will not define this notion in all generality,
but want to prove that a non-constant complex polynomial p is a branched covering in the following sense:

(2) Show that for each critical value v € V there is a neighbourhood U C C and a partition ky +ks+- - -+k; = n, such
that the restriction p|: p~1(U) — U is homeomorphic to the Whitney sum of I branched coverings pi, , Piy, - - - » Pk,
as considered above.

(Note: we call two coverings ¢ : X — X and v: Y — Y homeomorphic if there are homeomorphisms ¢: X — Y and
é: X — Y such that yoq~3:¢o§.)

(3)* What happens in a neighbourhood of oo if we extend p to S — S? by setting p(co) = oo ?

Diie Schar der konzentrischen Kreise r = konst. geht.also in die Schar
der kenzentrischen Kreise p = konst. iiber, und die Winkel ¢ werden
verdoppelt. LiBt man also ¢ bei festem
¥ = 0 von ( bis 2 x laufen, so variiert
# monoton zwischen 0 und 47, und
der Bildpunkt { durchwandert den
Kreis p = konst. zweimal, wenn der
Punkt z den Kreis r = konst. einmal
durchlduft. Somit entsprechen einem
Werte von £ zwei Werte von z; d. h.
die Umkehrfunktion

=1t
unserer Funktion { = z® ist eine ,,zwei- Abb, 95.
deutige* Funktion von .

Zur Veranschaulichung dieser Verhiilinisse denkt man sich die
{-Ebene in zwei Exemplaren, zwei , Blaffern”, iibercinandergelegt.
Dann fithrt man in beiden Blattern von { = 0 bis [ = oo kongruente
Schnitte, etwa lings der positiven reellen Achse, und heftet die vier
entstehenden Schnittufer unter wechselweiser Durchdringung der beiden
Blitter kreuzweise aneinander (Abb. §5),

A discussion of the function z — 22 and its inverse ¢ — /C from Vorlesungen tiber allgemeine Funktionentheorie

und elliptische Funktionen by A. Hurwitz and R. Courant, using polar coordinates z = re’® and ¢ = 2% = pe'”.

Exercise 5.6* (Spaces with fundamental group Z/nZ.)

Let f: S* — S* be a map of degree grad(f) = n. Consider the space M(n) = S! U; D? obtained by attaching a
2-disc to a circle along its boundary using the map f — i.e., the quotient (S! LID?)/ ~ where ~ is the equivalence
relation generated by the relations ¢ ~ f(¢) for ¢ € OD? = S

(1) Make a sketch of this identification.

(2) Show that m1 (M (n)) = Z/nZ.

Exercise 5.7* (Any group is the fundamental group of some space.)

(1) Let G be a group with finite presentation (s1,...,s, | r1,...,7%). Using a similar idea to Exercise 5.6, and
the Seifert-van-Kampen Theorem multiple times, construct a space X such that m1(X) = G. First find a space Yj
whose fundamental group is the free group (s1,..., s, | ), then attach a 2-disc to form a space Y; with fundamental
group (81,...,8, | 71), and so on, until you find Y, = X.

(2) Now suppose that G is any group, not necessarily possessing a finite presentation, or even a finite generating set
(think of G = Q, for example, or G = S, considered as an abstract (uncountable!) group). Using a limit argument,
show that there is nevertheless a space X with fundamental group G. You may use the following facts:

(a) Suppose that X is path-connected and is the union of a family of path-connected open subspaces X,. Assume
that each intersection X,NXg is X, for some 7. Also assume that X and each X, are “nice” (i.e., locally O-connected
and semi-locally 1-connected). Let € (], Xq. Then 71 (X, x) is the direct limit of the subgroups m1(Xa, ).

(b) Any group is the direct limit of the family of all of its finitely presentable subgroups.



Note: There is a subtlety with the limit argument if one tries to use fact (b): it is not possible to pick a finite
presentation for each finitely presentable subgroup of G in a way that is compatible with all inclusions between
them. To rectify this, you can instead use the following modification of fact (b):

(¢) Any group G is the direct limit of the diagram of groups whose objects are all finitely presentable subgroups of
G equipped with a choice of presentation, and whose morphisms are just those inclusions (sq,...,8, | 71,...,7%) <
(sh,...s8m, | m,...,r]) for which {s1,...,s,} is a subset of {s},...,s],} and {r1,...,rg} is a subset of {ry,...,7]}.

Exercise 5.8% (Addendum to the classification theorem for coverings.)
Let X be a 0-connected, locally 0-connected and semi-locally 1-connected space. We denote by

char: Cov®(X, x0) — G(m1(X, x0))

the function, which associates to an isomorphism class [¢] = [¢: (X, %) — (X, xo)] of based and connected coverings
the characteristic subgroup char[€] = &, (71 (X, zg)) of m1 (X, z0).

(1) char[¢] < char[¢s] <= There is a unique morphism &; — &s.

(2) char[¢] is normal <= ¢ is regular (i.e., “fibre-transitive”).

(3) Let H < m(X,z0) be a subgroup and denote by £: X — X the universal covering of X. In the commutative
diagram

we have:

(3.1) qg: X — X := X/H is a universal covering; thus D(qg) = H for the group of deck transformations.
(3.2) D(€n) = Weyl(H) = Ng(H)/H, the Weyl group of H in G = m1(X, z9).

(3.3) In particular, D(€y) = m (X, 20)/H if H is normal.
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Week 6 — Fundamental groups and first homology groups Due: 7. December 2016

Exercise 6.1 (Gradients, rotation and divergence: grad, rot and div.)

(1) Let X be an open subset of R? and define real vector spaces as follows.

o Cy=C>(X), the space of smooth real-valued functions on X.

o C_1 =C®(X)xC®(X), to be thought of as the space of smooth vector fields v = (v1,v2) on X, in coordinates.
o C_g = (C(X), to be thought of as the space of volume forms on X.

There are linear maps grad: Cop — C_; and rot: C_; — C_5 defined by grad(f) = (2L, 21 and rot(vi,vy) =

oz’ Oy
dvg _ Ouy
ox oy °

(a) Show (using vector calculus) that this is a chain complex (over the field R), where all undefined chain modules
are 0.

(b) For arbitrary X, find the dimension of Hy(Cl), i.e., the kernel of grad.

(¢c) When X is not simply-connected, give an example of a vector field that has zero rotation, but is not the gradient
of any smooth function on X, thus showing that the homology group H_1(C,) is non-trivial in this case.

(2) Now let X be an open subset of R? and define real vector spaces as follows.

o CO =(C>® (X)

o C_1=C%(X)xC®(X) x C®(X).

o C_5=C"(X)xC>®X)x C®X).

o C_3=C>(X).

(a) Recall the definitions of the linear operators grad: Co — C_1, rot: C_1 — C_5 and div: C_5 — C_3 in this
setting, and show that these form a chain complex.

(b) As above, compute the dimension of Hy(C,).

(c¢) Show that the homology group H_1(C,) is non-trivial when X is not simply-connected by finding a vector field
with zero rotation and which is not the gradient of any smooth function on X.

(d)* Find an X such that H_5(C,) is non-trivial, i.e., we need a vector field defined on X with zero divergence and
which is not the rotation of any other vector field on X. (A first case to consider is X = R3 — {(0,0,0)}.)

Exercise 6.2 (Induced maps on 7; and the abelianisation of m.)

Recall: If f: S! — S! is a map of degree k, then the induced map 7 (f): m1(St, 1) — m1(S!, 1) is the multiplication
by k in Z.

(1) Consider the following map Tj,: St x St — St x St called the Dehn twist along the curve a.

a

S
RE(RA

oAl || |

S\
o

F\ —

The loop a is taken to itself, whereas the loop b is taken to the diagonal loop ¢ pictured on the right-hand side. In
general, each vertical loop on the left-hand side is skewed to the right as it travels upwards, so that it becomes one
of the 45-degree diagonal loops on the right-hand side.

Describe the induced homomorphism 71 (T}) on the fundamental group 71 (S! x St) = Z x Z.



(2) Dehn twists may be defined more generally for surfaces. Given a piece of a surface, homeomorphic to a cylinder,
one may define the Dehn twist T, along a as follows:

(it acts by the identity outside of the shaded region). Taking a to be one of the standard generators for the funda-
mental group of Fy (recall this from lectures), describe the induced homomorphism 71 (T,): 71 (F2) — 71 (F3).

A result that will soon appear in lectures is the fact that the first homology H;(X) of a path-connected space X is
isomorphic to the abelianisation of its fundamental group (X, x) based at any point =z € X.

(3)* Using the computations of the fundamental groups of orientable and non-orientable surfaces from the lecture,
compute their first homology groups.

(4)* Let F,, be the orientable surface of genus g with n > 0 points removed. Compute its fundamental group und
its first homology group. (Hint: Write F,;, “in normal form”, that means as a quotient space of a regular 4g-gon;
draw n — 1 extra (not necessarily straight) edges from one corner to another or the same corner; now remove in
each of the n “compartments” one interior point; find a retraction onto the subspace which consists of the 4g edges
on the boundary and the n — 1 extra edges.)

Exercise 6.3 (Nullhomotopies and nullhomologies.)
Consider the following three curves on the surface F3.

&
(a) Observe that the curve A is nullhomotopic.

(b) Construct a 2-chain whose boundary is equal to the 1-cycle represented by the curve B. Thus, B is nullhomol-
ogous. (Write F3 in normal form as above and use the obvious triangulation.)

