On the Hx of the MCG of the Loch Ness monster

Joint work with Xiaslei Win Based on arXiv: 2211, 07470 2212. 11942 2405.03512

Topology ceminar Aberdeen

27 November 2024

Loch Ness marster:

 $Mod(L) = \pi_{a}$ Homeo⁺ (L) $Mod_{n}(L) = \{ [\varphi] \in Mod(L) \mid \varphi \text{ has compact support} \}$ \cong colin Mod $(\Sigma_{3,1})$ Then $(Maden-Weris)$. $H_*Msd_c(L) \cong H_*(\Lambda^{\infty}_{c}MTso(2))$ · vationally gen. by duals of monomials in MMM classes $QLx_{1}, x_{2}, x_{3}, ...$ ^{*}

$$
\underbrace{Q1}_{\underline{Q2}_{\cdot}} \qquad \text{What is } H_{*} \text{ Mod}(L)?
$$
\n
$$
\underbrace{Q2}_{\cdot} \qquad \text{Under is } Je \quad \text{image of} \quad H_{*} \text{ Mod}_{c}(L) \quad \text{in} \quad H_{*} \text{ Mod}(L)?
$$

 (p_{avkal}) Al

Thm (A)	(P. - Wu'22)			
H. Mod(L)	\supseteq (B) Z	$\forall i > 0$		
\bigtriangleup Ends	$\frac{7}{2}$	20	H, Mod (L)	\supseteq (B) Q
\bigtriangleup rank: No. known, torsion.				

 $\underline{A2}$

Thm P ^W ²⁴ With field coefficients the image is zero

$$
\begin{array}{lll}\n\text{Covo}: & dud \quad \text{MMM}-class & \text{VanD}h \text{ in } H_{*} \text{Mod}(L) \\
\text{Rmk}: & \text{#} & \text{Image} & \text{B} & \text{Cmb} & \text{C} & \text{coeff} \\
 & & & \text{(consider)} & \text{S'} \longrightarrow \text{B}(\text{A/z})\n\end{array}
$$

$$
[Keckjártó, Richard]
$$
\n
$$
S is clearly fed up to home x by
$$
\n
$$
g(S) = max \{g | Z_{g,1} \cup S\} \in N \cup \{\infty\}
$$
\n
$$
g(S) = \overline{S} - S \qquad \left(\leq s \text{by and } S \in \text{Cont } \}
$$
\n
$$
E(g) = \{e \in S(S) | S \cup \{e\} \text{ is not a mfl } \}
$$

Examples

$Q1'$:	What is $H_{*}Mod(S)$?	
• Unknown in most <i>cares</i> .		
• Very <i>senslike</i> to <i>de</i> through <i>de</i> $E(S)$.		
7 H _# Mod (Le - pt) $\equiv \begin{cases} Z & \text{# even} \\ 0 & \text{# odd} \end{cases} \equiv H_{*} Mod(\mathbb{R}^{2} \cdot e)$		
60m:	H ₁ Mod(S ³ ·e) = O	LVlamis, <i>Calegavi-Cden</i>
H ₁ Mod(Le) = O		
60m:	H ₁ Mod(Le) = O	
60m:	H ₁ Mod(Le) = O	
60m:	Mod(Le) = O	
60m:	Mod(Le) = O	
60m:	Mod(Le) = O	

Q2': In general, Mod_c(S)
$$
\neq
$$
 colim (Mod (Z))
 $\sum_{\varphi t \in S} (Mod(S))$
Mod_c(S)

Example: S = 1-punctured disc.

Lamma: *can* and *ex* lens
\n
$$
O \rightarrow \bigoplus Z \longrightarrow \widetilde{Mod}_{c}(S) \longrightarrow Mod_{c}(S) \rightarrow I
$$
\n
$$
P(s)
$$
\n
$$
\begin{array}{ll}\n\mathcal{Q}: \qquad \text{What is } \mathcal{Q}: \qquad \text{What is } \
$$

Thum (8) (9a.) (P-Wa')24)
• If $g(S) = \infty$ div $\tilde{\pi}(S) = O$ (with field coeff_S).
• If $g(S) = \infty$
• and $\#P(S) \in L^1, \infty$) then $\tilde{\pi}(S) \supseteq \left\{ \begin{array}{ccc} \mathbb{Z} & \ast & \text{and} \\ 0 & \ast & \text{and} \end{array} \right\}$
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)
• $\operatorname{Proof of } \mathbb{Z}$ from (9)

