Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Homological mapping class group representations and lower central series

Martin Palmer-Anghel

IMAR, Bucharest

1 July 2023 10th Congress of Romanian Mathematicians, Pitești

Partially supported by project nº PN-III-P4-ID-PCE-2020-2798 (CNCS - UEFISCDI)

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $\mathsf{MCG}(M) = \pi_0(\mathsf{Diff}^+_\partial(M))$

Examples:

• $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $MCG(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = MCG(\Sigma_{g,1})$

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Definition (mapping class group of a manifold M)

 $\mathsf{MCG}(M) = \pi_0(\mathsf{Diff}^+_\partial(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $MCG(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = MCG(\Sigma_{g,1})$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^2) \smallsetminus \mathring{D}^3) \cong \mathsf{Aut}(\mathbf{F}_g)$

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_\partial^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$
- $MCG(\sharp^g(S^1 \times S^2) \smallsetminus \mathring{D}^3) \cong Aut(\mathbf{F}_g)$
- MCG(*S*^{*d*})

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^2) \smallsetminus \mathring{D}^3) \cong \mathsf{Aut}(\mathbf{F}_g)$

•
$$MCG(S^d) \cong \Theta_{d+1}$$
 (for $d \ge 5$)

(group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \setminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^2) \smallsetminus \mathring{D}^3) \cong \mathsf{Aut}(\mathbf{F}_g)$
- MCG(S^d) ≅ Θ_{d+1} (for d ≥ 5) (group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question

Q: Linearity of MCGs?

Q: Linearity of MCGs?

Reps of B_n

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$
- $\mathsf{MCG}(\sharp^g(S^1 \times S^2) \smallsetminus \mathring{D}^3) \cong \mathsf{Aut}(\mathbf{F}_g)$
- MCG(S^d) ≅ Θ_{d+1} (for d ≥ 5) Yes [Kervaire-Milnor '63] (group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question

Q: Linearity of MCGs?

Reps of B_n

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$
- $MCG(\sharp^g(S^1 \times S^1) \setminus \mathring{D}^2) = MCG(\Sigma_{g,1})$
- $MCG(\sharp^g(S^1 \times S^2) \setminus \mathring{D}^3) \cong Aut(\mathbf{F}_g)$ No [Formanek-Procesi '92]
- MCG(S^d) ≅ Θ_{d+1} (for d ≥ 5) Yes [Kervaire-Milnor '63] (group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question

Q: Linearity of MCGs?

Reps of B_n

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$ Yes [Bigelow'00, Krammer'00]
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \smallsetminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$
- $MCG(\sharp^g(S^1 \times S^2) \setminus \mathring{D}^3) \cong Aut(\mathbf{F}_g)$ No [Formanek-Procesi '92]
- MCG(S^d) ≅ Θ_{d+1} (for d ≥ 5) Yes [Kervaire-Milnor '63] (group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question

Q: Linearity of MCGs?

Reps of B_n

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Definition (mapping class group of a manifold M)

 $MCG(M) = \pi_0(Diff_{\partial}^+(M))$

Examples:

- $MCG(D^2 \setminus \{n \text{ punctures}\}) \cong \mathbf{B}_n$ Yes [Bigelow'00, Krammer'00]
- $\mathsf{MCG}(\sharp^g(S^1 \times S^1) \setminus \mathring{D}^2) = \mathsf{MCG}(\Sigma_{g,1})$???
- $MCG(\sharp^g(S^1 \times S^2) \setminus \mathring{D}^3) \cong Aut(\mathbf{F}_g)$ No [Formanek-Procesi '92]
- MCG(S^d) ≅ Θ_{d+1} (for d ≥ 5) Yes [Kervaire-Milnor '63] (group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff_{∂}(D_n) acts on $C_k(D_n)$

• $\pi_0(\text{Diff}_\partial(D_n))$

(unordered configuration space) $(D_n = \text{closed 2-disc minus } n \text{ punctures})$

acts on $H_*(C_k(D_n);\mathbb{Z})$

Q: Linearity of MCGs?

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Representations of braid groups

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$

Q: Linearity of MCGs?

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Representations of braid groups

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:

Q: Linearity o MCGs?

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Representations of braid groups

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose π₁(C_k(D_n)) → Q invariant under the action. Then B_n acts on H_{*}(C_k(D_n); ℤ[Q])

Q: Linearity of MCGs?

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Representations of braid groups

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose $\pi_1(C_k(D_n)) \twoheadrightarrow Q$ invariant under the action. Then \mathbf{B}_n acts on $H_*(C_k(D_n); \mathbb{Z}[Q])$
 - Replace H_* with H_*^{BM} (Borel-Moore homology)

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose $\pi_1(C_k(D_n)) \twoheadrightarrow Q$ invariant under the action. Then \mathbf{B}_n acts on $H_*(C_k(D_n); \mathbb{Z}[Q])$
 - Replace H_{*} with H^{BM}_{*} (Borel-Moore homology)
 Fact: H^{BM}_{*}(C_k(D_n); ℤ[Q]) is a free ℤ[Q]-module concentrated in degree * = k

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

[Lawrence] representation (1990) — geometric definition.

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose $\pi_1(C_k(D_n)) \twoheadrightarrow Q$ invariant under the action. Then \mathbf{B}_n acts on $H_*(C_k(D_n); \mathbb{Z}[Q])$
 - Replace H_{*} with H^{BM}_{*} (Borel-Moore homology)
 Fact: H^{BM}_{*}(C_k(D_n); ℤ[Q]) is a free ℤ[Q]-module concentrated in degree * = k

 $\mathsf{Lawrence}_k \colon \mathbf{B}_n \longrightarrow \mathsf{Aut}_{\mathbb{Z}[Q]} \left(H^{BM}_*(C_k(D_n); \mathbb{Z}[Q]) \right)$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

