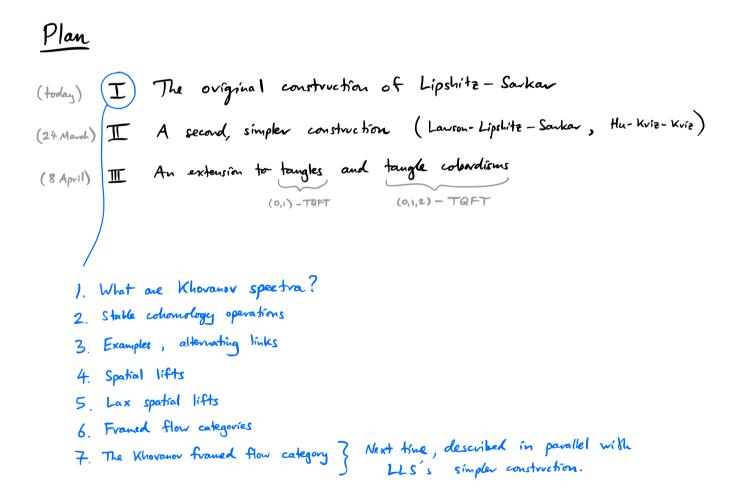
GeMAT seminar 14 March 2022



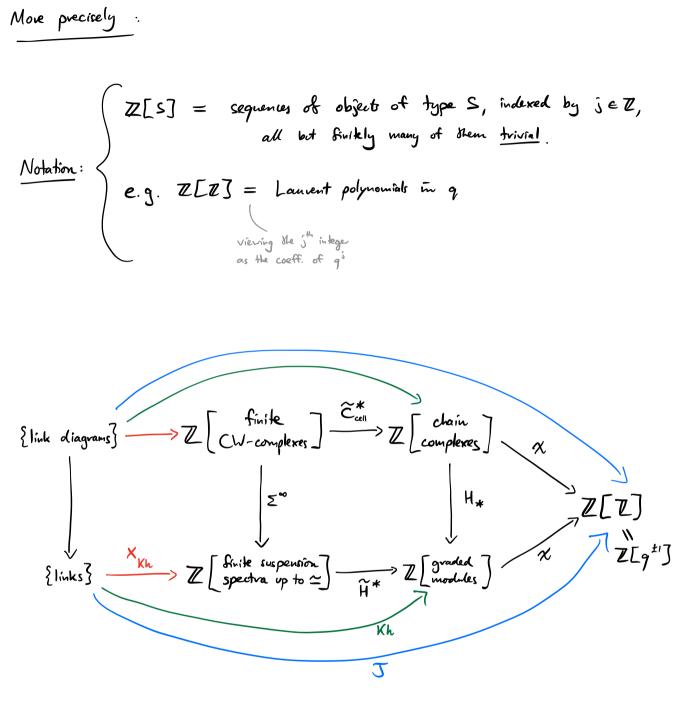
Khovanov (2000)

$$L \longrightarrow Kh_{R}(L) = \bigoplus_{i,j} Kh_{R}^{i,j}(L) \quad \text{bigraded a belian group} \\ (R-module)$$
such that

$$\chi(Kh_{R}^{*,j}(L)) = \text{coefficient of } q^{j} \text{ in } (q+q^{-1})J(L)$$

$$\prod_{i=1}^{|I|} \qquad \text{Jones polynomial}$$

Lipshitz-Sarkar (2014)
L
$$\longmapsto$$
 Sequence of suspension speetra $X_{Kh}^{j}(L)$, $j \in \mathbb{Z}$
Such that
 $\widetilde{H}^{i}(X_{Kh}^{j}(L); R) \cong Kh_{R}^{i}(L)$
Thus:
 $\mathcal{X}(X_{Kh}^{j}(L)) = \text{coefficient of } q^{j} \text{ in } (q + q^{-1}) J(L)$



J = Jones polynomial Kh = Khovanov homology X_{Kh} = Lipshitz-Sarkar-Khovonov spectrum

Suspension spectra
• Spaces
$$\xrightarrow{\Sigma^{\infty}}$$
 Spectra
• The subcategory on the objects $\overline{\Sigma^{\infty}X}$, $X = \underline{finik}$ CW-complex, has
 α simple description. This is the category of finite suspension spectra.
• Objects (X, i) for $\begin{cases} X & \underline{finite} & based CW-complex \\ i \in \mathbb{Z} \end{cases}$
writhen $\overline{\Sigma^{i}X}$
 $identify \quad \overline{\Sigma^{i+1}X} = \overline{\Sigma^{i}}(\overline{\Sigma X})$
 $(veduced)$
 $suspension of X = \frac{\overline{CO_{i}1} \times X}{(\overline{CO_{i}13} \times X)_{0}(\overline{CO_{i}13 \times \frac{1}{2} + \frac{3}{2})}}$
 $= \underbrace{\int_{i=1}^{i_{1}} \frac{1}{2} \times \frac$

• Morphisms
$$\Sigma^{i}X \longrightarrow \Sigma^{s}Y$$
 are $(k, Z^{i+k}X \xrightarrow{+} Z^{s+k}Y)$
such that it usual based map
and $J^{k}k \ge 0$ of spaces

$$identify$$
 $(k,f) \sim (kt), \Sigma f$

. Homotopies (2-morphisms) defined similarly.

- Σ^{∞} : (finite CW-complexes) \longrightarrow (finite suspension spectra) $X \longmapsto \Sigma^{\circ} X$
- Upshot: $\Sigma^{\infty}X \simeq \Sigma^{\infty}Y$ if and only if $\exists k : \Sigma^{k}X \simeq \Sigma^{k}Y$.

- Spectra contain much max information than their cohomology groups Hⁱ(X; R).
- · How to extract this information as algebraic invariants?

Rmks

Fact: d_2 , d_3 differentials for $E^* = K$ -theory are determined by Sg' and Sg² operations.

So sometimes Kh(L) plus Sg' and Sg^2 determine <u>Khovanov K-theory</u> $K^*(X_{Kh}^{i}(L))$

ELS] compute this for all links with ≤ 11 crossings, and it is just Kh^{*, i}(L) ⊗ K^{*}(pt). {Z even degres}

But there may be non-trivial Adams operations
in general
$$K^*(X_{Kn}^{j}(L))$$
 is expected to be victor than $Kh^{*,j}(L)$.