Exercise	\exists a <u>conbinum</u> <u>co</u> leacha $\{X_a \subseteq N \mid a \in \mathbb{R}\}$ so that
(*)	• $all X_a$ are <u>infinite</u>
• $all X_a \cap X_b$ are <u>finite</u>	

Construction:

$$
\bigoplus_{\alpha \in \mathbb{R}} \mathbb{Z} \xrightarrow{\mathbf{f}(X_{\alpha})} \text{Mod} (L) \xrightarrow{\text{deck}} \mathbb{F}(X_{\alpha}) - f_{\alpha}(X_{\alpha})^{\alpha} \qquad \text{cpt support}
$$
\n
$$
\bigoplus_{\alpha \in \mathbb{R}} \mathbb{Q} \xrightarrow{\theta} \text{Mod} (L)^{\text{ob}} \qquad \qquad \mathbb{F}(\text{K}_{\alpha}) - f_{\alpha}(X_{\alpha})^{\alpha} = 0
$$
\n
$$
\bigoplus_{\alpha \in \mathbb{R}} \mathbb{Q} \xrightarrow{(\frac{1}{n})_{\alpha} \longmapsto [\hat{f}_{\alpha}(X_{\alpha})]}
$$
\n
$$
\text{Mod} (L)^{\text{ob}} \qquad \qquad \mathbb{F}(\text{K}_{\alpha}) - f_{\alpha}(X_{\alpha})^{\alpha} = 0
$$

$$
(*)
$$
 + [Domain'20] \angle [Bestvina - Brombeg - Fýivana'15]
\n \Rightarrow Θ is injætive
\n \Rightarrow Θ is injærbre
\n \Rightarrow A admit a retraction.
\n \Rightarrow Π

Runk	$H^c(\bigoplus_{\alpha} \mathbb{Z})$	$\bigoplus_{\alpha=1}^{\infty} \bigoplus_{\alpha=2}^{\infty} \mathbb{Z}$	$\bigoplus_{\alpha=1}^{\infty} \bigoplus_{\alpha=2}^{\infty} \mathbb{Z}$
\n $\bigoplus_{\alpha=1}^{\infty} \mathbb{Z}$ \n	\n $\bigoplus_{\alpha=2}^{\infty} \mathbb{Q}$ \n	\n $\bigoplus_{\alpha=2}^{\infty} \mathbb{Q}$ \n	

Proof of Thm (B)
\n
$$
\begin{pmatrix}\n\Sigma \text{ compact } \subseteq S \text{ or } \text{gems} \\
\Rightarrow H_* \text{ Mod}(\Sigma) \longrightarrow H_* \text{ Mod}(S) \\
\text{is zero with field coefficient}\n\end{pmatrix}
$$

$$
\text{2) extend } \Sigma' \hookrightarrow S
$$
\n
$$
\downarrow \text{b} \quad \text{Grid} \quad (\Sigma') \longmapsto S \qquad (\text{proper embedding})
$$

This induces (i?1):

$$
\Rightarrow
$$
 enough to show that (*) is O.

3 prove this via a 2-din "infinite iteration trick"

- . [Varadargan, Berrick] prove olat pseudo-mitotic (binate) groups are acyclic via a 1-dim. "infinite iteration trick".
- . Here we veguive field coeffs need natural $splifkry$ in the Künneth SES.

Proof of Tim C

$$
P_{\text{vof a}}f \text{ Thm } \odot \qquad (H_{*} \text{ Mod } \text{CR}^{2} \backslash e) \cong \begin{cases} z & * \\ 0 & * \text{ odd} \end{cases}
$$

$$
\bigcirc \rightarrow \mathbb{Z} \longrightarrow \text{Mod}(\mathfrak{D}^{\mathfrak{e}} \setminus \mathfrak{C}) \longrightarrow \text{Mod}(\mathbb{R}^{\mathfrak{e}} \setminus \mathfrak{C}) \rightarrow 1
$$

$$
\frown \qquad \qquad \text{Example 4.} \quad \text{Note:} \quad \text{Mod} \left(\text{D}^2 \text{ve} \right) \quad \text{is angle.}
$$

$$
N_{\text{ode}} \text{ that } \left(\frac{\mu}{N}e\right)^{+} \cong e
$$

e I R

Can use 1-dim infinite iteration trick". Key input needed is othert Mod $(E) \longrightarrow Mod(E)$ $is a$ H_{\neq} - isomorphism

Note that $e_{\perp}e \cong e$.

