Martin Palmer-Anghel

(Mathematical Institute of the Romanian Academy (IMAR), Bucharest)

18 January 2024




Configuration spaces — What are they? — Examples

Connections to low-dimensional topology via braid groups

Connections to number theory via Hurwitz spaces

Connections to physics via magnetic monopole moduli spaces
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What are they?

Spaces each of whose points encapsulates the complete state of a

given system (i.e. its parameters or degrees of freedom), for example:
® positions of particles in an ambient space
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Spaces each of whose points encapsulates the complete state of a
given system (i.e. its parameters or degrees of freedom), for example:
® positions of particles in an ambient space
® positions and momenta of particles in an ambient space
(classical mechanics)
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What are they?
Spaces each of whose points encapsulates the complete state of a
given system (i.e. its parameters or degrees of freedom), for example:
® positions of particles in an ambient space
® positions and momenta of particles in an ambient space
(classical mechanics)
® arrangements of a mechanical linkage (e.g. robot arm)
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Configuration spaces

What are they?
Spaces each of whose points encapsulates the complete state of a
given system (i.e. its parameters or degrees of freedom), for example:
® positions of particles in an ambient space
® positions and momenta of particles in an ambient space
(classical mechanics)
® arrangements of a mechanical linkage (e.g. robot arm)
® magnetic monopoles [we will see this later]
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Fix integers n > 1 and d > 1.
The collection of all possible “configurations” of n distinct points in
d-dimensional Euclidean space forms the configuration space C,(R9).

(We can also consider more general “ambient” spaces than Euclidean spaces...)
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Points

Configuration spaces

Fix integers n > 1 and d > 1.
The collection of all possible “configurations” of n distinct points in
d-dimensional Euclidean space forms the configuration space C,(R?).

(We can also consider more general “ambient” spaces than Euclidean spaces...)

For example:

€ G(R?) € G(R)
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Configuration spaces

Points

Fix integers n > 1 and d > 1.
The collection of all possible “configurations” of n distinct points in
d-dimensional Euclidean space forms the configuration space C,(R?).

(We can also consider more general “ambient” spaces than Euclidean spaces...)

For example:

€ G(R?) € G(R)

(n = 2): configuration € C»(R?) <— (centre € R?, separation € R4, angle € S!)
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Configuration spaces

Points

Fix integers n > 1 and d > 1.
The collection of all possible “configurations” of n distinct points in
d-dimensional Euclidean space forms the configuration space C,(R?).

(We can also consider more general “ambient” spaces than Euclidean spaces...)

For example:

€ G(R?) € G(R)

(n = 2): configuration € C»(R?) <— (centre € R?, separation € R4, angle € S!)
C>(R?) 22 “thickened circle”



Discs in a square




Discs in a square




Discs in a square

Fix an integer n > 1 and a positive number ¢ > 0.
C5(Sq) = all configurations of n non-overlapping discs of radius e
inside the unit square.

The “shape” of C5(Sq) has many “phase transitions” as € — 0.
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Discs in a square

Fix an integer n > 1 and a positive number € > 0.
C5(Sq) = all configurations of n non-overlapping discs of radius e
Points) inside the unit square.

(Discs)

The “shape” of C5(Sq) has many “phase transitions” as ¢ — 0.

For n = 3 there are 4 phase transitions with critical configurations:
o B 2

[Ox

For n = 4 there are 8 phase transitions with critical configurations:

&4 789 1] P

S (Exercise: work out the critical values of e from these pictures!)
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Discs in a square

Fix an integer n > 1 and a positive number € > 0.

C:(Sq) = all configurations of n non-overlapping discs of radius ¢
inside the unit square.

The “shape” of C5(Sq) has many “phase transitions” as ¢ — 0.
For n = 3 there are 4 phase transitions with critical configurations:
2 B 2

oX

For n = 4 there are 8 phase transitions with critical configurations:
& B 6 P

s

S (Exercise: work out the critical values of e from these pictures!)

Counting the number of “d-dimensional holes” in
C5(Sq) and plotting a graph of d against € (fixing n)
leads to phase diagrams such as the one on the right.







Braid groups

Let's go back to configurations of points in the plane: C,(R?).




Braid groups
Let's go back to configurations of points in the plane: C,(R?).

Fix a configuration ¢y and look at loops of configurations starting
and ending at ¢.
~ the braid group B, = m1(C,(R?)) (see last week's talk by P. Bellingeri)
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Braid groups and low-dimensional topology

Braid groups
Let's go back to configurations of points in the plane: C,(R?).

Fix a configuration ¢y and look at loops of configurations starting

and ending at ¢p.
~> the braid group B, = 71'1(C,,(R2)) (see last week’s talk by P. Bellingeri)

Each loop in By is fully described by an integer (winding number):

XHlEZ
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Braid groups and low-dimensional topology

Braid groups
Let's go back to configurations of points in the plane: C,(R?).

