Homological stability for configuration spaces ١ on closed manifolds I

GeMAT seminar IMAR 28 April 2025

Recall from last time

$$M - cannected$$
 manifold of dim $(M) = d \ge 2$ with $\partial M = \phi$
 $C_n(M) = space of n-point subsets of M$
 $(topologised as a subgrotient of $M^n)$$

Theorem [Randal-Williams '13]
For any
$$M$$
,
we have $H_i(C_n(M); R) \cong H_i(C_{n+1}(M); R)$ for $n \ge 2i$
as long as (1) $R = field$ of that = 2
or (2) $R = field$ of that = 0
or (3) $R = any}$ field and dim (M) is odd.

Ain for today:
Theorem [Bandersky-Miller '14]
For any M,
we have
$$H_i(C_m(M); R) \cong H_i(C_n(M); R)$$
 for $m, n \ge 2i$
as long as
• vhen dim(M) is odd
(1) $R = Q$
(2) $R = Z(p)$ with $p \ge \frac{1}{2}(dim(M)+3)$
• vhen dim(M) is even
(3) $R = Q$
and $m, n \neq \frac{1}{2}x(M)$ (if $x(M)$ is even)
(4) $R = Z(p)$, with $p \ge \frac{1}{2}(dim(M)+3)$
and $y_p(2m-x(M)) = y_p(2n-x(M))$
i.e. each subsequence $\{C_m(M) \mid y_p(2n-x(M)) = k\}$
is honologically stable.

- (4) Obstruction Sheary
- (5) Degree formula

$$p = \{p_1, ..., p_n\} \in C_n(\mathbb{R}^d)$$
Think of this as a collection of electrically charged particles
of charge +1 (positrons).
$$\sim p \text{ electric field } E(p) : \mathbb{R}^d \land p \longrightarrow \mathbb{R}^d.$$

4

Extend to
$$S^{d} = \mathbb{R}^{d} \cup \{\infty\}$$

via $p_{1}, \dots, p_{n} \xrightarrow{} \infty$
 $\infty \xrightarrow{} 0$

Reflect the target sphere so that ~~ ~ .

~> Based map Sd -> Sd
Element of Map * (Sd, Sd) =:
$$\Omega^d S^d$$
.

This is the scaming map $C_n(\mathbb{R}^d) \longrightarrow \mathcal{R}^d S^d$.

$$P \longrightarrow S^{d} \xrightarrow{s(p)} S^{d}$$

$$\times \longmapsto \begin{cases} M_{ag_{x}}(p) & \text{if } | B_{x}(p) \land p | = 1 \\ \infty & \text{if } | \cdots | = 0 \end{cases}$$

Rink
$$S(p)$$
 clearly has degree n :
 $O \in \mathbb{R}^{d} \cup \{\infty\} = S^{d}$ is a regular value
 its pre-image is $\{p_{1}, ..., p_{n}\}$

Notation $\mathcal{M}_n^d S^d \subseteq \mathcal{M}_n^d S^d$ spare of degree - n bosed maps $S^d \longrightarrow S^d$

Rink In but
$$\pi_o(\Omega^d S^d) \xrightarrow{\text{degree}} \mathbb{Z}$$
,

and so
$$\Omega^d S^d = \coprod_{n \in \mathbb{Z}} \Lambda^d_n S^d$$
.

$$\Gamma(TM) = space of sections of TM - M.$$

 UI
 $\Gamma^{c}(TM) = subspace of compactly-supported sections, i.e. Shope that
agree with the ∞ section outside a compact subset.$

