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Description of previous work

Summary:

The central objects of study in my previous research are moduli spaces of submani-
folds, focusing especially on their homology and their fundamental groups, for example
surface braid groups and loop (=welded) braid groups.

On the homological side, I have proven stability results for the (possibly twisted)
homology of moduli spaces, including oriented configuration spaces, moduli spaces of
manifolds with singularities and configuration-section spaces (which have connections
to number theory). I have also identified the stable homology of oriented configuration
spaces, along the way proving a twisted-homology refinement of the classical group-
completion theorem.

On the group-theoretic side, I have studied the lower central series of surface,
virtual and welded braid groups, and constructed new homological representations of
motion groups and mapping class groups.

Introduction 1
Overview 2
Diagram 3
1. Configuration spaces with non-local structure 4
2. Twisted homological stability 5
3. Configurations on closed manifolds 5
4. Moduli spaces of disconnected submanifolds 6
5. Homological representations of motion groups and mapping class groups 9
6. Higher crossing diagrams in knot theory 10
7. Configuration-section spaces 11
8. Point-pushing actions 11
9. Motivic homological stability 12
10. Lawrence-Bigelow representations 13
11. Mapping class group representations via Heisenberg homology 14
12. Burau representations of loop braid groups 14
13. Lower central series of surface, virtual and welded braid groups 14
References 15

Introduction

My research interests lie in the area of topology, including algebraic topology and low-dimensional
topology, and interactions between the two. The two main themes of my previous research work are con-
cerned with studying:

• The homology of moduli spaces of submanifolds of an ambient manifold (for example configuration
spaces or spaces of links in R3), as well as diffeomorphism groups of manifolds. This also includes
motivic cohomology of configuration spaces on smooth algebraic varieties, and configuration-section
spaces, where the complement of a configuration is equipped with a “field with singularities”.

• The fundamental groups of such moduli spaces (for example, surface braid groups, loop braid groups
and mapping class groups), in particular their representation theory and their lower central series.

As well as being central objects in topology, these moduli spaces have important applications in many
other domains. A key example is the Mumford conjecture [Mum83] – a statement from algebraic geometry
about Riemann’s moduli spaces of algebraic curves – which was proven by Madsen and Weiss [MW07],
using purely topological methods. More recently, homological stability for certain configuration-mapping
spaces was proven by Ellenberg, Venkatesh and Westerland [EVW16], from which they deduced a result
in analytic number theory: an asymptotic version of the Cohen-Lenstra conjecture for function fields. (See
also §7 below.)
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Overview

Concerning the homology of moduli spaces of submanifolds:

(a) I proved [Pal13] in my thesis that the oriented configuration spaces C+
n (M) on open, connected mani-

folds M are homologically stable: a point in this space is a configuration of points in M, equipped with
the non-local data of an ordering modulo the action of the alternating group. Together with J. Miller
[MP15b], we then identified a space modelling the limiting homology of these spaces, as the number
of particles goes to infinity, completing step (ii) of the above programme, and lifting the classical re-
sult of D. McDuff [McD75] and G. Segal [Seg73; Seg79] (which concerns unordered configuration
spaces). Along the way, we also generalised their group-completion theorem [MS76] to the setting of
twisted-homology-equivalences [MP15a]. — See §1 for more details.

(b) The unordered configuration spaces Cn(M) on a closed, connected manifold M are known not to sta-
bilise in general, and represent a much more difficult and complicated case. Together with F. Cantero
[CP15], we proved that there are nevertheless some more subtle stability and periodicity phenomena
in the homology of configuration spaces on closed manifolds. For example, the homology of Cn(M)
with coefficients in Z[ 1

2 ] stabilises for dim(M) odd, whereas, for dim(M) even, their mod-p homology
is unstable but periodic in a stable range (with an explicit period depending only on p and χ(M)). —
See §3 for more details of these results.

(c) Another direction in which I have taken these ideas, which opens the door to a wide variety of interesting
new examples, is to generalise configuration spaces to moduli spaces of disconnected submanifolds,
where point particles are replaced with embedded submanifolds of a specified diffeomorphism type
and isotopy class (which may be parametrised, oriented, unoriented, etc.). Under a certain restriction
on the codimension, I have proven [Pal21] that these moduli spaces are also homologically stable as
the number of components of the submanifold goes to infinity. As a corollary, I also proved [Pal18a]
homological stability for:
◦ the diffeomorphism groups of manifolds with conical singularities, with respect to the number of

singularities of a given type,
◦ the symmetric diffeomorphism groups of any sequence of manifolds obtained by iterating the op-

eration of “parametrised connected sum”, an operation which generalises both ordinary connected
sum and surgery.