Fix a configuration ¢y and look at loops of configurations starting
and ending at ¢p.
~> the braid group B, = 71'1(C,,(R2)) (see last week’s talk by P. Bellingeri)

Each loop in By is fully described by an integer (winding number):

XHlEZ

For n > 3, loops in B, become much more complicated, for example:




Connections to low-dimensional topology
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Braid groups and low-dimensional topology

Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

CPeOBnesInR BEa000aE
SUEDOBEEEDEOOE 6HOON
EEHDHRR R R R FIER 0
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Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

Ob& @@@@@@@@@@Q@@@@@
@@@ @@@@@@@®;@ﬂ DO
BEHDHRBERRE P S

Any braid can be closed to form a link:

cl . B
| By —— {links}

n>1
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Braid groups and low-dimensional topology

Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

Ob& @@@@@@@@@@@@@@@@
DD PSP BVOESH OO
DB R RRB S b4

Any braid can be closed to form a link:

| By —— {links}
n>1

Theorem (Alexander ):
e Every link is c/(3) for a braid 5.
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Braid groups and low-dimensional topology

Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

Ob& @@@@@@@@@@@@@@@@
DS PSP BVOESH OO
DB R RRB S b4

Any braid can be closed to form a link:

| By —— {links}
n>1

Theorem (Alexander and Markov):
e Every link is c/(3) for a braid 5.
o If C/(ﬁl) = C/(ﬂg) then By ~~ [ via

the Markov moves.
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Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

OGBSO G SRDOIDDHE
SUHVPRVEELHRIOBG HHOID

Any braid can be closed to form a link:

| By —— {links}

n>1

Theorem (Alexander and Markov): LU L 1y
e Every link is c/(3) for a braid 5. i !

L~ 1111 N e
o If el() = el(%) then 51~ fpvia |80 Te L[] [

the Markov moves.
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Braid groups and low-dimensional topology

Connections to low-dimensional topology

A lot of low-dimensional topology is concerned with knots and links
— collections of closed loops in Euclidean space R3. For example:

Ob& @@@@@@@@@@@@@@@@
DS PSP BVOESH OO
DB R RRB S b4

Any braid can be closed to form a link:

| By —— {links}
n>1

Theorem (Alexander and Markov): LU L 1y
e Every link is c/(3) for a braid 5. -

B8 -~ B
o If cl() = cl(B) then fy ~ fyvia [0 L1 []]L

the Markov moves. T T
Understanding braids and Markov moves ~- understanding links.






We can enrich C,(R?) by adding some extra data:




We can enrich C,(R?) by adding some extra data:
® 3 field defined on the complement of the configuration
® with specified charge (local behaviour) near each of the n points




We can enrich C,(R?) by adding some extra data:
® 3 field defined on the complement of the configuration
® with specified charge (local behaviour) near each of the n points

These are Hurwitz spaces: Hurg ,
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Hurwitz spaces and number theory

We can enrich C,(R?) by adding some extra data:
® a field defined on the complement of the configuration
® with specified charge (local behaviour) near each of the n points

These are Hurwitz spaces: Hurg ,

Theorem (Ellenberg, Venkatesh and Westerland 2016):
Solve a deep question in analytic number theory by understanding
how the shape of the space Hurg , changes as n — oo.

(Here, shape means the number of d-dimensional holes for each d > 0.)



Magnetic monopoles




Magnetic monopoles

The Maxwell equations of electromagnetism are asymmetric.
There is a symmetrised version — and if we set the magnetic charge
density to zero, we get back the classical (asymmetric) version.
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Magnetic monopoles

The Maxwell equations of electromagnetism are asymmetric.

There is a symmetrised version — and if we set the magnetic charge
density to zero, we get back the classical (asymmetric) version.
Dirac found (singular) solutions with non-zero magnetic charges —
these are magnetic monopoles.

(Singular = undefined on some 1-dimensional subsets of R?)
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Magnetic monopole moduli spaces

Magnetic monopoles

The Maxwell equations of electromagnetism are asymmetric.

There is a symmetrised version — and if we set the magnetic charge
density to zero, we get back the classical (asymmetric) version.
Dirac found (singular) solutions with non-zero magnetic charges —
these are magnetic monopoles.

(Singular = undefined on some 1-dimensional subsets of R?)

Bogomolny equations: a different model for magnetic monopoles.
Non-singular solutions (defined on all of R®) behave at large distances
like Dirac’s singular solutions of the symmetrised Maxwell equations.
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Magnetic monopoles

The Maxwell equations of electromagnetism are asymmetric.

There is a symmetrised version — and if we set the magnetic charge
density to zero, we get back the classical (asymmetric) version.
Dirac found (singular) solutions with non-zero magnetic charges —
these are magnetic monopoles.

(Singular = undefined on some 1-dimensional subsets of R?)

Bogomolny equations: a different model for magnetic monopoles.
Non-singular solutions (defined on all of R®) behave at large distances
like Dirac’s singular solutions of the symmetrised Maxwell equations.

Magnetic monopole moduli spaces

For a positive integer n,
M,, = all solutions to the Bogomolny equations of total charge n
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Magnetic monopoles

The Maxwell equations of electromagnetism are asymmetric.

