Homological stability for configuration spaces 1 on closed manifolds IV

GeMAT seminar IMAR 16 May 2025

What we have seen so far:

Theorem (Combining [Rended - Williams' 13] & [Benderky - Miller'14])

Let
$$m, n \ge 2i$$
. Then
 $H_i(C_m(M); R) \cong H_i(C_n(M); R)$
as long as:
• R is a field and either dim (M) is odd
 ar char (R) $\in \{0, 2\};$
• $R = \mathbb{Z}_{(p)}$ with $p \geqslant \frac{1}{2}(\dim(M) + 3)$
and either dim (M) is odd
 $ar = \mathbb{Z}_{(p)}$
 $(m) = \frac{2m - K(M)}{2n - K(M)} \in \mathbb{Z}_{(p)}^{\times}$

Theorem A [Cantero-P.²15]
IF
$$M$$
 admits a non-vanishing reter field,
When $\forall r \geqslant 2$ = "uplication map" $C_n(M) \xrightarrow{S_r} C_{rn}(M)$
inducing iromorphisms on $H_i(-; Z_{ipi})$
for all $n \geqslant 2i$
and $p \not \leq r$.

Corollary If
$$X(m) = 0$$
, then for fixed i and p,
 $H_i(C_m(m); \mathbb{Z}_{(p)})$
depends only on $S_p(m)$ in the vange $n, 2i$.

Proof:
If
$$m, n \ge 2i$$
 and $m = p^{a}\overline{m}$ with $\overline{m}, \overline{n}$ copyrime to p (i.e. $y_{p}(m) = y_{p}(m)$)
 $n = p^{a}\overline{n}$
Hen $C_{m}(M) = s_{\overline{n}}$

$$C_{n}(M) \xrightarrow{S_{\overline{m}}} C_{p^{\alpha}\overline{m}\overline{n}}(M)$$
 induce \cong on $H_{i}(-; \mathbb{Z}_{p})$.

depends only on \$p(21-x(n)) in the range 1,72i.

Idea of proof

Recall Shat

$$C_{n}(M) \xrightarrow{\text{Scan}} \Gamma_{n}^{c}(\tilde{T}M) \xrightarrow{} \Gamma_{n}^{c}(\tilde{T}M)_{(p)} \simeq \Gamma_{n}^{c}(\tilde{T}M_{(p)})$$

$$H_{*} \text{ ison. in degrees } \leq \frac{1}{2} \qquad \text{localisa tran [Sullivan'70]} \qquad [M_{*}ller'87]$$

$$[M_{c}D_{r}ll_{r}, Segal] \qquad \text{isom. on } H_{*}(-; \mathbb{Z}_{(p)}) \qquad n^{th} \text{ padh-component}$$

$$n^{th} \text{ padh-component}$$

$$\sigma_{l}^{c} \Gamma^{c}(\tilde{T}M_{(p)})$$

The [Dold '63]
If
$$r \in \mathbb{Z}_{(p)}$$
 is inertitle
then φ is a fibre nice self-lite-equivalence
and so $\varphi_{\circ} - : \Gamma^{\circ}(TM_{(p)}) \longrightarrow \Gamma^{\circ}(TM_{(p)})$ is a self-lite-equivalence.

- Understand how the corresponding $\varphi_{\circ} - : \Gamma^{\circ}(\dot{T}M_{\varphi_{1}}) \longrightarrow \Gamma^{\circ}(\dot{T}M_{\varphi_{1}})$ acts on π_{\circ} .

[Bendesky-Miller '14]: obstruction theory
$$p \ge \frac{1}{2}(d+3)$$
 = of σ

 $v \in \mathbb{Z}$ $\phi_{v} : V_{2}(\mathbb{R}^{d+1}) \longrightarrow Map_{v}(S^{d}, S^{d})$ $(v_{1}, v_{2}) \longmapsto \mathbb{R}^{d+1} = \langle v_{1}, v_{2} \rangle \oplus \langle v_{1}, v_{2} \rangle^{\perp}$ $\bigcup_{\substack{n_{S} \\ C \\ id}} \bigcup_{\substack{n_{S} \\ C \\ id}} \bigcup_{\substack{n_{S} \\ C \\ id}} u_{id}$ $vestvicted to S^{d} = unit sphere in \mathbb{R}^{d+1}$