Unknot	quantum grading j	Khavanov spectrum X ^{'s} Kh
	1	S°
	-	°2
	I	

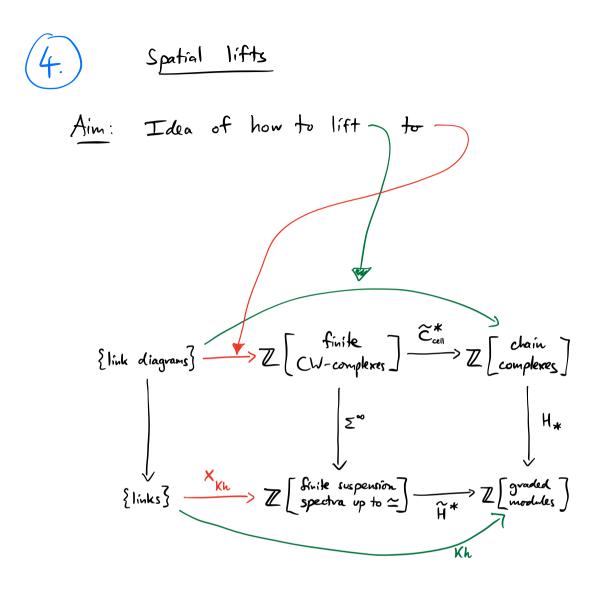
Hopf link	quantum quading j	Kharanov spectrum XKn
	б	S ²
	4	S ²
	2	S°
	0	~ی
		1

More generally:
Prop ELSJ IF L is an alternating link, then
$$X_{Kh}^{j}(L)$$
 is
a nedge sum of Moore spaces. In particular:
· it is determined by its (co)homology
· all Steenrod operations are trivial.
Rink. In fact, this is true of any spectral refinement of Kh(L),
independently of how it is defined.

• If follows from the fact * that
$$Kh^{i,s}(L) \neq 0$$
 only when
 $i = \frac{1}{2}(j + \sigma(L) \pm 1)$ and has torsion only when $i = \frac{1}{2}(j + \sigma(L) + 1)$.
signature *
due to [Manokscu-Oresvath, 2007]

K = 10,45	quantum grading j	Khavanov spectrum X ^{'s} Kh	
	-3	S°	
	- 5	S	
	-7	$\Sigma^{-3}(S^{\circ} \vee S')$	
	-9	$\Sigma^{-6}(\mathbb{R}P^2_{\Lambda}\mathbb{R}P^2)$	
	- (1	$\Sigma^{-5} \left(S^{\circ} v S^{\circ} v S^{\circ} v S^{2} \right)$	
	-13	$\Sigma^{-\varepsilon}\left(\mathbb{R}^{p_{\mathcal{B}^{1}}}, \vee \Sigma \mathbb{R}^{p^{2}}\right)$	
	- 15	$\Sigma^{-10}\left(\frac{\mathbb{R}p^{5}}{\mathbb{R}p^{2}} \times S^{4}\right)$	
	- 17	$\Sigma^{-s}(S^{\circ}vS^{\prime})$	
	- 19	$\Sigma^{-10} RP^2$	
	-21	Σ ⁻³ S°	
Theorem [Seed]]] L, L2	with $Kh(L_1) \cong Kh(L_2)$)
		but $X_{Kh}(L_1) \neq X_{Kh}(L_2)$)
	$\begin{pmatrix} L_1 = 11\\ L_2 = 12 \end{pmatrix}$	r r r r r r r r r r r r r r	2

<u>Theorem</u> [LLS] $\forall n \geqslant 1$, $\exists k_{not} L$ such that $S_{g}^{n} : Kh_{F_{2}}^{*,*}(L) \longrightarrow Kh_{F_{2}}^{*+n,*}(L)$ is non-trivial.



Then one has to check that the (sequence of) CW-complexes associated to a link diagram is invariant up to stable ~ under Reidemeister moves.

$$\frac{\text{Def}}{\text{Def}} \quad B(\mathbb{Z}) \begin{cases} \text{objects} = finite sets} \\ \text{maps } X \rightarrow Y = homomorphisms} \bigoplus_{X} \mathbb{Z} \longrightarrow \bigoplus_{Y} \mathbb{Z} \end{cases}$$

$$B(S^{N}) \begin{cases} objects = finite sets \\ maps X \rightarrow Y = continuous maps V S^{N} \rightarrow V S^{N} \\ X \qquad Y \end{cases}$$

• A
$$\mathbb{Z}$$
-chain conplex is a linear diagram in $\mathbb{B}(\mathbb{Z})^{-1}$
 $\mathbb{F}(n) \longrightarrow \mathbb{Z}^{-1} \mathbb{F}(n) \longrightarrow \mathbb{F}(n) \longrightarrow \mathbb{F}(n)$

such that any pair composes to the zero honomorphism.

• An
$$S^{N}$$
 - chain complex is a linear diagram in $B(S^{N})$:
 $P(n) \xrightarrow{f_{n}} \cdots \xrightarrow{f_{2}} P(1) \xrightarrow{f_{1}} P(0)$

such that any pair composes to the constant map.

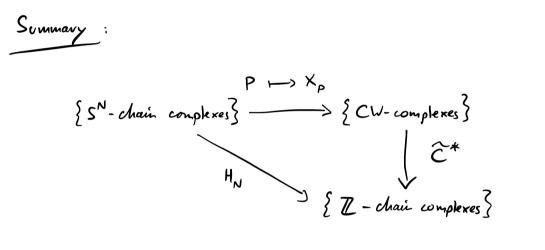
A strict spatial lift of a chain complex F is an S^N -chain complex Psuch that $H_N \circ P = F$.

From this we can construct a CW-complex X_p with $\widehat{C}^*(X_p) \cong F$ as follows.

The fact that $f_1 \circ f_2 = *$ means that $\exists map g_1 : \Sigma P(2) \longrightarrow Cone(f_1)$ $f_2 \times id_{[0,1]} \longrightarrow P(0)$ Thus ne obtain a ver sequence of CW-complexes with each pair of maps composing to the constant map:

$$\Sigma P(n) \xrightarrow{\Sigma f_n} \longrightarrow \Sigma P(3) \xrightarrow{\Sigma f_3} \Sigma P(2) \xrightarrow{9} Cone(f_i)$$

Iterating, ne eventually obtain a CW-complex Xp whose reduced cellular cochain complex is the original chain complex F.



So it would be enough to vetice the Khovanov chain complex to an S^N-chain complex.

$$\begin{array}{rcl}
\underline{BUT} : & B(Z)(X,Y) = & Hom_{Z}\left(\bigoplus_{X} \mathbb{Z}, \bigoplus_{Y} \mathbb{Z}\right) = (\forall x X) - matrices \quad over \mathbb{Z} \\
& (be couse \bigoplus_{is a product} and coproduct) \\
& B(S^{N})(X,Y) = & Map\left(\bigvee_{X} S^{N}, \bigvee_{Y} S^{N}\right) \\
& = & \prod_{X} Map\left(S^{N}, \bigvee_{Y} S^{N}\right) \quad (because \lor is a coproduct)
\end{array}$$

$$\pi_{\sigma} \mathcal{B}(s^{n})(x, Y) = \bigoplus_{X} \pi_{N} \left(\bigvee_{Y} s^{N} \right) \cong \bigoplus_{X} \bigoplus_{Y} \pi_{N} (s^{N}) \cong \mathcal{B}(\mathbb{Z})(x, Y)$$

exercise, or Hilton Milnor Heorem

So a strict spatial lift P of F does not contain any more information (up to \simeq) than F. Hence the homotopy type of X_p also cannot contain any more information.

