Homological stability for configuration spaces on closed manifolds I

GeMAT seminar IMAR 23 May 2025

 Recap

 M - connected manifold (vibbort boundary) of dim (M) = d ≥ 2

 C_n (M) := space of n-point subsets of M

 When M is open

 M ≅ int (M), DM ≠ Ø

 C_n (M) is homologically stable vibb Z coefficients (and hence vibb any coeffi)

 H_i (C_n(M); Z) ≅ H_i (C_{nu}(M); Z) when widt:

 Uhen M is obset

 conpart, BM = Ø

 So for we have seen:

• When dim (M) is odd, for
$$u^{3}/2i$$
:
 $H_{i}(C_{u}(M); \mathbb{Z}) \cong H_{i}(C_{u+2}(M); \mathbb{Z})$
 $H_{i}(C_{u}(M); \mathbb{Z}[\frac{1}{2}]) \cong H_{i}(C_{u+1}(M); \mathbb{Z}[\frac{1}{2}])$
• When dim (M) is even, for $u^{3}/2i$:
 $H_{i}(C_{u}(M); \mathbb{Z}_{(p)})$ depends only on $2p(2n-2kGm)$
 $(for bind i, p)$
 $(assume p^{3}: if 2k(M) add)$
 $H_{i}(C_{u}(M); \mathbb{F}_{p}) \cong H_{i}(C_{u}(M); \mathbb{F}_{p})$
 $for any $v^{3}/2$
 $v \equiv 1 \pmod{p}$
 $H_{i}(C_{u}(M); \mathbb{F}_{p}) \cong H_{i}(C_{u+2}(M); \mathbb{F}_{p})$
 $as long as $2k(M) \neq 0$
 $p^{3}/3$
where $g \equiv p^{1+2p}(2k(M))$$$

Theorem (Kupers - Miller '16)
• If dim(M) is odd, then for
$$n \ge 2i$$
:
 $H_i(C_n(M); \mathbb{Z}) \cong H_i(C_{n+i}(M); \mathbb{Z})$
• If dim(M) is even, then for $n \ge 2i$:
 $H_i(C_n(M); \mathbb{Z}/k) \cong H_i(C_{n+k}(M); \mathbb{Z}/k)$ for $k \ge 3$ odd
 $H_i(C_n(M); \mathbb{Z}/k) \cong H_i(C_{n+\frac{k}{2}}(M); \mathbb{Z}/k)$ for $k \ge 2$ even

In particular, this improves $p^{1+p_p(X(M))}$ -periodicity of $H_i(C_n(M); F_p)$ [Canter-P.²15] to p-periodicity of $H_i(C_n(M); F_p)$ in the stable range N?2i.

<u>Runk</u>: [Nagpal ? 15] proved that $H_i(C_n(M); \mathbb{F}_p)$ is p - periodic in an (unspecified) stable vange.

Corollary :

If dim(m) is even, then for fixed i>1, p>3,
for m, n>2i:
$$H_i(C_m(m); F_p) \cong H_i(C_n(m); F_p)$$

if either $2m \equiv x(m) \equiv 2n \pmod{p}$
or $2m \neq x(m) \neq 2n \pmod{p}$
i.e. $H_i(C_n(m); F_p)$ depends only on whether $2n \equiv x(m)$ or not
In particular $H_i(C_n(m); F_p)$ takes on ≤ 2 different values in
the stable range $n>2i$.

D

Plan of talk / strategy of proof

- 3 Chain conglex lemma.
- @ Proof of the Shearem.

From talk # 1 ne recall that, for any manifold M with basepoint OEM flee is an exact sequence:

expand vadially away from OEM add a point specified by Ste S^{d-1} parameter

$$|H_{i}C_{n}(m)| = |ke_{n}(S_{n}^{i})| \cdot |colear(S_{n}^{i+1})|$$

The difference is homologous to the operation that adds ($\circ \odot$) This is the image of [\odot] $\in H_{d-1}(C_2(\mathbb{R}^d))$

=> with F_2 coefficients it's zero => commutative square on $H_{*}(-;F_2) = H_{*}$:

=>
$$dim \ker(S_n^i) = dim \ker(S_{n+1}^i)$$

 $dim coher(S_n^{i+1}) = dim coher(S_{n+1}^{i+1})$
 $in He stable range$

=> [] by Obs (1).

2 Homology operations

$$C(\mathbb{R}^{d}) = \frac{11}{n > 0} C_n(\mathbb{R}^{d})$$

$$H_{x} C(\mathbb{R}^{d}) \text{ hay two key operations:}$$

Browder brocket

Lemma For a e H; Cm (Rd), she difference between the two ways around de square

Lemma
(a) For
$$d$$
 odd, $\phi(\cdot, \cdot) = 0$ with \mathbb{Z} coefficients.
(b) For d even, $\phi(\cdots, \cdot)$ is divisible by $2k$.

