Homological stability for configuration spaces 1 on closed manifolds I

GeMAT seminar IMAR 9 May 2025

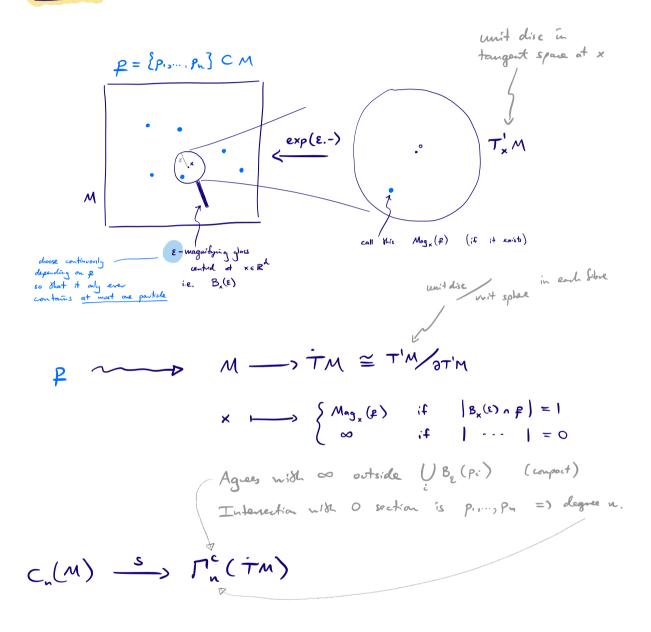
Reminder of last neek's talk

$$M - cannected manifold of dim (M) = d \ge 2$$
 with $\partial M = \phi$
 $C_n(M) = space of n-point subsets of M$

Reven [Bendersky - Miller '14]
For any M as above, we have:

$$H_i(C_n(M); Q) \cong H_i(C_n(M); Q)$$
 for $m, n \ge 2i$
if $m_{n}n \neq \frac{1}{2}\chi(M)$ if $dim(M)$ and $\chi(M)$ are even;
 $H_i(C_m(M); Z_{(p)}) \cong H_i(C_n(M); Z_{(p)})$ for $m, n \ge 2i$
if $p \ge \frac{1}{2}(dim(M)+3)$
& $\mathcal{V}_p(2m-\chi(M)) = \mathcal{V}_p(2n-\chi(M))$ if $dim(M)$ is even.
 \int_{k}^{1}
i.e. each subsequence
 $\mathcal{C}_k = \{C_n(M) \mid n = \frac{1}{2}(\chi(M) + p^k a), a$ coprime to p }
is homologically stable with $\mathbb{Z}_{(p)}$ coefficients.

(1) Scanning mops (2) Localisations ob spaces (3) Bundle mops (4) Obstruction Sheory (5) Degree formula (5) Degree formula



Reminder (Degree)

$$\Gamma^{c}(\exists m) = space oS \quad compactly - supported sections of \int_{M}^{J}
 $egrel to consection outside cpt subject$
 $= \prod_{n \in \mathbb{Z}} \Gamma_{n}^{c}(\exists m)$
 $degree = als. intersection # ds $s_{\pm}[M]$ and $O_{\pm}[M]$
The map $C_{n}(M) \stackrel{s}{\longrightarrow} \Gamma_{n}^{c}(\exists M)$ induces isomorphisms
 $m H_{1}(-i\mathbb{Z}) \quad for m \geq 2i.$
and hence with coefficients in
any obtain grap$$$

$$\sim$$
 Can study $H_{*}(\Gamma_{n}^{c}(T_{M}))$ instead of $H_{*}(C_{n}(M))$.

From now on, assume that M is compart, so $\Gamma^{c}(TM) = \Gamma(TM)$.

(2) Localisations

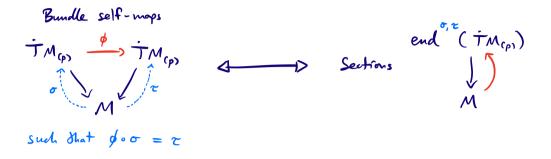
$$(2) \ Localisations$$

$$(2) \ Localisations$$

$$(2) \ Localisations$$

$$(2) \ Localisations for a processing of the prime of p = prime or o p$$

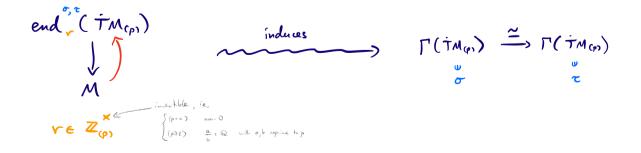
Lemma :



$$\begin{array}{rcl} \underbrace{\text{Def}}_{s}:\\ end_{r}^{\sigma,\tau}(\bar{T}M_{(p)}) &:= & bundle whose fibre over x \in M \\ & & \\$$