- Diff_{∂}(D_n) acts on $C_k(D_n)$ (unordered configuration space) ($D_n = \text{closed 2-disc minus } n \text{ punctures}$)
- $\pi_0(\text{Diff}_\partial(D_n)) = \text{MCG}(D_n) = \mathbf{B}_n \text{ acts on } H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose $\pi_1(C_k(D_n)) \twoheadrightarrow Q$ invariant under the action. Then \mathbf{B}_n acts on $H_*(C_k(D_n); \mathbb{Z}[Q])$
 - Replace H_{*} with H^{BM}_{*} (Borel-Moore homology)
 Fact: H^{BM}_{*}(C_k(D_n); ℤ[Q]) is a free ℤ[Q]-module concentrated in degree * = k

 $\mathsf{Lawrence}_k \colon \mathbf{B}_n \longrightarrow \mathsf{Aut}_{\mathbb{Z}[Q]} \left(H^{BM}_*(C_k(D_n); \mathbb{Z}[Q]) \right) = GL_N(\mathbb{Z}[Q])$

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \twoheadrightarrow Q?$

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \quad \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$

"total winding number"

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \quad \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$ "total winding number" $(k \ge 2) \quad \pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} = Q$ ("total winding number", "self-winding number")

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \ \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$ "total winding number" $(k \ge 2) \ \pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} = Q$ ("total winding number", "self-winding number")

Lemma

This quotient is $MCG(D_n)$ -invariant, and hence

```
Lawrence<sub>k</sub>: \mathbf{B}_n \longrightarrow GL_N(\mathbb{Z}[Q])
```

is well-defined.

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \ \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$ "total winding number" $(k \ge 2) \ \pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} = Q$ ("total winding number", "self-winding number")

Lemma

This quotient is $MCG(D_n)$ -invariant, and hence

Lawrence_k: $\mathbf{B}_n \longrightarrow GL_N(\mathbb{Z}[Q])$

is well-defined. For k = 1, we have Lawrence₁ = Burau.

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \ \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$ "total winding number" $(k \ge 2) \ \pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} = Q$ ("total winding number", "self-winding number")

Lemma

This quotient is $MCG(D_n)$ -invariant, and hence

Lawrence_k: $\mathbf{B}_n \longrightarrow GL_N(\mathbb{Z}[Q])$

is well-defined. For k = 1, we have Lawrence₁ = Burau.

Theorem [Bigelow'00, Krammer'00]

Lawrence₂ is faithful (injective).

Representations of braid groups

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

What is the quotient $\pi_1(C_k(D_n)) \rightarrow Q$? $(k = 1) \ \pi_1(D_n) = \mathbf{F}_n \longrightarrow \mathbb{Z} = Q$ "total winding number" $(k \ge 2) \ \pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} = Q$ ("total winding number", "self-winding number")

Lemma

This quotient is $MCG(D_n)$ -invariant, and hence

Lawrence_k: $\mathbf{B}_n \longrightarrow GL_N(\mathbb{Z}[Q])$

is well-defined. For k = 1, we have Lawrence₁ = Burau.

Theorem [Bigelow'00, Krammer'00]

Lawrence₂ is faithful (injective). Hence \mathbf{B}_n embeds into $GL_N(\mathbb{R})$.

Homological MCG reps and LCS	Representations of mapping class groups
Q: Linearity of MCGs?	
Reps of B _n	
Reps of MCGs	
– Moriyama	
– abelian coeff	
– Heisenberg	
 Untwisting and kernel 	
LCS	
Perspectives	

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B

Reps of MCGs

- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$.

Q: Linearity of MCGs?

Reps of B

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Representations of mapping class groups

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

• Depend on $k \ge 2$

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

• Depend on $k \ge 2$ and a rep. V of the Heisenberg group \mathcal{H}_g .

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

- Depend on $k \ge 2$ and a rep. V of the Heisenberg group \mathcal{H}_g .
- Typically defined over a *non-commutative* ground ring.
Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

- Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

- Depend on $k \ge 2$ and a rep. V of the Heisenberg group \mathcal{H}_g .
- Typically defined over a non-commutative ground ring.
- Typically *twisted* representations.

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

- Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

- Depend on $k \ge 2$ and a rep. V of the Heisenberg group \mathcal{H}_g .
- Typically defined over a *non-commutative* ground ring.
- Typically *twisted* representations.
- But they may be untwisted:
 - on the Torelli group;

Representations of mapping class groups

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $MCG(\Sigma_{g,1})$. ("Genuine" analogues of the Lawrence representations)

Qualitative properties:

- Depend on $k \ge 2$ and a rep. V of the Heisenberg group \mathcal{H}_g .
- Typically defined over a non-commutative ground ring.
- Typically *twisted* representations.
- But they may be untwisted:
 - on the Torelli group;
 - on the whole mapping class group (for certain reps V).

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Representations of MCGs – Moriyama

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

```
\mathsf{MCG}(\Sigma_{g,1}) \circlearrowright H_k^{\mathcal{B}M}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)
```

$$F_k() = ordered$$
 configuration space

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

$$\mathsf{MCG}(\Sigma_{g,1})$$
 \circlearrowleft $H_k^{\mathcal{B}M}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$

- $F_k() = ordered$ configuration space
- $\Sigma'_{g,1} = \Sigma_{g,1} \setminus (\text{closed interval in the boundary})$

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

$$\mathsf{MCG}(\Sigma_{g,1})$$
 \circlearrowleft $H_k^{\mathcal{B}M}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$

- $F_k() = ordered$ configuration space
- $\Sigma'_{g,1} = \Sigma_{g,1} \smallsetminus$ (closed interval in the boundary)
- *untwisted* \mathbb{Z} coefficients

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Simplest analogue of the Lawrence representations:

 $\mathsf{MCG}(\Sigma_{g,1})$ \circlearrowright $H_k^{\mathcal{B}M}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$

- $F_k() = ordered$ configuration space
- $\Sigma'_{g,1} = \Sigma_{g,1} \smallsetminus$ (closed interval in the boundary)
- untwisted \mathbb{Z} coefficients
- Fact: $H_k^{BM}\left(F_k(\Sigma_{g,1}');\mathbb{Z}\right)$ is a free abelian group of finite rank

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Simplest analogue of the Lawrence representations:

 $\mathsf{MCG}(\Sigma_{g,1})$ \circlearrowright $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$

- $F_k() = ordered$ configuration space
- $\Sigma'_{g,1} = \Sigma_{g,1} \smallsetminus$ (closed interval in the boundary)
- untwisted \mathbb{Z} coefficients
- Fact: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$ is a free abelian group of finite rank

Theorem [Moriyama'07]

The kernel of this representation is $\mathfrak{J}(k) \subset \mathsf{MCG}(\Sigma_{g,1})$.

