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Q: Linearity of MCGs?

Definition (mapping class group of a manifold M)

MCG(M) = π0(Diff
+
∂ (M))

Examples:

• MCG(D2 ∖ {n punctures}) ∼= Bn

Yes [Bigelow’00, Krammer’00]

• MCG(♯g (S1 × S1)∖ D̊2) = MCG(Σg ,1)

???

• MCG(♯g (S1 × S2)∖ D̊3) ∼= Aut(Fg )

No [Formanek-Procesi ’92]

• MCG(Sd) ∼= Θd+1 (for d ⩾ 5)

Yes [Kervaire-Milnor ’63]

(group of homotopy (d + 1)-spheres) [Smale’62 + Cerf’70]

Motivating question

Is MCG(M) linear? – Does it embed into GLn(F) for some n and F?
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Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn))

= MCG(Dn) = Bn

acts on H∗(Ck(Dn);Z)

• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn))

= MCG(Dn) = Bn

acts on H∗(Ck(Dn);Z)

• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn))

= MCG(Dn) = Bn

acts on H∗(Ck(Dn);Z)

• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)

• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)

= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

[Lawrence] representation (1990) — geometric definition.

• Diff∂(Dn) acts on Ck(Dn) (unordered configuration space)

(Dn = closed 2-disc minus n punctures)

• π0(Diff∂(Dn)) = MCG(Dn) = Bn acts on H∗(Ck(Dn);Z)
• Two modifications:

• Choose π1(Ck(Dn))↠ Q invariant under the action.
Then Bn acts on H∗(Ck(Dn);Z[Q])

• Replace H∗ with HBM
∗ (Borel-Moore homology)

Fact: HBM
∗ (Ck(Dn);Z[Q]) is a free Z[Q]-module

concentrated in degree ∗ = k

Lawrencek : Bn −→ AutZ[Q]

(
HBM

∗ (Ck(Dn);Z[Q])
)
= GLN(Z[Q])



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Representations of braid groups

What is the quotient π1(Ck(Dn))↠ Q?

(k = 1) π1(Dn) = Fn −→ Z = Q “total winding number”

(k ⩾ 2) π1(Ck(Dn)) −→ Z⊕ Z = Q
(“total winding number” , “self-winding number”)

Lemma

This quotient is MCG(Dn)-invariant, and hence

Lawrencek : Bn −→ GLN(Z[Q])

is well-defined. For k = 1, we have Lawrence1 = Burau.

Theorem [Bigelow’00, Krammer’00]

Lawrence2 is faithful (injective). Hence Bn embeds into GLN(R).
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A new family of representations of MCG(Σg ,1).
(“Genuine” analogues of the Lawrence representations)

Qualitative properties:

• Depend on k ⩾ 2 and a rep. V of the Heisenberg group Hg .

• Typically defined over a non-commutative ground ring.

• Typically twisted representations.

• But they may be untwisted:

• on the Torelli group;
• on the whole mapping class group (for certain reps V ).
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Representations of MCGs – Moriyama

Simplest analogue of the Lawrence representations:

MCG(Σg ,1) ⟲ HBM
k

(
Fk(Σ

′
g ,1);Z

)
• Fk( ) = ordered configuration space

• Σ′
g ,1 = Σg ,1 ∖ (closed interval in the boundary)

• untwisted Z coefficients

• Fact: HBM
k

(
Fk(Σ

′
g ,1);Z

)
is a free abelian group of finite rank

Theorem [Moriyama’07]

The kernel of this representation is J(k) ⊂ MCG(Σg ,1).

• J(k) is the k-th term of the Johnson filtration of MCG(Σg ,1)
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The Johnson filtration

• Lower central series: π1(Σg ,1) = F2g = Γ1 ⊇ Γ2 ⊇ Γ3 ⊇ · · ·
• Γi = [F2g , Γi−1] = {iterated commutators of length i in F2g}

Definition [Johnson’81]

J(k) = kernel of the action of MCG(Σg ,1) on F2g/Γk+1.