A lax
$$S^{N}$$
- chain complex is a linear diagram
 $P(n) \xrightarrow{f_1} 2 \cdots \xrightarrow{f_2} P(1) \xrightarrow{f_1} P(0),$

where
$$P(n) = \bigvee_{F(n)} S^N$$
, foge ther with

• for each pair
$$Vs^{N} \xrightarrow{f} Vs^{N} \xrightarrow{g} Vs^{N}$$

a homotopy *

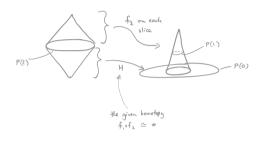
• etc.

Emphasis : The maps fi, homotopies H, K, ..., higher homotopies Φ , ..., etc. are all <u>choices</u> — i.e. dery are part of the <u>data</u> of a lax S^N-chain complex.

A lax spatial lift of a chain complex
$$F$$
 is a lax S^{N} -chain complex P such that $H_{N} \circ P = F$.

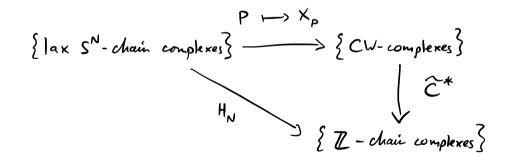
A lax spatial lift P also determines a CW-complex Xp whose veduced cellular chain complex is the original chain complex F.

• Similar construction to above (iterative), except now the map $g_1: \Sigma P(2) \longrightarrow Cone(F_1)$ is defined by

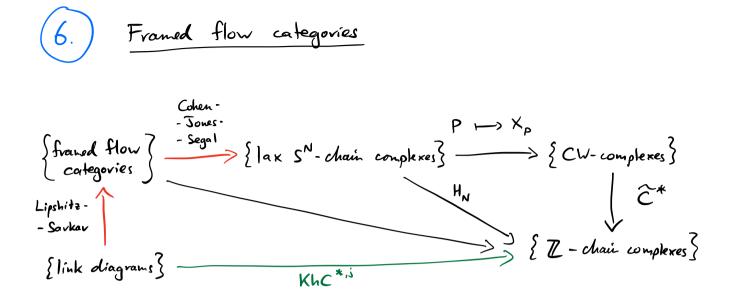


· Formally it can be defined as the homotopy colimit of a certain diagram.

This we have :



So ne need to construct a lax spatial lift of the Khovanov chain complex.

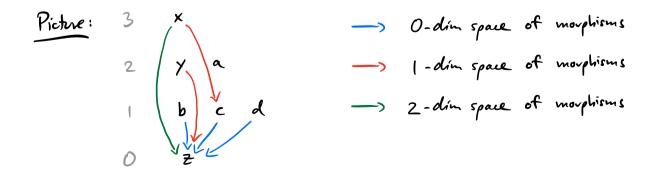


A framed flow category has a finite set of objects,
graded by
$$\{0, ..., n\}$$
, and for objects x, y :
• $\mathcal{M}(x, y)$ k-dimensional manifold with corners,
 $k = gr(x) - gr(y) - 1$

· composition is an inclusion

$$\mathcal{M}(x,y) \times \mathcal{M}(y,z) \longrightarrow \partial \mathcal{M}(x,z).$$

· framed embeddings of all of these manifolds into high-dim. Evolidean space.



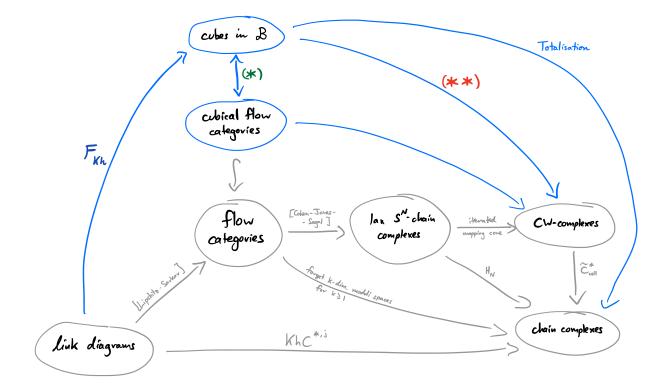
Idea: • Eframed flow categories >> {Z-chain complexes} • Objects >> generators • Forget all higher-dim. morphism spaces • #'s of O-dim. morphism spaces >> coefficients of the differential.

- [CJS] construction refines this to a lax S^N-chain complex using the higher-dim. morphism spaces and the Pontijagin-Thom collopse construction.
- [LS] construct a framed flow category from the Khovenov cube of resolutions...

Spectrification of Khowanov homology I

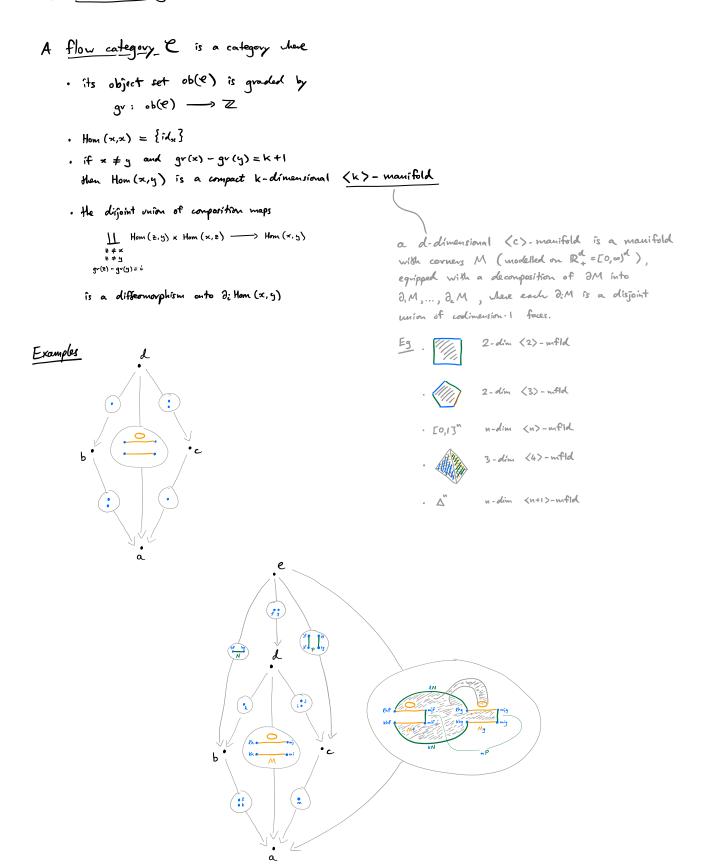
GeMAT seminar, IMAR 24 March 2022

Plan (lart tine) I The original construction of Lipshitz-Sarkar (today) I A second, simpler construction (Lauren-Lipshitz-Sarkar, Hu-Kriz-Kriz) (8 April) I An extension to tangles and tangle coloradisms (0,1)-TEPT (0,1,2)-TQFT



Plan

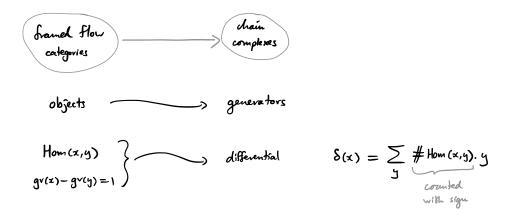
Flow categories 1.



