INI Cambridge
The homology of big MCGs
Big meas
joint wi Xiadlei W_{n}

$$
\operatorname{MCG}(S)=\pi_{0}\left(\operatorname{Homer}^{+}(S)\right)
$$

for an m-type surface S
Eg $\infty \cdots=\sum_{\infty}(\infty, *, *)$

$$
(\infty, e, e)
$$

In geneal:
S - convected, ovientable surface second countable (\equiv paracompart \equiv metrisable)
∞-type $\stackrel{\text { def }}{\Longleftrightarrow} \pi_{1}(S)$ is not fin. gen.

$$
\begin{aligned}
& \left(\Longleftrightarrow \pi_{1}(s) \cong F_{\infty}\right) \\
& \left(\Longleftrightarrow M C G_{1}(s) \text { is uncountable }\right)
\end{aligned}
$$

Classification by genus $\in \mathbb{N} \cup\{\infty\}$

- spare of ends (O of Freudenthal compact ${ }^{n}$)
- subspace of non-planar ends
(ends where all ulblds have ∞ genus)
[Kevékjaitó 1923
Richards 1963]

Arise in dynamics (complements of attractors)
leaves of foliations of 3 -manifolds

What is known about $H_{k}(M C G(S))$?

Finite type

- $S=\sum_{0,1}^{n}$ (braid groups) [Amol'd, Cohen, Fuchs, '70s]
- $s=\Sigma_{g, b} \longrightarrow H_{*}\left(\Omega_{0}^{\infty}\right.$ MTTSO(2)) when $g \rightarrow \infty$.
[Have, Madsen-Weiss]
- various calk's for small g, b, n, i

Insinite type

Thm [Calegan'-Chen '19'20]
S compact $\Rightarrow H_{1}(\operatorname{MCa}($ Sie $)) \cong H_{1}($ Mcca $(s))$
\succcurlyeq
Q: $H_{*}(\operatorname{Mca}(s i e)) \cong H_{*}($ mca $(s))$ in all degrues?

$$
\begin{aligned}
& H_{2}\left(\operatorname{Mca}\left(s^{2}-e\right)\right) \cong \mathbb{Z} / 2 \\
& H_{2}\left(\operatorname{MCa}\left(\mathbb{R}^{2}, e\right)\right) \supseteq \mathbb{Z}
\end{aligned}
$$

Thm A [P.-Wu'22]

$$
H_{i}\left(\operatorname{Mca}\left(\mathbb{R}^{2}, e\right)\right) \cong \begin{cases}\mathbb{Z} & * \text { even } \\ 0 & * \text { odd }\end{cases}
$$

More genenally, same H_{*} for any

For contrast...

Thun B [P, -Wn '22]

$$
H_{*}\left(\operatorname{MCG}\left(\Sigma_{\infty}\right)\right) \supseteq \Lambda_{\mathbb{z}}^{*}(\underset{c}{\oplus} \mathbb{Z})
$$

(Also generalises to an uncountable family of serfoces...)

In degree 1: [Domat '20] $H_{1}\left(\operatorname{Mca}\left(\Sigma_{0}\right)\right) \supseteq \underset{c}{\oplus} \mathbb{Q}$

Rmk

$$
\begin{aligned}
& \underset{\substack{\operatorname{colim}}}{\operatorname{MCG}\left(\Sigma_{g, 1}\right)} \xrightarrow{\text { dense }} \operatorname{MCG}\left(\Sigma_{c}\left(\Sigma_{\infty}\right)\right) \\
& H_{*}\{ \\
& H_{*}\left(\Omega_{0}^{\infty} \operatorname{MTSO}(2)\right) \xrightarrow[(2)]{ }\left(\begin{array}{c}
\text { un comutable in in degrees }
\end{array}\right)
\end{aligned}
$$

Thum $A^{\prime} \quad \tilde{H}_{*}\left(\operatorname{MCG}\left(D^{2}, ~ e\right)\right)=0$

This iuplies Thm A via:

$$
\begin{aligned}
& 1 \rightarrow \mathbb{Z} \longrightarrow M C G\left(D^{2} \cdot e\right) \longrightarrow M C G\left(\mathbb{R}^{2} \cdot e\right) \rightarrow 1
\end{aligned}
$$

Plan . Proof of Thu $A^{\prime}-2$ steps

- Prot of The B
(1) Consider He sequence

Tum: This is homologically stable.
proof Apply the machine of [RWW] to:
$M_{2}^{\infty}=$ groupoid of conn., ovientable surfaces S \& hovermaphisms with $I \hookrightarrow O S$
braided ovoidal under \dagger
fails cancellation \longrightarrow fix faunally by passing to another category with ourgects $=$ words on the alphabet of surfaces
Set

$$
\begin{aligned}
& A=D^{2} \\
& X=D^{2} \cdot e
\end{aligned}
$$

Machine of $[R W W]+$ tricks
\longrightarrow reduce to proving high-cann. of:
$T C_{n}(A, X)$
vertex:

$$
\begin{aligned}
& \left\{\alpha_{0}, \ldots, \alpha_{p}\right\} \text { simplex if } \\
& \text {. disjoint exapt at } * \\
& (n-1) \text {-dim. }
\end{aligned}
$$

$$
T c_{\infty}(A, X)
$$

same vertices

$$
\begin{aligned}
\left\{\alpha_{0}, \ldots, \alpha_{p}\right\} \text { simplex if } & \text { - disjoint except at } * \\
& \text { exteria } \cong X
\end{aligned}
$$

∞-dim.
same $(n-2)$-skeleton as $T C_{n}(A, X)$
(only clopen subsets of e are ϕ and e)

Prop $T C_{\infty}(A, x)$ is contractible.