• MCG(Σg ,1) = J(0) ⊃ J(1) ⊃ J(2) ⊃ J(3) ⊃ · · ·
• J(1) = Tor(Σg ,1) Torelli group

Fact (because MCG(Σg,1) ⊂ Aut(F2g ) and F2g is residually nilpotent)
∞⋂
k=1

J(k) = {id}
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Reps of MCGs – abelian twisted coefficients

• Idea — enrich the representation by taking homology with
twisted coefficients Z[Q], where π1(Ck(Σ

′
g ,1)) = Bk(Σg ,1)↠ Q.

• Q = Sk corresponds to the Moriyama representations:
HBM

k

(
Fk(Σ

′
g ,1);Z

)
= HBM

k

(
Ck(Σ

′
g ,1);Z[Sk ]

)
.

• First try abelian quotients Q.

Fact (for k ⩾ 2)

Bk(Σ)
ab ∼= π1(Σ)

ab ⊕

 Z Σ planar
Z/(2k − 2) Σ = S2

Z/2 otherwise.


• If Σ is non-planar, we can only count the self-winding number

(“writhe”) of Σ-braids mod 2. (mod 2k − 2 if Σ = S2)

• ⇝ In Z[Bk(Σ)
ab], the corresp. variable t has order two: t2 = 1.

⇝ a much “weaker” representation...
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Reps of MCGs – Heisenberg twisted coefficients

Theorem [Bellingeri’04, Bellingeri-Godelle’07]

Bk(Σg ,1) ∼=
〈
σ1, . . . , σk−1,

a1, . . . , ag
b1, . . . , bg

∣∣∣∣ · · · some relations · · ·
〉

Adding the relations saying that σ1 is central (commutes with every
element), we obtain:

Bk(Σg ,1)/⟨⟨ [σ1, x ] ⟩⟩ ∼=
〈
σ,

a1, . . . , ag
b1, . . . , bg

∣∣∣∣ all pairs commute except
aibi = σ2biai

〉

Definition

Hg = Bk(Σg ,1)/⟨⟨ [σ1, x ] ⟩⟩

This is the genus-g discrete Heisenberg group. Note that:

H1
∼=


1 Z Z

2
0 1 Z
0 0 1

 ⊂ GL3(Q)
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Reps of MCGs – Heisenberg twisted coefficients

Lemma

The action MCG(Σg ,1) ⟲ Bk(Σg ,1) descends to a well-defined action
on the quotient Hg .

Proof

• Aim: ker(Bk(Σg ,1)↠ Hg ) preserved by MCG(Σg ,1)-action.

• This is ⟨⟨ [σ1, x ] ⟩⟩, so it is enough to show that σ1 is fixed by the
MCG(Σg ,1)-action.

• Let [φ] ∈ MCG(Σg ,1) = π0(Diff
+
∂ (Σg ,1)) be represented by a

diffeo. φ that fixes pointwise a collar neighbourhood of ∂Σg ,1.

• The loop of configurations σ1 ∈ Bk(Σg ,1) = π1(Ck(Σg ,1)) can
be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

1 → Z −→ Hg −→ H1(Σg,1;Z) → 1

and the MCG(Σg,1)-action on Hg lifts the natural action on H1(Σg,1;Z).
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Reps of MCGs – Heisenberg twisted coefficients

Corollary

We obtain a twisted representation, defined over Z[Hg ]:

MCG(Σg ,1) ⟲ HBM
k

(
Ck(Σ

′
g ,1);Z[Hg ]

)
= V

A “twisted representation” consists of:

• Z[Hg ]-modules τV (for τ ∈ Aut+(Hg ))

• isomorphisms τ◦φ∗V → τV (for φ ∈ MCG(Σg,1), τ ∈ Aut+(Hg ))

(φ∗ ∈ Aut+(Hg ) denotes the action of φ on Hg )

Equivalently: a functor Ac(MCG(Σg ,1) ⟲ Hg ) −→ Z[Hg ]-Mod.

