

- corresponds to restricting the *monodromy* of the covering around the branch points. \blacktriangleright When M is smooth and $E = TM \setminus \{\text{zero-section}\}\$, the space $C\Gamma_k(M; E)$ parametrises configurations together with a non-vanishing vector field on their complement. Fixing the charge (see next column) corresponds to prescribing the *winding number* of this vector field around each configuration point (up to sign, if M is non-orientable).

On homological stability for configuration-section spaces Martin Palmer // IMAR, Bucharest

each singularity. Then $\{V_k^w(M)\}_{k=0}^\infty$ is homologically stable.

(up to homotopy),

where $D \subset M$ is a codimension-zero disc centred at p_i . Pictorially:

For trivial bundles $E = M \times X$ and orientable M, the set of possible **Eg.** For Hurwitz spaces, $\{charges\} = [S^1, BG] \leftrightarrow \{conj, classes of G\}$. In general, it is a quotient of the set $[S^{d-1}, X]$. We have surjections:

Def. The subspace of $C\Gamma_k(M; E)$ where all charges are equal to c is: $C\Gamma_{k}^{c}(M; E)$

Theorem $[PT_1]$. If the *charge* c is small, the integral homology groups $H_i(C\Gamma_k^c(M; E); Z)$

 \blacktriangleright Homological stability for configuration spaces $C_k(M)$ is a classical result $[S_1, M, S_2]$, and generalises to labelled configuration spaces [RW]. Recently, [EVW] have proven homological stability for Hurwitz spaces $\left\{\mathsf{Hur}_{\mathbf{G},\mathbf{k}}^{\mathbf{c}}\right\}_{\mathbf{k}=1}^{\infty}$ (1)

(with a certain periodicity and with coefficients in a field containing $|G|^{-1}$) if G is finite, c generates G and c does not split into multiple conjugacy classes when restricted to subgroups of G. Using this, they proved an asymptotic version of the *Cohen-Lenstra conjecture*. A special case of our main theorem gives a complementary result — the sequence of Hurwitz spaces (1) is homologically stable if c is a conjugacy class of size 1. Assume M is smooth and fix $w \in Z$ (w = 0 if M is non-orientable). Denote by $\mathbf{V}_{\mathbf{k}}^{w}(\mathbf{M})$ the moduli space of non-vanishing vector fields defined on M except at k "singularities", with winding number w at

Outline of proof

There are maps f that forget the field and s that increase the number of particles by one (adding a new particle and extending the field near the basepoint $* \in \partial M$): $\rightarrow \Gamma^{c}(M \setminus \{k+1 \text{ points}\}; E)$ $\rightarrow C\Gamma^{c}_{k+1}(M; E)$ (2) $\blacktriangleright C_{k+1}(\check{M})$

$$\Gamma^{c}(M \setminus \{k \text{ points}\}; E)$$

 ∇
 $\Gamma^{c}_{k}(M; E)$

 $C_k(\dot{M})$

[1] By a Serre spectral sequence argument it suffices to show that

 $H_i(C_k(\mathring{M}); H_j(\Gamma^c(M \setminus \{k \text{ points}\}; E)))$

stabilises (with respect to \mathbf{k}) for each fixed $\mathbf{j} \ge 0$. [2] For fixed **j**, the coefficient system

Further results

and the fibre decomposes as $Map_*(M, X) \times (\Omega_c^{d-1}X)^k$.

References

[F\/\/]	l Ellenberg A Venkatesh C Wes
	conjecture over function fields, Ani
[K]	M. Krannich, Homological stability
[M]	D. McDuff, Configuration spaces of
[P]	M. Palmer, Twisted homological st
$[PT_1]$	M. Palmer, U. Tillmann Configura
$[PT_2]$	M. Palmer, U. Tillmann Point-pusi
[RW]	O. Randal-Williams, Homological s
$[S_1]$	G. Segal, Configuration-spaces and
[S ₂]	G. Segal, The topology of spaces of

 $k \mapsto H_{i}(\Gamma^{c}(M \setminus \{k \text{ points}\}; E))$

forms a *polynomial* twisted coefficient system for the configuration spaces $C_k(M)$. The proof of this fact uses crucially the assumption that the charge c is small. [3] It is known [P,K] that configuration spaces are homologically stable with respect to *polynomial* twisted coefficient systems. Thus (3) stabilises for each fixed **j**.

(3)

The fibration sequence on the left of (2) has an associated *monodromy action* (up to homotopy) of $\pi_1(C_k(\tilde{M}))$ on the fibre $\Gamma^c(M \setminus \{k \text{ points}\}; E)$. Now assume that $d \ge 3$ and $E = M \times X$. The group $\pi_1(C_k(M))$ decomposes as $\pi_1(M)^n \rtimes \mathfrak{S}_n$

Theorem [PT₂]. An explicit description of the monodromy action under these identifications. If M is simply-connected or has handle-dimension $\leq \dim(M) - 2$, this is a direct formula; otherwise, it is more subtle to describe.

> esterland, Homological stability for Hurwitz spaces and the Cohen-Lenstra nn. of Math. 183.3, 729–786, 2016.

y of topological moduli spaces, Geom. Topol. 23.5, 2397–2474, 2019. of positive and negative particles, Topology 14, 91–107, 1975. stability for configuration spaces, Homology Homotopy Appl. 20.2, 145–178, 2018 ation-mapping spaces and homology stability, Res. Math. Sci. 8, no. 38, 2021. shing actions and configuration-mapping spaces, arXiv:2007.11613. stability for unordered configuration spaces, Q. J. Math. 64.1, 303-326, 2013 d iterated loop-spaces, Invent. Math. 21, 213–221, 1973. of rational functions, Acta Math. 143.1-2, 39-72, 1979.