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coeff
- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Simplest analogue of the Lawrence representations:

 $\mathsf{MCG}(\Sigma_{g,1})$ \circlearrowright $H_k^{\mathcal{B}M}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right)$

- $F_k() = ordered$ configuration space
- $\Sigma'_{g,1} = \Sigma_{g,1} \smallsetminus$ (closed interval in the boundary)
- untwisted \mathbb{Z} coefficients
- Fact: $H_k^{BM}\left(F_k(\Sigma_{g,1}');\mathbb{Z}\right)$ is a free abelian group of finite rank

Theorem [Moriyama'07]

The kernel of this representation is $\mathfrak{J}(k) \subset \mathsf{MCG}(\Sigma_{g,1})$.

• $\mathfrak{J}(k)$ is the *k*-th term of the Johnson filtration of $MCG(\Sigma_{g,1})$

Homological MCG reps and LCS	The Johnson filtration
Q: Linearity of MCGs?	
Reps of B _n	
Reps of MCGs	
– Moriyama	
– abelian coeff	
– Heisenberg	
– Untwisting and kernel	
LCS	
Perspectives	

The Johnson filtration

• Lower central series:

•
$$\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}]$$

$$\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$$

WICGS!

Homological

MCG reps and LCS

– Moriyama

abelian coeff

Heisenberg

 Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$
- Q: Linearity of MCGs?

Homological

MCG reps and LCS

- Reps of *B_n*
- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspective

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$

Definition [Johnson'81]

- $\mathfrak{J}(k) = \text{kernel of the action of MCG}(\Sigma_{g,1}) \text{ on } \mathbf{F}_{2g}/\Gamma_{k+1}.$
 - $\mathsf{MCG}(\Sigma_{g,1}) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

- abelian coefl
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$

Definition [Johnson'81]

- $\mathfrak{J}(k) = kernel of the action of MCG(\Sigma_{g,1}) on \mathbf{F}_{2g}/\Gamma_{k+1}$.
 - $\mathsf{MCG}(\Sigma_{g,1}) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$
 - $\mathfrak{J}(1) = \mathsf{Tor}(\Sigma_{g,1})$ Torelli group

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$

Definition [Johnson'81]

- $\mathfrak{J}(k) = \text{kernel of the action of MCG}(\Sigma_{g,1}) \text{ on } \mathbf{F}_{2g}/\Gamma_{k+1}.$
 - $\mathsf{MCG}(\Sigma_{g,1}) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$
 - $\mathfrak{J}(1) = \mathsf{Tor}(\Sigma_{g,1})$ Torelli group

Fact (because $MCG(\Sigma_{g,1}) \subset Aut(F_{2g})$ and F_{2g} is residually nilpotent) $\bigcap_{k=1}^{\infty} \mathfrak{J}(k) = \{id\}$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coefl
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$

Definition [Johnson'81]

- $\mathfrak{J}(k) = kernel of the action of MCG(\Sigma_{g,1}) on \mathbf{F}_{2g}/\Gamma_{k+1}$.
 - $\mathsf{MCG}(\Sigma_{g,1}) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$
 - $\mathfrak{J}(1) = \mathsf{Tor}(\Sigma_{g,1})$ Torelli group

Fact (because $\mathsf{MCG}(\Sigma_{g,1})\subset\mathsf{Aut}(\mathsf{F}_{2g})$ and F_{2g} is residually nilpotent)

$$\bigcap_{k=1}^{\infty} \mathfrak{J}(k) = \{\mathsf{id}\}\$$

Corollary [Moriyama'07]

 $\bigoplus_{k=1}^{\infty} H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) \text{ is a } faithful \ (\infty\text{-rank}) \ \mathsf{MCG}(\Sigma_{g,1})\text{-representation}.$

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

- abelian coefl
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

The Johnson filtration

- Lower central series: $\pi_1(\Sigma_{g,1}) = \mathbf{F}_{2g} = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \cdots$
- $\Gamma_i = [\mathbf{F}_{2g}, \Gamma_{i-1}] = \{\text{iterated commutators of length } i \text{ in } \mathbf{F}_{2g}\}$

Definition [Johnson'81]

- $\mathfrak{J}(k) = kernel of the action of MCG(\Sigma_{g,1}) on \mathbf{F}_{2g}/\Gamma_{k+1}$.
 - $\mathsf{MCG}(\Sigma_{g,1}) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$
 - $\mathfrak{J}(1) = \mathsf{Tor}(\Sigma_{g,1})$ Torelli group

Fact (because $\mathsf{MCG}(\Sigma_{g,1})\subset\mathsf{Aut}(\mathsf{F}_{2g})$ and F_{2g} is residually nilpotent)

$$\bigcap_{k=1}^{\infty} \mathfrak{J}(k) = \{\mathsf{id}\}\$$

Corollary [Moriyama'07]

 $\bigoplus_{k=1}^{\infty} H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) \text{ is a } faithful (\infty-rank) \operatorname{MCG}(\Sigma_{g,1})-representation.$

Homological MCG reps and LCS	Reps of MCGs – abelian twisted coefficients
Q: Linearity of MCGs?	
Reps of B _n	
Reps of MCGs	
– Moriyama	
- abelian coeff	
– Heisenberg	
– Untwisting and kernel	
LCS	
Perspectives	

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

- abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs – abelian twisted coefficients

 Idea — enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.

Q: Linearity of MCGs?

Reps of *B*,

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs – abelian twisted coefficients

- Idea enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.
- $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) = H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathfrak{S}_k]\right).$

Q: Linearity of MCGs?

Reps of B_r

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs – abelian twisted coefficients

- Idea enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.
- $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) = H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathfrak{S}_k]\right).$
- First try abelian quotients Q.

