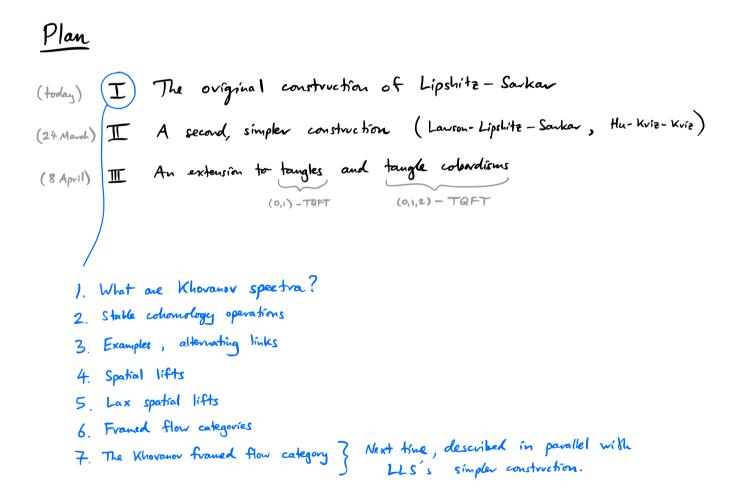
GeMAT seminar 14 March 2022



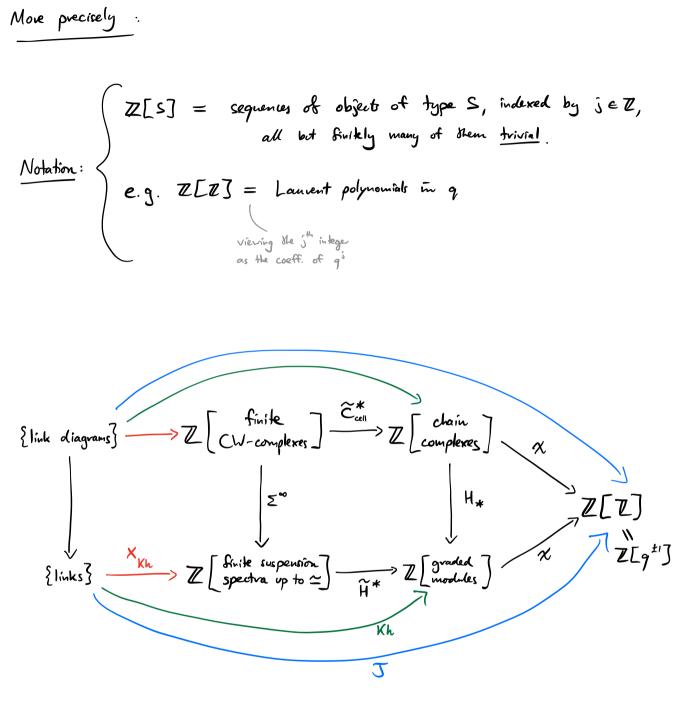
Khovanov (2000)

$$L \longrightarrow Kh_{R}(L) = \bigoplus_{i,j} Kh_{R}^{i,j}(L) \quad \text{bigraded a belian group} \\ (R-module)$$
such that

$$\chi(Kh_{R}^{*,j}(L)) = \text{coefficient of } q^{j} \text{ in } (q+q^{-1})J(L)$$

$$\prod_{i=1}^{|I|} \qquad \text{Jones polynomial}$$

Lipshitz-Sarkar (2014)
L
$$\longmapsto$$
 Sequence of suspension speetra $X_{Kh}^{j}(L)$, $j \in \mathbb{Z}$
Such that
 $\widetilde{H}^{i}(X_{Kh}^{j}(L); R) \cong Kh_{R}^{i}(L)$
Thus:
 $\mathcal{X}(X_{Kh}^{j}(L)) = \text{coefficient of } q^{j} \text{ in } (q + q^{-1}) J(L)$



J = Jones polynomial Kh = Khovanov homology X_{Kh} = Lipshitz-Sarkar-Khovonov spectrum