 $\frac{P_{roof}}{(a) \ \phi(\cdot, \cdot) = (\cdot) = 2. \text{ generator} \in H_{d-1}(\mathbb{R}\mathbb{P}^{d-1}) \cong \mathbb{Z}/2.$ (b) $F_{act \ 1} : \phi \text{ is symmetric}$ $\boxed{(b) \ f_{act \ 1} : \phi \text{ is symmetric}} = \boxed{(b) \ f_{act \ 1}}$

$F_{act+2} : \phi \text{ is a derivation}, ie.$ $\phi(a, \beta s) = \beta \phi(a, s) + \phi(a, \beta) s$ $(e) \oplus \oplus + (e) \oplus g$ $(f) \oplus g$

Iterating Fact 2 (& Fact 1) we get:

 $\phi(\underbrace{\cdots}_{k}, \cdot) = \underbrace{\cdots}_{k-1} \phi(\cdot, \cdot) + \cdot \phi(\underbrace{\cdots}_{k-1}, \cdot)$ $\cdots = k \cdot \underbrace{\cdots}_{k-1} \phi(\cdot, \cdot)$ $\phi(\cdot, \cdot) \quad \text{divisible by } 2 \longrightarrow \phi(\underbrace{\cdots}_{k}, \cdot) \quad \text{divisible by } 2k$

Corollary The square

$$H_{i-d} (C_n(m \circ 0)) \xrightarrow{S_n^i} H_{i-1} (C_{n+1}(m \circ 0)) \xrightarrow{M-bill sheated} (t_p)^m \xrightarrow{M-bill sheated} (C_{n+1+m}(m \circ 0))$$

commutes if \cdot we take coeffin in a ving $R :$ the (R) divides $2m$,
 \cdot or we take coeffin in any ving and dim (m) is odd.

Corollary²
Under blace conditions,
 $I_m (S_m^i) \sim I_m (S_m^i)$

$$\ker (S_n^i) \cong \ker (S_{n+m}^i)$$

& coher $(S_n^i) \cong \operatorname{coher} (S_{n+m}^i)$
in the stable range.

 $\underbrace{Obs(2)}_{k=1} = \sum If \quad R = \mathbb{Z}/k$ $\underbrace{Men \quad |H_{c}(C_{n}(m); \mathbb{Z}/k)| = |ke_{n}(S_{n}^{i})| \cdot |cole_{n}(S_{n}^{i+1})|}_{l}$ $\underbrace{|H_{c}(C_{n+m}(m); \mathbb{Z}/k)| = |ke_{n}(S_{n+m}^{i})| \cdot |cole_{n}(S_{n+m}^{i+1})|}_{l}$ $\underbrace{for \quad m = \begin{cases} k \quad k \quad odd \\ k/2 \quad k \quad encm \\ 1 \quad dim(m) \quad odd \end{cases}}_{l}$ $\underbrace{Upshot : \quad |H_{c}(C_{n}(m); \mathbb{Z}/k)|}_{l} \text{ is } m - periodic \quad in \text{ the stable varge}}_{l}$ $\underbrace{(for \quad fixed \quad i, k)}_{l}$

Lemma

In particular, if X is a Swite CW-complex,

$$H_{*}(X;Z)$$
 is determined by $\left|H_{*}(X;Z/s)\right| \forall p,s.$

~> enough to determine de multiplicities of these pieces.

Write down a formula for $|H_j(C_* \otimes \mathbb{Z}/p^s)|$ in terms of these multiplicities:

This determines

$$H_{:}(C_{*} \otimes \mathbb{Z}_{p}^{*}) \cong \lim_{\substack{\omega \in V}} H_{:}(C_{*} \otimes \mathbb{Z}_{p}^{*})$$

$$\int_{p-adic}^{p-adic} e^{-adic}$$

$$\mathbb{Z}_{p}^{n}$$
 is taxia-free => flat \mathbb{Z} -module
=> $H_{*}(C_{*} \otimes \mathbb{Z}_{p}^{n}) \cong H_{*}(C_{*}) \otimes \mathbb{Z}_{p}^{n}$

Each
$$H_i(C_*)$$
 is fin. generated, so it is determined by knowing $H_i(C_*) \otimes \mathbb{Z}_p^{\wedge}$ for all primes p.

We already know that, in the stable range
$$n \ge 2i$$
:
 $\left| H_{c}(C_{n}(M); \mathbb{Z}/K) \right| \cong \left| H_{c}(C_{n+k}(M); \mathbb{Z}/K) \right|,$
and $\left| H_{c}(C_{n}(M); \mathbb{Z}/K) \right| \cong \left| H_{c}(C_{n+\frac{k}{2}}(M); \mathbb{Z}/K) \right|$ if k is even, $\int_{\infty}^{\infty} (**)$
and $\left| H_{c}(C_{n}(M); \mathbb{Z}/K) \right| \cong \left| H_{c}(C_{n+1}(M); \mathbb{Z}/K) \right|$ if dim (M) is odd. (**)

• => periodicity with general
$$\mathbb{Z}_{k}$$
 coeffs
by decorposing $\mathbb{Z}_{k} \cong \bigoplus$ of \mathbb{Z}_{p}

• chain complex lemma (B)
$$H_{i}(C_{n}(n); \mathbb{Z}) \cong H_{i}(C_{n+1}(n); \mathbb{Z}) . \square$$

•