Q: Linearity of MCGs?

Reps of *B_r*

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS

Perspectives

Reps of MCGs – abelian twisted coefficients

- Idea enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.
- $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) = H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathfrak{S}_k]\right).$
- First try abelian quotients Q.

Fact (for $k \ge 2$)

$$\mathbf{B}_{k}(\Sigma)^{ab} \cong \pi_{1}(\Sigma)^{ab} \oplus \begin{cases} \mathbb{Z} & \Sigma \text{ planar} \\ \mathbb{Z}/(2k-2) & \Sigma = S^{2} \\ \mathbb{Z}/2 & \text{otherwise.} \end{cases}$$

Q: Linearity of MCGs?

Reps of *B_r*

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Reps of MCGs – abelian twisted coefficients

- Idea enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.
- $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) = H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathfrak{S}_k]\right).$
- First try abelian quotients Q.

Fact (for $k \ge 2$)

$$\mathbf{B}_k(\Sigma)^{ab} \cong \pi_1(\Sigma)^{ab} \oplus egin{cases} \mathbb{Z} & \Sigma ext{ planar} \ \mathbb{Z}/(2k-2) & \Sigma = S^2 \ \mathbb{Z}/2 & ext{otherwise.} \end{pmatrix}$$

• If Σ is non-planar, we can only count the *self-winding number* ("writhe") of Σ -braids **mod 2**. (mod 2k - 2 if $\Sigma = S^2$)

Q: Linearity of MCGs?

Reps of *B_r*

- Reps of MCGs
- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Reps of MCGs – abelian twisted coefficients

- Idea enrich the representation by taking homology with twisted coefficients Z[Q], where π₁(C_k(Σ'_{g,1})) = B_k(Σ_{g,1}) → Q.
- $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}\left(F_k(\Sigma'_{g,1});\mathbb{Z}\right) = H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathfrak{S}_k]\right).$
- First try abelian quotients Q.

Fact (for $k \ge 2$)

$$\mathbf{B}_k(\Sigma)^{ab} \cong \pi_1(\Sigma)^{ab} \oplus egin{cases} \mathbb{Z} & \Sigma ext{ planar} \ \mathbb{Z}/(2k-2) & \Sigma = S^2 \ \mathbb{Z}/2 & ext{otherwise.} \end{cases}$$

- If Σ is non-planar, we can only count the *self-winding number* ("writhe") of Σ -braids **mod 2**. (mod 2k 2 if $\Sigma = S^2$)
- → In Z[B_k(Σ)^{ab}], the corresp. variable t has order two: t² = 1.
 → a much "weaker" representation...

Homological MCG reps and LCS	Reps of MCGs – Heisenberg twisted coefficients
Q: Linearity of MCGs?	
Reps of <i>B_n</i>	
Reps of MCGs	
– Moriyama	
– abelian coeff	
– Heisenberg	
– Untwisting and kernel	
LCS	
Perspectives	

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07]

$$\mathbf{B}_{k}(\Sigma_{g,1}) \cong \left\langle \sigma_{1}, \ldots, \sigma_{k-1}, \begin{array}{c} a_{1}, \ldots, a_{g} \\ b_{1}, \ldots, b_{g} \end{array} \right| \cdots \text{ some relations } \cdots \right\rangle$$

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07]

$$\mathbf{B}_{k}(\Sigma_{g,1}) \cong \left\langle \sigma_{1}, \ldots, \sigma_{k-1}, \begin{array}{c} a_{1}, \ldots, a_{g} \\ b_{1}, \ldots, b_{g} \end{array} \right| \cdots \text{ some relations } \cdots \right\rangle$$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

Q: Linearity of MCGs?

Reps of *B*,

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07]

$$\mathbf{B}_{k}(\Sigma_{g,1}) \cong \left\langle \sigma_{1}, \ldots, \sigma_{k-1}, \begin{matrix} a_{1}, \ldots, a_{g} \\ b_{1}, \ldots, b_{g} \end{matrix} \right| \cdots \text{ some relations } \cdots \right\rangle$$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

$$\mathbf{B}_{k}(\Sigma_{g,1})/\langle\!\langle [\sigma_{1}, x] \rangle\!\rangle \cong \left\langle \sigma, \begin{matrix} a_{1}, \dots, a_{g} \\ b_{1}, \dots, b_{g} \end{matrix} \right| \begin{array}{c} \text{all pairs commute except} \\ a_{i}b_{i} = \sigma^{2}b_{i}a_{i} \end{matrix} \right\rangle$$

Q: Linearity of MCGs?

Reps of *B*,

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07] $\mathbf{B}_{k}(\Sigma_{g,1}) \cong \left\langle \sigma_{1}, \ldots, \sigma_{k-1}, \begin{array}{c} a_{1}, \ldots, a_{g} \\ b_{1}, \ldots, b_{g} \end{array} \right| \cdots \text{ some relations } \cdots \right\rangle$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

$$\mathbf{B}_{k}(\Sigma_{g,1})/\langle\!\langle [\sigma_{1}, x] \rangle\!\rangle \cong \left\langle \sigma, \begin{matrix} a_{1}, \dots, a_{g} \\ b_{1}, \dots, b_{g} \end{matrix} \right| \begin{array}{c} \text{all pairs commute except} \\ a_{i}b_{i} = \sigma^{2}b_{i}a_{i} \end{matrix} \right\rangle$$

Definition

$$\mathcal{H}_{g} = \mathbf{B}_{k}(\Sigma_{g,1}) / \langle\!\langle [\sigma_{1}, x] \rangle\!\rangle$$

This is the genus-g discrete Heisenberg group.