Suspension spectra
• Spaces
$$\xrightarrow{\Sigma^{\infty}}$$
 Spectra
• The subcategory on the objects $\overline{\Sigma^{\infty}X}$, $X = \underline{finik}$ CW-complex, has
 α simple description. This is the category of finite suspension spectra.
• Objects (X, i) for $\begin{cases} X & \underline{finite} & based CW-complex \\ i \in \mathbb{Z} \end{cases}$
writhen $\overline{\Sigma^{i}X}$
 $identify \quad \overline{\Sigma^{i+1}X} = \overline{\Sigma^{i}}(\overline{\Sigma X})$
 $(veduced)$
 $suspension of X = \frac{\overline{CO_{i}1} \times X}{(\overline{CO_{i}13} \times X)_{0}(\overline{CO_{i}13 \times \frac{1}{2} + \frac{3}{2})}}$
 $= \underbrace{\int_{i=1}^{i_{1}} \frac{1}{2} \times \frac$

• Morphisms
$$\Sigma^{i}X \longrightarrow \Sigma^{s}Y$$
 are $(k, Z^{i+k}X \xrightarrow{+} Z^{s+k}Y)$
such that it usual based map
and $J^{k}k \ge 0$ of spaces

$$identify$$
 $(k,f) \sim (kt), \Sigma f$

. Homotopies (2-morphisms) defined similarly.

- Σ^{∞} : (finite CW-complexes) \longrightarrow (finite suspension spectra) $X \longmapsto \Sigma^{\circ} X$
- Upshot: $\Sigma^{\infty}X \simeq \Sigma^{\infty}Y$ if and only if $\exists k : \Sigma^{k}X \simeq \Sigma^{k}Y$.

- Spectra contain much max information than their cohomology groups Hⁱ(X; R).
- · How to extract this information as algebraic invariants?

Rmks

Fact: d_2 , d_3 differentials for $E^* = K$ -theory are determined by Sg' and Sg² operations.

So sometimes Kh(L) plus Sg' and Sg^2 determine <u>Khovanov K-theory</u> $K^*(X_{Kh}^{i}(L))$

ELS] compute this for all links with ≤ 11 crossings, and it is just Kh^{*, i}(L) ⊗ K^{*}(pt). {Z even degres}

But there may be non-trivial Adams operations
in general
$$K^*(X_{Kn}^{j}(L))$$
 is expected to be victor than $Kh^{*,j}(L)$.

Unknot	quantum grading j	Khavanov spectrum X ^{'s} Kh
	1	S°
	-	°2
	I	

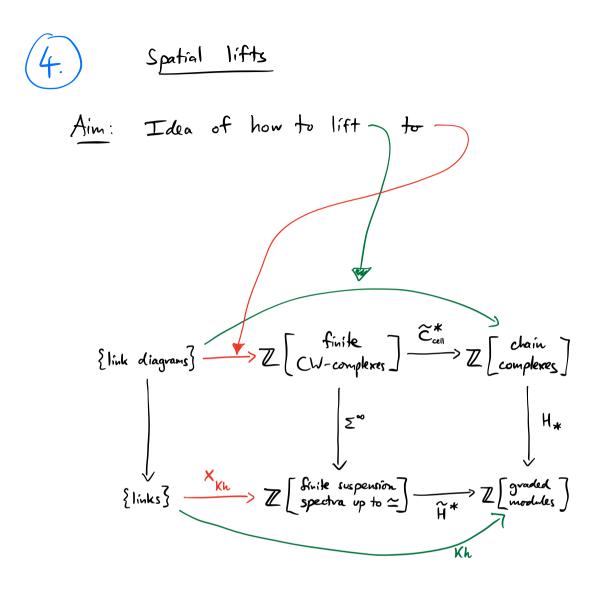
Hopf link	quantum quading j	Kharanov spectrum XKn
	б	S ²
	4	S ²
	2	S°
	0	~ی
		1

More generally:
Prop ELSJ IF L is an alternating link, then
$$X_{Kh}^{j}(L)$$
 is
a nedge sum of Moore spaces. In particular:
· it is determined by its (co)homology
· all Steenrod operations are trivial.
Rink. In fact, this is true of any spectral refinement of Kh(L),
independently of how it is defined.

• If follows from the fact * that
$$Kh^{i,s}(L) \neq 0$$
 only when
 $i = \frac{1}{2}(j + \sigma(L) \pm 1)$ and has torsion only when $i = \frac{1}{2}(j + \sigma(L) + 1)$.
signature *
due to [Manokscu-Oresvath, 2007]