Theorem (Dold ²63)
If
$$\phi$$
 restricts to a hty equivalence on each fibre,
When ϕ is a fibrewise hts equivalence.
 $\left(=\right)$ induces a hts equivalence $\Gamma(\dot{T}M_{(p)}) \rightarrow \Gamma(\dot{T}M_{(p)})$,
 $\sigma \mapsto \phi \circ \sigma$

Upshot



Proposition
If
$$\dim(M) = d$$
 is odd and $p = 0$ or $p \ge \frac{1}{2}(d+3)$,
then $\forall \sigma, \tau \in \Gamma(TM_{(p)})$, \exists section $\int_{M}^{0,\tau} (TM_{(p)})$
M

$$\frac{\text{Idea de proof}}{+ \frac{1}{2} \frac{1}{2$$

Under these canditions on I and p,
all path-components of
$$\Gamma(TM_{(p)})$$
 are homotopy equivalent.

Hence if
•
$$\dim(M) = d$$
 is odd,
• $p=0$ or $p \ge \frac{1}{2}(d+3)$,
• e have, for all $m, n \ge 2i$:
 $H_i(C_m(M); \mathbb{Z}_{(p)}) \stackrel{\text{def}}{=} H_i(\Gamma_m(TM_{(p)}); \mathbb{Z}_{(p)})$
 $H_i(C_m(M); \mathbb{Z}_{(p)}) \stackrel{\text{def}}{=} H_i(\Gamma_m(TM_{(p)}); \mathbb{Z}_{(p)})$
 $H_i(C_m(M); \mathbb{Z}_{(p)}) \stackrel{\text{def}}{=} H_i(\Gamma_m(TM_{(p)}); \mathbb{Z}_{(p)})$

• The remishing results of Sene for
$$\pi_{\star}(S^d)_{(p)}$$
 do not
hold for even d .
 \longrightarrow can't prove that $\exists end_1^{\sigma,\tau}(\top M_{(p)}) = \int_M^{\sigma,\tau} \int_M^{$

· Instead:

Proof
• The fibre of
$$\int Map_{r}(S_{(p)}^{d}, S_{(p)}^{d})$$

 $M = \int conject with self-map
 $M = \int (S_{(p)}^{d}, S_{(p)}^{d})$$$$$

· Obstructions to existence of a cection lie in

$$H^{i}(M; \pi_{i-1}(Mop_{1}(S_{(p)}^{d}, S_{(p)}^{d})))$$
 (*)

But [Sene '51] + some calculations imply that Map, (Sd, Sd) is (d-1)-connected. Hence (*) vanishes for all i, so I section. ٩

• Obstructions to uniqueness (up to
$$\simeq$$
) of a cection lie in
 $H^{i}(M; \pi_{i}(Mop_{i}(S_{(p)}^{d}, S_{(p)}^{d})))$ (**)

But [Møller - Ramssen '85] prove that

$$Mop_1(S_{(0)}^d, S_{(0)}^d) \simeq S_{(0)}^{2d-1}$$
so in the case $p=0$, $Mop_1(S_{(0)}^d, S_{(0)}^d)$ is d-connected.
(because $2d-2 \ge d$)

Heme (**) vanishes for all i, so de section is unique up to ≃.

Upshot:
In the even-dimensional case, if
$$p=0$$
 or $p \ge \frac{1}{2}(d+3)$,
 \forall invertible $v \in \mathbb{Z}_{(p)}$,
 \exists bundle self-htz-equivalence $TM_{(p)} \xrightarrow{\phi} TM_{(p)}$
 M^{L}
of fiberise degree v .
(Unigne when $p=0$.)

(5) Degree formula
Any bundle self-hty equivalence
$$\overline{TM}_{(p)} \xrightarrow{\phi} \overline{TM}_{(p)}$$
 of Sibenise degree $v \in \mathbb{Z}_{(p)}^{\times}$

induces a self-hitz equivalence
$$\Gamma(TM_{(p)}) \xrightarrow{\simeq} \Gamma(TM_{(p)})$$
.