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07] $\mathbf{B}_{k}(\Sigma_{g,1}) \cong \left\langle \sigma_{1}, \ldots, \sigma_{k-1}, \frac{a_{1}, \ldots, a_{g}}{b_{1}, \ldots, b_{g}} \right| \cdots \text{ some relations } \cdots \right\rangle$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

$$\mathbf{B}_{k}(\Sigma_{g,1})/\langle\!\langle [\sigma_{1}, x] \rangle\!\rangle \cong \left\langle \sigma, \frac{a_{1}, \dots, a_{g}}{b_{1}, \dots, b_{g}} \middle| \begin{array}{c} \text{all pairs commute except} \\ a_{i}b_{i} = \sigma^{2}b_{i}a_{i} \end{array} \right\rangle$$

Definition

$$\mathcal{H}_{g} = \mathbf{B}_{k}(\Sigma_{g,1}) / \langle\!\langle [\sigma_{1}, x] \rangle\!\rangle$$

This is the genus-g discrete Heisenberg group. Note that:

$$\mathcal{H}_1\cong \left\{egin{pmatrix} 1 & \mathbb{Z} & rac{\mathbb{Z}}{2} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}
ight\}\subset \textit{GL}_3(\mathbb{Q})$$

Reps of MCGs – Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc \mathbf{B}_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Morivana

– abelian coeff

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

Q: Linearity of MCGs?

Reps of B_i

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc B_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

• Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.

Q: Linearity of MCGs?

Reps of *B*,

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc B_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.
- This is ⟨⟨[σ₁, x]⟩⟩, so it is enough to show that σ₁ is fixed by the MCG(Σ_{g,1})-action.

Q: Linearity of MCGs?

Reps of *B*,

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc B_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.
- This is ⟨⟨[σ₁, x]⟩⟩, so it is enough to show that σ₁ is fixed by the MCG(Σ_{g,1})-action.
- Let [φ] ∈ MCG(Σ_{g,1}) = π₀(Diff⁺_∂(Σ_{g,1})) be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of ∂Σ_{g,1}.

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc B_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.
- This is ⟨⟨[σ₁, x]⟩⟩, so it is enough to show that σ₁ is fixed by the MCG(Σ_{g,1})-action.
- Let [φ] ∈ MCG(Σ_{g,1}) = π₀(Diff⁺_∂(Σ_{g,1})) be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of ∂Σ_{g,1}.
- The loop of configurations σ₁ ∈ B_k(Σ_{g,1}) = π₁(C_k(Σ_{g,1})) can be homotoped to stay inside this collar neighbourhood.
Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc \mathbf{B}_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.
- This is ⟨⟨[σ₁, x]⟩⟩, so it is enough to show that σ₁ is fixed by the MCG(Σ_{g,1})-action.
- Let [φ] ∈ MCG(Σ_{g,1}) = π₀(Diff⁺_∂(Σ_{g,1})) be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of ∂Σ_{g,1}.
- The loop of configurations σ₁ ∈ B_k(Σ_{g,1}) = π₁(C_k(Σ_{g,1})) can be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

$$1 o \mathbb{Z} \longrightarrow \mathcal{H}_g \longrightarrow \mathcal{H}_1(\Sigma_{g,1};\mathbb{Z}) o 1$$

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Reps of MCGs – Heisenberg twisted coefficients

Lemma

The action $MCG(\Sigma_{g,1}) \bigcirc B_k(\Sigma_{g,1})$ descends to a well-defined action on the quotient \mathcal{H}_g .

Proof

- Aim: $\ker(\mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g)$ preserved by $\mathsf{MCG}(\Sigma_{g,1})$ -action.
- This is ⟨⟨[σ₁, x]⟩⟩, so it is enough to show that σ₁ is fixed by the MCG(Σ_{g,1})-action.
- Let [φ] ∈ MCG(Σ_{g,1}) = π₀(Diff⁺_∂(Σ_{g,1})) be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of ∂Σ_{g,1}.
- The loop of configurations σ₁ ∈ B_k(Σ_{g,1}) = π₁(C_k(Σ_{g,1})) can be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

$$1 \to \mathbb{Z} \longrightarrow \mathcal{H}_g \longrightarrow \mathcal{H}_1(\Sigma_{g,1};\mathbb{Z}) \to 1$$

and the MCG($\Sigma_{g,1}$)-action on \mathcal{H}_g lifts the natural action on $H_1(\Sigma_{g,1}; \mathbb{Z})$.

Reps of MCGs – Heisenberg twisted coefficients

Q: Linearity of MCGs?

Reps of *B*,

Reps of MCGs

– Moriyama

abelian coef

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

Corollary

Reps of MCGs – Heisenberg twisted coefficients

Corollary

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coefl

- Heisenberg

 Untwisting and kernel

LCS

Perspectives

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

$$\mathsf{MCG}(\Sigma_{g,1})$$
 \circlearrowleft $H_k^{BM}\left(C_k(\Sigma'_{g,1});\mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

 $\mathsf{MCG}(\Sigma_{g,1})$ \circlearrowleft $H_k^{BM}\left(\mathcal{C}_k(\Sigma'_{g,1}); \mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

A "twisted representation" consists of:

• $\mathbb{Z}[\mathcal{H}_g]$ -modules $_{\tau}\mathcal{V}$

(for
$$\tau \in \operatorname{Aut}^+(\mathcal{H}_g)$$
)

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

 $\mathsf{MCG}(\Sigma_{g,1})$ \circlearrowleft $H_k^{BM}\left(\mathcal{C}_k(\Sigma'_{g,1}); \mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

A "twisted representation" consists of:

- $\mathbb{Z}[\mathcal{H}_g]$ -modules $_{\tau}\mathcal{V}$ (for $\tau \in \operatorname{Aut}^+(\mathcal{H}_g)$)
- isomorphisms $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ (for $\varphi \in \mathsf{MCG}(\Sigma_{g,1}), \tau \in \mathsf{Aut}^+(\mathcal{H}_g)$) $(\varphi_* \in \mathsf{Aut}^+(\mathcal{H}_g) \text{ denotes the action of } \varphi \text{ on } \mathcal{H}_g)$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

 $\mathsf{MCG}(\Sigma_{g,1})$ () $H_k^{BM}\left(\mathcal{C}_k(\Sigma_{g,1}'); \mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

A "twisted representation" consists of:

- $\mathbb{Z}[\mathcal{H}_g]$ -modules $_{\tau}\mathcal{V}$ (for $\tau \in \operatorname{Aut}^+(\mathcal{H}_g)$)
- isomorphisms $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ (for $\varphi \in \mathsf{MCG}(\Sigma_{g,1}), \tau \in \mathsf{Aut}^+(\mathcal{H}_g)$) $(\varphi_* \in \mathsf{Aut}^+(\mathcal{H}_g) \text{ denotes the action of } \varphi \text{ on } \mathcal{H}_g)$

Equivalently:

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

 $\mathsf{MCG}(\Sigma_{g,1})$ () $H_k^{BM}\left(\mathcal{C}_k(\Sigma'_{g,1}); \mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

A "twisted representation" consists of:

- $\mathbb{Z}[\mathcal{H}_g]$ -modules $_{\tau}\mathcal{V}$ (for $\tau \in \operatorname{Aut}^+(\mathcal{H}_g)$)
- isomorphisms $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ (for $\varphi \in \mathsf{MCG}(\Sigma_{g,1}), \tau \in \mathsf{Aut}^+(\mathcal{H}_g)$) $(\varphi_* \in \mathsf{Aut}^+(\mathcal{H}_g) \text{ denotes the action of } \varphi \text{ on } \mathcal{H}_g)$

Equivalently: a functor $Ac(MCG(\Sigma_{g,1}) \circlearrowleft \mathcal{H}_g) \longrightarrow \mathbb{Z}[\mathcal{H}_g]$ -Mod. (defined on the *action groupoid* assoc. to the action of $MCG(\Sigma_{g,1})$ on \mathcal{H}_g)

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Heisenberg twisted coefficients

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_g]$:

 $\mathsf{MCG}(\Sigma_{g,1})$ () $H_k^{BM}\left(\mathcal{C}_k(\Sigma'_{g,1}); \mathbb{Z}[\mathcal{H}_g]\right) = \mathcal{V}$

A "twisted representation" consists of:

- $\mathbb{Z}[\mathcal{H}_g]$ -modules $_{\tau}\mathcal{V}$ (for $\tau \in \operatorname{Aut}^+(\mathcal{H}_g)$)
- isomorphisms $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ (for $\varphi \in \mathsf{MCG}(\Sigma_{g,1}), \tau \in \mathsf{Aut}^+(\mathcal{H}_g)$) $(\varphi_* \in \mathsf{Aut}^+(\mathcal{H}_g)$ denotes the action of φ on \mathcal{H}_g)

Equivalently: a functor $Ac(MCG(\Sigma_{g,1}) \circlearrowleft \mathcal{H}_g) \longrightarrow \mathbb{Z}[\mathcal{H}_g]$ -Mod. (defined on the *action groupoid* assoc. to the action of $MCG(\Sigma_{g,1})$ on \mathcal{H}_g)

More generally

Replace the coefficients $\mathbb{Z}[\mathcal{H}_g]$ with any \mathcal{H}_g -representation W over R to get a twisted MCG($\Sigma_{g,1}$)-representation $\mathcal{V}(W)$ over R.

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_{g} -representation $W \longrightarrow$ twisted $MCG(\Sigma_{g,1})$ -representation $\mathcal{V}_{k}(W)$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_{g} -representation $W \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(W)$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong_{\varphi_*} \mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

• we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $W \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(W)$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

• we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation W \rightsquigarrow twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(W)$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- W =Schrödinger representation of \mathcal{H}_g

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs - Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- $W = \text{Schrödinger representation of } \mathcal{H}_g$ (pass to $\widetilde{\mathsf{MCG}}(\Sigma_{g,1})$)

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- W =Schrödinger representation of \mathcal{H}_g (pass to $\widetilde{MCG}(\Sigma_{g,1})$)
- $W = \mathcal{H}_g \oplus \mathbb{Z} =$ linearisation of the affine self-action of \mathcal{H}_g

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_{g} -representation $W \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(W)$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- W =Schrödinger representation of \mathcal{H}_g (pass to $\widetilde{MCG}(\Sigma_{g,1})$)
- $W = \mathcal{H}_g \oplus \mathbb{Z} =$ linearisation of the affine self-action of \mathcal{H}_g

Theorem (kernel) [Blanchet-P.-Shaukat'21] For $W = \mathbb{Z}[\mathcal{H}_g]$,

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- W =Schrödinger representation of \mathcal{H}_g (pass to $\widetilde{MCG}(\Sigma_{g,1})$)
- $W = \mathcal{H}_g \oplus \mathbb{Z} =$ linearisation of the affine self-action of \mathcal{H}_g

Theorem (kernel) [Blanchet-P.-Shaukat'21] For $W = \mathbb{Z}[\mathcal{H}_g]$,

 $\ker(\mathcal{V}_k(\mathbb{Z}[\mathcal{H}_g])) \subseteq \mathfrak{J}(k) \cap Magnus \ kernel$

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- $W = \text{Schrödinger representation of } \mathcal{H}_g$ (pass to $\widetilde{\mathsf{MCG}}(\Sigma_{g,1})$)
- $W = \mathcal{H}_g \oplus \mathbb{Z} =$ linearisation of the affine self-action of \mathcal{H}_g

Theorem (kernel) [Blanchet-P.-Shaukat'21] For $W = \mathbb{Z}[\mathcal{H}_g]$, $\operatorname{ker}(\mathcal{V}_k(\mathbb{Z}[\mathcal{H}_g])) \subseteq \mathfrak{J}(k) \cap Magnus \ kernel$

Calculation in genus g = 1:

Q: Linearity of MCGs?