(¢)* However, B is not nullhomotopic (show this using your knowledge of 71 (F3) ; this is harder than one expects).
(d)* Show that the curve C is neither nullhomotopic nor nullhomologous. (Consider the commutator subgroup of
m1(F3), which also gives an alternative way to deduce that B is nullhomologous.)

Exercise 6.4 (Disjoint unions of spaces.)

Let X be a topological space which splits as the topological disjoint union of subspaces X = ||, Xo. Show that
the singular chain complex So(X) of X splits into a direct sum of summands indexed by «, and that the boundary
operator O preserves the summands. Deduce that the subcomplexes of cycles and of boundaries also split with



respect to «, and therefore so does the homology of X, in other words we have, for each n,

H, (|_| Xa) ~ (D H,(X.).

Exercise 6.5 (Coverings and H;.) 3
Let £&: X — X be a covering. Recall from the lecture that the map of fundamental groups m(§): m (X, Z) —
71 (X, z) is injective. Consider the covering

J

of X =Stvsh

(a) Show that H,(X) =2 Z3, whereas H;(X) = Z>2.

(b) Compute the homomorphism 7 (¢) of fundamental groups induced by £, then abelianise this to compute the
homomorphism H;(§) that it induces on first homology. Deduce that coverings do not always induce injective maps
on homology.

Exercise 6.6* (Multi-valued functions: integrating on non-simply-connected domains.)

Let © C C be a region (i.e., open and connected) and zg € Q, and consider a holomorphic function f: Q — C; we
assume that f/(z) # 0 for all z € Q.

We would like to define a new function

- / Q)¢ = / Flw(®))i(t)dt,

where w is a path in € from zy to z; but this path integral depends on the path w and not just on its endpoint
w(1) = z; so we would get a multi-valued function. However, — since f is holomorphic —, it depends only on the
homotopy class [w], not on the actual path. This is our chance: If ¢: Q — Q denotes the universal covering of €,
we define a function

P, () ::/ f(()d(:/o Flw(®)i(b)dt.
(1) F is well-defined.

(2) F is holomorphic. (N.B: € is a holomorphic manifold, or a Riemann surface; cf. Exercise 3.2.)
(3) Now define the period homomorphism Pery: w1 (€2, zy) — C as follows:

pery((ul) = [ F(O)dc.



Convince yourself of the formulae:

Pers(af) = Pery(a) 4+ Pery(8), Pery(a™!) = — Perg(a), Pery(1) = 0, which say that Per; is a homomorphism.
There are more formulae like:

Peryiq(a) = Pery(a) + Perg(a), Perys(a) = APerg(a), Perz(a) = Pers(a), which say what ?

Next conclude, that the kernel K := ker(Pery) < m1(£, 29) of Pery contains at least the commutator subgroup of
m1(£2, z0). Now let £5: Qp — Q be the covering corresponding to that subgroup K, i.e., the quotient of Q by the
action of K by deck transformations. Denote this quotient map by g¢y.

Show that R 3

F(laxw], z) = F([w], 2) + Pery(la]),

where a is a closed loop based at zy and w is any path from zo to z. Conclude that F' factors as the composite of
g5 followed by a well-defined map F': 2y — C. Summarising, we have the diagram:

a F
“
g‘ 0
Q

Thus we have found the natural domain of (well-)definition of the multi-valued function z — fzzo f

(5) Examples.

In each example, describe 71 (€2, 29), compute the period homomorphism and describe the covering {7: Qy — Q and
the function F.

(5.1) : Take Q@ =C — {0} and f(2) = L.
(5.2) : Take Q =C —{-1,1} and f(z) = ﬁ + .
(5.3) : Take Q@ = C — {—1,1} and f(z) = %

=+ 1EZ, for integers a,b € Z.
(54) : Take @ = C — {~1,1} and f(2) = 115 + %

In the last three examples, feel free to build a model of the covering €2 as demonstrated in lectures.

§ 52. Fundamentalgruppe eines zusammengesetzten Komplexes.

Hiufig libt sich die Bestimmung der Fundamentalgruppe eines Kom-
plexes ® dadurch vereinfachen, dal man # in zwei Teilkomplexe mit be-
kannten Fundamentalgroppen zerlegt. ' und £ seien zwei zusammen-
hiingende Teilkomplexe eines susammenhingenden n-dimensionalen sim-
plizialen Komplexes R; jedes Simplex von & soll mindestens einem der
beiden Teilkomplexe angehiiren, Der Durchschnitt © von £ und R, der
wegen des vorausgesetzten Zusammenhanges von ® nicht leer ist, sei
gbenfalls zusammenhiingend.

E‘, W, &' o seien die FL‘IIHIulm—mf.n[g'ruppen von &, &, ®" und D.
Wir wiihlen als Anfangspunkt fir die geschlossenen Wege einen Punkt 0
von . Dann ist jeder geschloseene Weg von D zugleich ein Weg von
und ®". SBomit entapricht jedem Element von fp ein Element von § und
gines von §". Dann gilt der

Batz I: ﬁ isl eine f"rﬂ('fruyrupp:! des freien Produkies ﬁ’@ ;Ii-"; MK
ethilt § aus dem freien Prodult, wenn man je nwei Elemente von ®
und ", die demselben Flemente von §y entsprechen, susammenfallen

Lage, also durch ihre r‘-'a'r-r'ﬁ.h.w..-'.fz.«m,ff eine newe Relation swischen den Er-
seugenden von F und F hineufiigt

The Seifert-van-Kampen Theorem, from Lehrbuch der Topologie, H. Seifert and W. Threlfall.
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Week 7 — Chain complexes Due: 14. December 2016

Exercise 7.1 (Decomposition of chain complexes.)
(1) Let
0+ Cop+Cr1 -+ Cn_1+Cn+0
be a bounded chain complex of finitely generated free abelian groups. Show that it splits as a direct sum of finitely
many subcomplexes, each of which is of the form

0+ 7Z<+0 or 0<—Z<£Z<—O

for some non-zero k € Z, up to shifts to the left and right.
(Hint: Use the Elementarteilersatz (Smith normal form) for integer matrices.)

(2) Show that, if we had started with a bounded chain complex of finite-dimensional vector spaces over a field K
instead, then it splits as a direct sum of finitely many subcomplexes of just two types, namely 0 < K «+ 0 and

0<—K<£Ke().

(3) Thus any bounded chain complex of finite-dimensional vector spaces is isomorphic to one with chain modules of
the form C,, = B,, ® H,, ® B,,_1, where B,, denotes the boundaries of degree n, and where the boundary operator

0:Cr,=B,0H,®Bp1 »Bp1 > B, 1®H,_ 10 B, 2=Cr_1

is the projection of C,, onto B,,_; composed with the inclusion of B,,_; into C,,_;. It follows that the homology is
H,(C,) = H,.

Exercise 7.2 (Homology of some small chain complexes.)

(a) Compute the homology of each of the following chain complexes.

(b) Take the tensor product with @ and compute the homology of the resulting chain complex.

(c) Take the tensor product with F,, (for a prime p) and compute the homology of the resulting chain complex.

(3131) (3131) (711711) (711711)

(As) 0 — 72 7? 7? 7* — 0.
(B.) 02235725 2z2%72%372%72-50

1 0 -1 0

0o 1 0 -1

-1 1 0 O

0 —-11 0

0 0 -11 (00 11 1 1)
(C.) 0 — Z4 1 0 0 —1 ZG 00-1-1-1-1 ZQ 0.

(d) Use Exercise 7.1 part (1) to show that (in general — not just for these examples) the computations in (b) and
(¢) may in fact be deduced directly from the computations in (a), without knowledge of the original chain complex.

Exercise 7.3 (Chain homotopy is an equivalence relation.)
Recall that a chain homotopy h: fo ~ f1 between two chain maps fy, f1: Ce — D, is a collection of homomorphisms



hp: Cp — D,y such that hy,_1 00+ & oh, = fo — fi1.

Suppose that C,, D,, Fs are chain complexes, fo, f1,f2: Co — Do and gg,g1: De — E, are chain maps and
h: fo ~ fi, h: fi— fo and k: gg =~ g1 are chain homotopies. Show that there are chain homotopies

(a) fo =~ fo,

(b) f1 = fo,

(C) fO = f2,

(d) gofo =~ g1f1, R

given by 0, —h, h + h and goh + kf1 respectively. Conclude that chain homotopy is an equivalence relation and is
preserved by composition.

Exercise 7.4 (Tensor products of chain complexes)

Let K denote a principal ideal domain. For two chain complexes A, and B, over K with boundary operator 94
resp. 0P we define a new complex Cy = A, ® B, by setting C,, := > n—kt1 Ax @ By and defining the boundary
operator 9% : C,, — C,,_1 by setting (Leibniz-like)

%@®b):=0%a)®b + (—1)*a® dP(b)

for a generator a € Ay and b € B; with k +1 = n.

(1) Show that this is a chain complex.

(2) Assume A,, = B, =0 for n < 0 and Ay = By = K. Can you define chain maps t4: Ae — Cs and tg: Be — C,
and m4: Cy = Ae and mg: Cy — Be such that mq4ot4 =id, rpotg =id, and mrpqotg =0=7mgota 7

5. Die Euler-Poincarésche Formel. Die Untersuchung der ganz-
zahligen Bettischen Gruppen fithrt zu einer beriihmten Identitit, die
den elementaren Eulerschen Polyedersatz verallgemeinert: Unter der
Eulerschen Charakieristik des Komplexes K versteht man die Zahl

5
2(K) = 2 (1),
r=0
wobei of die Anzahl der r-dimensionalen Simplexe von K ist; die Iden-
titat, um die es sich handelt, ist die sog. Esler-Poincarésche Formel

(1) 1K) =jf—i}’?’-

=0

Figure 1: From Topologie I, by P. Alexandroff and H. Hopf (1935), page 214. What they term Betti groups are
the homology groups with integer coefficients of a space. In the first formula, " is the number of r-dimensional
simplices of the n-dimensional simplicial complex K (cf. Exercise 7.6 on page 4), whereas, in the second formula, p”
denotes the rank of the r-th homology group H,.(K;Z). (The rank of an abelian group is defined exactly analogously
to the dimension of a vector space.)

