Spectvification of Khowanov homology II

GeMAT seminar, IMAR 8 April 2022

Plan :

How this is done at the kerel of Kh(-) L> incl. extension to tangks
Why the argument does not lift directly to X_{Kh}(-)
How to fix this J [Larson-Lipshite-Sarkar]

3 - dim interpretation of the last 4 moves

[Bar - Natan '05]

· Most movie moves (MMI - MMID) are of the form:

Proposition [BN] IF T has no closed components, then

Corollary $Kh(M) = \pm id.$

First : where does KhC(T) live?

All arguments take place at this level. Afternande, one may apply the construction

$$\mathbb{Z}_{(2)} \bigotimes_{\mathbb{Z}} Morphisms \left(\phi \right)$$

$$(S = 0 \text{ for any closed} \\ \text{surface S of games } 72 \end{pmatrix}^{*}$$

which recovers the usual Khovanov complex (over $\mathbb{Z}_{(2)}$) when T is a link, and take homology.

Lemma IF $Aut(Khc(T)) = \{\pm I\},$

then the same is true for

T

I dea : Formal, using the planar algebra structure of tangles.

- Lemma If T has no closed components and no crossings (T is a matching), then $Aut(KhC(T)) = \{\pm 1\}$
- Sketch . The cobe of smoothings is O-dim, in just one vertex

· So
$$KhC(T) = T$$
 in degree O
no differential.

$$A_{t}(KhC(T)) = \text{formal } \mathbb{Z} - \text{linear combinations of}$$

$$\text{self cobadisms} \xrightarrow{T} (\text{shat are equal to} \\ \text{OT } \times \text{Lo}_{1}; \text{J on } (\texttt{R} \ast)$$

$$\frac{\partial T}{\partial T} \times \text{Lo}_{1}; \text{J on } (\texttt{R} \ast)$$

• In order to presence homological degree
$$(o/r \text{ it cannot be inertible} since KhC(T) = \phi$$
 in all other degrees)

each coloradism C must satisfy $\chi(C) = |\pi_0(\partial C)|$ (*)

. We may assume by (T) short C has no torus components.

. There are no sphere components, by (S).

- . If there is a Zg component for g?, Z, then by (*) there would also have to be a sphere component. *
- . Hence each component of C is a disc ~> C is the identity coloradism.

• => Each antomaphism is a
$$\mathbb{Z}$$
 multiple of the identity.
Since it is invertible it must be $\pm id$.

Idea Most movie moves are of the form
$$M \rightleftharpoons id$$
 for
 $T \xrightarrow{M} T$.
By the above proposition,
 $KhC(M) \in Hom_{KhC(id_m)}(KhC(T), KhC(T)) \cong KhC(\hat{T}T)$
and the right-hand side is $\cong \mathbb{Z}$
(in the bidegree under consideration)
hence $KhC(M)$ is a scalar multiple of the identity.

- The first strategy fundamentally depends on $KhC(\bigoplus)$ having no non-trivial automorphisms. But the existence of non-trivial elements of $\pi_i(\$)$, i>0, means that this becomes false when lifted to X_{Kh} .
- The second strategy fundamentally depends on KhC(unlink) being (essentially) trivial. When lifting to X_{Kh} , we instead need $\pi_o(X_{Kh}(unlink))$ to be trivial. But $X_{Kh}(unlink) \simeq S$ (in the appropriate quantum degree), so this vertains true.

Addendum

ne then apply the operation

$$Z_{(2)} \bigotimes _{Z} Morphisms (\phi,)$$

(S = 0 for any closed
(S = 0 for

to obtain a cube where each vertex \vee is sent to a Z-linear combination of nullboudisms of the smoothing of T corresponding to \vee . modulo the velocitiens $\cdot S^2 = 0$ $\cdot T^2 = 2$ $\cdot 4Tu$ $\cdot E_g = 0$ (372)

(This turns out to identify with the usual Khovanov complex when T=L is a link, so this extends Kh(-) to tangles.)

Rink Above, the relation $\Sigma_g = O$ (g32) is equivalent to $\Sigma_3 = O$.

Proof: Since 2 is invertible, a special case of de 4Tu relation says:

Applying this to
$$\Sigma_2 = \Box$$
 we obtain
 $\Sigma_2 = \frac{1}{2} \left(\Sigma_2 \perp \Sigma_1 + \Sigma_1 \perp \Sigma_2 \right)$
 $= \Sigma_2 \perp \Sigma_1$
 $= 2. \Sigma_2$ (by velocitin (T))

Hence
$$\underline{\Sigma}_2 = 0$$

Applying the relation to $\underline{\Sigma}_g = \underbrace{- \cdots}_{g=2} \underbrace{$

we obtain

$$\Sigma_{g} = \frac{1}{2} \left(\Sigma_{3} \perp \Sigma_{g-2} + \Sigma_{2} \perp \Sigma_{g-1} \right)$$

$$0 \text{ by above}$$

$$= \frac{1}{2} \left(\Sigma_{3} \perp \Sigma_{g-2} \right).$$

Inductively:

$$\sum_{z_{g}} = \frac{1}{2^{9}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \pm \sum_{n} \sum_{n} \right) = 0$$

$$\sum_{z_{g}+1} = \frac{1}{2^{9}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \pm \sum_{n} \right) = \frac{1}{2^{9^{-1}}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \right)$$
by whatin (T)

In particular, adding the relation
$$\Sigma_3 = 0$$
 automatically implies that $\Sigma_g = 0$ for all $g \ge 2$.

We could instead set $\Sigma_3 = K$ for any other $k \in \mathbb{Z}$. Rmk. Then $\sum_{2g+1} = \frac{k^2}{z^{g+1}}$. When k=8, this recovers Lee homology.