
GSS problem session — Lecture series by Søren Galatius — Problem set 3 — July 11, 2019

Problems related to lecture 3 of the GSS lecture course by Søren Galatius.

Problem 1 Let C be a small category and let γ : C → C[C−1] the universal functor to a groupoid.
In particular we have, for each object x ∈ C,

γ : EndC(x)→ EndC[C−1](x), (1)

a monoid homomorphism into a group. The purpose of this problem is to work out some useful
rules for determining the group EndC[C−1](x), under the additional assumption on C that for any
other object y, both C(x, y) and C(y, x) are non-empty. Unless stated otherwise, we shall in the
rest of this problem make this assumption on C and x.
(a) Prove that the image of (1) generates.
(b) Let y ∈ C be any object, let w1, w2 ∈ C(y, x) and w3, w4 ∈ C(x, y) be any morphisms, and

define a, b, c, d ∈ EndC(x) by

a = w1 ◦ w3, b = w2 ◦ w3 c = w1 ◦ w4, d = w2 ◦ w4.

Then γ(a), . . . , γ(d) are elements of the group EndC[C−1](x). Prove that

γ(a) ◦ (γ(b))−1 = γ(c) ◦ (γ(d))−1. (2)

Let us now specialize to C ⊂ hCV
d the full subcategory on those objects admitting a morphism

from ∅, and set x = ∅.
(c) Prove that this C and x satisfy the assumption above.
(d) Convince yourself that (for dim(V ) > 0) the domain of (1) is a commutative monoid, and

deduce that the codomain is an abelian group.
(e) Convince yourself that, moreover, the domain of (1) is a free commutative monoid.
(f) Use the tools developed above to show that, in Cob2[(Cob2)−1], the endomorphisms of ∅

given by the torus, by the Klein bottle and by the empty surface are equal.
(g) Return to Problem 2(c) of problem set 1 (from Monday) and Problem 2(b) of problem set 2

(from Tuesday).
See also Bökstedt–Dupont–Svane: A geometric interpretation of the homotopy groups of the cobor-
dism category, section 6.
Problem 2 Let D be a rigid symmetric monoidal groupoid, let 1 denote the monoidal unit, and
let x ∈ D be any object. Prove that

EndD(1)→ EndD(x⊗ 1)
f 7→ f ⊗ idx

is an isomorphism of groups. Using the unitor and its inverse, the codomain may be identified
with EndD(x).
Does this say anything useful when D = Cobd[Cob−1

d ]? (Hint: first show that D is rigid.)
Problem 3 Recall that Cd is the topologically enriched cobordism category, where cobordisms
are embedded in [0,∞) × R∞ (or alternatively in [0,∞) × V for dim(V ) � d, if you prefer not
to take a colimit). Let Ck

d , for an integer k > 0, be the subcategory with the same objects and
whose morphisms are those cobordisms W ⊂ [0, t]× V with the property that the inclusion of the
outgoing boundary

W ∩ ({t} × V ) ↪−→W

is k-connected.
(a) Verify that this is indeed a subcategory of Cd.

In the lectures it was stated that the inclusion Ck
d ↪→ Cd induces a weak homotopy equivalence of

classifying spaces
BCk

d −→ BCd (3)
as long as k 6 d−2

2 . The purpose of this problem is to investigate, by more elementary means,
when the map (3) induces a bijection on π0.
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(b) Prove “by hand” that, when d > 2 and k = 0, the map (3) induces a bijection on π0.
(c) Rephrase bijectivity of (3) on π0 as the statement that, given any cobordismW : M0  M1 in
Cd, there is a zig-zag of cobordisms between M0 and M1 that each satisfy the k-connectivity
condition on the outgoing boundary.

(d) Prove bijectivity of (3) on π0 more generally whenever k < d/2. (Hint: if you haven’t already,
learn about elementary cobordisms e.g. from Milnor’s book on the h-cobordism theorem.)

Problem 4 Let D be the groupoid with one object ∗ and EndD(∗) = Z. Define

E : Cobd → D

by sending any object to ∗ and a morphism W : M0  M1 to χ(W )− χ(M0) ∈ Z.
(a) Briefly explain why this is a functor.

(You may have already done this in Problem 2(b) on problem set 1 on Monday.)
(b) Can you promote E to a symmetric monoidal functor? (Hint: use addition in Z as ⊗. In

this case the associator, symmetry, and unitor can all be taken to be the identity.)
This is sometimes called the “Euler TQFT”.
(c) Let V = Rm, let e : Td,Rm+1 → K(Z,m+ 1) be a map, and let ΩmTd,Rm+1 → ΩmK(Z,m+ 1)

be the m-fold loop of e. Prove that the fundamental groupoid of ΩmK(Z,m+1) is equivalent
to D, and explain how any such map e gives rise to a symmetric monoidal invertible field
theory Cobd → D if m > 3.

Problem 5 If X is a rigid symmetric monoidal groupoid, it is determined up to equivalence by
three pieces of data: π0X (the abelian group of isomorphism classes of objects), π1X = Aut(1X),
and something called the k-invariant, which we proceed to define. Given any x ∈ X, there is a
canonical isomorphism –⊗ idx : Aut(1X)→ Aut(x). The k-invariant of X is the map π0X⊗Z/2→
π1X which to x ∈ π0X assigns the image of the symmetry σ : x ⊗ x → x ⊗ x in Aut(x ⊗ x) ∼=
Aut(1X) = π1X.
Compute π0, π1, and k for the following rigid symmetric monoidal groupoids.
(a) The category Vect∼k of invertible vector spaces over a field k.
(b) Assuming char(k) 6= 2, the category sVect∼k of invertible super vector spaces, i.e. the category

of invertible Z/2-graded vector spaces with the symmetry a⊗ b 7→ (−1)deg a deg bb⊗ a.
(c) Cob1[Cob−1

1 ].
(d) The same as in (c), but with the oriented 1-dimensional cobordism category.

Problem 6 Let us denote by hC̊V
d the oriented version of the category hCV

d , where both (d− 1)-
manifolds and cobordisms are equipped with compatible orientations.1 There is a functor

Fd,V : hC̊V
d −→ hCV

d

that forgets all orientations.
(a) When d = dim(V ) or d = 0, construct a section of Fd,V .
(b) When 0 < d < dim(V ), prove that the functor Fd,V does not admit a section.

(Suggestion: first consider the cases (d, V ) = (1,R) and (d, V ) = (1,R2), and look at the picture
in Problem 2 of problem set 2.)

1 This was called hCV
{±1} in Problem 3 of problem set 2.
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