The scanning map will be
$$C_n(M) \longrightarrow \Gamma^{c}(T_M)$$

 $U_{n} \longrightarrow \Gamma^{c}_{n}(T_M)$
 $S_{sections} ob degree n$

Degree of a section

$$\alpha_{i} \beta_{i} \text{ section of } TM \xrightarrow{T} M \text{ such that } \alpha(p) \neq \beta(p) for dl pe M^{i}K, where K \in M is conjust (k)
(i) $EM] \in H_{k}^{BM}(M; Q)$

$$Q \rightarrow \pi^{4}Q \rightarrow Q$$
(2) $\alpha_{k}[M], \beta_{k}EM] = H_{k}^{BM}(TM; \pi^{4}Q)$

$$Q \rightarrow \pi^{4}Q \rightarrow Q$$
(3) Apply Primesi duelds: $TM \cong \text{sections}^{M} \xrightarrow{T} M \xrightarrow{T} M$
(3) Apply Primesi duelds: $TM \cong \text{sections}^{M} \xrightarrow{T} M \xrightarrow{T} M$
(4) Cup product
$$\pi^{2}Q \oplus \pi^{4}Q$$

$$(\alpha_{k}[M]^{V})_{U} (\beta_{k}EM]^{V}) \in H^{2}(TM; \pi^{4}Q)$$
(5) Primesi duelity again:
$$((\alpha_{k}[M]^{V})_{U} (\beta_{k}EM]^{V})_{V} \in H_{0}(TM; \overline{U}) \xrightarrow{T} Z$$

$$(\alpha_{k}[M]^{V})_{U} (\beta_{k}EM]^{V})_{V} = H_{0}(TM; \overline{U}) \xrightarrow{T} Z$$

$$(\sum_{M}TM)_{M} \xrightarrow{T} M \xrightarrow{T} M^{2} M^{2}(TM; \pi^{4}Q) \xrightarrow{T} M^{2}(TM; Z)$$

$$(m) This is de celebric degree $vdeg(\alpha, \beta) \in \overline{Z}$

$$(\sum_{M}TM)_{M} \xrightarrow{T} M^{2}(TM; \pi^{4}Q) \xrightarrow{T} M^{2}(TM; \pi^{4}Q) \xrightarrow{T} M^{2}(TM; Z)$$

$$(M) = M^{2}(TM; Z)$$

$$(M)$$$$$$

 $\frac{R_{m}k}{m} : \quad \text{If } \propto, \beta \quad \frac{d_{m}t}{d_{m}} \quad \text{sahsfg} \quad (*) \text{ then ne land}$ $in \quad H^{2d}(\forall m; \overline{e}) \cong H^{2m}_{0}(\forall m; \overline{e}) = 0$ $instead \quad \text{of} \quad H^{2d}_{e}(\forall m; \overline{e}) \cong H_{0}(\forall m; \overline{e}) \cong \mathbb{Z} \quad .$ $(\iff \text{thee are } \infty \text{ many intersection points, so the} \quad intersection \quad \text{points, so the} \quad intersection \quad \text{points, so the} \quad .$

Runk Similarly to above,
$$T_{0}(\Gamma^{c}(TM)) \xrightarrow{\text{degree}} \mathbb{Z}$$
,
and so $\Gamma^{c}(TM) = \coprod_{n \in \mathbb{Z}} \Gamma_{n}^{c}(TM)$.

 $C_n(M) \xrightarrow{s} \Gamma_n^c(T_M)$

Theorem
$$(McDuff'75 + Segal'79)$$

The scanning map $C_n(M) \longrightarrow \Gamma_n^c(TM)$
induces isomorphisms on $H_i(-iP)$ for
all $n \ge 2i$.

(2) Localizations of spaces [Sullivan '70] [2

$$P = \{prings\} \}$$
Choose $T \subseteq P$
reduced form

$$\frac{Def}{Z_{T}} := \{\{a \in \mathbb{Q} \mid b = product of primes in P_{T}\} \}$$

$$Ex \quad Z_{\phi} = \mathbb{Q}$$
Notation
$$Z_{(p)} := Z_{\phi} = \mathbb{Q}$$

$$\frac{Notation}{Z_{(p)}} = Z_{\phi} = \mathbb{Q}$$

$$\frac{Z_{(p)}}{Z_{(p)}} := Z_{(p)}$$
Def An adelian group A is $T-local$ if it has a structure of a Z_{T} -module.

Rink Any A has at most one Z7- module structure.

Ded A singly-connected space X is <u>T-local</u> if H:(X;Z) is <u>T-local</u> Vi. <u>Equivalently</u> (Theorem) : <u>T:(X)</u> is <u>T-local</u> Vi. <u>Runk</u> Can be defined more generally for <u>milpolent</u> spaces.