Exercise 7.5 (Euler characteristic)
If Cy is a bounded chain complex of finite-dimensional vector spaces over a field K, we can define its Fuler charac-
teristic by

X(Co) =Y (—1)" dimg(Cy,).

Show the following formulae:

(1) x(Co) = >, (—1)"dimg Hy,(Cl). (Hint: use Exercise 7.1 part (3).)
(2) X(Ae & Bs) = x(As) + x(Bo).

(3) X(Ae ® Ba) = x(As) x(Ba)-

(Comment to (1): This is the famous formula of Euler-Poincaré-Hopf (see Figure 1 above): the Euler characteristic
depends only on the homology. This is true in general, not only over fields, as we will see later.)



Figure 2: The simplicial complexes from Exercise 7.6 part (4). Note about the 2-simplices in these figures: if an
(innermost) triangle is shaded, then the corresponding 2-simplex is present; otherwise, it is not.



Exercise 7.6* (Simplicial chain complexes)

Let X be a set of non-empty, finite subsets of some fixed set X such that o € X implies 7 € X for any non-empty
subset 7 of . We denote by X, all elements o of X with exactly n 4+ 1 elements of X. There is an obvious reason
why we call the elements of X vertices, the elements of X edges or 1-simplices, those in X5 triangles or 2-simplices
and so on. We assume that X is a linearly ordered set; thus any o € X,, is an ordered set of n + 1 vertices, which
we number vy < v1 < ... < v, from 0 to n. Denote now, for ¢ = 0,1,...,n, by d;(o) the set o with its i-th element
v; removed; this defines functions d}: X,, — X,,—1 for n > 0.

(1) Show that dj o d; = d} od] , and for i < j that dj o dj = d}_, o d;.

(2) Denote by C,(X) the free module over the principal ideal domain K generated by the set X,. Consider the
homomorphisms d;: Cp,(X) — C,—1(X) determined by d; by linear extension. Show that the formulae from (1)
hold also for the d;.

(3) If we set @ := > ,(—1)"d; show that d o & = 0 holds.

(4) In each of the examples depicted in Figure 2 on the previous page, the figure depicts a triangulation of a certain
space. The vertices of the triangulation form the set Xy and a subset o of X belongs to X if and only if there
exists a simplex (in the figures, this means either an edge, a triangle or a vertex) whose vertices are precisely the
vertices corresponding to o. In each case, write down the chain complex Co(X’) and compute its homology groups
H,(Co(X)) for all n and its Euler characteristic.
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Week 8 — Homological algebra and homotopy invariance of homology Due: 21. December 2016

§ 8, — Hoxorogrus.

Considérons une variété V i p dimensions; soit maintenant W une
variété i g dimensions (¢ p) faisant partie de V. Supposons que la
frontitre complete de W se compose de % variétés continues & g—1
dimensions

Voo Py oo By

Nouvs exprimerons ce fuit par la notation
¢,y L0,
Plus généralement la notation
koo, 4=keogenho, kv,

ol les 4 sont des entiers et les ¢ des variétés & ¢ — 1 dimensions, signi-
fiera cu'il existe une variété W a g dimensions faisant partie de V et donl
Ia frontiére compléte se composera de &, variétés pea différentes de v, de
k, variérés pen différentes de v,, de &, variétés peu différentes de la va-
riété opposee a v, et de &, variétés peu différentes de la variété opposée
ay,.

Les relations de cette forme poucront s’appeler des homologies.

The birth of homology, from Analysis Situs, H. Poincaré (1895).

Exercise 8.1 (The five-lemma.)
Prove the famous five-lemma. Let R be a ring and suppose we have the following diagram of modules over R:

A B C D E
A B’ c’ D’ E'

Assume that this diagram is commutative and that the two horizontal rows of homomorphisms are exact. Moreover,
assume that « is surjective, 8 and § are bijective and ¢ is injective. Prove that 7 is bijective.

Application: let ¢: B — B’ be a homomorphism of R-modules taking a submodule A C B to a submodule A" C B,
so that we have restricted and induced homomorphisms ¢|4: A — A" and ¢: B/A — B'/A’. If ¢|4 and ¢ are both
isomorphisms then so is ¢.

Exercise 8.2 (Mapping cones and mapping cylinders of chain complexes.)

Let A and B be chain complexes with differential 04 resp. dp and let f: A — B be a chain map.

(i) Define a new chain complex Cone(f) by Cone(f), = A,—1 ® B, and setting its differential 9: 4,,_1 & B, —
A,_o® B,_1 to be the sum of the four maps

8,4: An,1 — An,Q 83: B, — B,_1 0: B, — An,Q (—1)n.fn,12 An,1 — anl,



or as a formula
d(a,b) := (0a(a),(—1)".fr—1(a) + IB(D)).

(1) Prove that this is indeed a chain complex.
(2) Construct chain maps B — Cone(f) and Cone(f) — A[1], where A[1] simply means the chain complex A with
the modified grading A[1],, = A,,—1, and show that you have constructed a short exact sequence

0 — B — Cone(f) — A[1] — 0.

(ii) Now define a chain complex Cyl(f) by Cyl(f)n, = An—1 ® B,, ® A,, with differential 9: Cyl(f),, = Cyl(f)n-1
given in block form by the matrix
oa 0 0
(=1)"for 85 O
(—)™lid 0 a9,

(3) Prove that this is a chain complex.
(4) Construct a chain homotopy equivalence Cyl(f) ~ B.

Exercise 8.3 (Cones of continuous maps and dunce caps.)

Let Z be a space with subspace A C Z and let f: A — Y be a continuous map. Recall (cf. Exercise 5.6) that the
space Z Uy Y is defined to be the quotient of the disjoint union Z LY by the smallest equivalence relation ~ such
that a ~ f(a) for all a € A.

Now let g: X — Y be a continuous map and define its mapping cylinder to be Cyl(g) = ZU;Y where Z = X x [0, 1],
A =X x {0} and f is g composed with the obvious identification X x {0} = X. Define its mapping cone to be
Cone(g) = Cyl(g)/~, where ~ is the smallest equivalence relation such that (x,1) ~ (2/,1) for all 2,2’ € X.

(1) Draw a picture to show what is going on geometrically in these constructions.

(2) Construct an embedding Y — Cone(g) and a projection Cone(g) — XX, where XX is the suspension of X,
defined to be X x [0,1]/~, where ~ is the smallest equivalence relation such that (z,1) ~ (2/,1) and (z,0) ~ (2/,0)
for all z, 2’ € X.

(3) Show that Cyl(g) is homotopy equivalent to Y.

(We will see later in the course that these constructions yield those of the previous exercise after applying the
singular chain functor.)

(4) Now let A C X be a closed subspace for which there exists an open neighbourhood U 2 A that deformation
retracts onto A. Let f,g: A — Y be two continuous maps which are homotopic. Prove that X U; Y and X Uy Y
are homotopy equivalent. Thus the operations Cyl(—) and Cone(—) are homotopy invariant.

(5) Thus show that the following two spaces are contractible:

(Hint: realise each of them as D? Uy S* for some map f: dD? — S!, and consider the degree of this map.)

The left-hand space above is often called the “dunce cap”. There are many generalised dunce caps like the right-
hand space above — each of them is the quotient of a polygon with an odd number of sides, which are all identified
with certain choices of orientations.

(6) Using a similar trick to above, show that the following two spaces each have fundamental group isomorphic to
Z, and draw a generator in each case:

(Note: in the left-hand space on the next page, in addition to the depicted identifications of edges, we also identify
all four (not just two) vertices to a single point.)
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Exercise 8.4 (Mapping tori of chain complexes.)

Let R be a ring, C a chain complex of R-modules and f: C — C' be a chain map from C to itself. We can
formally adjoin an invertible indeterminate ¢ to C to obtain a chain complex C of R[t*!]-modules by first setting
C, = C, ®r R[t*'] and then defining d to be 0 extended by linearity in ¢ (more formally: 9 = 9 ® id, where id
is the identity map R[t*1] — R[t*!]). Here, R[tT!] is the ring of Laurent polynomials in t with coefficients in R,
or, equivalently, the group-ring R[Z] of the group Z with coefficients in R. The chain map f extends by linearity
in t to a chain map f: C — C. There is also a canonical chain map ¢t: C — C where each t,,: C,, — C,, is just
multiplication by ¢. Define:

Torus(f) = Cone(f —t).

(1) Describe this explicitly in terms of the C,,, Oc and f,.
(2) Suppose that we have a commutative square

f

4)D

Define a chain map («, o)y: Torus(f) — Torus(g) and show that your construction satisfies the two functoriality
properties (id,id); = id and (o, @)y o (¢/, /)y = (a0, v 0 o).

(3) Show that, for any chain map f: C' — C, the chain map (f, f)y: Torus(f) — Torus(f) induces isomorphisms
on all homology groups.

(Hint: construct a chain homotopy from (f, f); to the “multiplication by ¢” chain map from Torus(f) to itself.
Then show that this “multiplication by ¢” chain map induces isomorphisms on all homology groups and use the
homotopy-invariance property of homology to deduce that the same is true for (f, f).)

