Do the dual MMM classes vanish in the big MCG?

Joint work with Xiaolei Wu Based on arxiv: 2405.03512 WYRM Iaşi 24 May 2024

S - connected ovientable surface
$$(\partial = \phi)$$
 of ∞ genus.

Examples

S. ...

Se $= \partial \left(\text{reg. nbhd. of} \right)$ take # T^2 at each vertex

Se d (reg. ubld. of)

take # T2 at each

vertex of subtree

Deb puncture = isolated point of Ends (S) \(\text{Ends}_{ip}(S) \)
$$p(S) = \# \text{ of punctures } \in \mathbb{N} \cup \{\infty\}$$

$$mixed end = point of Ends_{ip}(S) \text{ that is a}$$

$$Minit of punctures$$

Big mapping class groups

$$M_{\text{od}_{f}}(S) := \left\{ [\varphi] \in M_{\text{od}}(S) \mid S_{\text{vpp}}(\varphi) \subseteq \Sigma \subset S \right\}$$

$$Q(3)$$
: How does le induced map $H_{*}(Mod_{+}(S)) \longrightarrow H_{*}(Mod(S))$ act? Is it zero?

$$H_{*}\left(Mod_{\mathsf{f}}(s)\right) \cong \begin{cases} H_{*}\left(\Omega_{\circ}^{\infty}M\mathsf{T}so(z) \times \mathcal{B}(\mathfrak{L}^{'}z\,\mathcal{G}_{\mathsf{p}(s)})\right) & \mathsf{p}(s) < \infty \\ H_{*}\left(\Omega_{\circ}^{\infty}M\mathsf{T}so(z) \times \Omega_{\circ}^{\infty}\Sigma^{\infty}(\mathbb{C}P_{*}^{\omega})\right) & \mathsf{p}(s) = \infty \end{cases}$$

Thm [Calegori-Chen'21]
$$S = S_e$$
 $H_1 = 0$ $H_2 \cong \mathbb{Z}_2$

Thin [Domat '20]
$$S = S_{\infty}$$
 $H_1 \supseteq \bigoplus_{c} Q_{c} = (R)$

$$0 S = S_{\infty} \qquad H_{*} 2 \Lambda^{*} \left(\bigcirc Z \right)$$

②
$$S = S_e - point$$
 $H^* \cong \mathbb{Z}[e]$ $lel = 2$

Euler class of the central ext.

Q(3): image
$$(H_{\mathcal{R}}(Mod_{\mathcal{F}}(S)) \rightarrow H_{\mathcal{R}}(Mod(S))) = ?$$

Thm [P. - Wn'24]

Take coests in a field.

- Any class with support in conjust ∑ C S vanishes in H_{*} (Mod (S))
 L> Ke MMM classes all vanish.
- . The image I(S) is precisely:

$$\begin{array}{c|cccc}
\rho(S) & T(S) \\
\hline
O & O \\
E_{1,\infty}) & H_{*}(B(E^{1} \circ G_{p(S)})) \\
\infty & O & \text{if } \exists \text{ mixed end} \\
? & \text{if } \sharp mixed end}
\end{array}$$

Proof outline

=> no non-0 H* classes supported on Eg., -> S

② if
$$\exists nn - 0 \text{ H}_{*}$$
 class supported on $\Sigma_{g,b} \longrightarrow S$
 $\int hom. stab^{\gamma} trick$

Hen I un-O H* class supported on $Z_{h,1} \longrightarrow S$ for $h \geqslant g + \frac{3}{2}i$

Question

 \exists spectrum \times : $H_*(Mod(S)) \cong H_*(\mathfrak{N}_o^o \times)$?

Ruks

- . Madsen-Weiss '07 prove this for $Mod_{f}(s)$ then p(s) = 0 with X = MTSO(2)
 - . Szymik-Wahl 17 prove this for Higman-Thompson groups Vn,v with X = Moore spectrum of $\mathbb{Z}_{(n-1)}$.
 - . * would have to depend strongly on S.