Reps of *B_n*

Reps of MCGs

– Moriyama

- abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Reps of MCGs – Untwisting and kernel

Summary: for each $k \ge 2$:

 \mathcal{H}_g -representation $\mathcal{W} \quad \rightsquigarrow \quad$ twisted $\mathsf{MCG}(\Sigma_{g,1})$ -representation $\mathcal{V}_k(\mathcal{W})$

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications $\mathcal{V}_k(W) \cong {}_{\varphi_*}\mathcal{V}_k(W)$ allowing us to *untwist* and obtain genuine (linear) MCG($\Sigma_{g,1}$)-representations, if:

- we restrict to the Torelli group $\mathsf{Tor}(\Sigma_{g,1}) \subset \mathsf{MCG}(\Sigma_{g,1})$ (any W)
- $W = \text{Schrödinger representation of } \mathcal{H}_g$ (pass to $\widetilde{\mathsf{MCG}}(\Sigma_{g,1})$)
- $W = \mathcal{H}_g \oplus \mathbb{Z} =$ linearisation of the affine self-action of \mathcal{H}_g

Theorem (kernel) [Blanchet-P.-Shaukat'21] For $W = \mathbb{Z}[\mathcal{H}_g]$, $\operatorname{ker}(\mathcal{V}_k(\mathbb{Z}[\mathcal{H}_g])) \subseteq \mathfrak{J}(k) \cap Magnus \ kernel$

Calculation in genus g = 1: action of $T_{\partial \Sigma_{1,1}}$ on $\mathcal{V}_2(\mathbb{Z}[\mathcal{H}_1])$

Homological MCG reps and LCS	Lower central series of surface braid groups		
Q: Linearity of MCGs?			
Reps of B_n			
Reps of MCGs			
– Moriyama			
– abelian coeff			
– Heisenberg			
– Untwisting and kernel			
LCS			
Perspectives			

Lower central series of surface braid groups

The construction $W \rightsquigarrow \mathcal{V}_k(W)$ involves the quotient

$$\pi_1(C_k(\Sigma_{g,1}) = \mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g$$

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coeff
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

The construction $W \rightsquigarrow \mathcal{V}_k(W)$ involves the quotient

$$\pi_1(\mathcal{C}_k(\Sigma_{g,1}) = \mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g$$

Fact

When $k \ge 3$, this is the quotient by the third term Γ_3 of the lower central series of $\mathbf{B}_k(\Sigma_{g,1})$.

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

The construction $W \rightsquigarrow \mathcal{V}_k(W)$ involves the quotient

$$\pi_1(\mathcal{C}_k(\Sigma_{g,1}) = \mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g$$

Fact

When $k \ge 3$, this is the quotient by the third term Γ_3 of the lower central series of $\mathbf{B}_k(\Sigma_{g,1})$.

Questions

• What if we take quotients by deeper terms in Γ_{*}?

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

The construction $W \rightsquigarrow \mathcal{V}_k(W)$ involves the quotient

$$\pi_1(\mathit{C}_k(\Sigma_{g,1}) = \mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g$$

Fact

When $k \ge 3$, this is the quotient by the third term Γ_3 of the lower central series of $\mathbf{B}_k(\Sigma_{g,1})$.

Questions

- What if we take quotients by deeper terms in Γ_* ?
- What if we use *partitioned* surface braid groups B_λ(Σ_{g,1})?
 (λ partition of k)

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

abelian coeff

- Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

The construction $W \rightsquigarrow \mathcal{V}_k(W)$ involves the quotient

$$\pi_1(\mathcal{C}_k(\Sigma_{g,1}) = \mathbf{B}_k(\Sigma_{g,1}) \twoheadrightarrow \mathcal{H}_g$$

Fact

When $k \ge 3$, this is the quotient by the third term Γ_3 of the lower central series of $\mathbf{B}_k(\Sigma_{g,1})$.

Questions

- What if we take quotients by deeper terms in Γ_* ?
- What if we use *partitioned* surface braid groups $\mathbf{B}_{\lambda}(\Sigma_{g,1})$? (λ partition of k)

Fundamental question

Given Σ and $\lambda \vdash k$, when does $\Gamma_*(\mathbf{B}_{\lambda}(\Sigma))$ stop? $(\exists i : \Gamma_i = \Gamma_{i+1}?)$

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

- abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer (extending particular cases studied by [van Buskirk'66], [Kohno'85], [Bellingeri-Gervais-Guaschi'08], [Gonçalves-Guaschi'09,'11], [Guaschi-de Miranda e Pereiro'20], ...)

Surface Σ $\lambda = (k_1, \dots, k_r)$ $\Gamma_*(\mathbf{B}_{\lambda}(\Sigma))$ stops at:

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	$\Gamma_*({f B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \geqslant 3$	* = 2

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

– Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma\subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma\subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
D^2 , Ann, T^2 , M^2 , S^2 , $\mathbb{R}P^2$		

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
D^2 , Ann, T^2 , M^2 , S^2 , $\mathbb{R}P^2$		
$\Sigma = D^2$	$(2), (1, \mu), (1, 1, \mu)$	* = 2
	(blocks of μ have size \geqslant 3)	
	otherwise	$* = \infty$

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq \mathcal{S}^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
$D^2, Ann, T^2, M^2, S^2, \mathbb{R}P^2$		
$\Sigma = D^2$	$(2), (1, \mu), (1, 1, \mu)$	* = 2
	(blocks of μ have size \geqslant 3)	
	otherwise	$* = \infty$
$\Sigma = S^2$	$(2, k), k \ge 3$	$* \approx \nu_2(k)$
	(2,2)	$* = \infty$
Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer (extending particular cases studied by [van Buskirk'66], [Kohno'85], [Bellingeri-Gervais-Guaschi'08], [Gonçalves-Guaschi'09,'11], [Guaschi-de Miranda e Pereiro'20], ...)

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
$D^2, Ann, T^2, M^2, S^2, \mathbb{R}P^2$		
$\Sigma = D^2$	$(2), (1, \mu), (1, 1, \mu)$	* = 2
	(blocks of μ have size \geqslant 3)	
	otherwise	$* = \infty$
$\Sigma = S^2$	$(2, k), \ k \geqslant 3$	$* \approx \nu_2(k)$
	(2,2)	$* = \infty$
:	:	:
•	•	•

Q: Linearity of MCGs?

Reps of B,

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer* (extending particular cases studied by [van Buskirk'66], [Kohno'85], [Bellingeri-Gervais-Guaschi'08], [Gonçalves-Guaschi'09,'11], [Guaschi-de Miranda e Pereiro'20], ...)