See §4 for more details of these results.
(d) Configuration-section spaces model point-particles moving in a background field that is undefined (and

may be singular) at the particles themselves. Particular examples of these include the classical Hurwitz
spaces, which classify branched coverings of the 2-disc. In joint work with U. Tillmann [PT21], we
proved homological stability for configuration-section spaces, subject to a condition on the permitted
“charges” of the particles. This has some intersection with, but is mostly complementary to, a homo-
logical stability result of Ellenberg, Venkatesh and Westerland [EVW16], which they used to deduce
an asymptotic version of the Cohen-Lenstra conjecture for function fields. See §7 for more details.

(e) Related to the previous point, in another joint work with U. Tillmann [PT20], we studied in detail
the point-pushing action for manifolds with boundary M, namely the monodromy of the universal
bundle Uk(M)→ Ck(M̊) whose fibre over a configuration z in the interior of M is the complement
Mr z, obtaining explicit formulas when the dimension of M is at least 3, and identifying precisely the
kernel of the action. As a corollary, we obtained explicit formulas for the natural monodromy action of
π1(Ck(M)) on the fibres of configuration-mapping spaces on M. See §8 for more details.

(f) Together with G. Horel [HP20], we have proven an analogue of classical homological stability for the
motivic and étale motivic cohomology of configuration schemes on a smooth scheme X . See §9.

Concerning motion groups (the fundamental groups of moduli spaces of submanifolds) and mapping class
groups:

(g) I have proven [Pal18b] that the unordered configuration spaces Cn(M) are homologically stable with
coefficients in any polynomial twisted coefficient system (this in particular includes a choice of repre-
sentation of π1(Cn(M)) for each n). — See §2 for more details.

(h) In joint work with A. Soulié [PS19], we have set up a general topological construction of represen-
tations of motion groups (fundamental groups of moduli spaces of submanifolds) and mapping class
groups. This generalises and unifies several known constructions, including the Lawrence-Bigelow rep-
resentations and the Long-Moody construction. It also produces many new families of representations,

Last updated 2022-01-11 page 2 of 16 mdp.ac

https://mdp.ac


Previous work MARTIN PALMER-ANGHEL January 2022

in particular for the loop-braid groups, which are studied in more detail in [PS21]. See §5 and §12 for
more details.

(i) The Lawrence-Bigelow representations, and other representations of mapping class groups of surfaces,
come in many different “flavours”, depending on which part of the boundary of the surface is removed,
and which type of homology (such as locally finite homology, ordinary homology relative to the bound-
ary, etc.) is considered. In joint work with C. Anghel [AP20], we have investigated the fundamental
relationships between these different flavours, establishing various non-degenerate pairings and embed-
dings between them. See §10 for details.

(j) In joint work with C. Blanchet and A. Shaukat [BPS21], we have constructed analogues of the Lawrence-
Bigelow representations for the mapping class groups of the surfaces Σg,1, as well as for their Torelli,
Chillingworth and Morita subgroups. See §11 for details.

(k) In joint work with J. Darné and A. Soulié [DPS22], we study the lower central series of surface braid
groups, virtual braid groups and welded (=loop) braid groups, as well as their finite-index subgroups
preserving a given partition of the strands. A fundamental question for any group is whether and when
its lower central series stops, to which we give a complete answer for these families of groups. See §13
for details.

In addition, I have also studied multi-crossing diagrams for links, in joint work with C. Adams and J. Hoste:
our main result is the construction of a complete set of Reidemeister moves for triple-crossing diagrams.
— See §6 for more details.

Diagram

Homological stability for moduli spaces Fundamental groups of moduli spaces

Oriented configuration spaces §1

Twisted H∗ of conf. spaces §2

Configuration-section spaces §7

Motivic/étale cohomology §9

Config. on closed manifolds §3

Higher-dim. submanifolds §4

Conical singularities §4

Stable H∗ of ocs §1

Twisted
group-completion

theorem §1

Point-pushing
actions §8

n-crossing
diagrams §6

Burau rep.’s of loop braid groups §12

Functorial homological rep.’s §5

Flavours of LB representations §10

Stopping of lower central series §13

Analogues of LB rep.’s
for M(Σg,1) §11
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1. Configuration spaces with non-local structure

For a space M, the nth ordered configuration space C̃n(M) is defined to be the subspace of Mn con-
sisting of all n-tuples of pairwise distinct points in M. The symmetric group Sn acts on this space, and we
define

Cn(M) = C̃n(M)/Sn and C+
n (M) = C̃n(M)/An,

where An <Sn is the alternating group. These are called, respectively, the unordered configuration space
on M and the oriented configuration space on M. It is a classical result, going back to McDuff [McD75] and
Segal [Seg73; Seg79], that the sequence Cn(M), when M is a connected, open manifold, is homologically
stable. This means that, for each degree i, there are isomorphisms Hi(Cn(M)) ∼= Hi(Cn+1(M)) once n is
sufficiently large (depending on i).