$$V_{2}(TM \oplus R)_{(p)} \xrightarrow{\phi_{r}} end_{r}(\bar{T}M_{(p)})$$

induces a section
$$\phi_{r} \circ \sigma$$

and hence a self-map

$$(\phi, \circ \sigma)_* \circ - : \Gamma^{c}(TM_{(p_1)}) \longrightarrow \Gamma^{c}(TM_{(p_1)})$$

for every re Z.

Small print. to ensue de tanget is P^C and not just P, we have to assure dust of (see below) is comparelly--supported.

Notation:
By Sougetting the second component of a 2-Grame,

$$V_2(TM \oplus R)_{(p)}$$
, $V_1(TM \oplus R)_{(p)} = TM_{(p)}$
 $\sigma (\downarrow$ \longrightarrow $(\downarrow$
 M
 M
Call this σ_0 and assume it
is compactly -supported
 \longrightarrow $deg(\sigma_0) \in \mathbb{Z}_{(p)}$

Lemma (degnee formula)

For any σ such that σ_{o} is compactly-supported, the self-map $(\phi_{r} \circ \sigma)_{*} \circ - : \Gamma^{c}(TM_{(p_{1})}) \longrightarrow \Gamma^{c}(TM_{(p_{1})})$ sends sections of degree k to sections of degree $r(k - deg(\sigma_{0})) + deg(\sigma_{0})$.

By passing to orientation double covers, assume M orientable. If M is non-compact, interpret $H_{*}(TM_{(p)})$ as horizontally locally finite homology $H_{*}^{hif}(TM_{(p)})$, so that inclusions of fibres and sections induce $H_{*}(S_{(p)}^{a}) \rightarrow H_{*}^{hif}(TM_{(p)})$ and $H_{*}^{bm}(M) \rightarrow H_{*}^{hif}(TM_{(p)})$.

Then
$$H_d(T_{M(p)}) \cong \mathbb{Z} \oplus \mathbb{Z}_{(p)}$$

 $f = [S_{(p)}]$
 $intersection form = (X(M) (-1)^d)$
 $T_{M(p)}$
 $\alpha [\int 0 d_* [M] = (1, deg(K) - X(M))$
 M

By construction,
$$\overline{TM}_{(p)} \xrightarrow{(\phi_{r} \circ \sigma)_{*}} \overline{TM}_{(p)} \circ preserves \sigma_{o}$$

 $M \xrightarrow{(\phi_{r} \circ \sigma)_{*}} \overline{TM}_{(p)} \circ hos fibrense degree v$

So
$$H_d(TM_{\varphi_1}) \longrightarrow H_d(TM_{\varphi_1})$$
 • preserves $(\sigma_{\circ})_{*} [M]$
 $(1, deg(\sigma_{\circ}) - \chi(M))$
• multiplies $[F] = (\sigma_{\circ}, i)$ by r

=> it is given by
$$\begin{pmatrix} 1 & 0 \\ (1-r) (deg(r,) - x(m)) & r \end{pmatrix} =: A$$

Set
$$k = deg(\alpha)$$

 $l = deg((\phi_{r} \circ \sigma)_{*} \circ \alpha)$

Rearranging
$$\longrightarrow$$
 $l = r(k - deg(\sigma_0)) + deg(\sigma_0).$

IJ

If we can lift
$$\sigma_0$$
 to σ
then $\forall v \in \mathbb{Z}$ we have $\prod^{c} (\forall M_{(p_1)}) \xrightarrow{(k)} \prod^{c} (\forall M_{(p_1)})$
acting an path-components (degrees of sections) by
 $k \longrightarrow v(k-S) + S$

Proof of Theorem B

$$dim(M) \text{ odd} \quad p \text{ odd} \quad \longrightarrow \text{choose} \quad v = 2$$