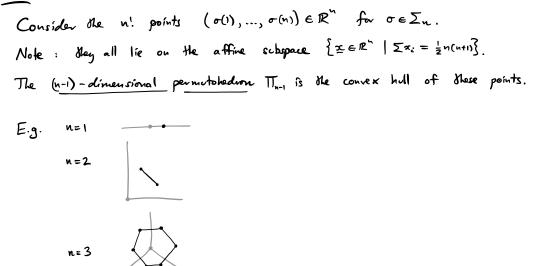
A framed flow category is a flow category C together with framed embeddings of each (K) - manifold Hom (sc, y) into some Evolidean space with corners, and these should be compatible with composition in C.

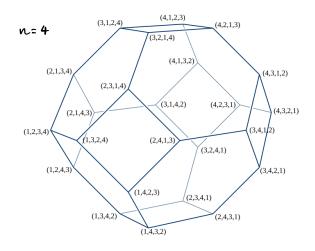
Note:

When gr(x) - gr(y) = 1, Hom(x,y) is a compact O-dim. (0)-manifold, is a finite set. A framed embedding of Hom(x,y) into Euclidean space determines a sign for each point of Hom(x,y).

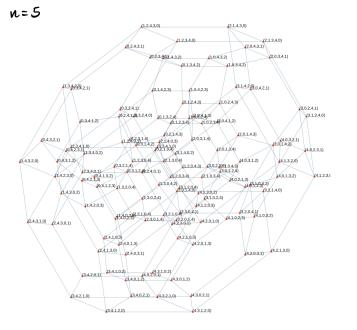


Def

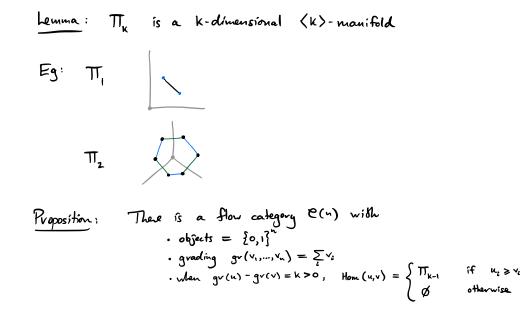




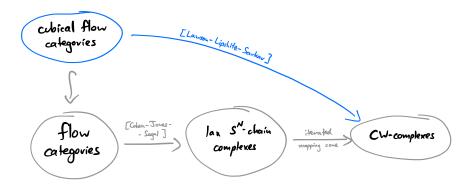
(source : Wikipedia)



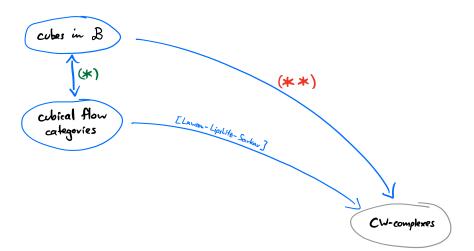
(source : Wikipedia)



- Rink : The morphism spaces Hom (4, V) in C(1) may be shought of as moduli spaces of "broken Morse flows" on the n-cribe [0,1]".
- Def: A <u>cubical flow category</u> is a flow category & and a functor $f: \mathcal{C} \longrightarrow \mathcal{C}(n)$ that preserves the grading up to a global shift, such that each f: How $(x, y) \longrightarrow$ Hom (f(x), f(y)) is a trivial covering. permutaked on or empty
- Runk · Cubical flow categories are very vigid compared with general flow categories. • This allows [LLS] to give a construction of the realisation of a cubical flow category that is much simpler then the one of [CJS], which works for all flow categories:



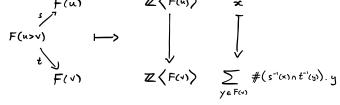
· We'll see this construction later, via abes in B:



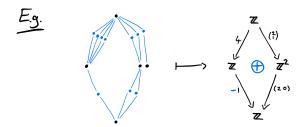
Def B has objects = fructure zets
Han (A,B) = diagnames of functions of the form. A²
$$\xrightarrow{\times} g$$

= correspondence
2-maphine form A² $\xrightarrow{\times} g$ = A $\xrightarrow{\times} \chi^{-1} g$ are bijectrons
 $X \cong \chi^{-1}$ such that $A \xrightarrow{\times} \chi^{-1} g$ are bijectrons
 $X \cong \chi^{-1}$ such that $A \xrightarrow{\times} \chi^{-1} g$ are mutter.
Composition is given by
 $A \xrightarrow{\times} \chi^{-1} g \xrightarrow{\times} \chi^{-1} g$
The color category has objects $\{0, 1\}^{\infty}$
Hown $(u, v) = \begin{cases} i g_{u,v} \} & \text{if } u, 2v_{1} \\ g & \text{otherwise} \end{cases}$
 $Metheticn : 2^{\infty}$
Example $u = 2$ $\bigcup_{0, 1 \to \infty} 0^{0}$
 $u = 3$ $\bigcup_{0, 1 \to \infty} 0^{0}$

A cube in B consist of
• for each object
$$v \in \{0, i\}^n$$
, a built set $F(v)$
• for each object $v \in \{0, i\}^n$, a built set $F(v)$
• for each prive $u > v > v$, a bijection
 $F(u > v) = F(v)$
• for each triple $u > v > v$, a bijection
 $F(u > v) = F(v) = F$

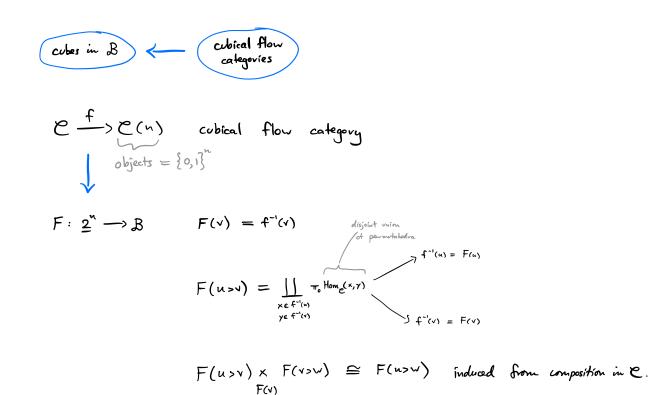


. Then add signs to cartain edges of the cube and sum.



