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MCG(M) = mo(Diff}; (M)
Examples:
MCG(D? . {n punctures}) = B,
MCG(t8(S" x S') ~\ D?) = MCG(Z,.1)
MCG(t¢(S" x S?) \ D3) = Aut(F,)
MCG(S9) = @4, (for d = 5)
(group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]
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Q: Linearity of
e Definition (mapping class group of a manifold M)
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® MCG(D? \ {n punctures}) = B,
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* MCG(t8(S" x §?) . D3) = Aut(F,)
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Motivating question
Is MCG(M) linear? — Does it embed into GL,(F) for some n and F?
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Q: Linearity of
e Definition (mapping class group of a manifold M)
MCG(M) = mo(Diff (M)
Examples:
® MCG(D? \ {n punctures}) 2 B,  Yes [Bigelow'00, Krammer'00]
® MCG(#8(S! x S') \ D?) = MCG(Z,41)
o MCG(#8(S* x §2) \ D3) = Aut(Fg)  No [Formanek-Procesi '92]
® MCG(S9Y) =2 ©4y1 (for d > 5) Yes [Kervaire-Milnor '63]
(group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question
Is MCG(M) linear? — Does it embed into GL,(F) for some n and F?



Homological
MCG reps and
LCS

Q: Linearity of
MCGs?
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Definition (mapping class group of a manifold M)

MCG(M) = mo(Diff (M)

Examples:
® MCG(D? \ {n punctures}) =2 B,  Yes [Bigelow'00, Krammer'00]
* MCG(#8(S* x S') \ D?) = MCG(Z41) 77
o MCG(#8(S* x §2) \ D3) = Aut(Fg)  No [Formanek-Procesi '92]
® MCG(S9Y) =2 ©4y1 (for d > 5) Yes [Kervaire-Milnor '63]

(group of homotopy (d + 1)-spheres) [Smale'62 + Cerf'70]

Motivating question
Is MCG(M) linear? — Does it embed into GL,(F) for some n and F?
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® Diffy(D,) acts on Cx(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

o mo(Diffo(Dn)) = MCG(D,) = B, acts on H,(Ck(D,); Z)

® Two modifications:
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Homological

MCG reps and Representations of braid groups

LCS

[Lawrence] representation (1990) — geometric definition.

Reps of By e Diffy(D,) acts on Cx(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

¢ 7o(Diff5(D,)) = MCG(D,) = B, acts on H.(Ck(D,); Z)
® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H.(Ck(D,); Z[Q])
® Replace H, with HBM (Borel-Moore homology)
Fact: HEM(Cy(D,); Z[Q)) is a free Z[Q]-module
concentrated in degree x = k



Homological

MCG reps and Representations of braid groups
LCS
[Lawrence] representation (1990) — geometric definition.

Reps of By e Diffy(D,) acts on Cx(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

¢ 7o(Diff5(D,)) = MCG(D,) = B, acts on H.(Ck(D,); Z)
® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H.(Ck(D,); Z[Q])

® Replace H, with HBM (Borel-Moore homology)
Fact: HEM(Cy(D,); Z[Q)) is a free Z[Q]-module
concentrated in degree x = k

Lawrencex: B, — Autzq (HEM(Ck(Dn); Z[QY]))



Homological

MCG reps and Representations of braid groups
LCS
[Lawrence] representation (1990) — geometric definition.

Reps of By e Diffy(D,) acts on Cx(D,) (unordered configuration space)
(Dn = closed 2-disc minus n punctures)

¢ 7o(Diff5(D,)) = MCG(D,) = B, acts on H.(Ck(D,); Z)
® Two modifications:

® Choose m1(Ck(Dp)) = Q invariant under the action.
Then B, acts on H.(Ck(D,); Z[Q])

® Replace H, with HBM (Borel-Moore homology)
Fact: HEM(Cy(D,); Z[Q)) is a free Z[Q]-module
concentrated in degree x = k

Lawrencex: B, — Autzq (HEM(Ck(Dn); Z[Q))) = GLn(Z[Q))
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(k=1) m(D,)=F,—Z=Q “total winding number”

(k>2) m(C(Dp)) —ZdZ=Q
(“total winding number” , “self-winding number")

This quotient is MCG(D,)-invariant, and hence

Lawrence,: B, — GLN(Z[Q))

is well-defined.
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What is the quotient 71(Ci(D,)) — Q7
Repsof By (k =1) m(D,)=F, —Z=Q “total winding number”

(k>2) m(C(Dy) —Z&Z=Q
(“total winding number" | “self-winding number")

Lemma
This quotient is MCG(D,)-invariant, and hence

Lawrencex: B, — GLN(Z[Q))
is well-defined. For k = 1, we have Lawrence; = Burau.