Its effect on degres of sections is

Proposition (degree formula)
If
$$\dim(m) = d$$
 is even and $p = 0$ or $p \ge \frac{1}{2}(d+3)$,
and $\phi: \overline{T}M_{(p)} \longrightarrow \overline{T}M_{(p)}$ has fibrewise degree $v \in \mathbb{Z}_{(p)}^{K}$.
Shen
 $\phi_{\mu}(k) = vk + \frac{1}{2}(1-v)\chi(m)$

RunkThis is false for dim
$$(M) = d$$
 odd.In that case we can find ϕ of fibrenic degree $v = 1$ such that $\phi_{\pm}(k) = l$ for any two specified $k, l \in \mathbb{Z}_{(p)}$.

Assuming that
$$\dim(M) = d$$
 is even and $p = 0$ or $p \ge \frac{1}{2}(d+3)$,

obstruction theory
+
degree formula
$$\begin{cases}
\forall r \in \mathbb{Z}_{(p)}^{\times} \\ \forall k, l \in \mathbb{Z}_{(p)} \\ \text{if } l = rk + \frac{1}{2}(1-r) \times (m)
\end{cases}$$
(*)

Now let
$$m, n \in \mathbb{Z}$$
, $m, n \geqslant 2i$
and assume that $\mathcal{V}_p(2m - \chi(m)) = \mathcal{V}_p(2n - \chi(m))$.
when $p = 0$ this is interpreted as
 $2m - \chi(m) \neq 0 \neq 2n - \chi(m)$.

Then
$$Y := \frac{2n - \mathcal{K}(M)}{2m - \mathcal{K}(M)} \in \mathbb{Z}_{(p)}^{\times}$$

and $Ym + \frac{1}{2}(1-Y)\mathcal{K}(M) = \frac{(2n - \mathcal{K}(M))m + \frac{1}{2}(2m - 2n)\mathcal{K}(M)}{2m - \mathcal{K}(M)}$
 $= \frac{2nm - n\mathcal{K}(M)}{2m - \mathcal{K}(M)} = n$

Hence :

$$H_{i}(C_{n}(M); \mathbb{Z}_{(p)}) \stackrel{\simeq}{=} H_{i}(\Gamma_{m}(\dot{T}M_{(p)}); \mathbb{Z}_{(p)})$$

$$IIS \stackrel{(*)}{=} H_{i}(\Gamma_{n}(\dot{T}M_{(p)}); \mathbb{Z}_{(p)}) \quad v = \frac{2n - \chi(M)}{2m - \chi(M)}$$

If
$$\dim(M) = d$$
 is even and $p=0$ or $p \ge \frac{1}{2}(d+3)$,
and $\phi: TM_{(p)} \longrightarrow TM_{(p)}$ has fibrewise degree $r \in \mathbb{Z}_{(p)}^{K}$,
then $\phi_{\pm}(k) = rk + \frac{1}{2}(1-r)\chi(M)$ (*)

Steps

(3) Degnee famila when M non-orientable

Rinks
• (3) is easy — just pass to orientection double corres.
• If we just care about orientable manifolds, (1) is sufficient.
• If we care about non-orientable manifolds, we need (2) to deduce (3)
• (2) is obvious when
$$p=0$$
, because in that care ϕ is determined
up to \simeq by its fibrewise degree (uniqueness).

For the remainder of the talk we assure that M is orientable.

$$\forall v \in \mathbb{Z}_{(p)}$$
 $\exists \phi$ of Sibervie degree v satisfying
 $\phi_{\pm}(k) = vk + \frac{1}{2}(1-v)\chi(m)$ (*)

$$\Rightarrow \quad \stackrel{\cdot}{T}_{\mathcal{M}_{\varphi}}, \stackrel{\psi}{\longrightarrow} \mathcal{M} \times S^{\mathsf{d}}_{\varphi}, \\ \searrow \mathcal{M}$$

Given
$$v \in \mathbb{Z}_{(p)}^{\times}$$
, let
 $\phi := \mathcal{Y}^{-1} \cdot (id \times f_r) \circ \mathcal{Y}$
where $f_r : S_{(p)}^d \longrightarrow S_{(p)}^d$ is the (unique up to \simeq) map ob degree r .

Composition with 7 induces

$$\Gamma(\dot{T}M_{(p)}) \cong \Gamma(M \times S_{(p)}^{d}) \cong M_{op}(M, S_{(p)}^{d})$$

Lemma

Proof of Lemma.