(4) Deduce that, for chain maps f: C — D and g: D — C, the chain complexes Torus(f o g) and Torus(g o f) have
the same homology groups.

(Hint: consider the chain maps (fog, fog)y and (go f,g0 f)y.)

The 6-point space =* “would be homeomorphic to a 2-sphere if it were only
Hausdorff.” More precisely, consider the following conditions on a topological
space X : (1) The complement of each point in X s acyclic (in singular homology);
(2) H,(X) # 0. We have seen that the T, space = satisfies these two conditions.
However, simply by adding the extra condition (3) X 18 Hausdor[ff, one can con-
clude that X is homeomorphic to the 2-sphere. (See [5].)

From Singular homology groups and homotopy groups of finite topological spaces by M. C. McCord (1966). In his
notation, 32 is the 6-point space considered in Exercise 8.5(c) on the next page. Thus you have a strong hint as to
what the homology of that space “should” be!



Exercise 8.5 (Finite topological spaces.)

(a) There are three topological spaces X having exactly two points. In each case, compute the singular chain
complex Se¢(X) and the homology H,(X) for all n.

(b) Consider the 4-point topological space {a, b, ¢, d} whose topology is generated by the base

{a}; {b};{a,b,c};{a,b,d}

and calculate its homology.
(¢)* Do the same for the 6-point space {a,b,c,d, e, f} whose topology is generated by the base

{a}; {b};{a,b,c};{a,b,d};{a,b,c,d,e};{a, b, c.d, f}.
(d)* In general, there is a (2n + 2)-point space {a1,b1,...,ant1,bnt1} Whose topology is generated by the base
{al}; {bl}a {ala blv a2}; {al, bl» b2}7 """ ; {alv blv ceey O, bna an+1}; {ala blv ceey O, bnv bn+1}'

Make a conjecture about its homology, and about which (more familiar!) space it is homotopy equivalent to.
(e)** Prove your conjecture.

Exercise 8.6* (A chain complex of chain maps.)

Let C and D be chain complexes of R-modules. We define a chain map of degree d to be a collection f = {f,}nez
of homomorphisms of R-modules f,: C,, — D, 14 such that 87? rq©fn=fn-10 8,(5 for all n. We define a pre-chain
map of degree d to be simply a collection f = {f, }nez of homomorphisms f,: C,, = Dp44, with no condition.

(1) Show that the set of all pre-chain maps of a fixed degree d forms an R-module, denoted PreChaing(C, D).

(2) Given f = {f,} € PreChaing(C, D), show that the formula

(df)n = 0L, g0 fu— (1) fro100S

defines a pre-chain map df € PreChaing_1(C, D).

(3) Show that ddf = 0, and hence that PreChaine (C, D) is a chain complex.

(4) Prove that there is a natural isomorphism between Hy(PreChaine (C, D)) and the set of chain-homotopy-classes
of chain maps (of degree 0) from C to D. (Hint: first note that Zy(PreChaine (C, D)) is naturally isomorphic to the
set of chain maps of degree 0.)
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Week 9 — Long exact homology sequences Due: 11. January 2017

Henry Poincaré and his red-nosed reindeer called Rudolph Homology.

Exercise 9.1 (The connecting homomorphism T)
Let

0= Ay B, 250, 50

be a short exact sequence of chain complexes over K and denote by d.: H,(Ce) — H,_1(As) the connecting
homomorphism.

(a) O« is a homomorphism of K-modules.

(b) O is natural.

Exercise 9.2 (Induced maps on homology in degree zero.)

Let X be a space and denote by mo(X) the set of path-components of X.

(1) Show that there is an isomorphism Ho(X) = Z(mo(X)) := @, (x)Z, the free abelian group generated by the
set mo(X).

(2) Show that any continuous map f: X — Y induces a well-defined function mo(f): mo(X) — mo(Y).

(3) If we identify Ho(X) with Z{mo(X)) and Ho(Y) with Z(mo(Y)) as above, then the homomorphisms Hy(f) and
Z{mo(f)) are equal.

Exercise 9.3 (Relative homology in degree zero.)

Let A be a subspace of X; we denote by i: A — X the inclusion and by ¢: X — X/A the quotient map identifying
A to a point. (What does this mean, when A = () 7). For the sets of path-components we have induced functions
mo(2): mo(A) = mo(X) and mo(q): mo(X) — me(X/A).

(1) Show that the relative homology group Hy(X, A) is isomorphic to Z(mo(X/A))/Z{[A/A]), where [A/A] denotes
the path-component of X/A containing the point A/A. [Retrospective correction: this is not true for arbitrary
pairs (X, A); one needs some extra hypothesis. Assuming that X is locally path-connected suffices, for example.]

(2) When A is non-empty, show that Ho(q): Ho(X) — Ho(X, A) is surjective and that Hy(X, A) is isomorphic to



the quotient module Ho(X)/im(Hg(%)).
(3) Describe Hy(X, A) and the connecting homomorphism 0, : Hy (X, A) — Hy(A).

Exercise 9.4 (Torus with one boundary curve.)

Let X be a torus with one boundary curve, as shown in the figure. We denote by A the boundary curve, by
i: A — X the inclusion of spaces, by Se(i): Se(A) — S¢(X) the inclusion of singular chain complexes, and by
Go: Se(X) = Se(X,A) = S¢(X)/Se(A) the quotient homomorphism of singular chain complexes; thus we have the
short exact sequence of chain complexes

0 — Se(4) 2 5,(X) L5 Su(X, 4) = 0
leading to a long exact sequence of homology groups:
o Ha(A) 5 Ho(X) L Hy(X, A) 25 Hy(A) 2 Hi(X) L5 Hy(X, A) 25 Ho(A) 25 Ho(X) %5 Ho(X, A) = 0

(1) Compute all homology groups in degrees 0 and 1 and all homomorphisms between them.

(2) Show that Ha(X, A) contains at least a summand which is isomorphic to Z and generated by the relative cycle
D =—-Di+ Dy + D3+ Dy + Ds — De.

(3) Compute for the connecting homomorphism 9, ([D]) = [¢1 + c2].

XD a <2
q

@{,

X3 Qa, 0

A torus, written as a square with dark edges a and b identified. Some singular 1- and 2-simplices, used in Exercise
9.4, are shown.




Exercise 9.5 (Calculating with long exact sequences of abelian groups.)

(1) Show that, if 0 - A % B i C 5 D — 0 is an exact sequence, then we also have exact sequences:
(a) 0= B/a(A) 2 ¢ % D — 0 and

(b) 0= A% B 25 image(8) — 0.
2)

(2) More generally, if we have an exact sequence --- — A 5 B Losphps .-+, then we may “localise” it
at C', meaning that there is a short exact sequence:

0 — coker(e) EN C % ker(h) — 0,

where coker(e) means B/e(A).

(3) Show that, if 0 - A — B — Z* — 0 is exact, then B is isomorphic to Z* @ A.

(Hint: start by constructing a homomorphism Z* — B, which is a right-inverse for the given homomorphism
B —7F)

(4) Give an example of a short exact sequence 0 - A — B — Z/kZ (for any k # —1,0,+1) for which B is not
isomorphic to A & Z/kZ.

Exercise 9.6* (Connecting homomorphisms II)
Assume we have a short exact sequence

() 0= Ay 2% B, 250050

of free chain complexes; we know that B,, = A, @ C,,, since C,, is free. But the boundary operator 0% : B,, — B,,_;
may not be the direct sum of 94 und 9, i.e., not of diagonal block form; but it must have the form

o4

B __ n
»-(5 %)
for some family of homomorphisms ¢, : C,, = A, _1.

(1) Which condition must this family satisfy, such that 9% 0 9% =0 ?
(2) Compute the connecting homomorphism in the long exact homology sequence of (*).
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Week 10 — Excision and mapping tori Due: 18. January 2017

Exercise 10.1 (Reduction Lemma.)

Let Ao be a subcomplex of a chain complex B, and assume the following two hypotheses:
(R1) Each cycle b € B, is homologous (in B,) to a cycle in A,.

(R2) If two cycles a,a’ in A, are homologous in B,, then they are homologous in A,.
Prove that the inclusion te: Ae — Be induces an isomorphism t,: H,,(Aes) — H,(Be).

In addition show that (R1) and (R2) follow from:
(R3) Each chain in B, is homologous (in B,) to a chain in A,.

Exercise 10.2 (Transformators.)
A transformator is a natural self-transformation 7, of the functor S, with 79 = id. Spelled out in detail this is, for
each space X and each n > 0, a homomorphism 7% : S,,(X) — S,(X) such that

(1) 75" = ids,(x),

(2) 807—5{ = riil 00,

(3) Sp(f)orX =7Y 08, (f) for any map f: X =Y.

Examples:

(i) 7¥ =idg, (x) is a trivial example.

(ii) The composition of two transformators is a transformator.

(iii) The barycentric subdivision 7 = B (as defined in the lectures) is the fundamental example.

(iv) If w,: A™ — A" is the affine homeomorphism permuting the vertices eg, e, ..., e, of A™ like w,(€e;) = en—;,
then 7.X (a) := €(n).aow, for a simplex a: A™ — X, where the sign €(n) is —1 when n = 1,2 mod 4 and is +1 when
n = 0,3 mod 4, defines a transformator.

Prove the following:

(a) If 74 is a transformator, then its image S7(X) := im(7X: Se(X) — S¢(X)) defines a subcomplex of Se(X),
which satisfies the two hypotheses (R1) and (R2) of the Reduction Lemma (Exercise 10.1).