Recall

- In <u>cubical</u> flow categories, morphism spaces are disjoint unions of permetohedra.
- So most of the complication is taken care of by the combinatorics of permutohedra.
- The additional information is exactly encoded by a cube in B.



$$cubes in B \longrightarrow cubical flowcategories
F: 2" \longrightarrow B \longrightarrow e \xrightarrow{f} e(n)$$

$$ob(e) = \coprod_{v \in \{0, 0\}^{n}} F(v)$$

$$For u > v \text{ and } x \in F(n), \text{ consider } F(n) \xrightarrow{s} F(n > v) \xrightarrow{t} F(v)$$

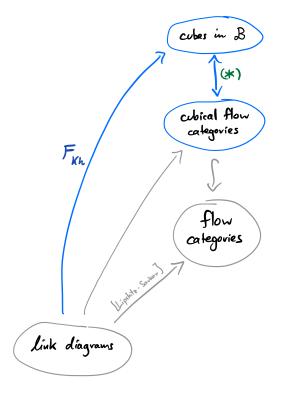
$$and \quad Aet \quad Hom_{e}(x, y) = (s^{-1}(x) \cap t^{-1}(y)) \times Hom_{e(n)}(u, v)$$

$$For u > v = F(v) \qquad f(v) = (s^{-1}(x) \cap t^{-1}(y)) \times Hom_{e(n)}(u, v)$$

Lemma: These constructions are inverse to each other. In other words:

$$\left\{ \text{cubical flow categories} \right\} = \left\{ \begin{array}{c} \text{(the standard permutohedron flow category } \mathcal{C}(n) \\ + \\ \left\{ \text{cubes in the Burnside category } \mathcal{B} \right\} \end{array} \right\}$$

The flow categories constructed by [Lipshitz-Sarka] are <u>cubical</u>, so ne may describe them equivalently as cubes in B:



4. The Khovanov functor of a link diagram

• label crossings by $\{1, 2, ..., n\}$ • $v \in \{0, 1\}^n \longrightarrow D_v = perform 0 - resolution \times \rightarrow (at the ith crossing if <math>v_c = 0$ perform $|-resolution \times \rightarrow at the ith crossing if <math>v_c = 1$

This is an embedded disjoint union of circles in R².

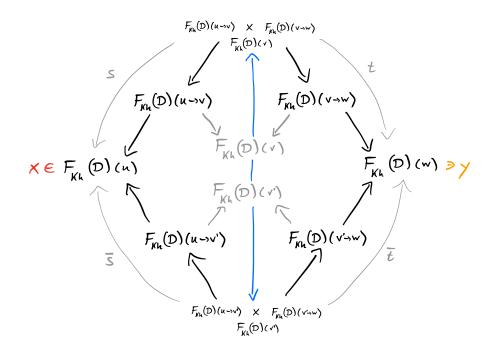
$$F_{Kh}^{Ab}(D)(v) = \bigotimes_{\pi_{e}(D_{v})} \mathbb{Z}\langle x_{+}, x_{-} \rangle$$

•
$$u \longrightarrow v$$
 edge of the cube
• if $D_u \longrightarrow D_v$ manages two civcles, apply $m : \begin{array}{c} x_+ \otimes x_+ \longmapsto x_+ \\ x_+ \otimes x_- \longmapsto x_- \\ x_- \otimes x_+ \longmapsto x_- \\ x_- \otimes x_- \longmapsto 0 \end{array}$ (and identify on other components)
• if $D_u \longrightarrow D_v$ splits a civcle in two, apply $\Delta : \begin{array}{c} x_+ \longmapsto x_+ \otimes x_- \\ +x_- \otimes x_+ \longmapsto x_- \\ +x_- \otimes x_+ \end{array}$ (and identify on other components)
 $x_- \longmapsto x_- \otimes x_-$

Atim: link diagram D
$$\longrightarrow$$
 Khovanov cole $F_{Kh}(D)$ in B
 $T_{5}(D)$
 $F_{Kh}(D)(v) = \{x_{+}, x_{-}\}$
 $u \rightarrow v \text{ edge of the cole}$
 $F_{Kh}^{Ab}(D)(u \rightarrow v) : \mathbb{Z}\langle F_{Kh}(D)(u) \rangle \longrightarrow \mathbb{Z}\langle F_{Kh}(D)(v) \rangle$
all coefficients are O or 1 by construction, so bleve is no choice:
 $F_{Kh}(D)(u \rightarrow v) = \{(x,y) \in F_{Kh}(D)(v) \mid coeff of y in the image of x is 1\}$
 $F_{Kh}(D)(u) = F_{Kh}(D)(v)$

- <u>Ruck</u> So fair, this is the same information as $F_{Kh}^{Ab}(D)$, repackaged. The difference lies in the last part of the construction of $F_{Kh}(D)$.
 - u)v)w 2- face of the cube

We need to choose a bijection:



Unpacking this, for each X (labelling of $\pi_0(D_n)$ by $\{x_{+}, x_{-}\}$) Y (labelling of $\pi_0(D_n)$ by $\{x_{+}, x_{-}\}$)

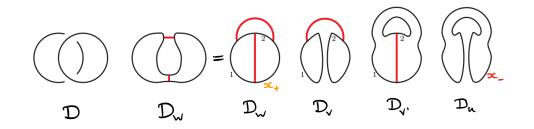
ne need to choose a bijection :

$$S^{-1}(\times) \cap t^{-1}(\gamma) = \left\{ \text{ labellings of } \pi_{\sigma}(D_{\nu}), \text{ compatible with } F_{Kn}(D)(u \rightarrow \nu \rightarrow \nu) \right\}$$

$$S^{-1}(\times) \cap \overline{t}^{-1}(\gamma) = \left\{ \text{ labellings of } \pi_{\sigma}(D_{\nu}), \text{ compatible with } F_{Kn}(D)(u \rightarrow \nu' \rightarrow \nu) \right\}$$

$$\times \gamma$$

The last case occurs when:

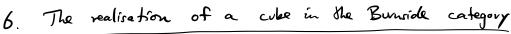


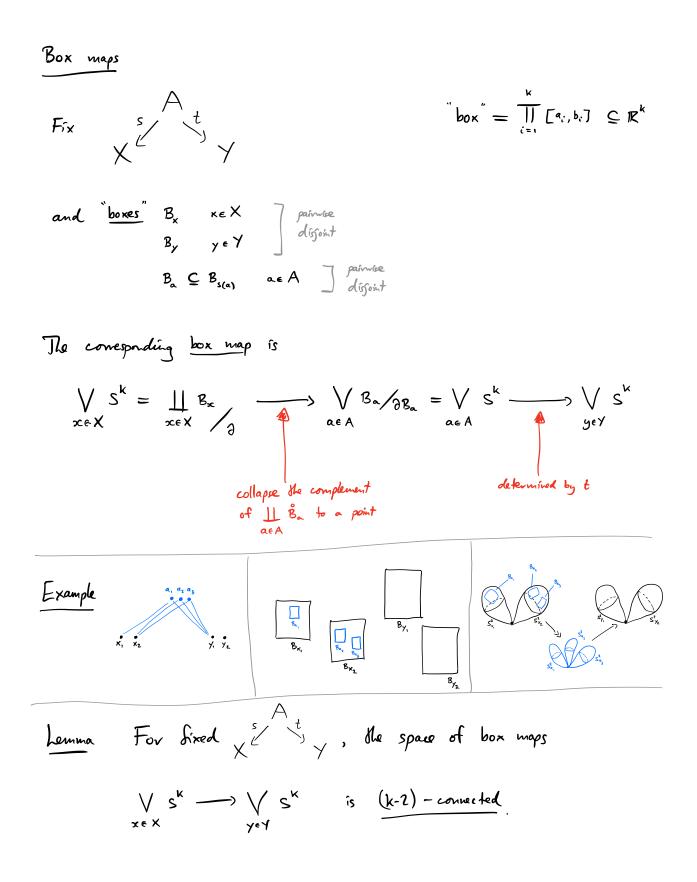
$$s^{-1}(x) \wedge t^{-1}(\gamma) = \left\{ \begin{array}{c} 0 \\ x_{+} \\ y_{-} \\ x_{-} \end{array}, \begin{array}{c} 0 \\ x_{-} \\ y_{-} \\ y_{-} \end{array} \right\}$$
$$\bar{s}^{-1}(x) \wedge \bar{t}^{-1}(\gamma) = \left\{ \begin{array}{c} 0 \\ x_{+} \\ y_{-} \\ x_{+} \end{array}, \begin{array}{c} 0 \\ y_{-} \\ y_{-} \\ y_{-} \end{array} \right\}$$

• It is the only extra information about the link diagram D that is remembered by $F_{Kh}(D): 2^{n} \rightarrow B$ compared with $F_{Kh}^{Ab}(D): 2^{n} \rightarrow Ab$.

Mich will send stable equivalences to stable homotopy equivalences. { links} -> { cross in B} stable equivalence > { spectra }

Question: How much information about a link does (**) faget ??





Def For a cube
$$2^n \xrightarrow{\mathsf{F}} B$$
, a k-dim spatial vertimement is
a homotopy coherent diagram $2^n \xrightarrow{\widetilde{\mathsf{F}}} Top.$
• for each object $v \in 2^n$, a space $\widetilde{\mathsf{F}}(v)$
• for each sequence of morphisms
 $v_0 \xrightarrow{\mathsf{f}_1} v_1 \xrightarrow{\mathsf{f}_2} \cdots \xrightarrow{\mathsf{f}_n} v_n$
a continuous map
 $\widetilde{\mathsf{F}}(\mathsf{f}_n,\ldots,\mathsf{f}_n) : [o_11]^{n-1} \times \widetilde{\mathsf{F}}(v_0) \longrightarrow \widetilde{\mathsf{F}}(v_n)$
• sortistying some conditions

where
$$\widetilde{F}(v) = \bigvee_{F(v)} S^{k}$$

 $\widetilde{F}(f_{n_{1},...,f_{n}})(t_{1_{1},...,t_{n-1}}): \bigvee_{F(v_{0})} S^{k} \longrightarrow_{F(v_{n})} S^{k}$

is a box map associated to the consepondence $F(f_n \circ \dots \circ f_1)$ $F(\vee_n)$ $F(\vee_n)$

Proposition If K>n+1, K-dim. spatial refinements exist and are unique up to hty equivalence of hty coherent diagrams. D Idea: construct it recurricely, using the fact that the space of box maps is highly-connected.

Rink Homotopy coherent diagrams
$$2^n \xrightarrow{F}$$
 Top. have
well-defined iterated mapping cores $|\tilde{F}| \in Top.$.
 $([V_{0}t, 1973])$

Construction

2° - B mp 2° - Fop. mp |F| e Top.

Runk Both steps depend on the higher faces of the cube.
This is essential for preserving the earth info that

$$2^{-} \rightarrow B$$
 captures!

Proposition IF F, G are stably equivalent cubes in B, Then |F|, |G| are stably homotopy equivalent (pointed) spaces, i.e. they determine homotopy equivalent (suspension) spectra.

Proportion The composition {links} Fin {cubes in B} (**) { spectra } isotopy X_{Kh}(L)

• comes equipped with a decomposition $X_{Kh}(L) = \bigvee_{j \in \mathbb{Z}} X_{Kh}^{j}(L)$

- · recovers the Khovanov spectrum of [Lipshitz-Sankar]
- in particular, $\widehat{H}^{*}(X_{Kh}^{j}(L)) \cong Kh^{*,j}(L)$

7. Corollary: 1, #, mirrors of links

This new, much simpler construction of X_{Kh}(L) allows [LLS] to prove:

Rink In each case, the proof reduces to a statement about <u>cubes in B</u> instead of <u>flow categories</u>, which is what makes it tractable.

- Proof . We need to find Ln such that the spectrum X_{Kn} (Ln) has a non-trivial Sqⁿ in its cohomology.
 - The space $\mathbb{RP}^2 \wedge \cdots \wedge \mathbb{RP}^2$ has a non-trivial Sg^h. n copies
 - => Enough to find L_n with $X_{Kh}(L_n) \simeq \mathbb{Z}_V \sum_{k}^{k} (\mathbb{R}^{p_1^2}, \dots, \mathbb{R}^{p^2})$

• Calculation of Lipshitz-Sarkar:
$$X_{Kh}$$
 (left thefail) $\simeq Z' \sqrt{\Sigma}^{-4} R P^2$

• By the previous covollary ne may take

$$L_n = disjoint$$
 union of n left trefoils. \Box

9. Universal Khovanov homology (deformations of Kh) & other grestions

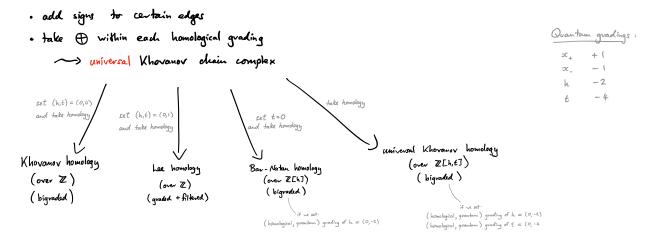
Khovanov homology may be upgraded to universal Khovanov homology:

• lakel crossings by $\{1, 2, ..., n\}$ • $v \in \{0, 1\}^n \longrightarrow D_v = perform 0 - resolution \times \rightarrow (at the ith crossing if <math>v_i = 0$ perform $|-resolution \times \rightarrow at the ith crossing if <math>v_i = 1$

This is an embedded disjoint union of circles in R².

$$F_{Kh}^{Ab}(D)(v) = \bigotimes_{\tau_{*}(D_{v})} \mathbb{Z}[h, t] \langle x_{+}, x_{-} \rangle$$

• $u \longrightarrow v$ edge of the cube • $if D_u \longrightarrow D_v$ merges two circles, apply $m : \begin{array}{c} x_+ \otimes x_+ \longmapsto x_+ \\ x_+ \otimes x_- \longmapsto x_- \\ x_- \otimes x_+ \longmapsto x_- \\ x_- \otimes x_- \longmapsto hx_- + tx_+ \end{array}$



Question Can any of these deformations of Khovanov homology be spectrified ?