 \sim \sim \approx \sim

Hence hom. stability => Hx-isomorphism.

BONUS' :
$$
\frac{\text{Addendum} + \text{Num}(\overline{A})}{H_* \text{Mod}(\mathbb{R}^2 \cdot M)} \supseteq \Lambda^*_{\mathbb{Z}}(\overline{\varphi}z)
$$

Every based houses of \mathbb{R}^2 on presences π , (LIN) $\triangleleft \pi$, (\mathbb{R}^2 on)
and hence lifts uniquely to a based houso. of LIN. Lemma

Then
$$
poss
$$
 $\frac{1}{1} \rightarrow m_1 (\mathbb{R}^2 \cdot \mathbb{N})$ $\sqrt{1}a$
\n $1 \rightarrow m_1 (\mathbb{R}^2 \cdot \mathbb{N}) \rightarrow Mod_{*} (\mathbb{R}^2 \cdot \mathbb{N}) \rightarrow Mod(\mathbb{R}^2 \cdot \mathbb{N}) \rightarrow 1$
\n $lim_{\epsilon \rightarrow 0} \mathbb{E}_{\infty}$
\n sum_{rankable}

BONUS²: 2-dim. ao iteration trick (from proof of Thum ®)

$$
genus(S) = \infty
$$

 $\sum_{g,1} \approx \sum \longrightarrow S$ *compact subsw* face.

Definition	Grid surface:																																																																	
$G(z) =$	$\frac{1}{2}$	Q	<																																																															

Since genus
$$
(S) = \infty
$$
, the inclusion $\Sigma \hookrightarrow S$ extends
to a proper embedding $G(Z) \hookrightarrow S$.

Hence we have a factorisation of $Mod(\Sigma) \rightarrow Mod(S)$ into

$$
Mod(\Sigma) \stackrel{(\ast)}{\longrightarrow} Mod(G(\Sigma)) \longrightarrow Mod(S)
$$

$W_{1, w}$	$M_{0}d(G_{2w}(z))$	
$M_{0}d(z) \longrightarrow Mod(z) \times Mod(z)$	W_{2w}	$Mod(G_{2w}(z))$
$i_{w1} \times \Psi_{1,w}$	Re	
i_{w2}	$Mod(G_{2w}(z))$	
$Mod(G_{2w}(z)) \times Mod(G_{2w}(z))$	$Mod(G_{2w}(z))$	
$det(G_{2w}(z))$	$Mod(G_{2w}(z))$	
lim	$det(G_{2w}(z))$	$lim_{k \to \infty} \int (Mod(G_{2w}(z)))$
lim	$det(G_{2w}(z)))$	$lim_{k \to \infty} \int (Mod(G_{2w}(z)))$
lim	$det(G_{2w}(z)))$	$lim_{k \to \infty} (dim_{k}k)$
det	$lim_{k \to \infty} \int (Mod(G_{2w}(z)))$	$lim_{k \to \infty} (dim_{k}k)$
det	$lim_{k \to \infty} (dim_{k}k)$	
$lim_{k \to \infty} (dim_{k}k)$	$lim_{k \to \infty}$	

 \Box

$$
\underline{\text{BONUS}}^3
$$

$$
\underline{\text{Mose oletails on the homological stability proof.}} \qquad (\text{Su. Tum} \odot)
$$

$$
Mod\left(\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\\ \end{array}\end{array}\end{array}\end{array}\right)\end{array}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{\begin{array}{c}\begin{array}{c}\begin{array}{\end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{c}\begin{array}{\begin{array}{c}\begin{array}{c}\end{array}\\ \end{array}\end{array}\end{array}\end{array}\begin{array}{\begin{array}{}\begin{array}{\end{array}\\ \end{array}\end{array}\end{array}\begin{array}{\begin{array}{ccc}\begin{array}{\end{array}\end{array}\end{array}\begin{array}{\begin{array}{c}\begin{array}{\end{array}\\ \end{array}\end{array}\end{array}\begin{array}{\begin{array}{\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\end{array}\begin{array}{\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin{array}{\end{array}\begin
$$