Theorem [Bigelow'00, Krammer'00]

Lawrence; is faithful (injective). Hence B, embeds into GLy(R).
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MCG reps and Representations of mapping class groups

LCS

Main result [Blanchet-P.-Shaukat'21]

Reps oS A new family of representations of MCG(Z,.1).

(“Genuine” analogues of the Lawrence representations)

Qualitative properties:
® Depend on k > 2 and a rep. V of the Heisenberg group H,.
® Typically defined over a non-commutative ground ring.

® Typically twisted representations.



MCG reps and Representations of mapping class groups

LCS

Main result [Blanchet-P.-Shaukat'21]

Reps oS A new family of representations of MCG(Z,.1).

(“Genuine” analogues of the Lawrence representations)

Qualitative properties:
® Depend on k > 2 and a rep. V of the Heisenberg group H,.
® Typically defined over a non-commutative ground ring.

® Typically twisted representations.

But they may be untwisted:

® on the Torelli group;



MCG reps and Representations of mapping class groups
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Main result [Blanchet-P.-Shaukat'21]

Reps oS A new family of representations of MCG(Z,.1).

(“Genuine” analogues of the Lawrence representations)

Qualitative properties:
® Depend on k > 2 and a rep. V of the Heisenberg group H,.
® Typically defined over a non-commutative ground ring.

® Typically twisted representations.

But they may be untwisted:

® on the Torelli group;
® on the whole mapping class group (for certain reps V).
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Simplest analogue of the Lawrence representations:

MCG(Zg1) O  HZM (F(Zh41): Z)

® F( ) = ordered configuration space

® Y, 1 =241 (closed interval in the boundary)

® untwisted 7 coefficients
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Simplest analogue of the Lawrence representations:

MCG(Zz1) O HEM(Fk(z;,J);Z)

— Moriyama

® Fi( ) = ordered configuration space

Y, 1= Xg1 (closed interval in the boundary)

untwisted 7 coefficients

Fact: HEV (Fi(X1):Z) is a free abelian group of finite rank

Theorem [Moriyama'07]
The kernel of this representation is J(k) C MCG(X, 1).

® J(k) is the k-th term of the Johnson filtration of MCG(%, 1)
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® |ower central series: m(Xg1) =Fpg =l 2ML2MD---

® [ = [Fyg,li_1] = {iterated commutators of length i in Fa.}

J(k) = kernel of the action of MCG(X4 1) on Fag /T k1.

* MCG(Zg1) =3(0) 2 3(1) 23(2) 23I(3) > -+
® 3(1) = Tor(Xg,1) Torelli group

J(k) = {id}

k
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® |ower central series: m(Xg1) =Fe =12 Dl3 2

® [, =[Fyg, i_1] = {iterated commutators of length i in Foz}

Definition [Johnson'81]
J(k) = kernel of the action of MCG(X,,1) on Fag /T jt1.

— Moriyama

* MCG(X,1)=3(0)>J(1)>JI(2)>3IB)>
J(1) = Tor(X4 1) Torelli group

Fact (because MCG(X, 1) C Aut(Fzg) and Fy is residually nilpotent)

(at = )

k=1
Corollary [Moriyama’07]

P H" (Fi(.1)i Z) is a faithful (co-rank) MCG(Xg,1)-representation.
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® |ower central series: m(Xg1) =Fe =12 Dl3 2

® [, =[Fyg, i_1] = {iterated commutators of length i in Foz}

Definition [Johnson'81]
J(k) = kernel of the action of MCG(X,,1) on Fag /T jt1.

— Moriyama

* MCG(X,1)=3(0)>J(1)>JI(2)>3IB)>
J(1) = Tor(X4 1) Torelli group

Fact (because MCG(X, 1) C Aut(Fzg) and Fy is residually nilpotent)

(at = )

k=1
Corollary [Moriyama’07]

P H" (Fi(g.1)i Z) is a faithful (co-rank) MCG(Xg,1)-representation.
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MCE rept ond Reps of MCGs — abelian twisted coefficients
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® |dea — enrich the representation by taking homology with
twisted coefficients Z[Q], where m1(Ci(X; 1)) = Bu(Zg1) — Q.

® ( = &y corresponds to the Moriyama representations:
HEM (Fk(Zig,I);Z) = HEM (Ck(Z/gJ);Z[Gk]).

— abelian coeff

® First try abelian quotients Q.

Fact (for k > 2)

/ > planar
B,(X)?*2m(X)*elZ/(2k-2) ¥ =85
Z/2 otherwise.

® |f ¥ is non-planar, we can only count the self-winding number
(“writhe”) of X-braids mod 2. (mod 2k — 2 if ¥ = S?)

