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Homologicaletabilityforconfigurationspaces

onclosedmanifoldI
GeMAT seminar

IMAR
10 April 2025

M connected manifold without boundary of dim M d 2

Cn M space of n point subsets of M
topologised as a subquotient of mn

Theorems Arnold McDuff Segal 70 s

If M int m where an
Idea

then maps C M Cut M

inducing Hic Cm He CutCm for ns 2i

C CM Cna M

Push the configuration awayfrom a collar neighborhood of IT

Add a new point to the configuration in this collar
i o

I i iif
Whataboutwhen M is closed i.e compact

There are no stabilisationmops
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I Homologicalstability is false

E g I Cn S Bn 5

Fadell van Buskirk 62 presentation

H.CC_ s Zane for 32

More generally Cantero P 15

Had C a Kar for n 4d 2

depending

only on d

BT there are some more delicate stable patterns

1 Stability holds withcoeffs in 2 ML88 BCT 89 RW13

2 Stability holds withcoeffs in a C12 RW13 BM14 K17 RW24

3 Stability holds if dim M is odd EIESEffete

4 Eventual periodicity holds with coeffs inFp CP 5 N15 KM'IG

E.it ss Iieieinthe tagin tamO
C12 Church

IEI.it IiBM14

CP 5 Cantero Palmer Talk
N15 Nagpal

KM'IG Kupers Miller Talk

EE williams
Two
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Theorem Randal Williams 13

M any
connected manifold

IF field

Suppose either 1 IF IF

Eins is odd

Then dim Hi Culm IF is independent of n when n 2i

Proof

If f is the mapping core of X Y then there is

a long exact sequence

H X Hey Hick Hi X Hi Y

Write Hol H F

Lemma The mapping core of Cn M point C m is

homology equivalent to Sd Cn MI point

d dim M
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Hence we have a LES

HiCn m pt HeC m Ho d Cu mapt Hi C Mpt Hi C Cm

Note These do stabilise
since Mipt is open

We can extract a SES

0 cooker 8 HiCncm her si 0

Hence dim H Culm dim ker si t
dim coker s

Now suppose that the following square commutes

Hi d Cu mapt Hi_ Cn Mpt

stabilisation stabilisation

Ha a
catmint Hon Catmapt

Then it extends to a map of exact sequences

0 her 8 Hi d Cu mapt Hi C mapt coke fi o

stabilisation stabilisation

kertsi Hi a
culmpts HonCatmpt coker si 0
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And then homological stability for C Mpt 5 lemma

stability for 4

stability for her Si for caker si

stability for dim HiCncm

Play Proof of the mapping core lemma

Calculate the obstruction to commutativity of
2 Rpd He Rpd1

if IF IF or d is odd

Modify thestrategy for IF Q

Prooffemoppingelemma

Reminder we want to prove that the mapping care of
the inclusion C Mipoint Ccm is

homology equivalent to Sd Cn M point

want D.IE Ifa
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Choose Dd M

such that 0 thepoint that we remove

Let U C Cn be

an Dd
U i a painpun e

c m on Dd has a unique closest

point to OEDd

Eg

x

Observation C Mio and U form an opencore

of C m

Excision mapping come of C Mio Ccm

He equivalent

mapping come of C Mio n U U
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Claim U Dd x Cn Mio

