Homological stability for asymptotic monopole moduli spaces

Martin Palmer-Anghel // GeMAT seminar, IMAR // 6 and 21 April 2023

Abstract.

Magnetic monopoles were introduced by Dirac in 1931 to explain the quantisation of electric charges. In his model, they are singular solutions to an extension of Maxwell's equations allowing non-zero magnetic charges. An alternative model, developed by 't Hooft and Polyakov in the 1970s, is given (after a certain simplification) by smooth solutions to a different set of equations, the *Bogomolny equations*, whose moduli space of solutions has connected components M_k indexed by positive integers k. These have been intensively studied, for example by Atiyah and Hitchin (the geometry of the k = 2 moduli space), by Segal (stabilisation of their homotopy groups) and by Cohen, Cohen, Mann and Milgram (describing their stable homotopy types via braid groups).

A partial compactification of M_k has recently been constructed by Kottke and Singer, whose boundary strata we call *asymptotic monopole moduli spaces*. I will describe recent joint work with Ulrike Tillmann (arXiv:2212.11799) in which we prove the existence of stability patterns in the homology of these spaces.

References.

- M. Atiyah, N. Hitchin, *The Geometry and Dynamics of Magnetic Monopoles*, M. B. Porter Lectures, Princeton University Press, 1988
- F. Cohen, R. Cohen, B. Mann, J. Milgram, *The topology of rational functions and divisors of surfaces*, Acta Math., 1991
- C. Kottke, M. Singer, *Partial Compactification of Monopoles and Metric Asymptotics*, Mem. Am. Math. Soc., 2022
- G. Segal, The topology of spaces of rational functions, Acta Math., 1979