Idea of proof shot this is homologically stable:

Apply the machine of
$$
LRWJ
$$
 to:
\n $M_2^{\infty} = 3$ voopoid of $Com.$, orientable surfaces S
\n g haaeomarphisms
\nbraided monoidal under H
\nGails cancellation \rightarrow bix family by passing to another
\ncategory with object s = words on
\n $A = D^2$
\n $X = D^2 \cdot C$

Machine of [RWW] + tricks => enough to prove high-connectivity of:

We can also define: $TC_{\infty}(\mathbf{A},\mathbf{X})$ same vertices $\{\alpha_0, ..., \alpha_p\}$ simplex if . disjoint except at $*$. exterior \cong \times

This is
$$
\infty
$$
-dim,
but has 8 km. (u-2) - shellatan as TC, (A, X) .
(only clopen subsets of C are \emptyset and C)

Proposition	TC _{co} (A,X)	is	controchble
Follows idea: form He proofs of $Cszynik-Wahl$,	Mo		
proved that $H_*(v) = O$ via hm $shab$. $SnV \rightarrow V \rightarrow V \rightarrow W$.			
Example 1	Image 1		

BONUS⁴:
\n
$$
\frac{1}{\pi} \int_{\text{then}}^{\text{de}} \text{d}y \cot \frac{1}{x} = \frac{1}{\pi} \int_{\text{then}}^{\text{de}} \text{d}y = \infty \text{ and } \frac{\#P(s) \in \Gamma, \infty}{\#P(s) \times \Gamma}
$$
\n
$$
= \lim_{\text{then}} \frac{\left(H_{\#} M_{\text{ae}}(s) \rightarrow H_{\#} M_{\text{ae}}(s) \right)}{\left(H_{\#} M_{\text{ae}}(s) \rightarrow H_{\#} M_{\text{ae}}(s) \right)}
$$

Def [Bodgheime - Tillmann in Sir type case]

\n
$$
\text{Mod}(S) \cong \text{Mod}(\hat{S}, P(S))
$$
 $\hat{S} = S \cup P(S)$ \n

\n\n $\cong \pi_{S} \text{Homeo}^{+}(\hat{S}, P(S))$ $\cong \text{Homeo}^{+}(\hat{S}, P(S))$ \circ [Hamstron 66] $\sin \theta_{P}$ \n

\n\n $\cong \text{Homeo}^{+}(\hat{S}, P(S))$ \circ [Mamstron 66] $\sin \theta_{P}$ \n

\n\n $\cong \text{Longon} \text{Mod}(\hat{S}, P(S))$ \circ [Mams from 66] $\sin \theta_{P}$ \n

\n\n $\cong \text{Mod}(\hat{S}, P(S))$ \circ [Monsophol 66] $\sin \theta_{P}$ \n

$$
\simeq \mathcal{D}(\mathbb{R}^+(\hat{S}, P(S))
$$
\n
$$
\downarrow
$$
\

$$
\beta \text{ Mod}(S) \longrightarrow \beta(S' \cup S_p)
$$

$$
\begin{array}{ll}\n\text{Obs} & \text{Reskrating} & \text{to} & \text{B} \text{Mod}_{c}(s) \\
& \text{B} \text{Mod}_{c}(s) & \xrightarrow{(\ast)} (\text{BS}^{\prime})^{\prime} \\
& \downarrow & \downarrow & \downarrow \\
& \text{B} \text{Mod}_{c}(s) & \xrightarrow{(\ast)} \text{BS}^{\prime} \text{SO} \text{ and } \text{SO} \text{
$$

$$
B \text{Mod}(S) \longrightarrow B(S^{1} \rightarrow S)
$$

Thm [Bödgheine - T; Ilmam'01 (+ Modelsen-Weiss'07)]
\n
$$
BMod_{c}(S) = split as 3L_{o}^{\infty}MTSO(2) \times (BS')^{o} on H_{*} / + construction
$$
\n
$$
(*) is 3ke projection onto the second factor
$$

Covo (*) has a section on Hx