(b) 72X induces the identity in homology, since there is a natural chain homotopy between 7¥ and the identity.
(¢)* (A generalisation of part (a).) If A,: B,(X) — N is a family of functions from the basis B, (X) of S,(X),
denote by S2(X) the subgroup of S, (X) generated by the elements 7%(a) for all a € B,,(X) and all & > A, (a).
Assume that the functions satisfy the following property: whenever a € B,,(X) and b is a basis element in d(a), we
have A, (a) > A,_1(b). Then SA(X) is a subcomplex of S,(X) satisfying (R1) and (R2) of the Reduction Lemma.
(Ct. the preparation for the Excision Theorem.)

Exercise 10.3 (Local homology.)

For a space X and a point x € X, the local homology groups of X at x are by definition the relative homology
groups H, (X, X — {z}), in other words, the homology groups of the quotient chain complex S¢(X)/Se(X — {z}).
The name local comes from the following property of these groups:

(1) Let U be an open neighbourhood of z in X. Assume that the one-point subspace {z} is closed in X (for example,
this is always true if X is Hausdorff). Using the Excision Theorem, show that there are isomorphisms

H,(X,X —{z}) =2 H,(U,U — {z}).

Thus the local homology of a space X at a point depends only on its topology arbitrarily close to that point.
(2) If F is a surface, show that for any point « € F the relative homology H, (F, F — {z}) is trivial for n # 2 and
isomorphic to Z for n = 2. There are three steps:



Fig. 59 Triangulations of cylinders over simplices

From: A. Fomenko, D. Fuchs, Homotopical Topology.

(i) Ho(F, F —{a}) = (D2 D? — {0})

(i) Ho(D%, D — {0}) = H,(D?, oD?)

(ili) H,(D?,dD?) is isomorphic to H,_1(S!) for n > 2 and is zero for n = 0, 1. (cf. Exercise 9.3)

(You may assume the fact that the homology H, (S') of S! is isomorphic to Z for n = 0,1 and is trivial for n > 2.)
(3)* If F is a surface with boundary and z is a point on the boundary OF, show that the relative homology groups
H,(F,F —{z}) are all trivial, including for n = 2.

Exercise 10.4 (Quotient Theorem : Relative homology and collapsing a subspace to a point.)

Let X be a space and let C' C U C X be subspaces, where C' is closed in X and U is open in X.

(1) Using inclusions and (restrictions of) the quotient map X — X/C that collapses C' to a point, construct a
commutative diagram of pairs of spaces as follows:

(%

X-Cc,U-C)—— (X,U)

’YJ Jd (®)
(X/C - C/C.U/C - CJC) — (x)0 u)0)

(2) Show that, for any subspace A C X —C, the restriction to A of the quotient map X — X/C is a homeomorphism
onto its image.
(3) The quotient map X — X/C induces a map of long exact sequences from the long exact sequence associated to
the pair (X — C,U — C) to the long exact sequence associated to the pair (X/C —C/C,U/C — C/C).
(4) Using the five-lemma (cf. Exercise 8.1), show that the map 7 in (®) induces isomorphisms on homology.
(5) Applying excision to the maps « and 3, show that H,(X,U) is isomorphic to H,.(X/C,U/C) via J..
(6)* Now assume that U deformation retracts onto C'. Show that U/C deformation retracts onto the point C/C.
(7)* Under the same assumption, use the long exact sequences associated to the pairs (X,U) and (X/C,U/C) to
show that

H.(X/C,C/CY=2 H . (X/C,U/C)= H.(X,U) 2 H,(X,C).

So the relative homology of the pair (X, C') is isomorphic to the homology of the quotient space X/C relative to a
point.

Exercise 10.5 (Homology of mapping tori.)

Given a continuous map f: X — X, the mapping torus T'(f) of f is defined to be the quotient space X x [0,1]/~
where ~ is the equivalence relation generated by the relations (x,0) ~ (f(x),1) for all z € X.

(a) Using Exercise 8.3, explain why f ~ f’ implies that T(f) ~ T(f").

In Exercise 10.6* you will (optionally) construct the associated long exact sequence, which is of the form

Hi(T(f)) = Hi(X) = Hi(X) = Hi(T(f)) = Hi—1(X) = -+, (%)

where the map H;(X) — H;(X) is defined by H;(f) —id. Explain why this is the zero map for i = 0 when X is
path-connected.



(b) Now take X = S! and let f be a self-map of degree d # 1. Using the long exact sequence (%) and the techniques
from Exercise 9.5, together with the fact (which you may assume) that H;(S') 2 Z for i = 0,1 and H;(S') = 0 for
i # 0,1, compute the homology of the mapping torus T'(f).

Also show that T'(f) is homotopy equivalent to the Klein bottle when d = —1 and to S! when d = 0. (In fact, for
any space X, if f is nullhomotopic, then T'(f) is homotopy equivalent to S!.)

(¢) Now let X be any space and take f to be the identity X — X. Show that the homology of T'(f) is related to
that of X via short exact sequences 0 — H;(X) — H;(T(f)) = Hi—1(X) — 0. Therefore, if the homology of X is
free abelian in each degree, we have isomorphisms H;(T'(f)) = H;(X) & H;—1(X). As a special case, we obtain the
homology of the torus S* x S'.

(d)* (The homology of some 3-manifolds.) If X is a (smooth) surface and f: X — X is a homeomorphism (resp.
diffeomorphism) then 7'(f) is a (smooth) 3-manifold. In this part we take X to be the genus-2 surface Fs.

(i) First suppose that f is a Dehn twist. Recall (cf. Exercise 6.2) that, if one chooses the generators of Hy(Fy) = Z*
in an appropriate way, the induced homomorphism H;(f) is the elementary matrix

1100
01 00
0 010
0 0 01

You may assume the following facts: Ho(Fh) = Z and H;(F5) = 0 for i > 3. Moreover, any self-homeomorphism
of F5 which is the identity on some open subset induces the identity homomorphism on Hy(F3). Compute the
homology of the mapping torus T'(f).

(i) Now suppose that I is embedded into R?® in such a way that it is symmetric with respect to reflection in a
plane P that cuts it into two punctured tori, and let f: F — F5 be the self-homeomorphism induced by reflection
in P. Show (by a picture) that one may choose generators for H;(Fy) in such a way that Hy(f) is given by the
permutation matrix

o= OO
= O O O
oS O O
o o = O

with respect to these generators. Calculate the homology of T'(f) in this case. (You may use the fact that, in this
case, [ acts on Hy(F3) by multiplication by —1.)

Exercise 10.6* (The long exact sequence associated to a mapping torus.)

Recall the definition of the mapping torus T(f) of amap f: X — X from Exercise 10.5, and let ¢: X x[0,1] — T'(f)
denote the quotient map.

(1) Show that the image of X x {0, 1} under ¢ is a subspace of T'(f) homeomorphic to X. Moreover, if we identify
X x{0,1} with X U X and ¢(X x {0,1}) with X, then the restriction of ¢ to X x {0,1} is f Uid.

(2) We therefore have a map of pairs of topological spaces of the form (X x [0,1], X x {0,1}) — (T(f),X). Each
pair of spaces has an associated long exact sequence of homology groups; draw a diagram of the map of long exact
sequences induced by the map of pairs.

(3) The desired long exact sequence (%) is very similar to the long exact sequence associated to the pair (T'(f), X).
To derive (x) from this sequence, you just need to explain why the terms H;(T(f),X) = H;(Co(T(f))/Ce(X))
that appear in the long exact sequence for the pair (T(f),X) can be replaced by H;_1(X), and why the map
H;(X) — H;(X) after doing this replacement is given by H;(f) —id. Do this using the following steps:

(a) The map H;(X x {0,1}) — H;(X x [0,1]) in your diagram is surjective (for every 7).

(b) The map H;+1(X x [0,1], X x {0,1}) — H;(X x {0,1}) is an isomorphism onto a subgroup which is isomorphic
(¢) The map H;(X x [0,1],X x {0,1}) — H;(T(f),X) is an isomorphism. (Hint: each pair of spaces has the
property that the subspace has a neighbourhood in the larger space that deformation retracts onto it.)

(d) Thus there is an isomorphism H;(X) = H;11(T(f), X). Using commutativity of your diagram, and part (1), it
follows that the map H;(X) = H;1(T(f), X) — H;(X) is given by H;(f) — H;(idx) = H;(f) — idg,(x)-
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Week 11 — Mayer-Vietoris sequence, reduced homology, mapping degree Due: 25. January 2017

Exercise 11.1 (Spaces with finite type homology; homological dimension.)

The homology of a space X is called of finite type if there exists an integer N > 0 such that
(F1) H,(X) =0 for n > N,

(F2) H,(X) is finitely generated for 0 <n < N.

(1) Show, for a space X = X7 U Xs, that if X; and X, are open subspaces of X having homology of finite type,
and the homology of X; N X5 is also of finite type, then so is the homology of X.

The smallest integer N such that (F1) holds is called the homological dimension dimhom(X) of X.
(2) Using the proof of part (1), give an upper bound for dimhom(X) in terms of dimhom(X;), dimhom(X5) and
d1mhom(X1 n XQ)

Exercise 11.2 (Reduced homology and augmentation.)