$$\begin{split} \mathcal{\Psi} : \ \dot{\mathsf{T}}\mathsf{M}_{(p)} & \longrightarrow \mathcal{M} \times \mathsf{S}^{\mathsf{d}}_{(p)} \\ \mathcal{\Psi}_{\star} : & \mathsf{H}_{\mathsf{d}} \left(\dot{\mathsf{T}}\mathsf{M}_{(p)} \right) \stackrel{\cong}{\longrightarrow} \mathsf{H}_{\mathsf{d}} \left(\mathsf{M} \times \mathsf{S}^{\mathsf{d}}_{(p)} \right) \cong \mathbb{Z} \times \mathbb{Z}_{(p)} \\ & \text{generated by } \mathbb{[}\mathsf{M} \mathsf{J} \in \mathbb{Z} \\ & \text{and } \mathbb{[}\mathsf{F} \mathsf{J} \in \mathbb{Z}_{(p)} \end{split}$$

intersection number (-,->: Ha (TMG) × Ha (TMG) -> Z(p)

$$\begin{array}{l} \overleftarrow{T}M_{(p)} \\ O\left(\bigcup_{M} \qquad \mathcal{V}_{*}(O_{*}[M]) = [M] + k[F] \quad \text{for some } k \in \mathbb{Z}_{(p)}. \\ \mathcal{X}(M) = \langle O_{*}[M], \ O_{*}[M] \rangle \\ = \langle \mathcal{V}_{*}^{[m]}[M] + k \mathcal{V}_{*}^{[m]}[F] \quad , \ \mathcal{V}_{*}^{[m]}[M] + k \mathcal{V}_{*}^{[m]}[F] \rangle \\ = 2k \end{array}$$

$$T_{M(p)}$$

$$T_{\psi}(\sigma_{*}[M]) = [M] + \ell[F] \quad \text{for some } \ell \in \mathbb{Z}_{(p)}.$$

$$deg(\mathcal{V} \circ \sigma) = \ell$$

$$deg(\sigma) = \langle 0_{*}[M], \sigma_{*}[M] \rangle$$

$$= \langle \mathcal{V}_{*}^{"}[M] + \frac{\mathcal{N}(M)}{2} \mathcal{V}_{*}^{"}[F] , \quad \mathcal{V}_{*}^{"}[M] + \ell \mathcal{V}_{*}^{"}[F] \rangle$$

$$= \frac{\mathcal{N}(M)}{2} + \ell$$

Hence $deg(4 \circ \sigma) = deg(\sigma) - \frac{1}{2}\chi(M)$.

Step 2

Any two bundle self-hits equivalences
$$TM_{(p)} \xrightarrow{\phi, \phi'} TM_{(p)}$$

of the same bibrarise degree $v \in \mathbb{Z}_{(p)}^{\times}$
act in the same way on degree of sections:
 \forall section σ , $deg(\phi' \circ \sigma) = deg(\phi \circ \sigma)$.

Degree of a section is calculated in Hd (TM,p,).
~> Enough to show that
$$O_{\mathbf{x}}$$
: Hd (TM,p,) -> Hd (TM,p)
is the identity.

Use a drivialisation
$$TM_{\varphi}, \xrightarrow{\psi} M \times S_{\varphi}^{d}$$
, to write

$$H_{d}(\dot{\tau}_{\mathcal{M}_{(p)}}) \cong H_{d}(\mathcal{M} \times S^{d}_{(p)}) \cong \mathbb{Z} \times \mathbb{Z}_{(p)}$$

$$\int \begin{pmatrix} \alpha & \beta \\ \delta & \delta \end{pmatrix}$$

$$H_{d}(\dot{\tau}_{\mathcal{M}_{(p)}}) \cong H_{d}(\mathcal{M} \times S^{d}_{(p)}) \cong \mathbb{Z} \times \mathbb{Z}_{(p)}$$

Now
$$\theta$$
 is a bundle map $b d = 1$
 $\beta = 0$

Also,
$$\delta = fibrenise$$
 degree of $\delta = 1$

Hence $\mathcal{O}_{*} = \begin{pmatrix} 1 & 0 \\ 8 & 1 \end{pmatrix}$ for some $\mathcal{S} \in \mathbb{Z}_{(p)}$.

Lemma
$$\exists N : \partial^{N} \simeq id.$$

Hence $\begin{pmatrix} 1 & 0 \\ 8 & 1 \end{pmatrix}^{N} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$
 $\Rightarrow N = 0$
 $\Rightarrow 8 = 0 \Rightarrow \theta_{*} = id.$

Proof if lemma (a bit more beduicad...)

$$O \in \text{space of bundle mores of degree 1}$$

11
 $\Gamma(\text{end}_{i}(TM_{pi}))$
 $Typological moreid$
 $[O] \in T_{o}(\Gamma(\text{end}_{i}(TM_{pi}))) \longrightarrow \text{monoid}$
 $Aim: [O]$ has finite order.
 $Actually will prove that the date monoid is a tassian group.$
For short, write $P = \text{end}_{i}(TM_{(pi)})$, so our aim is
 M
to show that the manoid $T_{o}(\Gamma(P))$ is a tassian group.
 O Choose a CW-stuckne on M with a single $d-call$.
 $M^{d-1} := (d-1) - skeleton of this CW-stuckne.$