 $S = n-1$
 $= \sum r(n-S) + S = n+1 \quad in (m)$

$$\forall p \longrightarrow choose \quad r = -1$$

$$\delta = n+1$$

$$= r(n-\delta) + \delta = n+2 \quad in (*)$$

$$dim(M) \text{ even } \qquad If \quad \mathcal{V}_{p}(2m - \mathcal{K}(M)) = \mathcal{V}_{p}(2n - \mathcal{K}(M))$$

$$2m - \mathcal{K}(M) = p^{2}k \qquad k, k \in \mathbb{Z} \setminus p\mathbb{Z}$$

$$2n - \mathcal{K}(M) = p^{2}k \qquad k, k \in \mathbb{Z} \setminus p\mathbb{Z}$$

$$\prod_{m=1}^{c} (\bar{T}M_{(p)}) \simeq \prod_{\frac{1}{2}(p^{2}kk + \mathcal{K}(M))}^{c} (\bar{T}M_{(p)}) \simeq \prod_{n=1}^{c} (\bar{T}M_{(p)}) \qquad (k) \quad k = 0$$

Non-vanishing verter Suld
$$v(\bigcup_{M} M)$$

 $\sim d$ section $v_2(TM \oplus R)$
 $\sigma(x) = \binom{(v(x), o)}{(o, 1)}$
 M

$$\rightarrow$$
 $\sigma_{0} = \infty$ -section of TM
=> deg(σ_{0}) = 0

Degree formula
$$\longrightarrow$$
 induced $\Gamma^{c}(TM) \longrightarrow \Gamma^{c}(TM)$
acts on π_{0} by
 $k \longrightarrow r(k - deg(\sigma_{0}) + deg(\sigma_{0})$
 $= rk$

2 Proctiving trick & homological periodicity

Theorem C [Canter - P. ? 15]

$$M = closed$$
, even - dimensional manifold
 $F = -$ Sield of characteristic $p > 0$
 $r \ge 2 - p + r$
 $p \mid (x(m)-1)(r-1)$ in particula chemerer
 $r \equiv 1 \pmod{p}$
Then

$$H_{i}(C_{n}(M);F) \cong H_{i}(C_{m}(M);F)$$

for n22:

Note: There are no direct replication maps
$$C_n(m) \longrightarrow C_{rn}(m)$$

mless $\chi(m) = 0$.

When
$$\chi(m) \neq 0$$
 de "disconance" between Thun B + Thun C implies:
Corollang D [Cantero - P. ²15] (Homological pariodicity)
 $M = closed$, even - dimensional manifold with $\chi(m) \neq 0$
 $F = -$ Sield of characteristic $p \ge 3$
Then

$$H_{i}(C_{n}(m); F) \cong H_{i}(C_{n+q}(m); F)$$

for $n \ge 2i$, where
$$q = p^{a+1}$$
$$a = y_{p}(X(m))$$

<u>Note</u>: If $\chi(m) = 0$ then $v_p(0) = \infty$, so $q = \infty$. If $drar(F) \in \{0, 2\}$ then we already know hanological stability, so q = 1.

Proof of Caro D

Cose 1
$$\mathcal{V}_{p}(2n-x) \leq \mathcal{V}_{p}(x) = a$$

Then
$$y_{p}(2(n+q) - \chi)$$

$$= y_{p}(2n - \chi + 2p) = y_{p}(2n - \chi)$$
Theorem B $H_{i}(C_{n}(M); \mathbb{Z}_{(p)}) \cong H_{i}(C_{n+q}(M); \mathbb{Z}_{(p)})$

$$= H_{i}(C_{n}(M); \mathbb{F}) \cong H_{i}(C_{n+q}(M); \mathbb{F})$$

Case 2
$$\nu_p(2n-\chi) > \nu_p(\chi) = \alpha$$

Then $y_p(n) = y_p(2n-x+x) = a$ $\Rightarrow \frac{n}{p^n} \neq 0 \pmod{p}$ $\Rightarrow \exists l \ge 2 \qquad : \qquad \frac{ln}{p^n} \equiv 1 \pmod{p}$ $l(\frac{n+q}{p^n}) = \frac{ln}{p^n} + lp \equiv 1 \pmod{p}$ $\Rightarrow ue \max take \qquad v = \frac{ln}{p^n}$ $F = l(\frac{n+q}{p^n}) \qquad in \qquad Theorem C$ $H_i(C_n(M); F) \cong H_i(C_{\underline{ln(mn)}}(M); F) \cong H_i(C_{n+q}(M); F)$

