Séminaire GT3 IRMA Strasborng 13 February 2024

... and the homomorphisms :

$$Mod(\Sigma_{1,2}) \longrightarrow Mod(\Sigma_{3,4}) \longrightarrow \longrightarrow Mod(\Sigma_{2^{n}-1,2^{n}}) \longrightarrow \dots$$

$$\frac{\text{Thm}}{\text{Haver}^{85}}$$

$$H_{i}(\text{Mod}(\Sigma_{g,b})) \text{ is independent of } g,b \text{ Men } g \gg i$$

$$\text{Tr particular He megs above induce iso. on Hi when } g \gg i.$$

~ J" stable homology"

Then (Madden-Weiii '02)
The stable homology is isomorphic to
$$H_{**}(\mathcal{N}_{o}^{o}MTSO(21))$$
.
In particular, with \mathcal{Q} coeffs, the stable cohomology is
 $\mathcal{Q}[x_{1}, x_{2}, x_{3}, ...,]$ $|x_{i}| = 4i$.
Miller - Monita - Mumbed classes

Q: Are the (duals of the) MMM classes non-O in Hx (Mod (Ex)) or Hx (Mod (Ex))? full mapping class group

Mare generally - He same question for any infinite type surface S.

About H*(Mod(S)):

- The EP. We '24] Hi(Mod (20)) is not countably generated VizI.
- $H_i(Mod(\Sigma_e))$ is unknown, bet: <u>Then</u> [P. - Wu'22] $H_i(Mod(\Sigma_e \setminus p^+)) \cong \begin{cases} \mathbb{Z} & i \text{ even} \\ 0 & i \text{ odd} \end{cases}$

By classification,
$$\Sigma \cong Z_{g,b}$$
 for $g > 0$, $b \ge 1$
Step II Reduction to $b = 1$.
Step Z Proof when $b = 1$.

Styp 🔟

Let i >1 and choose h> = i.

Hence (*) = 0.

Step
$$\boxed{\mathbb{Z}}_{.}$$

 $genus(S) = \infty$
 $\Sigma_{g,1} \cong \mathbb{Z} \longrightarrow S$ compact subsurface.

Definition Grid surface:

Since genus
$$(S) = \infty$$
, the inclusion $\Sigma \longrightarrow S$ extends
to a proper embedding $Gr(\Sigma) \longrightarrow S$.

Hence we have a factor isotron of
$$Mod(\Sigma) \longrightarrow Mod(S)$$
 into
 $Mod(\Sigma) \xrightarrow{(*)} Mod(Gr(\Sigma)) \longrightarrow Mod(S)$

The proof roduces to:

$$\frac{\mathcal{H}(n,j)}{(n \ge 0, \ j \ge 0)} \xrightarrow{\text{The map } Mod(\Sigma)} \xrightarrow{i_n} Mod(Gr_{\ge n}(\Sigma))$$

$$(n \ge 0, \ j \ge 0) \qquad [4] \longrightarrow \qquad [4] \text{ on } \Sigma_{opn}$$

$$id \text{ elsenhere}$$

 $\begin{array}{c}
\overline{j=0} \\
\overline{j=0} \\
\overline{j=0} \\
\overline{j=0} \\
\end{array}$ $\begin{array}{c}
Nod(\Sigma) \times Mod(\Sigma) & \underbrace{\mathcal{T}_{n} \quad \mathcal{Y}_{n}} \\
Nod(\Sigma) \times Mod(\Sigma) & \underbrace{\mathcal{T}_{n} \quad \mathcal{Y}_{n}} \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\mathcal{T}_{n} \quad \mathcal{Y}_{n}} \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \varphi_{2} \quad \dots \\
(\varphi_{1}, \varphi_{2}) & \underbrace{\varphi_{1} \quad \varphi_{2} \quad \varphi_{2}$

$$\frac{BONUS}{C} = B genus(S) \in [1, \infty)$$

Suppose genus
$$(S) = g \in [1,\infty)$$
.
• $\Sigma_{g,1} \hookrightarrow S$ \longrightarrow $Mod(\Sigma_{g,1}) \rightarrow Mod(S)$
• $\left[\text{filling in all "ends" of } S \right] \cong \Sigma_g \longrightarrow Mod(S) \rightarrow Mod(\Sigma_g)$

(Freudenstal compactification)

 \bigcirc

$$If S = (\mathbb{R}^{2}, \mathbb{N}) # \cdots # (\mathbb{R}^{2}, \mathbb{N}), \text{ then } Mod_{e}(S) \longrightarrow Mod(S)$$

$$k$$

înduces { the zero map on
$$\widetilde{H}_{st}$$
 if $k=1$
a non-zero map on \widetilde{H}_{s} if $k \geqslant 4$.

$$\frac{k=1}{\mathbb{R}^2 \setminus \mathbb{N}} \cong \mathbb{R}^2 \setminus \mathbb{Z}^2$$

One can use a "guid surface argument" like in the proof for
genus (s) = ∞ above.

K7/4

$$\frac{Proof}{F}: \quad Euclide X = \sum_{o, k} \longrightarrow S \quad so \quad Shert each \quad continuous of \quad S \in \Sigma_{o, k}$$
$$contains \quad one \quad point \quad of \quad A \subseteq Eucles(S).$$
$$\longrightarrow Mod(S)$$

Since $A \subseteq Ends(S)$ is top. distinguished, we have $Mod(S) \longrightarrow Mod(S \cup \{adl ends except A\})$ $\prod_{Mod}(S^2 \setminus k points)$

Hence (**) is non-O on
$$(-)^{ab} = H_1$$
 whenever:
 $(k \text{ even}): 2 \neq 0 \mod 2(k-1) \longrightarrow \text{ iff } k \geqslant 4$
 $(k \text{ add}): 2 \neq 0 \mod (k-1) \longrightarrow \text{ iff } k \geqslant 5$