Homology of moduli spaces of submanifolds

Talk at the $8^{\rm th}$ WYRM $/\!\!/$ Martin Palmer-Anghel $/\!\!/$ 17–18 May 2018

Abstract:

Given a closed manifold L and a connected manifold M, the moduli space of submanifolds of M that are diffeomorphic to L is $\mathcal{M}(L, M) = \operatorname{Emb}(L, M)/\operatorname{Diff}(L)$, the space of embeddings $L \hookrightarrow M$ modulo reparametrisation by self-diffeomorphisms of L.

Two natural questions are to understand $\pi_0(\mathcal{M}(L, M))$ and to understand $H_*(\mathcal{M}_{[e]}(L, M))$, where in the latter the subscript [e] means we have restricted to the path-component of the moduli space corresponding to a specific embedding $e: L \hookrightarrow M$. The first question has its own very important story (it contains knot theory, for example), but in this talk I will focus on the second question, of understanding the higher homology of certain path-components of $\mathcal{M}(L, M)$.

The homology of these spaces has been much studied, especially in the two special cases where (a) dim(L) = 0 or (b) $M = \mathbb{R}^{\infty}$. In the first case, $\mathcal{M}(L, M)$ is the configuration space $C_n(M)$ of n = |L| non-colliding, indistinguishable particles in M. An important special case of this is the configuration spaces $C_n(\mathbb{R}^2)$, which are classifying spaces of the braid groups B_n . In the second case, $\mathcal{M}(L, \mathbb{R}^{\infty})$ is a classifying space of the diffeomorphism group of L. An important special case of this is when L is a closed, connected, oriented surface (this is the subject of the *Madsen-Weiss* theorem, and is related to moduli spaces of Riemann surfaces). Much less is known in the case where (c) dim(L) > 0 and dim $(M) < \infty$.

A common and very effective technique in studying the homology of these moduli spaces is to consider a sequence L_n and try to prove that the homology of $\mathcal{M}(L_n, M)$ stabilises as $n \to \infty$. The next step is then to calculate the homology of the stable moduli space $\mathcal{M}(L_{\infty}, M)$. This is typically easier to deal with than $\mathcal{M}(L_n, M)$, since it can be given some additional structure coming from the fact that it contains information about submanifolds of M of diffeomorphism type L_n for all n.

I will briefly review what is known (via this technique) about the homology of $\mathcal{M}(L, M)$ in the three different cases (a)–(c), and I will present a stabilisation result for $\mathcal{M}(L_n, M)$ in the case where M is non-compact and L_n is the disjoint union of n copies of a fixed manifold P, under a certain condition on their relative dimensions. If time permits, I will also discuss the (still open) related question of identifying the homology of the corresponding stable moduli space $\mathcal{M}(L_{\infty}, M)$.

Mathematisches Institut der Universität Bonn Endenicher Allee 60 53115 Bonn Germany

palmer@math.uni-bonn.de