Recall that the reduced homology of a space X is defined as H,(X) = ker(e.: Hn(X) — H,(P)), where P is
a one-point space and e: X — P the obvious map. Consider the singular chain complex S¢(X) of X and the

augmentation homomorphism
650(X)—>Z G(ZAZJZZ) ZZ/\“
i i
where we wrote, instead of a 0-simplex a;: A? — X with a;(eg) = x;, just the value z;. We call

S;zug(X): O<_Z(iSQ()()<251()()<3

with S™#(X) = Z the augmented singular chain complez of X.

(1) Show that € 0 & = 0. So one may regard S¢"®(X) as a chain complex with one negatively indexed chain group.
(2) There is a chain map Fe: Se"#(X) — Se¢(X) with E,, =id for n > 0 and F_; = 0:

O%Z;SO(X)L&(X%—“-

| o

00— So(X) —— 51 (X) e -

(3) The chain map F, induces homomorphisms
E,.: H,(S3"(X)) — Hp(Se(X))

for each n. Show that E, is injective for n > 0, an isomorphism for n > 1 and H_1(S¢"8(X)) = 0 for non-empty X.
Hint: Regard € as a chain map

0 — So(X) 2 §,(X) <2 5y(x) — -

| | |
0 0

0 Z

(4)* Let As be any chain complex and “split” it into a negative part (A, = A,—1 for n <0 and A, = 0 for n > 0)
and a non-negative part (4;) = 0 for n < 0 and A} = A, for n > 0). We have a chain map De: A] — A, as
follows (where Aq is “bent”):



0 0 A A Aq
S A
A_ A_ A_
P 3 5 2 5 1 0 0

with D, =0 for n # 0 and Dy = 0: Ay — A_1. Thus we have induced homomorphisms

Dy Hy(AD) — Hu(AD).

(a) Hy(Af)=0forn <0

(b) H,(Al) = H,(A,) forn > 1

(¢c) Hy(Ay)=0forn>0

(d) H,(A,) = Hp—1(A,) forn < -1

(e) Ho(As) = ker(D,: Ho(AJ) — Ho(A]))

(f) H_1(A4) = coker(D,: Ho(AJ) — Ho(A]))

What if we “bend” Ao several times?

Exercise 11.3 (Moore spaces.)

(a) Let f: X — Y be a continuous map. Recall from Exercise 8.3 the definition of the cone of f, denoted Cone(f),
and that there is an embedding Y < Cone(f) of Y as a closed subspace of Cone(f).

(b) Show that the image of Y under this embedding has an open neighbourhood that deformation retracts onto
it. Therefore use the long exact sequence for the pair (Cone(f),Y) and Exercise 10.4 (the Quotient Theorem) to
construct a long exact sequence of the form:

s H (V) = Hy(Cone(f)) — Ho(SX) = Hy 1Y) = Hy oy (Cone(f)) = -+

(¢) Use the Suspension Isomorphism, and analyse the above sequence carefully in degree zero, to show that we have
a long exact sequence of the form

e = Ho(Y) — Hy(Cone(f)) = Hp—1(X) — Hy_1(Y) = Hy,_1(Cone(f)) — -+,

where the map H,_1(X) — H,_1(Y) in the sequence is the one induced by f.

(d) Apply this sequence to a map f, x: S™ — S™ of degree k, where n > 0 and k # 0, to show that H;(Cone(fy 1))
is isomorphic to Z/kZ for i = n and is zero for i # n.

(e) Now let n > 0 and let A be any finitely generated abelian group. Construct a space Y such that f[n(Y) ~ A
and H;(Y) = 0 for i # n. Such a space is called a Moore space for the pair (A, n).

(Hint: look at Exercise 11.5 part (1) below.)

In fact a similar construction works for any (not necessarily finitely generated) abelian group A.

(f) Now let (Ao, A1, Aa,...) be any sequence of finitely generated abelian groups with Ag free. Construct a space
Y such that H;(Y) = A; for all i > 0.

Exercise 11.4 (The degree of a rotation.)

Let A € O(n + 1). The restriction f = Algn of A: R**! — R"*! to the unit sphere S C R"*! is a self-map of S,
and therefore has a degree, defined as in the lectures to be the unique integer deg(f) such that f.(x) = deg(f).x
where x is any non-zero element of H,(S™) = Z. (We assume that n > 0 in this exercise.)

(1) Explain why f = A|s» must have degree either +1 or —1.

(2) Show that, in fact, deg(A|s») = det(A).

(Hint: first construct an explicit singular n-cycle on S™ representing a non-zero element of H,,(S™).)

(3) In particular, if A is a reflection in a k-dimensional subspace in R"*! deg(Asn) = (—1)"~*+L.

Exercise 11.5 (Applications of Mayer-Vietoris.)

(1) Show that for a wedge of spaces X VY we have H,(X VY) = H,(X) ® H,(Y) for n > 0. What happens in
degree zero? Thus compute the homology of St v St v §2.

(2) Decompose S' x S! into two open subsets, each homeomorphic to the open annulus S* x (0,1), such that their



intersection is the disjoint union of two open annuli (see the figure on the next page). Using the Mayer-Vietoris
sequence for this decomposition, compute the homology of St x St. (Cf. your answer to Exercise 10.5(c).)

(3) Note that these two spaces have isomorphic homology in each degree. Explain (using 1) why, nevertheless,
they are not homotopy equivalent spaces.

(4) Describe the universal coverings of S! x S and of S* v S! vV §2 and compute the homology groups of each.

(5)* Let Y be the torus S! x S! and let Z be the Mobius band, with A C Z its boundary. Let ¢: A = S! be a
parametrisation of A. Define an embedding g: A < Y by g(a) = (¢(a),1), where 1 € S! is the basepoint. Let
X = Z U, Y, as defined in Exercise 8.3. Using an open cover by “small” open neighbourhoods of ¥ C X and
Z C X, compute the homology of X in all degrees.

(6)* Repeat the previous exercise, but instead of the embedding g, use the embedding hy: A < Y defined by
hi(a) = (¢(a), ¢(a)*), where k is a fixed integer. (Note that hg = g.) Compute the homology of X;, = Z Uy, Y.

The decomposition of the torus in Exercise 11.5(2).

Exercise 11.6* (The Brouwer Fixed Point Theorem and PageRank.)

(a) Let n be a positive integer and let f: D™ — D™ be a self-map of the n-dimensional disc. Show that f has a
fixed point.

(Hint: the one-dimensional case can be proved using the Intermediate Value Theorem. You have already seen a
proof of the two-dimensional case, using 7;. The proof for n > 2 is very similar, using homology instead.)

(b) So any self-map of a space homeomorphic to D™ has (at least) one fixed point.

(c¢) (Theorem of Perron-Frobenius) Let A be a real n x n matrix. If all of its entries are non-negative, then it has a
non-negative eigenvalue and a corresponding eigenvector all of whose entries are non-negative. Prove this statement
in two cases: if there is a non-zero vector  with non-negative entries such that Ax = 0 then we are done; otherwise
consider the self-map f of A?~1 C R" defined by

f@) =555, for y=(y,...,yn) = Az

(First explain why this is well-defined.)

(d) (Stronger version for column-sum-one matrices.) Suppose that A has the property that the sum of the entries
in each column is 1. Using similar methods to part (c), show that, in this case, we can take the eigenvector to lie
in A"~ and the eigenvalue to be equal to 1.

(e) (Solution to the PageRank problem.) Let G be a directed graph with a vertex for every webpage and an edge
from wy to ws if the webpage w; contains a link to the webpage ws. We want to extract from this a measure of
the relative “importance” of each webpage. This will assign to each webpage w a non-negative real number a(w),
such that the sum of a(w) over all webpages w is 1. In other words, a is a point on the (n — 1)-simplex A”~! C R",
where n is the number of webpages on the internet.



The first idea is to simply set a(w) equal to the number of other webpages that link to w, and then normalise so that
the sum is equal to 1. But then webpages that link to millions of other webpages would have a disproportionate
influence on the results compared to those with relatively few links. So to make the measure more democratic, we
say that each webpage has one “vote”, which it distributes to other webpages by linking to them: if it links to 5
other webpages, each of those webpages earns % of its vote. Then a(w) is equal to the total number of votes received
by w from other websites — again we have to normalise this. The final version of the idea is to give a higher weight
to the votes from websites that are themselves more “important” according to the measure a. This sounds circular,
but what it means is just that, instead of a direct definition of the vector a € A"~! C R", we have a system of
linear equations that it must satisfy. Namely:

a(w;) = Y A(i, j).a(w;),
j=1

where A(i, j) = 0 if there is no edge w; — w; and A(i,j) = + if there is an edge w; — w; and k is the total number
of edges leaving the vertex w; (i.e., the total number of distinct links on the webpage w;). If we let A be the matrix
whose (¢, j)th entry is A(i, j), then these equations are equivalent to:

a = Aa.

The PageRank problem is to find such a vector a € A"~! C R™. This gives us our measure of the relative
“importance” of each webpage, and (ignoring the issue that some entries of the vector a might be equal!) we may
use this to rank all webpages by importance.

To do: show that the PageRank problem has a solution.

(f) (Uniqueness of the solution in a strongly connected internet.) Let us make the unreasonable assumption that
the internet is strongly connected: for any pair of webpages (w1, ws) there exists a sequence of links taking you
from w; to ws. Prove that the vector a € A1 such that a = Aa is unique in this case.

(Hint: Do this by contradiction. Non-uniqueness of this solution means that the 1-eigenspace of A intersects A"~}
in more than one point, so it must have dimension at least 2. But then it must also intersect the boundary of A1,
so there exists a solution a such that a(w;) = 0 for some website w;. Show that this implies that a(w;) = 0 for
every website w; that links to w;.)

(g)** What happens for a less well-connected internet?