Def A T-localisation of a simply-connected space X
is a map
$$f: X \longrightarrow Y$$
, where Y is T-local
and $f_{*}: H_{i}(X; Z_{T}) \stackrel{\simeq}{=} H_{i}(Y; Z_{T})$ $\forall i$.

$$Egnivalutly (Therem) :$$
• $\mathcal{F}_{*} : H_{i}(X;\mathbb{Z}) \longrightarrow H_{i}(Y;\mathbb{Z})$

$$= \otimes \mathbb{Z}_{T} \longrightarrow H_{i}(X;\mathbb{Z}) \otimes \mathbb{Z}_{T}$$
• $\mathcal{F}_{*} : \pi_{i}(X) \longrightarrow \pi_{i}(Y)$

$$= \otimes \mathbb{Z}_{T} \longrightarrow \pi_{i}(X) \otimes \mathbb{Z}_{T}$$

E
J fibre bundle with fibre F
B

$$E_{\tau}$$

J fibre bundle with fibre F_{τ}
B

In particular, for
$$p$$
 prime or $p=0$, we have
 $TM_{(p)}$
 $\int fibre$ bundle with fibre $S_{(p)}^d$
 M

From now on, assume that M is compact, so $\Gamma^{c}(TM) = \Gamma(TM)$.

$$\frac{\operatorname{Thm}}{\operatorname{Vne} \mathbb{Z}} \left(\begin{array}{c} \operatorname{Mplle} & \mathbf{P} \end{array} \right) \\ \overline{\operatorname{Vne}} \mathbb{Z} \left(\begin{array}{c} \operatorname{Tm}_{(p)} \end{array} \right) \simeq \Gamma_{n} (\operatorname{Tm}_{(p)}) \\ \overline{\operatorname{Tm}} \left(\operatorname{Tm}_{(p)} \right) \end{array} \right) \simeq \overline{\operatorname{Tm}} \left(\operatorname{Tm}_{(p)} \right) \\ \overline{\operatorname{Tm}$$

$$\begin{array}{ll}
\underbrace{Covo}:\\
\forall n \geqslant 2i, & H_i\left(C_n(M); \mathbb{Z}_{(p)}\right)\\
&\cong & H_i\left(\Gamma_n\left(\pm M\right); \mathbb{Z}_{(p)}\right) & \left[Me\mathcal{D}_i\mathcal{B} - Segal\right]\\
&\cong & H_i\left(\Gamma_n\left(\pm M\right)_{(p)}; \mathbb{Z}_{(p)}\right) & \left[Sullivan\right]\\
&\cong & H_i\left(\Gamma_n\left(\pm M_{(p)}\right); \mathbb{Z}_{(p)}\right) & \left[Mpller\right]
\end{array}$$

Hence it will suffice to prove that

$$\Gamma_m(\bar{T}M_{(p)}) \simeq \Gamma_n(\bar{T}M_{(p)})$$

under de appropriate conditions:

• when
$$\dim(M)$$
 is odd :
(1) $p = 0$
(2) $p \ge \frac{1}{2} (\dim(M) + 3)$
• when $\dim(M)$ is even:
(3) $p = 0$ and $m_{2}n \neq \frac{1}{2} \chi(M)$
(4) $p \ge \frac{1}{2} (\dim(M) + 3)$ and $\mathcal{V}_{p} (2m - \chi(M)) = \mathcal{V}_{p} (2n - \chi(M))$

Idea : construct bundle self-homotopy-equivalences

$$TM_{(p)} \longrightarrow TM_{(p)}$$

 M'
such that the induced self-homotopy-equivalences
 $\Gamma(TM_{(p)}) \longrightarrow \Gamma(TM_{(p)})$
send degree-m sections to degree-n sections
moder the above conditions.

(3) <u>Bundle maps</u> <u>Def</u>.

end
$$(TM_{cp1})$$

 \downarrow := bundle with fibre over $x \in M$
 $given by self-maps $TM_{cp1}|_{x} \longrightarrow TM_{(p1}|_{x}$
 M of degree $v \in \mathbb{Z}_{(p1)}$$

Lemma.