® ~ In Z[B,(X)?], the corresp. variable t has order two: t> = 1.
~> a much “weaker" representation...
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ay,...
Bk(zg,l) = <0'1’-"a0-k—1,bi b
oy Dg

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:




aly...,d
BkZ 1 = 01y...,0k—1 ’ ]
(Zea) vk bbb,

- some relations >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Bk(zg,l)/« [0'1,X] >> = <0-, Zi: : Zi

all pairs commute except
a,-b,- = azb,-a,-
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Reps of MCGs — Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07]

al,...,d
Bk(zg,l)g 017"'7Jk—17b bg
1,---5 Vg

- some relations - - - >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

~ ay,...,a
Ba(Eaa)/(lon ) = (o e | P

all pairs commute except>

Definition
Hg = Br(Zg1)/ (o1, x] )

This is the genus-g discrete Heisenberg group.
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Reps of MCGs — Heisenberg twisted coefficients

Theorem [Bellingeri'04, Bellingeri-Godelle'07]

al,...,d
Bk(zg,l)g 017"'7Jk—17b bg
1,---5 Vg

- some relations - - - >

Adding the relations saying that oy is central (commutes with every
element), we obtain:

Bi(Zg1)/([o1,x])) = <07 Zi: ::Zi

all pairs commute except
a,-b,- = O'2b,'a,'

Definition
Hg = Br(Zg1)/ (o1, x] )

This is the genus-g discrete Heisenberg group. Note that:

Hy C GL3(Q)

O O =
— NN

Z
1
0
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The action MCG(X, 1) O Bi(Xg,1) descends to a well-defined action
on the quotient H,.

® Aim: ker(Bx(Xg,1) — Hg) preserved by MCG(X, 1)-action.
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Lemma
The action MCG(X; 1) O Bx(X4,1) descends to a well-defined action
on the quotient H,.
Proof
_ Heisenberg o Aim: ker(Bi(X4,1) — Hg) preserved by MCG(X, 1)-action.

® This is (([o1,x])), so it is enough to show that o is fixed by the
MCG(X,,1)-action.
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Lemma

The action MCG(X; 1) O Bx(X4,1) descends to a well-defined action
on the quotient H,.

Proof
o Aim: ker(Bi(X4,1) — Hg) preserved by MCG(X, 1)-action.

® Thisis {([o1,x])), so it is enough to show that o is fixed by the
MCG(X,,1)-action.

® Let [p] € MCG(X,.1) = mo(Diff(Zg.1)) be represented by a
diffeo. ¢ that fixes pointwise a collar neighbourhood of 0% 1.

— Heisenberg
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Lemma

The action MCG(X; 1) O Bx(X4,1) descends to a well-defined action
on the quotient H,.

Proof

_ Heisenberg o Aim: ker(Bi(X4,1) — Hg) preserved by MCG(X, 1)-action.

® Thisis {([o1,x])), so it is enough to show that o is fixed by the
MCG(X,,1)-action.
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diffeo. ¢ that fixes pointwise a collar neighbourhood of 0% 1.

® The loop of configurations o1 € By(Xgz,1) = m1(Ci(X4,1)) can
be homotoped to stay inside this collar neighbourhood.
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Lemma

The action MCG(X; 1) O Bx(X4,1) descends to a well-defined action
on the quotient H,.

Proof

_ Heisenberg o Aim: ker(Bi(X4,1) — Hg) preserved by MCG(X, 1)-action.

® Thisis {([o1,x])), so it is enough to show that o is fixed by the
MCG(X,,1)-action.

® Let [p] € MCG(X,.1) = mo(Diff(Zg.1)) be represented by a
diffeo. ¢ that fixes pointwise a collar neighbourhood of 0% 1.

® The loop of configurations o1 € By(Xgz,1) = m1(Ci(X4,1)) can
be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:
1572 —Hg — Hi(Zg1:Z) > 1
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Lemma

The action MCG(X; 1) O Bx(X4,1) descends to a well-defined action
on the quotient H,.

Proof

_ Heisenberg o Aim: ker(Bi(X4,1) — Hg) preserved by MCG(X, 1)-action.

® Thisis {([o1,x])), so it is enough to show that o is fixed by the
MCG(X,,1)-action.

® Let [p] € MCG(X,.1) = mo(Diff(Zg.1)) be represented by a
diffeo. ¢ that fixes pointwise a collar neighbourhood of 0% 1.