There is a symmetrised version — and if we set the magnetic charge
density to zero, we get back the classical (asymmetric) version.
Dirac found (singular) solutions with non-zero magnetic charges —
these are magnetic monopoles.

(Singular = undefined on some 1-dimensional subsets of R?)

Bogomolny equations: a different model for magnetic monopoles.
Non-singular solutions (defined on all of R®) behave at large distances
like Dirac’s singular solutions of the symmetrised Maxwell equations.

Magnetic monopole moduli spaces

For a positive integer n,
M,, = all solutions to the Bogomolny equations of total charge n

M; =2 R3 x S! (“thickened circle”)
M, is 4n-dimensional






Theorem (Donaldson 1984):
The magnetic monopole moduli space M, is a configuration space.
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Theorem (Donaldson 1984):
The magnetic monopole moduli space M, is a configuration space.
Precisely, it is the configuration space of:

® n red points in R? that are allowed to collide,

® 1 blue points in R? that are allowed to collide,

® but red points are not allowed to collide with blue points.
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Magnetic monopole moduli spaces

Theorem (Donaldson 1984):
The magnetic monopole moduli space M, is a configuration space.
Precisely, it is the configuration space of:

® n red points in R? that are allowed to collide,

® 1 blue points in R? that are allowed to collide,

® but red points are not allowed to collide with blue points.
For example:
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Magnetic monopole moduli spaces

Theorem (Donaldson 1984):
The magnetic monopole moduli space M, is a configuration space.
Precisely, it is the configuration space of:

® n red points in R? that are allowed to collide,

® 1 blue points in R? that are allowed to collide,

® but red points are not allowed to collide with blue points.
For example:

30 2

Note: In order to get a configuration space model in R?, Donaldson’s theorem

breaks the symmetry of R3 by choosing a way of splitting it into R? and R.



A consequence of Donaldson’s theorem:
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Magnetic monopole moduli spaces

A consequence of Donaldson's theorem:

Theorem (Cohen, Cohen, Mann, Milgram 1991):

Ha(M,) 2 Hg(Con(R?)) for every n>1and d > 0

The magnetic monopole moduli space M, and the configuration space Cp(R?)
have the same number of d-dimensional holes, for each d.
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Magnetic monopole moduli spaces

A consequence of Donaldson's theorem:

Theorem (Cohen, Cohen, Mann, Milgram 1991):
Ha(M,) 2 Hg(Con(R?)) for every n>1and d > 0
The magnetic monopole moduli space M, and the configuration space Cp(R?)

have the same number of d-dimensional holes, for each d.

More recently:

The space M, is non-compact — can it be compactified?
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A consequence of Donaldson's theorem:

Theorem (Cohen, Cohen, Mann, Milgram 1991):
Ha(M,) 2 Hg(Con(R?)) for every n>1and d > 0
The magnetic monopole moduli space M, and the configuration space Cp(R?)

have the same number of d-dimensional holes, for each d.

More recently:
The space M, is non-compact — can it be compactified?

Theorem (Kottke, Singer 2022):
M, can be (partially) compactified using configuration spaces.

(Kottke-Singer)
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Magnetic monopole moduli spaces

A consequence of Donaldson's theorem:

Theorem (Cohen, Cohen, Mann, Milgram 1991):
Ha(M,) 2 Hg(Con(R?)) for every n>1and d > 0
The magnetic monopole moduli space M, and the configuration space Cp(R?)

have the same number of d-dimensional holes, for each d.

More recently:
The space M, is non-compact — can it be compactified?

Theorem (Kottke, Singer 2022):
M, can be (partially) compactified using configuration spaces.
Precisely, the compactification consists of configurations of:
® k < n points in R3 that may not collide,
® an additional “non-local” parameter in M., for each point
e ci+---+ck=n
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e Configurations of point-particles in Euclidean space: C,(RY)

® For configurations of discs, there are phase changes as the discs’
radius changes.

L ® C,(R?) ~ braid groups B, ~+ knots and links (Markov moves)

® Enrichment of C,(R?) ~» Hurwitz spaces Hur{ ,, ~ related to
number theoretical questions as n — oo.

® Magnetic monopole moduli spaces ~+ configuration models
~~ partial compactifications by configuration space models

Summary
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Summary

e Configurations of point-particles in Euclidean space: C,(RY)

® For configurations of discs, there are phase changes as the discs’
radius changes.

L ® C,(R?) ~ braid groups B, ~+ knots and links (Markov moves)

® Enrichment of C,(R?) ~» Hurwitz spaces Hur{ ,, ~ related to
number theoretical questions as n — oo.

® Magnetic monopole moduli spaces ~+ configuration models
~~ partial compactifications by configuration space models

Summary

Thank you for listening!
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Image credits: robot arm - magnetic monopole image - 3-strand braid - table of knots


https://www.sciencedirect.com/science/article/pii/S2405844023000749
https://physicsworld.com/a/magnetic-monopoles-seen-in-the-lab/
https://www.pngwing.com/en/free-png-bxazy
http://katlas.org/wiki/The_Rolfsen_Knot_Table_Mosaic
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