Det.

end (TM_{cp1})
:= bundle with fibre over x ∈ M
given by self-maps TM_{cp1}|_x → TM_(p)|_x
M
of degree v ∈ Z_(p)
sending
$$\sigma(x)$$
 to $\tau(x)$

Lemma

bundle endomorphisms
$$\phi$$
 of TM_{cp} , $\Delta = \phi$ sections of end (TM_{cp})
 M
Such that $\phi \circ \sigma = \tau$

Theorem (Dold'63)
IF
$$M$$
 is a paracompate manifold,
 $E \xrightarrow{\phi} E$
 $\bigvee i$ is a bundle endomorphism
 M
and $\oint_{X} : E|_{X} \longrightarrow E|_{X}$ is a high equivalence $\forall X \in M$,
then \oint admits a fibrewise homotopy inverse.

So ne need to:
(1) Find sections end (
$$\overline{TM}_{(p)}$$
)
(2) Understand how de induced $\overline{TM}_{(p)} \longrightarrow \overline{TM}_{(p)}$
acts on degrees of sections. degree formula

(4) Obstruction bloom
dim (M) = odd
Claim: Assume
$$p=0 \approx p \ge \frac{1}{2}(dim(M)+3)$$
. Thue:
 $\forall \sigma, \tau \in \Gamma(TM_{cp}),$
 $\exists a rection d end_{1}(TM_{cp})$
 \downarrow
 M
 $Proof ds$ main dheadene :
Use need to prove dust $\Gamma_{m}(TM_{cp}) \cong \Gamma_{m}(TM_{cp})$
 $fr any $M, n \in \mathbb{Z}$.
Choose σ of degree M
 τ
 $Claim = section of end_{1}(TM_{cp})$
 $\int M$
 $Coro = bundle self-boundary - equivalence
 $TM_{cp} \xrightarrow{\Phi} TM_{cp}$
 $such dht $\phi \circ \sigma = \tau$
 $= \Gamma(TM_{cp}) \cong \Gamma(TM_{cp}).$$$$

Assume
$$p=0 \propto p \ge \frac{1}{2} (dim(M)+3)$$
.

Obstruction theory =>
$$\exists$$
 section as long as certain obstruction
classes vanish, which live in the groups
 $H^{i}(M; \pi_{c-1}(bibre))$
for $i=1,..., d=dim(M)$.

fibre
$$\simeq \left\{ \frac{T}{M_{(p)}} \right|_{x} \xrightarrow{\qquad} TM_{(p)} \right|_{x}$$

of degree 1
sending $\sigma(x)$ to $\tau(x)$ }
 $\simeq M_{op}\left(S_{(p)}^{d}, S_{(p)}^{d}\right)$
 $\simeq M_{op}\left(S_{(p)}^{d}, S_{(p)}^{d}\right) = \Omega_{1}^{d} S_{(p)}^{d}$
 $\simeq M_{op}\left(S_{(p)}^{d}, S_{(p)}^{d}\right) = \Omega_{1}^{d} S_{(p)}^{d}$

Theorem (Serve '51) If d is odd,

$$\pi_*(S^d)_{(0)} = 0 \quad \forall * \ge d \cdot 1$$

$$\pi_*(S^d)_{(p)} = 0 \quad \forall d \cdot 1 \le * \le d + 2p - 4$$

Hence for $2 \leq i \leq d$, $T_{i-1} \left(\begin{array}{c} \beta \\ b \\ e \end{array} \right) \cong T_{d+i-1} \left(\begin{array}{c} s^{A} \\ p \end{array} \right)_{(p)} = O$ $\int \\ p \\ i \\ 2 (d+3) \longrightarrow d \leq 2p-3$ $= d-1+i \leq d-1+(2p-3) = d+2p-4$

Next time :
dim(M) = even
• obstructions dait vanish!
• instead >> I bundle self-bily-equiv & ob
any Sibrenise degree

$$v \in \mathbb{Z}_{(p)}^{\times}$$

but we cannot force it to send
 σ to τ for any two given
sections σ, τ

20