$$= \rightarrow H_{i}C_{n}(M) \rightarrow H_{i-d}(C_{n-1}(M \setminus 0)) \rightarrow H_{i-1}C_{n}(M \setminus 0) \rightarrow H_{i-1}C_{n}(M) \rightarrow \cdots$$

$$S_{n}^{i}$$

$$\int f_{n}^{i}dneed \quad by \quad t_{n}$$

$$S_{n}^{d-1} \times C_{n-1}(M \setminus 0) \rightarrow C_{n}(M \setminus 0)$$

$$f_{n}^{i} = f_{n}^{i} = f_{n}^{i}$$

$$expand \quad vadially \quad amay \quad bom \quad 0 \in M$$

add a point specified by the Sd-1 parameter

So if
$$H_i = H_i(-jF)$$

Shen dim $H_i C_n(m) = \dim \ker(S_n^i) + \dim \operatorname{coleer}(S_n^{i+1})$

So it's enough to show that the maps

$$S_{n}^{i}: H_{i-d}(C_{n-1}(M \circ)) \longrightarrow H_{i-1}C_{n}(M \circ)$$

stabilise for n22i.

• (*) commutes on
$$H_*(-;F)$$

Construction

Choose a vector field on M with a <u>unique</u> zero at $O \in M$. =) non-vanishing on $M \circ O$ $g := g_r$ (replication map) $f := S^{d-1} \times C_{n-1} (M \circ O) \xrightarrow{id \times g_r} S^{d-1} \times C_{n-r} (M \circ O)$ $\int \int apply t_k'' r-1 times$ $S^{d-1} \times C_{n-1} (M \circ O)$

She bookpoit O∈M and the powerker in S^{d-1}, throught of as a unit vector in ToM Isomaphisms on H*

Lost step: Commutativity of the diagram on F-homelogy

These are determined by maps
$$h_1, h_2 : S^{d-1} \longrightarrow C_r(\mathbb{R}^{d_10})$$

 \longrightarrow enough to check that $(h_1)_* [S^{d-1}]$
 $(h_2)_* [S^{d-1}] \in H_{d-1}(C_r(\mathbb{R}^{d_10}); \mathbb{F})$

Example: $\sigma_{id} = \Delta_o$

$$\frac{Note:}{(h_1)_* [S^{d-1}]} = \sigma_{id} = \Delta_o$$

$$(h_2)_* [S^{d-1}] = \sigma_{ig} \quad \text{for } \varphi: S^{d-1} \longrightarrow S^{d-1} \quad \text{the restriction of} \quad \text{the non-vanishing vector field.} \quad \text{[Poinconé - Hopf]} = 0 \quad \text{deg}(\varphi) = \mathcal{K}(M).$$

Lemma (Lemma 5.5 of [Canter-P.'15])
For any
$$\Psi: S^{d-1} \longrightarrow S^{d-1}$$
,
 $\sigma_{\varphi} = r \Delta_{o} + deg(\Psi)r(r-1)\pi$
Proof: Construct explicit
chains 1 dimension
higher in order to deduce
relations between σ_{φ} ,
 Δ_{o} and π .

Hence
$$(h_1)_* \mathbb{E} S^{d-1} \mathbb{J} = (h_2)_* \mathbb{E} S^{d-1} \mathbb{J}$$

 $\widehat{\mathbb{I}} = Lemma$
 $v \Delta_0 + v(v-1)\pi = v \Delta_0 + \mathcal{K}(m)v(v-1)\pi$
 $\widehat{\mathbb{J}} = veavranging$
 $ovder(\pi) divides v(v-1)(\mathcal{K}(m)-1)$
 $\widehat{\mathbb{I}} = chor(\mathbb{F}) = p$
 $p \ divides (v-1)(\mathcal{K}(m)-1)$.

IJ