C) Question If we specialize (h,t) to integers, can the Khovanov cube in Ab be lifted to a cube in the Bunside category?

 Rink
 Clearly no unless h=0 and t>0
 (because sets cannot have regative cardinality).

 [LLS]
 Also impossible for (h,t) = (0,1)

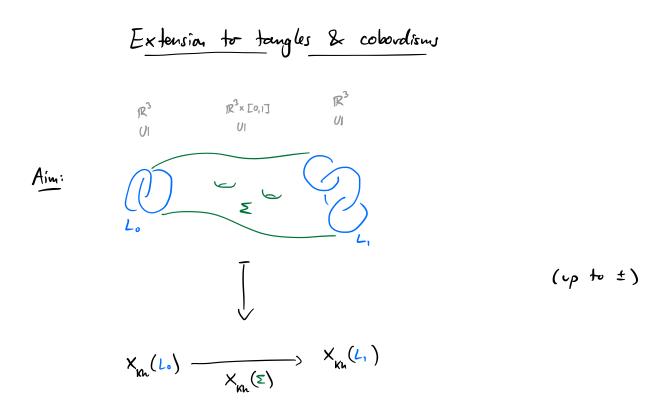
Question

- · Can Seidel-Smith's description of Khovanov homology via Floer Neory be upgraded to produce a flow category refining the Khovanov chain complex and then a Khovanov spectrum via the construction of Cohen-Jones-Segal ?
- If yes, is it homotopy equivalent to X_{Kh} (-)?

(Lawson-) Lipshite- Sarkar

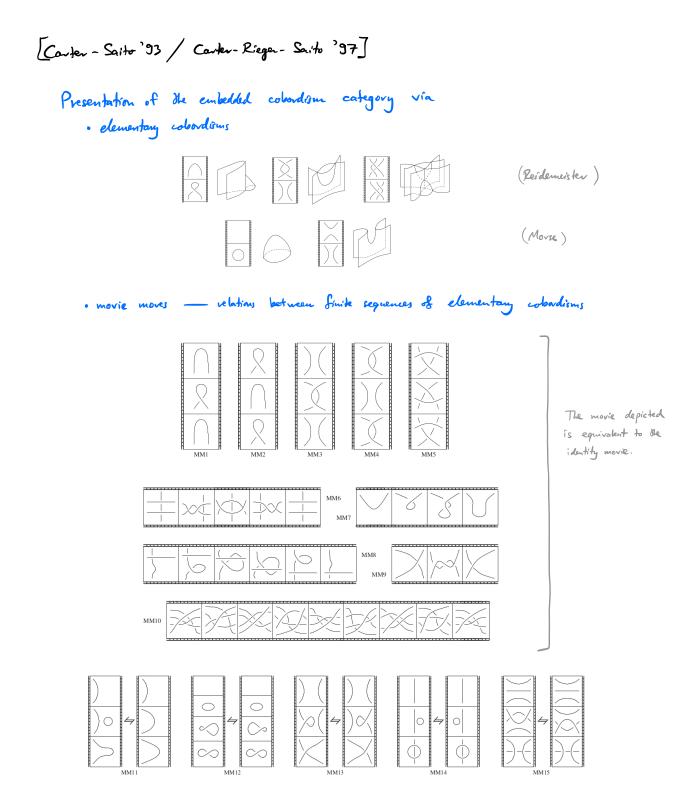
Spectvification of Khowanov homology II

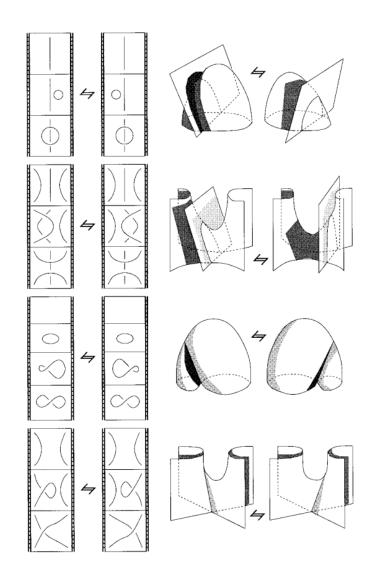
GeMAT seminar, IMAR 8 April 2022



Plan :

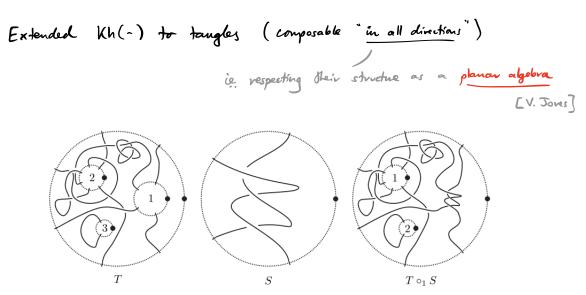
How this is done at the kerel of Kh(-) L> incl. extension to tangks
Why the argument does not lift directly to X_{Kh}(-)
How to fix this J [Larson-Lipshite-Sarkar]

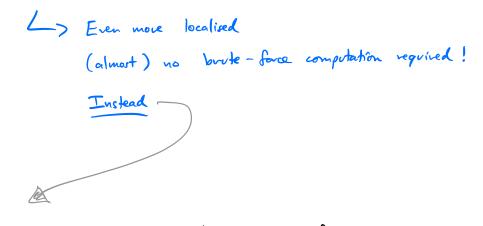




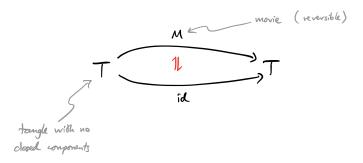
3 - dim interpretation of the last 4 moves

[Bar - Natan '05]





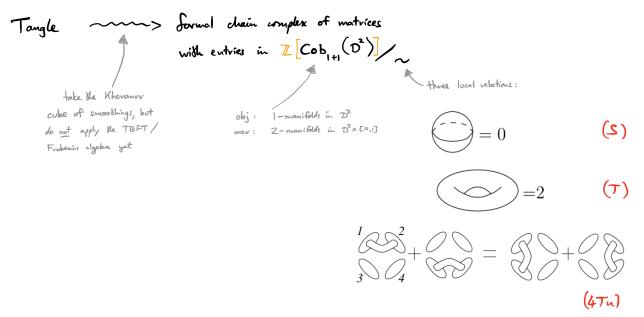
· Most movie moves (MMI - MMID) are of the form:



Proposition [BN] IF T has no closed components, then

Corollary $Kh(M) = \pm id.$

First : where does KhC(T) live?