K = 10,45	quantum grading j	Khavanov spectrum X ^{'s} Kh	
	-3	S°	
	- 5	S	
	-7	$\Sigma^{-3}(S^{\circ} \vee S')$	
	-9	$\Sigma^{-6}(\mathbb{R}P^2_{\Lambda}\mathbb{R}P^2)$	
	- (1	$\Sigma^{-5} \left(S^{\circ} v S^{\circ} v S^{\circ} v S^{2} \right)$	
	-13	$\Sigma^{-\varepsilon}\left(\mathbb{R}^{p_{\mathcal{B}^{1}}}, \vee \Sigma \mathbb{R}^{p^{2}}\right)$	
	- 15	$\Sigma^{-10}\left(\frac{\mathbb{R}p^{5}}{\mathbb{R}p^{2}} \times S^{4}\right)$	
	- 17	$\Sigma^{-s}(S^{\circ}vS^{\prime})$	
	- 19	$\Sigma^{-10} RP^2$	
	-21	Σ ⁻³ S°	
Theorem [Seed]]] L, L2	with $Kh(L_1) \cong Kh(L_2)$)
		but $X_{Kh}(L_1) \neq X_{Kh}(L_2)$)
	$\begin{pmatrix} L_1 = 11\\ L_2 = 12 \end{pmatrix}$	r r r r r r r r r r r r r r	2

<u>Theorem</u> [LLS] $\forall n \geqslant 1$, $\exists k_{not} L$ such that $S_{g}^{n} : Kh_{F_{2}}^{*,*}(L) \longrightarrow Kh_{F_{2}}^{*+n,*}(L)$ is non-trivial.



Then one has to check that the (sequence of) CW-complexes associated to a link diagram is invariant up to stable ~ under Reidemeister moves.

$$\frac{\text{Def}}{\text{Def}} \quad B(\mathbb{Z}) \begin{cases} \text{objects} = finite sets} \\ \text{maps } X \rightarrow Y = homomorphisms} \bigoplus_{X} \mathbb{Z} \longrightarrow \bigoplus_{Y} \mathbb{Z} \end{cases}$$

$$B(S^{N}) \begin{cases} objects = finite sets \\ maps X \rightarrow Y = continuous maps V S^{N} \rightarrow V S^{N} \\ X \qquad Y \end{cases}$$

• A
$$\mathbb{Z}$$
-chain conplex is a linear diagram in $\mathbb{B}(\mathbb{Z})^{-1}$
 $\mathbb{F}(n) \longrightarrow \mathbb{Z}^{-1} \mathbb{F}(n) \longrightarrow \mathbb{F}(n) \longrightarrow \mathbb{F}(n)$

such that any pair composes to the zero honomorphism.

• An
$$S^{N}$$
 - chain complex is a linear diagram in $B(S^{N})$:
 $P(n) \xrightarrow{f_{n}} \cdots \xrightarrow{f_{2}} P(1) \xrightarrow{f_{1}} P(0)$

such that any pair composes to the constant map.

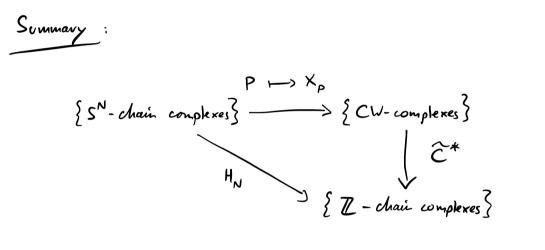
A strict spatial lift of a chain complex F is an S^N -chain complex Psuch that $H_N \circ P = F$.

From this we can construct a CW-complex X_p with $\widehat{C}^*(X_p) \cong F$ as follows.

The fact that $f_1 \circ f_2 = *$ means that $\exists map g_1 : \Sigma P(2) \longrightarrow Cone(f_1)$ $f_2 \times id_{[0,1]} \longrightarrow P(0)$ Thus ne obtain a ver sequence of CW-complexes with each pair of maps composing to the constant map:

$$\Sigma P(n) \xrightarrow{\Sigma f_n} \longrightarrow \Sigma P(3) \xrightarrow{\Sigma f_3} \Sigma P(2) \xrightarrow{9} Cone(f_i)$$

Iterating, ne eventually obtain a CW-complex Xp whose reduced cellular cochain complex is the original chain complex F.