® The loop of configurations o1 € By(Xgz,1) = m1(Ci(X4,1)) can

be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:
1572 —Hg — Hi(Zg1:Z) > 1

and the MCG(X,,1)-action on H, lifts the natural action on Hi(X41;Z).
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We obtain a twisted representation, defined over Z[H,]:

MCG(Eg1) O  HZM (G(Z1)i Z[H,]) =V

~ Heisenberg A “twisted representation” consists of:
® Z[Hg]-modules ;¥ (for T € Aut™ (Hg))
® isomorphisms ;.,V — ¥V (for ¢ € MCG(%g,1), T € Aut™ (Hy))
(¢« € Aut™(Hg) denotes the action of  on Hy)

Equivalently: a functor Ac((MCG(X; 1) O Hg) — Z[Hg]-Mod.
(defined on the action groupoid assoc. to the action of MCG(%,,1) on H,)
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Reps of MCGs — Heisenberg twisted coefficients

Corollary

We obtain a twisted representation, defined over Z[H,]:

MCG(Eg1) O  HZM (G(Z1)i Z[H,]) =V

A “twisted representation” consists of:
® Z[Hg]-modules ;¥ (for 7 € Aut™ (Hy))
® isomorphisms ;.,V — ¥V (for ¢ € MCG(%g,1), T € Aut™ (Hy))
(¢« € Aut™(Hg) denotes the action of  on Hy)
Equivalently: a functor Ac((MCG(X; 1) O Hg) — Z[Hg]-Mod.
(defined on the action groupoid assoc. to the action of MCG(X,,1) on Hy)
More generally

Replace the coefficients Z[#Hg] with any #-representation W over R
to get a twisted MCG(X, ;)-representation V(W) over R.
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Reps of MCGs — Untwisting and kernel

Summary: for each k > 2:

He-representation W ~»  twisted MCG(X,,1)-representation V(W)

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

There are natural identifications Vi (W) = , Vi(W) allowing us to
untwist and obtain genuine (linear) MCG(X 1)-representations, if:

® we restrict to the Torelli group Tor(Xgz,1) C MCG(Xg,1)
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Reps of MCGs — Untwisting and kernel

Summary: for each k > 2:

He-representation W ~»  twisted MCG(X,,1)-representation V(W)

Theorem (untwisting) [Blanchet-P.-Shaukat'21]

~

There are natural identifications Vi (W) = , Vi(W) allowing us to
untwist and obtain genuine (linear) MCG(X 1)-representations, if:

® we restrict to the Torelli group Tor(Xgz,1) C MCG(Xg,1) (any W)

® W = Schrédinger representation of Hg (pass to I\Tc/c-;(zg,l))
® W ="H, @ Z = linearisation of the affine self-action of H,

Theorem (kernel) [Blanchet-P.-Shaukat'21]
For W = Z[H,],

ker(Vi(Z[Hg])) € J(k) N Magnus kernel

Calculation in genus g = 1: action of Tyx,, on Vo(Z[Hi])
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When k > 3, this is the quotient by the third term I'; of the lower
central series of Bx(Xg1).

® What if we take quotients by deeper terms in I,?7
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The construction W ~» Vi (W) involves the quotient

T1(Cu(Zg1) = Br(Zg1) — Hg

Fact

When k > 3, this is the quotient by the third term '3 of the lower
central series of Bx(Xg1).

& Questions

® What if we take quotients by deeper terms in [,?

® What if we use partitioned surface braid groups By(X,1)?
(A partition of k)
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Lower central series of surface braid groups

The construction W ~» Vi (W) involves the quotient

T1(Cu(Zg1) = Br(Zg1) — Hg

Fact

When k > 3, this is the quotient by the third term '3 of the lower
central series of Bx(Xg1).

Questions

® What if we take quotients by deeper terms in [,?

® What if we use partitioned surface braid groups By(X,1)?
(A partition of k)

Fundamental question
Given X and A\ F k, when does I"',(B»(X)) stop? (Fi:Ti=Ti1?)
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A complete answer (extending particular cases studied by
[van Buskirk'66], [Kohno'85], [Bellingeri-Gervais-Guaschi'08],
[Goncalves-Guaschi’'09,'11], [Guaschi-de Miranda e Pereiro’'20], .. .)
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... more generally ker(V\(W)) for Z[Bx(Xg,1)/T¢]-reps W?
® Well-chosen A+ k and £ and W ~» linearity for MCG(X,,1)??

Related to studying Vi (W) for higher £:

Theorem [P.-Soulié, arxiv:2211.01855]

There is a “pro-nilpotent tower” of representations of B, constructed from
the quotients of Bx(D? \ {n punctures}) by I,.
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® What is ker(Vi(W)) for W = Z[H,], or other Hg-reps W?
... more generally ker(V\(W)) for Z[Bx(Xg,1)/T¢]-reps W?
® Well-chosen A+ k and £ and W ~» linearity for MCG(X,,1)??

Related to studying V(W) for higher ¢:

Theorem [P.-Soulié, arxiv:2211.01855]

There is a “pro-nilpotent tower” of representations of B, constructed from
the quotients of Bx(D? \ {n punctures}) by I,.

The ¢ = 2 layer is the 2nd Lawrence representation Lawrence; and the limit
as / — oo is a non-commutative 3-variable extension of this representation.

TQFTs

Can these MCG(X, 1)-representations be extended to a 3-dim. TQFT?
Relation to Chern-Simons theory?

Thank you for your attention!
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