Homological stability for configuration spaces on closed manifolds I

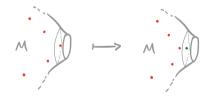
GeMAT seminar IMAR 10 April 2025

$$M$$
 - connected manifold (without boundary) of dim $(M) = d \ge 2$
 $C_n(M) := space of n-point subsets of M$
topologised as a subgrotient of M^n

Theorem [Amol'd, McDiff, Segal, 70's] "M is an open
manifold"
If
$$M = int(\overline{M})$$
 Mere $\partial \overline{M} \neq \phi$
Hen \exists maps $C_n(M) \xrightarrow{S} C_{nei}(M)$
inducing $H_i(C_n(M)) \cong H_i(C_{nei}(M))$ for $n \geq 2i$.

 $C_n(M) \xrightarrow{s} C_{n+1}(M)$

Push the configuration away from a collar neighbourhood of DM.
Add a new point to the configuration in this collar.



Q: What about Non M is closed (i.e. compact)?

A: Homological stability is fulse!

E.g.
$$\pi_1(C_n(S^2)) = B_n(S^2)$$

[Foddl - van Byskirk '62] \longrightarrow presentation
 $\Rightarrow H_1(C_n(S^2)) \cong \mathbb{Z}_{(2n-2)}$ for $n \ge 2$

More generally, [Cantero - P. ? 15]

$$H_{2d-1}(C_n(S^{2d})) \cong \boxed{\mathbb{Z}/(2n-2)} \quad \text{for } n \not + dd-2$$

$$f$$

$$depending$$

$$ady \text{ or } d$$

- (1) Stability holds with coeffs in F₂ [ML'88] [BCT'89] [RW'13]
 (2) Stability holds with coeffs in Q [C'12] [RW'13] [BM'14] [K'17] [RW'24]
 (3) Stability holds if dim (M) is odd [BCT'89] [RW'13] [CP'15] [KM'16] Sield coeff is and coeffs
- (4) Eventual periodicity holds with coeffi in Fp [CP'15] [N'15] [KM'16]

Today:

Theorem [Randal-Williams '13]

$$M - \alpha_{M}$$
 connected manifold
 $F - field$
Suppose eidler (1) $F = F_2$
(2) $F = Q$
(3) $\dim(M)$ is odd
Then $\dim_F H_i(C_n(M); F)$ is independent of n when $n \ge 2i$.

Proof
The mapping cone of
$$X \xrightarrow{f} Y$$
, then there is
a large exact sequence
 $\dots \longrightarrow H_{i} X \longrightarrow H_{i} Y \longrightarrow H_{i} C(f) \longrightarrow H_{i-1} X \longrightarrow H_{i-1} Y \longrightarrow \dots$
 $(W_{v}: H_{i}(-) = H_{i}(-;F))$

d= dim (M)

. Hence we have a LES :

· We can extract a SES :

$$0 \rightarrow \operatorname{coker}(S_{n}^{in}) \longrightarrow H_{i} C_{n}(M) \longrightarrow \ker(S_{n}^{i}) \rightarrow 0$$
Hence dim $H_{i} C_{n}(M) = \operatorname{dim} \ker(S_{n}^{i})$

$$+ \operatorname{dim} \operatorname{coker}(S_{n}^{in})$$
(†)

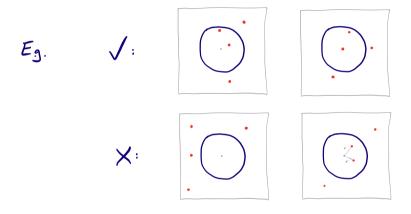
. Now suppose that the following square commutes:

Then it extends to a map of exact sequences:

Reminder: we want to prove that the mapping one of the indusion $C_n(M)$ point) $(-) C_n(M)$ is homology equivalent to $S_n^d C_{n-1}(M)$ point). 5

such that 0 in the point that we remove.

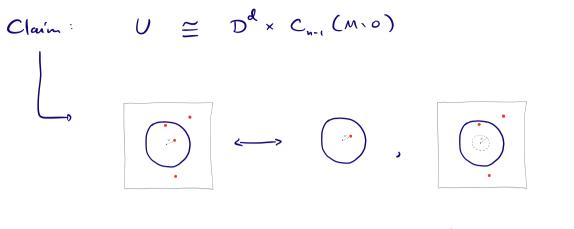
Let
$$U \subseteq C_n(n)$$
 be
 $U := \begin{cases} c = \{p_1, \dots, p_n\} \in C_n(n) \end{cases}$ $c \cap D^d \neq \phi$
 $c \cap D^d \text{ has a unique closest} \end{cases}$
point to $0 \in D^d$



Observation: C_n(Mio) and U farm an <u>open cover</u> of C_n(M).