2 Obstructions to ranishing of
$$T_0(\Gamma(P^{d-1}))$$
 lie in
 $H^i(M^{d-1}, T_i(Map_i(S^d_{(p)}, S^d_{(p)})))$.
Since $Map_i(S^d_{(p)}, S^d_{(p)})$ is $(d-1)$ - connected,
 M^{d-1} is $(d-1) - dimensional$,
Here vanish and hence $T_0(\Gamma(P^{d-1})) = *$.

(3)
$$M^{d-1} \longrightarrow M$$
 is a cofibration
 \Rightarrow restriction : $\Gamma(P) \longrightarrow \Gamma(P^{d-1})$ is a fibration.
Fibre = { extensions of a section $p_{M^{d-1}}^{d-1}$ to $p_{M^{d-1}}$
 $= \int_{M^{d}} \left(fibre d \begin{array}{c} p \\ m \\ m \end{array} \right)$
 $= \int_{M^{d}} Map_{1}(S_{(p_{1})}, S_{(p_{1})}^{d})$
 $= \int_{M^{d}} Map_{1}(S_{(p_{1})}, S_{(p_{1})}^{d})$
 $= extension of s to $p_{M^{d-1}}$
 $= extension of s to $p_{M^{d-1}}$
 $= extension of s to $p_{M^{d-1}}$
 $= extension of s to $p_{M^{d}}$
 $= extension of s$
 $= e$$$

10

$$\label{eq:Maple} \ensuremath{\mathbb{A}}^d M_{\mathrm{ap}}(\ensuremath{\mathbb{S}}^d,\ensuremath{\mathbb{S}}^d) \longrightarrow \ensuremath{\Gamma}(\ensuremath{\mathbb{P}}) \longrightarrow \ensuremath{\Gamma}(\ensuremath{\mathbb{P}}^{d-r})$$

(This induces an exact sequence of monoids:

$$\pi_{o}\left(\mathfrak{l}^{d} \mathcal{M}_{op}\left(S_{(p)}^{d}, S_{(p)}^{d} \right) \right) \xrightarrow{(*)}{} \pi_{o}\left(\Gamma(P) \right) \longrightarrow \pi_{o}\left(\Gamma(P^{d-r}) \right)$$

(5) This has two monoid structures:
 Composidion of mops, A this one makes (**) into a monoid homomorphism
 concatenation of (d-fold) loops.

By the Eckmann - Hilton argument, agree, and hence we have:

$$\pi_{d}(M_{\alpha \varphi_{1}}(S_{(\varphi_{1})}^{d},S_{(\varphi_{1})}^{d})) \longrightarrow \pi_{o}(\Gamma(P)) \longrightarrow \pi_{o}(\Gamma(P^{d-i}))$$

(exact sequence of monoids).

(i) By above,
$$\pi_{\sigma}(\Gamma(P^{d-1})) = *$$
,
so $\pi_{\sigma}(\Gamma(P)) = quotient$ of $\pi_{d}(Map_{1}(S_{(p)}^{d}, S_{(p)}^{d}))$
(in particular it is a group)
so it is enough to show that $\pi_{d}(Map_{1}(S_{(p)}^{d}, S_{(p)}^{d}))$ is a taxion
group.

Free Recall from earlier that

$$Map_{1} (S_{(0)}^{d}, S_{(0)}^{d}) \simeq S_{(0)}^{2d-1} \qquad [Møller - Remsen `85]$$
so it is d-connocted (since 2d-2 > d),
so $0 = \pi_{d} (Map_{1} (S_{(0)}^{d}, S_{(0)}^{d}))$
 $\cong \pi_{d} (Map_{1} (S_{(0)}^{d}, S_{(0)}^{d}))$
 $\cong \pi_{d} ((Map_{1} (S_{(0)}^{d}, S_{(0)}^{d})))$
 $\cong \pi_{d} ((Map_{1} (S_{(0)}^{d}, S_{(0)}^{d})))$
 $\cong \pi_{d} (Map_{1} (S_{(0)}^{d}, S_{(0)}^{d})) \otimes \mathbb{Q}$
 $\cong \pi_{d} (Map_{1} (S_{(p)}^{d}, S_{(p)}^{d})) \otimes \mathbb{Q}$

and hence $\pi_d(Map, (S^d_{(p)}, S^d_{(p)}))$ is a tension group. \Box