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	${\sf F}_*({\sf B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
$D^2, Ann, T^2, M^2, S^2, \mathbb{R}P^2$		
$\Sigma = D^2$	$(2), (1, \mu), (1, 1, \mu)$	* = 2
	(blocks of μ have size \geqslant 3)	
	otherwise	$* = \infty$
$\Sigma = S^2$	$(2, k), \ k \geqslant 3$	$* \approx \nu_2(k)$
	(2,2)	$* = \infty$
:	:	:
•	•	•

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coefl

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer* (extending particular cases studied by [van Buskirk'66], [Kohno'85], [Bellingeri-Gervais-Guaschi'08], [Gonçalves-Guaschi'09,'11], [Guaschi-de Miranda e Pereiro'20], ...)

Surface Σ	$\lambda = (k_1, \ldots, k_r)$	$\Gamma_*({f B}_\lambda(\Sigma))$ stops at:
$\Sigma \subseteq S^2$	all $k_i \ge 3$	* = 2
Σ orientable, $\not\subseteq S^2$	all $k_i \ge 3$	* = 3
Σ non-orientable	all $k_i \ge 3$	* = 2 (if $r = 1$)
		$* = 3$ (if $r \ge 2$)
Σ not one of	some $k_i = 1$ or 2	$* = \infty$
$D^2, Ann, T^2, M^2, S^2, \mathbb{R}P^2$		
$\Sigma = D^2$	$(2), (1, \mu), (1, 1, \mu)$	* = 2
	(blocks of μ have size \geqslant 3)	
	otherwise	$* = \infty$
$\Sigma = S^2$	$(2, k), k \ge 3$	$* \approx \nu_2(k)$
	(2,2)	$* = \infty$
:	:	:
$\Sigma = \mathbb{R}P^2$	$(2, k), \ k \geqslant 3$??*

Perspectives

Q: Linearity of MCGs?

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Kernels and linearity

Reps of B_r

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Perspectives

Kernels and linearity

• What is $\ker(\mathcal{V}_k(W))$ for $W = \mathbb{Z}[\mathcal{H}_g]$, or other \mathcal{H}_g -reps W?

Reps of B_n

Reps of MCGs

– Moriyama

– abelian coef

– Heisenberg

 Untwisting and kernel

LCS

Perspectives

Kernels and linearity

- What is ker $(\mathcal{V}_k(W))$ for $W = \mathbb{Z}[\mathcal{H}_g]$, or other \mathcal{H}_g -reps W?
 - ... more generally ker($\mathcal{V}_{\lambda}(W)$) for $\mathbb{Z}[\mathbf{B}_{\lambda}(\Sigma_{g,1})/\Gamma_{\ell}]$ -reps W?

Perspectives

Q: Linearity of MCGs?

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Kernels and linearity

What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?

Perspectives

• Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Kernels and linearity

- What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?
- Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??

Related to studying $\mathcal{V}_k(W)$ for higher ℓ :

Theorem [P.-Soulié, arxiv:2211.01855]

Perspectives

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Kernels and linearity

What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?

Perspectives

• Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??

Related to studying $\mathcal{V}_k(W)$ for higher ℓ :

Theorem [P.-Soulié, arxiv:2211.01855]

There is a "pro-nilpotent tower" of representations of \mathbf{B}_n constructed from the quotients of $\mathbf{B}_k(D^2 \smallsetminus \{n \text{ punctures}\})$ by Γ_ℓ .

Q: Linearity of MCGs?

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Kernels and linearity

What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?

Perspectives

• Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??

Related to studying $\mathcal{V}_k(W)$ for higher ℓ :

Theorem [P.-Soulié, arxiv:2211.01855]

There is a "pro-nilpotent tower" of representations of \mathbf{B}_n constructed from the quotients of $\mathbf{B}_k(D^2 \smallsetminus \{n \text{ punctures}\})$ by Γ_ℓ . The $\ell = 2$ layer is the 2nd Lawrence representation Lawrence₂ and the limit

as $\ell \to \infty$ is a non-commutative 3-variable extension of this representation.

- Reps of B_n
- Reps of MCGs
- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel
- LCS
- Perspectives

Kernels and linearity

- What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?
- Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??
- Related to studying $\mathcal{V}_k(W)$ for higher ℓ :

Theorem [P.-Soulié, arxiv:2211.01855]

There is a "pro-nilpotent tower" of representations of \mathbf{B}_n constructed from the quotients of $\mathbf{B}_k(D^2 \setminus \{n \text{ punctures}\})$ by Γ_ℓ . The $\ell = 2$ layer is the 2nd Lawrence representation Lawrence₂ and the limit as $\ell \to \infty$ is a non-commutative 3-variable extension of this representation.

TQFTs

Can these $MCG(\Sigma_{g,1})$ -representations be extended to a 3-dim. TQFT? Relation to Chern-Simons theory?

Perspectives

Reps of B_n

Reps of MCGs

- Moriyama
- abelian coef
- Heisenberg
- Untwisting and kernel

LCS

Perspectives

Kernels and linearity

- What is ker(V_k(W)) for W = Z[H_g], or other H_g-reps W?
 ... more generally ker(V_λ(W)) for Z[B_λ(Σ_{g,1})/Γ_ℓ]-reps W?
- Well-chosen $\lambda \vdash k$ and ℓ and $W \rightsquigarrow$ linearity for MCG($\Sigma_{g,1}$)??

Perspectives

Related to studying $\mathcal{V}_k(W)$ for higher ℓ :

Theorem [P.-Soulié, arxiv:2211.01855]

There is a "pro-nilpotent tower" of representations of \mathbf{B}_n constructed from the quotients of $\mathbf{B}_k(D^2 \smallsetminus \{n \text{ punctures}\})$ by Γ_ℓ . The $\ell = 2$ layer is the 2nd Lawrence representation Lawrence₂ and the limit

as $\ell \to \infty$ is a non-commutative 3-variable extension of this representation.

TQFTs

Can these $MCG(\Sigma_{g,1})$ -representations be extended to a 3-dim. TQFT? Relation to Chern-Simons theory?

Thank you for your attention!