Excision => mapping cone of
$$C_n(M \circ 0) \hookrightarrow C_n(M)$$

 $\int H_* - equivelent$
mapping cone of $C_n(M \circ 0) \cap U \longrightarrow U$



M×B₆() ≅ M×O

7

Moreover, this homeomorphism vestricts to

$$U_n C_n(M \circ 0) \cong (D^d \circ 0) \times C_{n-1}(M \circ 0)$$

 $\simeq S^{d-1} \times C_{n-1}(M \circ 0)$

Hence :

mapping cone of
$$C_n(M \circ 0) \hookrightarrow C_n(M)$$

 $\int H_{\star} - equivalent (excision)$
mapping cone of $C_n(M \circ 0) \cap U \hookrightarrow U$
 $\int H_{\star} - equivalent (identification above)$
mapping cone of $S^{d-1} \times C_{u-1}(M \circ 0) \hookrightarrow D^d \times C_{u-1}(M \circ 0)$
 $\int D^d \times C_{u-1}(M \circ 0)$
 $\int D^d \times C_{u-1}(M \circ 0)$.

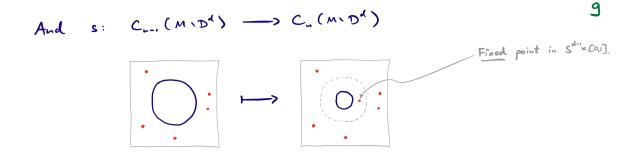
Obstruction to commutativity of (D)

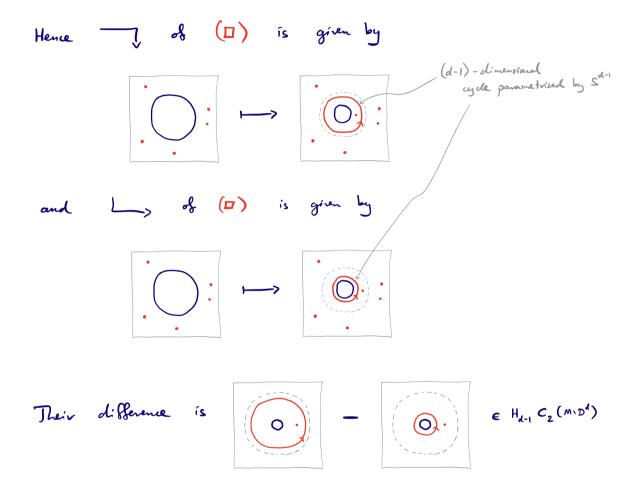
by taking $H_{i-1}(-)$ and restricting to one cummand in the Künneth decomposition on the LHS.

To describe this, replace
$$C_n(M \setminus pt) \simeq C_n(M \setminus D^d)$$

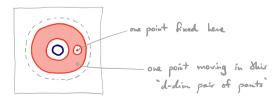
 $S^{d-1} \simeq S^{d-1} \times C_{0,1}$

$$Then \Delta: (S^{d-1} \times C_{0,1}) \times C_{n,1}(M \setminus D^{d}) \longrightarrow C_{n}(M \setminus D^{d}) \xrightarrow{Part d an} M + module \\ structure on \\ \underset{i}{\coprod} C_{n}(M \setminus D^{d}) \\ over Me + space \\ \underset{i}{\coprod} C_{n}(S^{d-1} \times C_{0,1}).$$





Consider the d-dim singular chain :



Its boundary gives she relation : <u>()</u>. = 0 Hence this is the obstruction to commutativity of ("). It is the image of the element Q & Hd., C2(Rd) $\frac{\|\|}{2[\mathbb{R}p^{d+1}]} \in H_{d-1}(\mathbb{R}p^{d+1}). \quad (*)$ By the previous argument, if this vanishes, then (=) commutes and ne get homological stability. If char(F)=2 den 2=0 so (*) vanishes. If d = dim (m) is odd then : . either than (F) = 2 by above $\cdot \text{ or } \operatorname{char}(\mathbb{F}) \neq 2 \longrightarrow H_{d-1}(\mathbb{R}P^{d-1};\mathbb{F}) \cong \operatorname{Tor}_{\mathbb{Z}}(\mathbb{Z}_{2},\mathbb{F}) = 0$ $(\bigcup_{(U\subset T)}) \longrightarrow \sqrt{2}$

However, if
$$F = Q$$
 and $d = dim(M)$ is even,
then $(*) = 2 \in Q = H_{d-1}(\mathbb{R}p^{d-1}; Q)$,
so (Q) does not commute.

Transfer maps
$$H_{i} C_{n}(M) \longrightarrow H_{i} C_{n-1}(M)$$

forget colours forget red point
 $C_{n}(M) \xleftarrow{} C_{n-1,1}(M) \xrightarrow{} C_{n-1}(M)$
 $N-1 \text{ blue points}$
 1 red point
 $N-sheeted conving$

Lemma (Dold '62)
With coefficients in Q, if M is an open manifold, then

$$(stab)_{*}$$
 transfer
 $H_i(C_n(M);Q) \longrightarrow H_i(C_n(M);Q) \longrightarrow H_i(C_n(M);Q)$

is an automorphism.