All arguments take place at this level. Afternande, one may apply the construction

$$\mathbb{Z}_{(2)} \bigotimes_{\mathbb{Z}} Morphisms \left(\phi \right)$$

$$(S = 0 \text{ for any closed})$$

$$(S = 0 \text{ for any closed})$$

which recovers the usual Khovanov complex (over $\mathbb{Z}_{(2)}$) when T is a link, and take homology.

Lemma IF $Aut(Khc(T)) = \{\pm I\},$

then the same is true for

T

Idea : Formal, using the planar algebra structure of tangles.

- Lemma If T has no closed components and no crossings (T is a matching), then $Aut(KhC(T)) = \{\pm 1\}$
- Sketch . The cobe of smoothings is O-dim, in just one vertex

· So
$$KhC(T) = T$$
 in degree O
no differential.

$$A_{t}(KhC(T)) = \text{formal } \mathbb{Z} - \text{linear combinations of}$$

$$\text{self cobadisms} \xrightarrow{T} (\text{shat are equal to} \\ \text{OT } \times \text{Lo}_{1}; \text{J on } (\texttt{R} \ast)$$

$$\frac{\partial T}{\partial T} \times \text{Lo}_{1}; \text{J on } (\texttt{R} \ast)$$

• In order to presence homological degree
$$(o/r \text{ it cannot be inertible} since KhC(T) = ϕ in all other degrees)$$

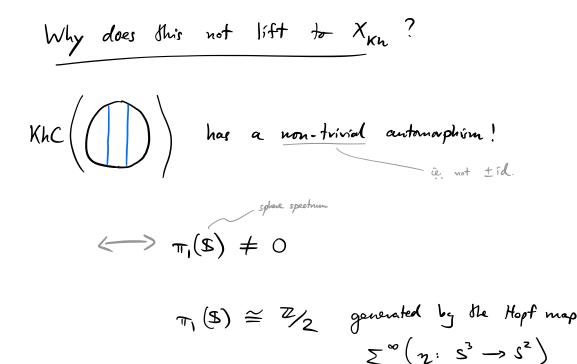
each coloradism C must satisfy $\chi(C) = |\pi_0(\partial C)|$ (*)

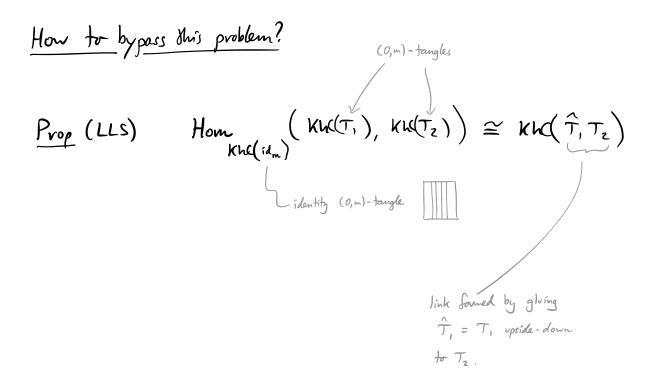
. We may assume by (T) short C has no torus components.

. There are no sphere components, by (S).

- . If there is a Zy component for g?, Z, then by (*) there would also have to be a sphere component. *
- . Hence each component of C is a disc ~> C is the identity coloradism.

• => Each automaphism is a
$$\mathbb{Z}$$
 multiple of the identity.
Since it is invertible it must be $\pm id$.



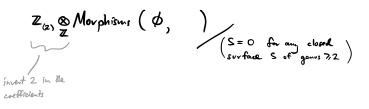


Idea Most movie moves are of the form
$$M \rightleftharpoons id$$
 for
 $T \xrightarrow{M} T$.
By the above proposition,
 $KhC(M) \in Hom_{KhC(id_m)}(KhC(T), KhC(T)) \cong KhC(\hat{T}T)$
and the right-hand side is $\cong \mathbb{Z}$
(in the bidegree under consideration)
hence $KhC(M)$ is a scalar multiple of the identity.

- The first strategy fundamentally depends on $KhC(\bigoplus)$ having no non-trivial automorphisms. But the existence of non-trivial elements of $\pi_i(\$)$, i>0, means that this becomes false when lifted to X_{Kh} .
- The second strategy fundamentally depends on KhC(unlink) being (essentially) trivial. When lifting to X_{Kh} , we instead need $\pi_o(X_{Kh}(unlink))$ to be trivial. But $X_{Kh}(unlink) \simeq$ \$ (in the appropriate quantum degree), so this vertains true.

Addendum

we then apply the operation



to obtain a cube where each vertex \vee is sent to a Z-linear combination of nullboordisms of the smoothing of T corresponding to \vee . modulo the velotions $\cdot S^2 = 0$ $\cdot T^2 = 2$ $\cdot 4Tu$ $\cdot \Sigma_g = 0$ (g>2)

(This turns out to identify with the usual Khovanov complex when T=L is a link, so this extends Kh(-) to tangles.)

Rink Above, the relation $\Sigma_g = O(g/2)$ is equivalent to $\Sigma_3 = O$.

Proof: Since 2 is invertible, a special case of de 4Tu relation says:

$$(D = \frac{1}{2} \left(D = \frac{1}{2} \left(D = \frac{1}{2} \right) \right)$$

Applying this to
$$\Sigma_2 = \Box$$
 we obtain
 $\Sigma_2 = \frac{1}{2} \left(\Sigma_2 \perp \Sigma_1 + \Sigma_1 \perp \Sigma_2 \right)$
 $= \Sigma_2 \perp \Sigma_1$
 $= 2. \Sigma_2$ (by velocitin (T))

Hence
$$\underline{\Sigma}_2 = 0$$

Applying the relation to $\underline{\Sigma}_g = \underbrace{- \cdots}_{g=2} \underbrace{$

we obtain

$$\Sigma_{g} = \frac{1}{2} \left(\Sigma_{3} \perp \Sigma_{g-2} + \Sigma_{2} \perp \Sigma_{g-1} \right)$$

$$0 \text{ by above}$$

$$= \frac{1}{2} \left(\Sigma_{3} \perp \Sigma_{g-2} \right).$$

Inductively:

$$\sum_{z_{g}} = \frac{1}{2^{9}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \pm \sum_{n} \sum_{n} \right) = 0$$

$$\sum_{z_{g}+1} = \frac{1}{2^{9}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \pm \sum_{n} \right) = \frac{1}{2^{9^{-1}}} \left(\sum_{3} \pm \cdots \pm \sum_{3} \right)$$
by whatin (T)

In particular, adding the relation
$$\Sigma_3 = 0$$
 automatically implies that $\Sigma_g = 0$ for all $g \ge 2$.

We could instead set $\Sigma_3 = K$ for any other $k \in \mathbb{Z}$. Rmk. Then $\sum_{2g+1} = \frac{k^2}{z^{g+1}}$. When k=8, this recovers Lee homology.