(defined on the action groupoid assoc. to the action of MCG(Σg,1) on Hg )

More generally

Replace the coefficients Z[Hg ] with any Hg -representation W over R
to get a twisted MCG(Σg ,1)-representation V(W ) over R.
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k

(
Ck(Σ

′
g ,1);Z[Hg ]

)
= V

A “twisted representation” consists of:

• Z[Hg ]-modules τV (for τ ∈ Aut+(Hg ))

• isomorphisms τ◦φ∗V → τV (for φ ∈ MCG(Σg,1), τ ∈ Aut+(Hg ))

(φ∗ ∈ Aut+(Hg ) denotes the action of φ on Hg )

Equivalently: a functor Ac(MCG(Σg ,1) ⟲ Hg ) −→ Z[Hg ]-Mod.

(defined on the action groupoid assoc. to the action of MCG(Σg,1) on Hg )

More generally

Replace the coefficients Z[Hg ] with any Hg -representation W over R
to get a twisted MCG(Σg ,1)-representation V(W ) over R.
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Reps of MCGs – Untwisting and kernel

Summary: for each k ⩾ 2:

Hg -representation W ⇝ twisted MCG(Σg,1)-representation Vk(W )

Theorem (untwisting) [Blanchet-P.-Shaukat’21]

There are natural identifications Vk(W ) ∼= φ∗Vk(W ) allowing us to
untwist and obtain genuine (linear) MCG(Σg ,1)-representations, if:

• we restrict to the Torelli group Tor(Σg,1) ⊂ MCG(Σg,1) (any W )

• W = Schrödinger representation of Hg (pass to M̃CG(Σg,1))

• W = Hg ⊕ Z = linearisation of the affine self-action of Hg

Theorem (kernel) [Blanchet-P.-Shaukat’21]

For W = Z[Hg ],

ker(Vk(Z[Hg ])) ⊆ J(k) ∩Magnus kernel

Calculation in genus g = 1: action of T∂Σ1,1 on V2(Z[H1])
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Lower central series of surface braid groups

The construction W ⇝ Vk(W ) involves the quotient

π1(Ck(Σg ,1) = Bk(Σg ,1) −↠ Hg

Fact

When k ⩾ 3, this is the quotient by the third term Γ3 of the lower
central series of Bk(Σg ,1).

Questions

• What if we take quotients by deeper terms in Γ∗?

• What if we use partitioned surface braid groups Bλ(Σg ,1)?
(λ partition of k)

Fundamental question

Given Σ and λ ⊢ k, when does Γ∗(Bλ(Σ)) stop? (∃i : Γi = Γi+1?)
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Lower central series of surface braid groups

Theorem [Darné-P.-Soulié, to appear, Memo. AMS]

A complete answer

*

(extending particular cases studied by

[van Buskirk’66], [Kohno’85], [Bellingeri-Gervais-Guaschi’08],

[Gonçalves-Guaschi’09,’11], [Guaschi-de Miranda e Pereiro’20], . . . )

Surface Σ λ = (k1, . . . , kr ) Γ∗(Bλ(Σ)) stops at:

Σ ⊆ S2 all ki ⩾ 3 ∗ = 2

Σ orientable, ̸⊆ S2 all ki ⩾ 3 ∗ = 3

Σ non-orientable all ki ⩾ 3 ∗ = 2 (if r = 1)

∗ = 3 (if r ⩾ 2)

Σ not one of some ki = 1 or 2 ∗ = ∞
D2,Ann,T 2,M2, S2,RP2

Σ = D2 (2), (1, µ), (1, 1, µ) ∗ = 2

(blocks of µ have size ⩾ 3)

otherwise ∗ = ∞
Σ = S2 (2, k), k ⩾ 3 ∗ ≈ ν2(k)

(2, 2) ∗ = ∞
...

...
...