=) It is enough to prove that (with Q coeffer) the following 12 commutes:

$$H_{i-d} (C_{n-1}(M \setminus pt)) \xrightarrow{S_n^i} H_{i-1} C_n (M \setminus pt)$$

$$H_{i-d} (C_n (M \setminus pt)) \xrightarrow{S_{n-1}^i} H_{i-1} C_{n+1} (M \setminus pt)$$

$$H_{i-d} (C_n (M \setminus pt)) \xrightarrow{S_{n+1}^i} H_{i-1} C_{n+1} (M \setminus pt)$$

Proof:
"Stacking" thickened spheres
$$S^{d-1} \times E_{0,1}$$
 gives $\coprod C_n(S^{d-1} \times E_{0,1})$
the structure of an H-space, and gluing $S^{d-1} \times E_{0,1}$ to the
boundary of $M \cdot D^d$ gives $\coprod C_n(M \cdot D^d)$ the structure of an
H-module over it. On homology, we therefore have:
 $H_*(\coprod C_n(S^{d-1} \times E_{0,1})) \longrightarrow bigvaded ving$
 $H_*(\coprod C_n(M \cdot D^d)) \longrightarrow bigvaded module over it$

The hovizontal maps of (") are induced by this module structure : they are both multiplication by the element

$$[S^{d-1}] \in H_{d-1}(C_1(S^{d-1} \times Co_1 B))$$
 (in bigrading $(d-1,1)$)

 $\int \delta (\mathbf{p}') \quad \text{is given by}$ $(\mathbf{x} \mapsto \mathbf{cs}^{d-1}] \cdot \text{transfer}(\mathbf{x})$ $= \sum_{i=1}^{n} \mathbf{cs}^{d-1}] \cdot (\text{forget } i^{d} \text{ point } in \mathbf{x})$

$$\int ds (a') \text{ is given by}$$

$$X \longmapsto brancher (CS^{t+1}J \cdot X) = \sum_{i=1}^{n} CS^{t+1}J \cdot (Brock i^{n} pairt in X) + C0J \cdot X$$

$$Value [D] \text{ is the result of Brogeting the unique point of CS^{t+1}J = H_{K+1}(C_{1}(S^{t+1}XC_{1}2)).$$

$$(The fundamental class of the empty manifold.)$$

$$Bot this means that [0] \in H_{K+1}(C_{1}(S^{t+1}XC_{1}2)) = 0$$

$$= *$$

$$Hence [C0] = 0,$$

$$so [C0]. X = 0.$$

$$\Rightarrow (D) commutes, as claimed. [].$$

$$Summary :$$

$$Mapping cree terms
$$\Rightarrow \text{ with Bield creefs, to prove how, state1 for $H_{1}C_{1}(M)$, it is enough to prove the larget of the larget and$$$$

cohenel of the map:

$$H_{i-d}(C_{m},(M,pt)) \xrightarrow{S_n^i} H_{i-1}(C_n,(M,pt))$$

Transfer maps

$$H_{i-d} \left(C_{n,i} \left(M > pt \right) \right) \xrightarrow{S_{n}^{i}} H_{i-i} C_{n} \left(M > pt \right)$$

$$H_{i-d} \left(C_{n} \left(M > pt \right) \right) \xrightarrow{S_{n+1}^{i}} H_{i-i} C_{n+i} \left(M > pt \right)$$

$$H_{i-d} \left(C_{n} \left(M > pt \right) \right) \xrightarrow{S_{n+1}^{i}} H_{i-i} C_{n+i} \left(M > pt \right)$$

When
$$char(F) = 0$$

[Dold] => transfer is a one-sided increte stabilisation
Hence han stab? for
$$C_n(M pt)$$
 with stabilisation maps
=> han stab? for $C_n(M pt)$ with transfer maps
=> stability for ker(S_n^i) and coker(S_n^i).
by commutativity of (D')

Remarks

- (1) All of the arguments above use homological stability for Cn(M)pt) as an input — to deduce homological stability vesults for Cn(M).
- (2) The obstruction to communitativity of (□) is the element 2 [Rp^{d-1}] ∈ H_{d-1} (Rp^{d-1}). This vanishes also with Z coefficients when d is odd.

Hence in This case, He argument goes through as for as proving that ker (Sⁱ) and coker (Sⁱ) stabilise. But then we just have a short exact sequence

$$0 \rightarrow \operatorname{coker}\left(\left\{ s_{n}^{in} \right\} \longrightarrow H_{i} C_{n}(M) \longrightarrow \ker\left(\left\{ s_{n}^{i} \right\} \right) \rightarrow 0$$

of abelian groups, and stability of the onter terms does not imply stability of the middle term.

(Recall that we do not have maps H: Cn (M) -> H: Cn (M).)

However, it is true that $C_n(n)$ is always homologically stable with Z coefficients been n is odd — this will appear in a later talk, using different methods....