Abb. 1.1 Verkniipfungsstruk einem ,.4-Seiten-Intemet’

From the introduction to the book Lineare Algebra by J. Liesen and V. Mehrmann. Note that this 4-page internet
is strongly connected (cf. part (f) above), so there is a unique solution to the PageRank problem in this case. Can
you compute it?
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Week 12 — Suspensions, coefficient rings, (co)invariants, surgery. Due: 1. February 2017

Exercise 12.1 (Sums of maps.)
Let XX denote the reduced suspension X /¥x of a based space X with z( the basepoint; and denote by

V:EX — BX VEX
the so-called co-multiplication defined by

)

x,2t] in the left summand, if 0
V(1)) = {[ | 0
2

— Nl

<t <
[,2t — 1] in the right summand, if 3 <t <
Here we denote the points of X = X x [0,1]/4 with A = (X x {0,1}) U ({zo} x [0,1]) by [z,t], using their
X-coordinate and their height ¢ in the double cone. We denote by p;: XX V X — XX for i = 1,2 the projection
onto the left resp. right summand, which collapses the other summand to a point. And by ¢;: XX — XX VEX we
denote the inclusions of the left resp. right summand.

(1) Show that p; o V ~idg, for i =1,2.
(2) Show that (a,b) — 11, (a) + t2,(b) is an isomorphism ®: H,(XX) ® H,(XX) — H,(XX V XX), for n > 0.
(3) Conclude that the homomorphism &' oV, : H,(XX) — H,(XX) @ H,(XX) is the diagonal.

Now we write the n-sphere S* = ¥S"~! (for n > 1) as a suspension of S":l. For two based maps f,g: S" — S" we
declare their sum f+g: S* = S" by f+g:=Fo(fVg)oV, where F: ¥X VXX — ¥X is the folding map.

(4) Prove the formula:
deg(f + g) = deg(f) + deg(g)-
(5)* More generally, prove that (f + )« = fu + g»: Ho(3X) = H,(2X).

Exercise 12.2 (An application of mapping degree: fixed and antipodal points of self-maps of spheres.)

Let n > 1 and let f: S® — S™ be a self-map of the n-sphere.

(a) If n is even, show that f must have either a fixed point or an antipodal point (x € S such that f(z) = —x).
(b) More generally, if n is even, any two self-maps f, g of S™ must have either an incidence point (x € S™ such that
f(z) = g(z)) or an opposite point (z € S™ such that f(z) = —g(z)), unless they both have degree 0.

(c) For n odd, give an example of a self-map f: S — S™ with no fixed point and no antipodal point.

(d) More generally, given a self-map f: S™ — S™, construct (when n is odd) another self-map g: S® — S™ such that
f and ¢ have no incidence points and no opposite points.

Exercise 12.3 (Coefficient rings.)

Let Z be the space D? x {0, 1}, i.e., the disjoint union of two closed 2-discs, and let A C Z be its boundary S x {0, 1}.
Let Y = S! and consider a map f: A — Y that sends S' x {0} to Y by a map of degree m and sends S* x {1} to
Y by a map of degree n. See the figure on the next page.

(a) Using the Mayer-Vietoris sequence for an appropriate open covering of X = ZU; Y, show that there is an exact
sequence

0— Hy(X) =22 S Z — Hi(X) — 0,

where ¢ is given by the matrix (m n), and hence that Ha(X) = Z (unless m = n = 0, in which case Hy(X) = Z?)
and H1(X) & Z/hZ, where h = ged(m,n) is the greatest common divisor of m and n if they are both non-zero,



and is max(|m|, |n|) otherwise.

(b) What happens when we compute homology not with Z coefficients, but rather with R coefficients, where

(i) R=Q,

(i) R = Fp, for a prime p,

(iii) R [ ], for a prime p, where Z[%} ={% €Q|a and b are coprime and b = p° for some integer ¢ > 0}7

(c)* Now take Y’ =S' v S! and consider a map g: A — Y’ that sends S' x {0} to Y’ as a loop that winds 3 times
around the left-hand circle of the “figure-of-eight” and twice around the right-hand circle, and sends S! x {1} to Y’
as a loop that winds 5 times around the left-hand circle and 7 times around the right-hand circle. Let X’ = ZU,Y".
Similarly to part (a), show that there is an exact sequence

0— Hy(X') =22 5 72 — Hy(X') — 0,

where ¢ is given by the matrix (332), and hence that Ho(X’) = 0 and Hy(X') = Z/11Z.
(d)* What happens if we change the ring of coefficients as in part (b)?

ETEY

D"« {0}

The attaching map f for the space X = Z Uy Y in Exercise 12.3(a).

Exercise 12.4 (Invariants and coinvariants.)

Let X be a space with an action of a group G. We write X for the subspace of X consisting of all fixed points
under the action (the invariants) and X/G for the quotient space {x.G | z € X} (the orbit space).

Fix a commutative ring R with unit. If M is an R-module with a G-action by R-linear automorphisms, we define
the snvariants MC, as above, to be the submodule of all elements that are fixed under the action. The module of
coinvariants M is the quotient of M by the submodule generated by the set {m —m.g | m € M, g € G}.

(a) If X is a space with a G-action, then M = H,,(X; R) is an R-module with a G-action. There are inclusion and
quotient maps X¢ < X — X/G and also M% < M — Mg. Complete the following commutative diagram by
defining the dotted arrows:

Hi(X) H;(X)a
f T Hy(X) — g
i / \ &
H;(X)¢ H,(X/G)

b) Take R =7Z and let X =S" (n > 2) with G = Z/2Z acting by a reflection. Show that
i) g; is an isomorphism for ¢ < n, but grn 1s not injective;
ii) fn—1 is also not injective.

c¢) Now consider the same set-up, except that G = Z/27Z acts by the antipodal map instead. Show that
i) fo is not surjective;

(
(
(
(
(



(ii) fy is an isomorphism if and only if n is even; whereas g, is injective but not surjective for n odd and is surjective
but not injective for n even;
(iii) in degrees 0 < i < n we have: g; is an isomorphism if and only if ¢ is even.

(d) In part (c), replace R = Z with R = Q or R = F), for an odd prime p. Now g; is an isomorphism for all .

Exercise 12.5 (Surgery on a manifold.)

Recall that an n-dimensional topological manifold is a Hausdorff space which is locally homeomorphic to R™. A
framed embedded sphere S in M of dimension m is an embedding S: S™ x D"™™ — M. Write Sy to denote the
restriction of S to S™ x gD~ = §™ x ST = GD™FL x S*m=L We then define

M(S) = (D™ xS" ™ 1) Ug, Mo,  where M, = M —S(S™ x D"™™),

and call this the result of surgery on M along S. For example, the result of surgery along a framed embedded
1-sphere in a surface look like the following:

/‘Dlxg"....

m=2
m=1]

.. attackad alons
g hM,
/ using SQ

(a) Draw a sketch to show why this is again a manifold.
(b) Explain why we have a diagram of the form

Hi1(M(S), Mo)

!

Hiy1(M,M,) —— H;(M,) — H;(M) — H;(M, M,)
l
H;(M(S))
l
H;(M(S), Mo)

with one exact row and one exact column. To relate H;(M(S)) to H;(M), it is important to understand the relative
homology groups appearing in (1).
(c) Using Excision, show that
H;(M, M,) = H;(S™ x D*~™ S™ x S*=m~1)
H;(M(S), M,) = H;(D™! x §n=m=1 §m » sgn=m=1y,
(d) Explain why the inclusion map S® x S® < S¢ x D**! induces surjections on homology in every degree.

(Hint: Apart from degree 0, it is enough to show that a certain homology class in H,(S® x D’*1) is in the image.)
(e) You may from now on assume the following fact:

ﬁi(Sa X Sb) ~ 7%ia &) 7.9i.b ) Z‘Si,(a+b)7

where §; ; is the Kronecker delta function: §;; = 1 and 6; ; = 0 for ¢ # j.
(If you like, try to prove this inductively using the Mayer-Vietoris sequence. Find an open cover {U,V} of S x Sb



such that U ~ V ~ S* and U NV ~ S* x S*~1. For the base case, note that S* x S° = S% 11 §¢.)
(f) Using parts (c)—(e), compute:

Z? i=nandm=0
H(M,M,)={7Z (i=nori=n—m)andm#0
0  otherwise
Z? i=nandm=n-—1
H;(M(S),M;)=2<Z (i=nori=m+1)andm#n—1
0  otherwise
(g) Assume that n > 1 and m < 4. Use these calculations and (1) to show that in degrees i < m — 2,

H(M(S)) = H(M).

(h)* Now we consider a more specific example. Let M be a 7-manifold and let S: S* x D3 — M be a framed
embedded 4-sphere. Show that
Hy(M(S)) = Ha(M)/([c]),

where [c] is the image under S, of a generator of Hy(S* x D3) 2 Z.

Exercise 12.6* (H-spaces and co-H-spaces.)
A based space C is called a co-H-space, if there is a map V: C' — C' Vv C such that

pioV ~ide for i=1,2

where p; and ps are the projections onto the first resp. second summand, which collapse the other summand to a
point. One calls C co-associative, if

(VVidg)oV ~ (ide VV)o V.

Example: the reduced suspension C' = X of a based space X is a co-associative co-H-space.

By t;: C — CV C for i = 1,2 we will denote the inclusions of the left resp. right summand. With the same proof
as in Exercise 12.1 we see that (a,b) — t1,(a)+t2,(b) is an isomorphism ®: H,,(C)® H,(C) — H,(CVv(C), for n > 0.