Rok Follows ideas of proof of [Szymik-Wah1], who proved $\tilde{H}_{*}(V)=0$ via ham. stab. for $V \rightarrow V \rightarrow \ldots$. τ Thompson group
(2) Lemma (adapted from [Matter '71], related to "dissipated" groups, "binate" groups....)

$$
T=S
$$

Suppose (a) (*) is a H_{t}-isonerplism
(b) $\exists \varphi \in \operatorname{Home}_{B}(T): \forall k \geqslant 1 \quad \varphi^{k}(S) \cap S=\phi$
$\bigcup_{i=k}^{\infty} \varphi^{i}(s)$ is closed

Then $\tilde{H}_{*}\left(\pi_{0} \operatorname{Homer}_{B}(T)\right)=0$

Apply to

$$
\begin{aligned}
\cdots 0^{-t^{3}} \cdots \cdots & \cong D^{2} \backslash\left(\frac{11}{\infty} e\right)^{+} \\
& \cong D^{2} \backslash e .
\end{aligned}
$$

So Thm $A^{\prime} \Leftarrow(a)+(b)$
$\operatorname{Step}(1) \longrightarrow \operatorname{McG}(\square) \xrightarrow{H_{\infty} \cong} \operatorname{MCG}(a)$
(b): $\varphi=$ shift 1 step to be vight.

ㅁ.

Idea of proof of Thu B

Idea: Factor $\bigoplus_{c} \mathbb{Z} \longrightarrow \underset{c}{\oplus} \mathbb{Q}$
through $\operatorname{MCG}\left(\Sigma_{\infty}\right)$.

Then 1

$$
\begin{aligned}
x \subseteq \mathbb{N} \leadsto f(x) & :=\prod_{i \in x}\left(T_{\gamma_{i}}\right)^{i!} \\
f_{n}(x): & =\prod_{\substack{i \in x \\
i \not 2 n}}\left(T_{\gamma_{i}}\right)^{i!/ n}
\end{aligned}
$$

Eervaise
(*) $\left\{\begin{array}{l}\text { There exists actinnum! } \\ \text { two of lection of infinite } x \subseteq \mathbb{N}\end{array}\right.$ so that any

Construction
$1 \longmapsto f(x)$
Using (*) and [Domat '20]
machinery of [Bestvina - Buonbey - Fugiraan'15]
the map θ is injective.

Fact: Any injectie mop $\underset{ \pm}{\oplus} \mathbb{Q} \longrightarrow A$ admits a retraction.

$$
\begin{aligned}
& \oplus \mathbb{Z} \longrightarrow \operatorname{MCG}\left(\Sigma_{\infty}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{c}{\oplus} \mathbb{Z} \longrightarrow \operatorname{MCG}\left(\Sigma_{\infty}\right) \quad\left[\left(f_{n}(x)\right)^{n}\right]=[f(x)] \\
& \downarrow \stackrel{\downarrow}{\downarrow} \\
& \oplus_{c} \mathbb{Q} \xrightarrow{\theta} \operatorname{MCG}\left(\Sigma_{\infty}\right)^{a b} \\
& 1 / n \longmapsto f_{n}(x) . \\
& \text { [Birman, Pouell '7ors: Every } \\
& \text { mapping class on a compecit } \\
& \text { Surfure }(g \geqslant 3) \text { is a } \\
& \text { product of commutatus. }
\end{aligned}
$$

Rok

Extra notes: - for $\Sigma=\mathbb{R}^{2}, \lambda$:

Adapt [Madestein - Tao '21]:

Lemma: Every based homer of $\mathbb{R}^{2} \backslash \mathbb{N}$ presences $T_{1}\left(\Sigma_{\infty}, N\right) \Delta \pi_{1}\left(\mathbb{R}^{2} \cup N\right)$ hence lift uniquely to a homer of $\sum_{\infty} N$.

Then pass to $M C G\left(\mathbb{R}^{2}, \mathbb{N}\right)$ via

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(\mathbb{R}^{2}, \mathbb{N}\right) \longleftrightarrow M C G_{*}\left(\mathbb{R}^{2}, \mathbb{N}\right) \longrightarrow M C G\left(\mathbb{R}^{2}, \mathbb{N}\right) \rightarrow 1 \\
115 \\
F_{\infty} \text { commutable }
\end{gathered}
$$

