Problems related to lecture 2 of the GSS lecture course by Søren Galatius.<sup>1</sup>

**Problem 1** Discuss the difference between cobordisms being diffeomorphic as cobordisms (which depends on the collars  $c_{in}$  and  $c_{out}$ ) and merely having diffeomorphic underlying manifolds (which does not).

**Problem 2** Let D be the groupoid defined abstractly as  $Ob(D) = \mathbb{Z}/2\mathbb{Z}$ , morphism sets

$$D(a,b) = \begin{cases} \mathbb{Z} & a=b\\ \varnothing & a\neq b, \end{cases}$$

and composition given by addition in  $\mathbb{Z}$ . As explained in Example 2.19 in the notes, this groupoid is equivalent to the fundamental groupoid of  $\Omega T_{1,\mathbb{R}^2} \cong \Omega \mathbb{R} \mathbb{P}^2$ , so it should also be the target of a universal functor from  $h\mathcal{C}_1^{\mathbb{R}}$  to a discrete groupoid. The goal of this exercise is to verify this directly, by geometric constructions.

(a) Construct a functor

$$f: h\mathcal{C}_1^{\mathbb{R}} \longrightarrow D_f$$

defined by sending an object (finite subset of  $\mathbb{R}$ ) to its cardinality modulo 2, and a morphism  $W \subset [0, t] \times \mathbb{R}$  from  $M_0 \subset \mathbb{R}$  to  $M_1 \subset \mathbb{R}$  to the integer

$$\chi(X) - \chi(X \cap (\{0\} \times \mathbb{R})),$$

where  $X \subset [0, t] \times \mathbb{R}$  is the union of components of the complement  $([0, t] \times \mathbb{R}) \setminus W$  obtained by colouring them green or red in an alternating way, starting with green for the unbounded component in the  $[0, t] \times \{-\infty\}$  direction, and setting X to be the union of the red components. More rigorously: a component C of  $([0, t] \times \mathbb{R}) \setminus W$  is included in the union X if and only if a ray starting from the interior of C, intersecting W transversely and asymptotically equal to  $s \mapsto (t/2, -s)$ , has an odd number of intersections with W. For example, in the following picture, the shaded region is X and its boundary is W:



Check that this indeed defines a functor as claimed.

(b) Verify by pictures that f factors over an equivalence  $h\mathcal{C}_1^{\mathbb{R}}[(h\mathcal{C}_1^{\mathbb{R}})^{-1}] \simeq D$ .

Problem 3 (Cobordism categories with tangential structures.)

As mentioned in the lectures, there are versions of the cobordism category for manifolds equipped with tangential structures, where a *tangential structure* is a  $\operatorname{GL}_d(\mathbb{R})$ -space  $\Theta$ . A  $\Theta$ -structure on a real vector bundle  $E \to X$  is a  $\operatorname{GL}_d(\mathbb{R})$ -equivariant map  $\operatorname{Fr}(E) \to \Theta$ , where  $\operatorname{Fr}(E)$  is the total space of the frame bundle of the vector bundle. As explained in the lectures, the topological cobordism category  $\mathcal{C}_{\Theta}^V$  is defined similarly to  $\mathcal{C}_d^V$ , except that each object M is equipped with a  $\Theta$ -structure on  $\epsilon \oplus TM$  and each morphism W is equipped with a  $\Theta$ -structure on TW.

(a) Unwind the definition of  $\Theta$ -structure in the cases:

(i)  $\Theta = \{*\},\$ 

- (ii)  $\Theta = \{\pm 1\}$ , where an element A of  $\operatorname{GL}_d(\mathbb{R})$  acts by multiplication by  $\det(A)/|\det(A)|$ ,
- (iii)  $\Theta = \operatorname{GL}_d(\mathbb{R})$ , where  $\operatorname{GL}_d(\mathbb{R})$  acts on itself by left-multiplication,
- (iv)  $\Theta = \operatorname{GL}_{2n}(\mathbb{R})/\operatorname{GL}_n(\mathbb{C})$ , when d = 2n is even,
- (v)  $\Theta = Z$ , where  $\operatorname{GL}_d(\mathbb{R})$  acts trivially on Z.

 $<sup>^1</sup>$  Updated: July 10, 2019.

- (b) Fill in the details of the definition of  $\mathcal{C}_{\Theta}^{V}$  above. As before,  $\mathcal{C}_{\Theta}$  is then defined as the colimit of  $\mathcal{C}_{\Theta}^{V}$  over all finite-dimensional linear subspaces  $V \subset \mathbb{R}^{\infty}$ .
- (c) Define the abstract cobordism category  $\operatorname{Cob}_{\Theta}$  and show that it is equivalent to  $h\mathcal{C}_{\Theta}$ .
- (d) Describe explicitly the categories  $\operatorname{Cob}_{\{\pm 1\}}$  and  $\operatorname{Cob}_Z$  for d = 1 (GL<sub>1</sub>( $\mathbb{R}$ ) acts trivially on Z).

**Problem 4** Let  $\tilde{\mathcal{C}}_d^V$  be the (ordinary) category obtained by giving the morphism spaces of  $\mathcal{C}_d^V$  the discrete topology. What can you say about the connectivity of the map

$$B\widetilde{\mathcal{C}}_d^V \longrightarrow B\mathcal{C}_d^V$$
?

**Problem 5** For a space X we have the Postnikov truncation

$$X \longrightarrow \tau_{\leqslant n} X,$$

i.e. a map inducing isomorphisms on  $\pi_i$  for  $i \leq n$ , whose codomain has vanishing  $\pi_i$  for i > n. Explain how to apply this functor to all morphism spaces in a topologically enriched category C: try to construct a topologically enriched functor  $C \to D$  which is a bijection on object sets, while  $C(x, y) \to D(x, y)$  is a model for  $C(x, y) \to \tau_{\leq n} C(x, y)$ . Failing that, construct a zig-zag  $C \leftarrow C' \to D$  of topologically enriched functors which are bijections on object sets,  $C' \to D$  has the above property and  $C' \to C$  is a weak equivalence on each morphism space. What does the case n = 0 have to do with hC? (And how should the case n = -1 be interpreted?)

## Problem 6

- (a) Prove that the "constant simplicial set" functor Sets  $\rightarrow$  sSets is right adjoint to the functor  $\pi_0$ : sSets  $\rightarrow$  Sets.
- (b) Prove that the "discrete topology" functor Sets  $\rightarrow$  Top does not have a left adjoint. (*Hint*: what is the space  $\{0, 1\}^{\mathbb{N}}$ ?)