Σ = RP2 (2, k), k ⩾ 3 ??*
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[Gonçalves-Guaschi’09,’11], [Guaschi-de Miranda e Pereiro’20], . . . )

Surface Σ λ = (k1, . . . , kr ) Γ∗(Bλ(Σ)) stops at:

Σ ⊆ S2 all ki ⩾ 3 ∗ = 2

Σ orientable, ̸⊆ S2 all ki ⩾ 3 ∗ = 3

Σ non-orientable all ki ⩾ 3 ∗ = 2 (if r = 1)

∗ = 3 (if r ⩾ 2)

Σ not one of some ki = 1 or 2 ∗ = ∞
D2,Ann,T 2,M2, S2,RP2

Σ = D2 (2), (1, µ), (1, 1, µ) ∗ = 2

(blocks of µ have size ⩾ 3)

otherwise ∗ = ∞
Σ = S2 (2, k), k ⩾ 3 ∗ ≈ ν2(k)

(2, 2) ∗ = ∞
...

...
...

Σ = RP2 (2, k), k ⩾ 3 ??*



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Lower central series of surface braid groups
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Perspectives

Kernels and linearity

• What is ker(Vk(W )) for W = Z[Hg ], or other Hg -reps W ?

. . . more generally ker(Vλ(W )) for Z[Bλ(Σg ,1)/Γℓ]-reps W ?

• Well-chosen λ ⊢ k and ℓ and W ⇝ linearity for MCG(Σg,1)??

Related to studying Vk(W ) for higher ℓ:

Theorem [P.-Soulié, arxiv:2211.01855]

There is a “pro-nilpotent tower” of representations of Bn constructed from

the quotients of Bk(D
2 ∖ {n punctures}) by Γℓ.

The ℓ = 2 layer is the 2nd Lawrence representation Lawrence2 and the limit

as ℓ → ∞ is a non-commutative 3-variable extension of this representation.

TQFTs

Can these MCG(Σg,1)-representations be extended to a 3-dim. TQFT?

Relation to Chern-Simons theory?

Thank you for your attention!
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Theorem [P.-Soulié, arxiv:2211.01855]

There is a “pro-nilpotent tower” of representations of Bn constructed from

the quotients of Bk(D
2 ∖ {n punctures}) by Γℓ.

The ℓ = 2 layer is the 2nd Lawrence representation Lawrence2 and the limit

as ℓ → ∞ is a non-commutative 3-variable extension of this representation.

TQFTs

Can these MCG(Σg,1)-representations be extended to a 3-dim. TQFT?

Relation to Chern-Simons theory?

Thank you for your attention!



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Perspectives

Kernels and linearity

• What is ker(Vk(W )) for W = Z[Hg ], or other Hg -reps W ?

. . . more generally ker(Vλ(W )) for Z[Bλ(Σg ,1)/Γℓ]-reps W ?

• Well-chosen λ ⊢ k and ℓ and W ⇝ linearity for MCG(Σg,1)??

Related to studying Vk(W ) for higher ℓ:
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Theorem [P.-Soulié, arxiv:2211.01855]

There is a “pro-nilpotent tower” of representations of Bn constructed from

the quotients of Bk(D
2 ∖ {n punctures}) by Γℓ.

The ℓ = 2 layer is the 2nd Lawrence representation Lawrence2 and the limit

as ℓ → ∞ is a non-commutative 3-variable extension of this representation.

TQFTs

Can these MCG(Σg,1)-representations be extended to a 3-dim. TQFT?

Relation to Chern-Simons theory?

Thank you for your attention!



Homological
MCG reps and

LCS

Q: Linearity of
MCGs?

Reps of Bn

Reps of MCGs

– Moriyama

– abelian coeff

– Heisenberg

– Untwisting
and kernel

LCS

Perspectives

Perspectives

Kernels and linearity

• What is ker(Vk(W )) for W = Z[Hg ], or other Hg -reps W ?

. . . more generally ker(Vλ(W )) for Z[Bλ(Σg ,1)/Γℓ]-reps W ?

• Well-chosen λ ⊢ k and ℓ and W ⇝ linearity for MCG(Σg,1)??

Related to studying Vk(W ) for higher ℓ:
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