Revision sheet

The following exercises cover some of the topics of the lecture and will be discussed in the exercise sessions on 1 February.

Exercise 1. Decide whether the following statements are true or false.

- (1) The suspension homomorphism $\Sigma \colon \pi_3(S^2) \to \pi_4(S^3)$ is injective.
- (2) If $p: E \to B$ is a Serre fibration over a path-connected space B, then all fibres $p^{-1}(b)$ for $b \in B$ are weakly homotopy equivalent.
- (3) For all CGWH spaces X, Y and Z, there is a natural homeomorphism

 $\operatorname{Map}(X \times Y, Z) \longrightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z)).$

- (4) Every basepoint-preserving map $\mathbb{R}P^{\infty} \to \mathbb{C}P^{\infty}$ is based homotopic to a constant map.
- (5) For any based CW-complex Z, the functor $\langle -, Z \rangle$ from the category of based CW-complexes to the category of pointed sets is half-exact.
- (6) Let h_* and k_* be reduced homology theories defined on the category of based CW-complexes such that $h_i(S^0) \cong k_i(S^0)$ for all $i \in \mathbb{Z}$. Then any isomorphism of groups $h_0(S^0) \to k_0(S^0)$ extends to an isomorphism of homology theories $h_* \cong k_*$.
- (7) Let X and Y be CW-complexes. Then there exists a weak equivalence $SP(X \lor Y) \to SP(X) \times SP(Y)$.
- (8) Let p be a prime number. Then the class of all finitely generated abelian groups A such that $a \mapsto p \cdot a \colon A \to A$ is invertible forms a Serre class.
- (9) Let G be a discrete group and E a free right G-space. Then the orbit map $E \to E/G$ is a principal G-bundle.
- (10) There are infinitely many pairwise non-isomorphic principal \mathbb{Z} -bundles over the base space S^1 .

Exercise 2. Assume that the following diagram is a pushout diagram in the category of topological spaces.

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & C \\ i & & & \downarrow^{j} \\ B & \stackrel{f}{\longrightarrow} & D \end{array}$$

Prove that, if i is a cofibration, then j is a cofibration. Is this statement true if we work instead in the category CGWH?

Exercise 3. Let X be a path-connected space and let ΣX denote its reduced suspension. Show that, for $n \ge 3$, there are isomorphisms

$$\pi_n(\Sigma X, X) \cong \pi_n(\Sigma X) \times \pi_{n-1}(X).$$

Exercise 4. Show that for any two abelian groups A, B and any $n \ge 2$ there is a bijection

$$\operatorname{Hom}(A, B) \cong \langle K(A, n), K(B, n) \rangle$$

between the set of group homomorphisms $A \to B$ and the set of based homotopy classes of based maps $K(A, n) \to K(B, n)$ between the corresponding Eilenberg-MacLane spaces.

Exercise 5. Compute $\pi_*(\mathbb{C}P^n) \otimes \mathbb{Q}$.

Exercise 6. Find maps $f_i: X_i \to Y_i$ for i = 1, 2 between simply-connected CW-complexes such that:

(a) f_1 induces a surjection on π_* but not on H_* ,

(b) f_2 induces a surjection on H_* but not on π_* .

(*Hint:* Only consider spheres and projective spaces. For (b), use Exercise 5 to deduce that $\pi_7(\mathbb{C}P^2)$ is finite.)