o 1 l
Mi Bro Mio

Moreover this homeomorphism restricts to

Un C Mio Dd o Can mo

Sd x Cu Mio

Hence

mapping come of C Mio Ccm

He equivalent excision

mapping come of C Mio n U U

He equivalent identification above

mapping come of s xCn Mio DdxCn mio

closed calibration NDR

IS
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O

ctntommtativityfIHi.ae
Cu mapt Hi_ C Mpt

stabilisation stabilisation

Hand
Catmint Hon Catmapt

This is induced by a certain square

5 x Cnfmipt Is c mipt

idx s s

sd x Cmipt Is c Imipt

by taking Hi_ and restricting to one summand in the

Kinneth decomposition on the LHS

To describethis replace C Mpt Cn Madd

sd Sd x 0,1

Then Δ
d xto.is cu.fmDd c mind t.IEtgtlgEi

ii

O.IO iFiI



And s Cu mid C Madd

F1 1

Hence 7 of a is given by

he mess

and of a is given by

t.OI fi.io1
Their difference is HaC2mid

Consider the d dim singular chain

Éfm
pointfixedhere

onepointmoving inthis
ddimpairofpants
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Its boundary gives the relation

1

Here this
theobstructintormmutativity

of a

It is the image of the element Ha C Rd

2 ipa.ge Ha Rpa

By the previous argument
if this vanishes

then a commutes and we get homological stability

If charF 2 then 2 0 so A vanishes

If d dim m is odd then

either char F 2 by above
or char F 2

Ha Rpd
1 IF To 2 2 F

Ict

However if Q and d dim M is even

then 2 Q Hd Rpd Q

so a does not commute



StrategyforIF1 11

t

E.EE t

ant.EE Il
n sheetedcovering

ii
Lemma Dold 62

With coefficients in Q if M is an open manifold then

HicuCm a Ho cation a H calm a

is an automorphism

Corollary With Q coefficients there is homological stability with respect

to the transfer maps

Idea Run the same argument but with transfer maps instead of

stabilisation maps



It is enough toprove that with Q coess the following 12

commutes

Hi d Cnymipt Hi C Mpt

transfer transfer

Hi d Cn mipt HonCnfmipt

Proof

Stacking
thickened spheres Sd x 0,1 gives

C s 1 50,13

the structure of an H space and gluing s x 0,1 to the

boundary of M Dd gives
C M D the structure of an

H module over it On homology we therefore have

H C s 0,13 bigraded ring

Hx C m Bd bigraded module one it

The horizontal maps of are induced by this module
structure they are both multiplication by the element

s Ha C s 0,13 in bigrading d 1,1

P of 17 is givenby

α s transfer x

É s forget itpoint in α
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of 17 is givenby

α transfer s 3 α

É s forget itpoint in α

α

where is the result of forgetting the uniquepoint

of s Ha C sd 0,13

The fundamental class ofthe emptymanifold

But this means that 03 e Hai Effy
0

Thereisonlyone
emptyconfiguration

Heme 0

so α 0

commutes as claimed

Émary

Mapping core lemma

with field coeffs to prove home stab for H C_ m

it is enough to provestability for the kernel and

colonel of the map

Hi d Cu mapt Hi_ Cn Mpt
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When dim M is odd or char 2

Hi d Cu mapt Hi_ C Mpt

stabilisation stabilisation

Ha a
catmint Hon Catmapt

commute

Hence hom stab for calm
ten manifold

implies stability for her Si and coker Si

Transfermaps

Hi d Cu mapt Hi_ C Mpt

transfer transfer

Hi d Cn mipt HonCnfmipt

commutes with any
coefficients

When char 0

Dold transfer is a one sided inverse to stabilisation

Hence hom stab for Cn Mpt w.it stabilisation maps

hom stab for Cn Mpt w.it transfer maps

stability for her Si and coker Si

bycommutativityof
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METT
All of the arguments above use homological stability

for C Mpt as an input to deduce

homological stability results for C M

2 The obstruction to commentativity of a is the

element 2 IRP Ha Rpd This vanishes also

with 2 coefficients when d is odd

Hence in this
tease

the argument goes through as far as

proving that her Si and coker Si stabilise

But then we just have a short exact sequence

0 coker 8 HiCncm her si 0

of abelian groups and stability of the outer terms does

not imply stability of the middle term

Recall that we donot have maps HiCnm Hicue.cm

However it is true that C m is always homologically

stable with coefficients when n is odd this

will appear in a later talk using different methods