So it would be enough to vetice the Khovanov chain complex to an S^N-chain complex.

$$\begin{array}{rcl}
\underline{BUT} : & B(Z)(X,Y) = & Hom_{Z}\left(\bigoplus_{X} \mathbb{Z}, \bigoplus_{Y} \mathbb{Z}\right) = (\forall x X) - matrices \quad over \mathbb{Z} \\
& (be couse \bigoplus_{is a product} and coproduct) \\
& B(S^{N})(X,Y) = & Map\left(\bigvee_{X} S^{N}, \bigvee_{Y} S^{N}\right) \\
& = & \prod_{X} Map\left(S^{N}, \bigvee_{Y} S^{N}\right) \quad (because \lor is a coproduct)
\end{array}$$

$$\pi_{\sigma} \mathcal{B}(s^{n})(x, Y) = \bigoplus_{X} \pi_{N} \left(\bigvee_{Y} s^{N} \right) \cong \bigoplus_{X} \bigoplus_{Y} \pi_{N} (s^{N}) \cong \mathcal{B}(\mathbb{Z})(x, Y)$$

exercise, or Hilton Milnor Heorem

So a strict spatial lift P of F does not contain any more information (up to \simeq) than F. Hence the homotopy type of X_p also cannot contain any more information.

A lox
$$S^{N}$$
- chain complex is a linear diagram
 $P(n) \xrightarrow{f_1} 2 \cdots \xrightarrow{f_2} P(1) \xrightarrow{f_1} P(0),$

where
$$P(n) = \bigvee_{F(n)} S^N$$
, foge ther with

• for each pair
$$VS^{N} \xrightarrow{f} VS^{N} \xrightarrow{g} VS^{N}$$

a homotopy *

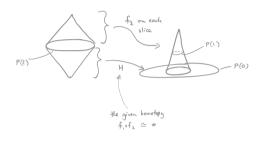
• etc.

Emphasis : The maps fi, homotopies H, K, ..., higher homotopies Φ , ..., etc. are all <u>choices</u> — i.e. dery are part of the <u>data</u> of a lax S^N-chain complex.

A lax spatial lift of a chain complex
$$F$$
 is a lax S^{N} -chain complex P such that $H_{N} \circ P = F$.

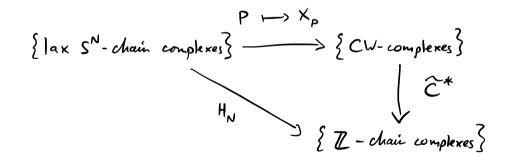
A lax spatial lift P also determines a CW-complex Xp whose veduced cellular chain complex is the original chain complex F.

• Similar construction to above (iterative), except now the map $g_1: \Sigma P(2) \longrightarrow Cone(F_1)$ is defined by

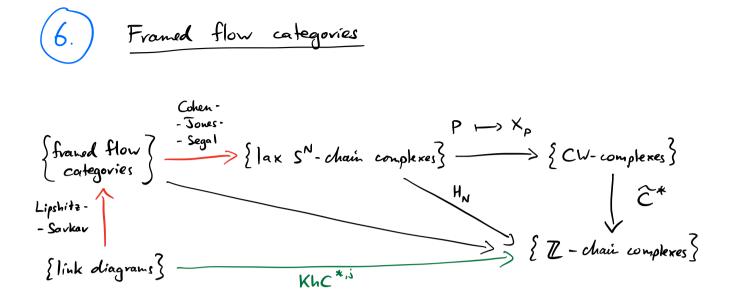


· Formally it can be defined as the homotopy colimit of a certain diagram.

This we have :



So ne need to construct a lax spatial lift of the Khovanov chain complex.

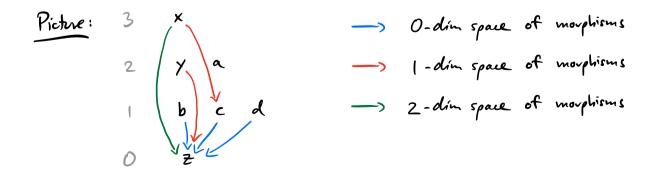


A framed flow category has a finite set of objects,
graded by
$$\{0, ..., n\}$$
, and for objects x, y :
• $\mathcal{M}(x, y)$ k-dimensional manifold with corners,
 $k = gr(x) - gr(y) - 1$

· composition is an inclusion

$$\mathcal{M}(x,y) \times \mathcal{M}(y,z) \longrightarrow \partial \mathcal{M}(x,z).$$

· framed embeddings of all of these manifolds into high-dim. Evolidean space.



Idea: • Eframed flow categories >> { Z-chain complexes } • Objects >> generators • Forget all higher-dim. morphism spaces • #'s of O-dim. morphism spaces >> coefficients of the differential.

- [CJS] construction refines this to a lax S^N-chain complex using the higher-dim. morphism spaces and the Pontijagin-Thom collopse construction.
- [LS] construct a framed flow category from the Khovenov cube of resolutions...