Exercise sheet 3

Due before the lecture on Monday, 5 November 2018.

Exercise 1. (5 points) Let X be a topological space and write

$$\Delta = \{(x, x) \mid x \in X\} \subseteq X \times X$$

for the diagonal.

- (a) Show that X is Hausdorff if and only if $\Delta \subseteq X \times X$ is closed with respect to the product topology.
- (b) Assume that X is compactly generated. Show that X is weakly Hausdorff if and only if $\Delta \subseteq X \times X$ is closed with respect to the compactly generated product topology, i.e. the k-ification of the usual product topology.

Exercise 2. (4 points) Consider the trivial fibre bundle $I \times I \to I$. Find a subspace $E \subseteq I \times I$ such that the projection restricts to a fibration $E \to I$ that is not a fibre bundle.

Exercise 3. (5 points)

- (a) Show that $\pi_n(S^n) \cong \mathbb{Z}$.
- (b) Assume that $S^m \to S^n$ is a fibre bundle with fibre S^k . Show that k = n 1 and m = 2n 1.
- (c) Let $E \to B$ be a fibration over a path-connected space B such that the inclusion of the fibre $F \to E$ is null-homotopic. Construct isomorphisms $\pi_n(B) \cong \pi_n(E) \times \pi_{n-1}(F)$. Deduce that $\pi_7(S^4)$ and $\pi_{15}(S^8)$ contain \mathbb{Z} as a summand. (You may use without proof the fact that there exist fibre bundles as in (b) for n = 4 and n = 8.)

Exercise 4. (6 points) Let $A \to X$ be a cofibration of spaces and let f and g be homotopic maps $X \to Y$ that agree on A.

- (a) Show that if A is contractible, then f and g are homotopic relative to A. (*Hint:* Fix a homotopy $h: f \simeq g$. Choose a null-homotopy k of $f|_A$ and use it to construct a homotopy of homotopies $K: A \times I \times I \to Y$ between $h|_A$ and the constant homotopy $f|_A \simeq g|_A$. Then apply the homotopy extension property of $A \times I \to X \times I$.)
- (b) Show that the contractibility assumption in (a) is necessary. (*Hint:* Consider maps of pairs $(D^1, S^0) \to (S^1, *)$.)