(1) Show that @~ o V,: H,(C) — H,(C) ® H,(C) is the diagonal map.

For any two based maps f,g: C — C we can define their sum by f+¢g:= Fo(fVg)oV, where F: CVC — Cis
the folding map.

(2) We have (f + g)« = f« + g Ho(C) — H,(C).
A based space M is called an H-space, if there is a map pu: M x M — M, such that

pot;, ~idy for 1=1,2,
where ¢1: M — M x M sends m to (m,mg), where my is the basepoint of M, and similarly t5 sends m to (mg, m).
One calls M associative, if
po (idpr X p) ~ po (X idps).
Example: A topological group, in particular a Lie group, is an H-space.

For a co-H-space C' and a based space Y, we set M := maps,(C,Y), the space of all based maps f: C — Y. These
are important spaces when C is a sphere.

(3) Show that M is an H-space, and it is associative if C' is co-associative.
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Week 13 — Products of spheres, linking number, cellular homology. Not due for handing-in.
(Non-compulsory)

Exercise 13.1 (Homology of products of spheres.)
Recall from the lectures that, for spaces X and Y with “good” basepoints (this means that the basepoint is closed
as a subset and also has an open neighbourhood that deformation retracts onto it), there are split short exact
sequences _ _ _ B

0> H;(X)®eH(Y) — H(XxY)— H(XAY)—=0

for ¢ > 0. Note that the smash product S™ A X is homeomorphic to the n-fold reduced suspension X =% 5X.
(a) Use this fact, the above short exact sequences and the Suspension Theorem to show that

H;(X) 0<i<n—1
Hi(S"x X)={Z& H,(X)® Hy(X) i=n
Hy(X) ® Hi—n(X) i>n+1.

(b) Calculate the homology of a product of two spheres S¥ x S*.
(c)* More generally, what is the homology of an iterated product of spheres ¥ x - .. x Ski?

Exercise 13.2 (Homology of knot complements.)

Let f: S! x D? < R3 be a framed knot in Euclidean space, i.e., an embedding of S' x D? into R?. The complement
of its image, M = R3 \. f(S! x D?), is then a non-compact 3-manifold.

(a) Describe an open covering {U,V} of R? such that U ~ M, V ~ St and UNV ~S! x St.

(b) Using the Mayer-Vietoris sequence for this covering, calculate the homology of the knot-complement M, in
particular concluding that Hq (M) = Z.

(c¢) Draw a l-cycle p representing a generator of Hq(M).

Exercise 13.3 (Linking number.)

As in the previous exercise, let f: S* x D? < R? be a framed knot, write K = f(S! x D?) and M = R3 \ K. Fix
a generator [u] of Hy(M) = Z as in part (c) of the previous exercise. For any curve c: S! — M we may define its
linking number with K, denoted L(c, K) or just L(c), to be the unique integer such that

ca([wr]) = Lle, K). [,

where [w1] € H(S!) is a generator. Note that L(c, K) depends on the choices of 1 and w;. See the figure on the
next page for an example.
Show:
(a) L(c1) = L(ca), if ¢1 >~ co: St — M.
(b) L(c) = 0, if the image of ¢ and K may be separated by a plane in R3.
(c) Suppose that ®: R3 x [0,1] — R? is an ambient isotopy, i.e., each ®; = ®(—,t) is a self-homeomorphism of R?
and ®g is the identity. Then L(c, K) = L(¢/, K'), where ¢/ = ®; o ¢ and K’ = ®;(K), and we use the generator
1) = (1), ([u]) of Hy (RS  K).
(d)* Now let fi, fo: St x D? < R3 be two non-intersecting framed knots in R3. Let K; = f;(S' x D?) and ¢; = f;oc,
where c: St — St x D? is defined by c(t) = (¢,0) (so ¢; is the “core” of the framed knot f;). Then we may define a
difference map

D:S'xs' — §?



Figure for Exercise 13.3: The union of the curves K and C is the Whitehead link. Note that L(C, K) = 0. The
surface F' shows that C' is nullhomologous in R? \. K, and F’ shows that C' is homologous to u + (—u) = 0. (But
still, K and C cannot be isotoped to curves separated by a plane.)

by the formula
c1(t1) — ca(t2)
ller(t1) — ca(t2) ||
Consider the induced homomorphism D, : Hy(S! x S') — H(S?). Prove that D, = 0 if L(cy, K3) = L(co, K1) = 0.
See the figure above for an example.

D(t1,t2) =

Exercise 13.4 (Mapping degree for tori.)
We know that for the torus T = S* x S! we have Hy(T) 2 Z. So let us choose a generator [7] of Ha(T) and define
the mapping degree of a self-map f of the torus to be the unique integer deg(f) such that

fi([7]) = deg(f)-[7].

(a) This definition is independent of whether we choose [7] or —[7] as our generator.

(b) If f and g are homotopic, then deg(f) = deg(g).

(c) If f1, fo: St — St are two self-maps of the circle, and f = f; x fo: T — T is their product — a self-map of the
tor

orus — then we have:

deg(f) = deg(f1) - deg(f2).
Show this using the following steps (or via another argument if you prefer):

(i) We may assume without loss of generality that f; is the map z — 2™ and f3 is z — 2™ for some m,n € Z.
(ii) Recall the comultiplication V: §? — S? V S? and the fold map F: S? VS§? — §? from Exercise 12.1. These may
be iterated, leading to maps Vj: S — \/k S? and Fj: \/k S? — S%. On second homology groups, we have

(Vi) =(1,...,1)ez”
(F)«(0,...,0,1,0,...,0) =1 € Z.

(iii) Let A =S'vS! C S! x S. Then the quotient map q: S' x St — (S! x S)/A =2 S? induces an isomorphism on
Hy(—).

(iv) Let B C S' x S! be an (m x n) rectangular grid in the usual picture of the torus as a square with edge
identifications. Then (S' x S!)/B is homeomorphic to a wedge sum of mn copies of S?. Under this identification,
the quotient map St x St — (St x S')/B = \/™" $? is homotopic to V5 o q.

(v) The following diagram is commutative up to homotopy, and so the result follows.



St x St f=hx ) St x St

o |
vmn an

S2 V" s? S2

Exercise 13.5 (Cellular homology of quotients of the 3-simplex.)

Let X be the 3-simplex, the 2-skeleton of which is depicted on the left-hand side in the figure below, and identify
its four faces in two pairs, as indicated in the middle part of the figure, to obtain a quotient space Y.

(a) Describe the natural cell complex structure on X and the induced structure on Y, with two 0-cells { P, @}, three
1-cells {a, b, c}, two 2-cells {Fy, F»} and one 3-cell w.

(b) Compute the differentials in the cellular chain complex

0 Z(P,Q) < Z{a,b,c) + Z(Fy, Fy) + Z{w) + 00 - --

of Y, and thus compute its homology.

(c) Now identify the faces of the 3-simplex as indicated on the right-hand side of the figure, to obtain a quotient
space Z. Describe the induced cell structure on Z, with one 0-cell, two 1-cells, two 2-cells and one 3-cell.

(d) Compute the cellular homology of Z.

Exercise 13.6* (Cellular homology of a quotient of the dodecahedron.)

Let X be the dodecahedron, which has a cell structure with 20 zero-cells, 30 one-cells, 12 two-cells and one three-cell.
For each face, imagine pushing it through the interior of the dodecahedron until it lies in the same plane as the
opposite face, and then rotating it by ¥ radians. This gives a homeomorphism between each pair of opposite faces.
Let ~ be the equivalence relation generated by z ~ ¢(x), where ¢ is one of these homeomorphisms. Describe the
induced cell structure on the quotient space X/~ and its cellular chain complex. Prove that the (cellular) homology
of X/~ is the same as the homology of S3. This is the famous Poincaré homology sphere.

Figures for Exercise 13.5: The left-hand figure is the 2-skeleton (the union of all cells of dimension at most 2) of the
3-simplex X. The middle figure describes how to identify two pairs of faces of X to obtain the quotient space Y.
Similarly, the right-hand figure shows how to identify the same two pairs of faces — in a different way — to obtain
the quotient space Z.



Dodekaederraum.

Von Poincaréschen Riumen mit endlicher Fundamentalgruppe sind uns
zwei bekannt, Thre Fundamentalgruppen stimmen mit denen des Dodeka-
ederraumes iiberein. Wir wissen nicht, ob die beiden Riume untereinander
und mit dem Dodekaederraum homéomorph sind ). Dagegen gibt es aufler
der Fundamentalgruppe noch eine
andere Eigenschaft, die Poincarés
Poincaréscher Raum mit dem Do-
dekaederraum gemein hat, nidmlich
die Zerlegbarkeit in zwei Doppelringe.

Wir benennen die Kanten und
Flachenstiicke des Diskontinuititsbe-
reiches, der uns den Dodekaederraum
liefert, wie in der Fig 11 (schema-
tisches Netz der Dodekaederfliche) an-
gegeben ist, und schreiben die wesent-
lichen Relationen an, die man aus den
Kantenumliufen gewinnt. Wir sind
dann nach § 10 sicher, daB die von
den @, =6 Erzeugenden C,,..., C,
und den « =10 (den Kanten a),..., k) entsprechenden) wesentlichen
Relationen definierte Gruppe mit der biniiren Ikosaedergruppe (§ 6, 8. 26)

From W. Threlfall, H. Seifert, Topologische Untersuchung der Diskontinuitdtsbereiche endlicher Bewegungsgruppen
des dreidimensionalen sphdrischen Raumes, Math. Ann. (1931).