Aside. The condition that M is connected is clearly necessary, as one can see by considering H0. On the
other hand, the condition that M is open is not obviously necessary, and the situation in this case is much
more subtle. This is the subject of another part of my previous work, see §3.

The ordered configuration spaces C̃n(M) are not homologically stable: for example, the first homology
of C̃n(R2) is the abelianisation of the pure braid group, which is Z(

n
2). This raises the question of whether

there is an intermediate covering space between C̃n(M) and Cn(M) for which homological stability still
holds. I proved in [Pal13] that the answer is positive for the oriented configuration spaces C+

n (M), which
doubly cover the unordered configuration spaces Cn(M):

Theorem ([Pal13]) The natural stabilisation map C+
n (M)→C+

n+1(M) induces isomorphisms on homology
in degrees ∗6 n−5

3 and surjections in degrees ∗6 n−2
3 .

The theorem also holds more generally for labelled configuration spaces, where each point is equipped
with a “label” in some fixed, path-connected parameter space X . The so-called slope of the stability range
here is 1

3 (and one may calculate explicitly for certain M to see that this is sharp), in contrast to the slope of
1
2 that holds for the unordered configuration spaces.

Note. The integral homology of C+
n (M) may be interpreted as a certain twisted homology group H∗(Cn(M);Z[Z/2]),

where π1(Cn(M)) acts on the group ring of Z/2 via the natural projection π1(Cn(M))→ Sn followed by
the sign homomorphism. This is an example of an abelian twisted coefficient system on Cn(M), and is a
precursor (in a special case) of the notion of abelian homological stability, which has been developed more
recently by Randal-Williams and Wahl [RW17] and Krannich [Kra19]. See §2 for more twisted homologi-
cal stability results.

This result leads to the question of whether one can identify the stable homology of the sequence
{C+

n (M) | n ∈N}, in other words the colimit limn→∞H∗(C+
n (M)), in terms of other well-understood spaces.

In joint work with Jeremy Miller, we answered this question positively by lifting the classical scanning
map [Seg73; McD75] to a homology equivalence between appropriate covering spaces.

◦ First, in our paper [MP15a], we generalise the McDuff-Segal group-completion theorem [MS76] as
well as McDuff’s homology fibration criterion [McD75, §5] to the setting of homology with twisted
coefficients (more precisely to a setting where we consider homology with respect to all twisted
coefficient systems in a fixed class C that is closed under pullbacks).

◦ Using these tools, we proved in [MP15b] a new kind of scanning result, lifting the classical scanning
map to covering spaces and showing that it remains a homology equivalence after doing so. This
identifies the stable homology of oriented configuration spaces on M with the homology of an explicit
double cover of the section space of a certain bundle over M:

Theorem ([MP15b]) Writing Ṫ M→M for the fibrewise one-point compactified tangent bundle of M and
Γc(Ṫ M→M)◦ for its space of compactly-supported sections of degree zero, we have:

limn→∞H∗(C+
n (M)) ∼= H∗(Γ̃c(Ṫ M→M)◦), (1)

for a certain explicit double cover Γ̃c(Ṫ M→M)◦ −→ Γc(Ṫ M→M)◦.

This double cover may be defined as the connected covering space of Γc = Γc(Ṫ M→M)◦ correspond-
ing to the projection

π1(Γc)→ H1(Γc)∼= H1(C2(M))→ H1(C2(R∞))∼= Z/(2).
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Here, the isomorphism H1(Γc)∼= H1(C2(M)) arises from homological stability and the identification of the
stable homology for unordered configuration spaces, and the map H1(C2(M))→H1(C2(R∞)) is induced by
any embedding M ↪→ R∞. For example, when M = R∞ the right-hand side of (1) is the universal cover of
(one component of) the infinite loopspace Ω∞S∞ = QS0. When M = R2 it is the unique connected double
cover of Ω2S3.

2. Twisted homological stability

As well as the notion of abelian homological stability mentioned in the previous section, another sense
in which a sequence of spaces (or groups) can satisfy twisted homological stability is with respect to a so-
called polynomial twisted coefficient system. This consists of a choice of local coefficient system on each
space Xn, together with additional morphisms of local coefficient systems between them, organised into a
functor C → Ab, where the automorphism groups of C are the fundamental groups π1(Xn). In addition, the
degree of this functor (defined using extra structure on C ) is required to be finite.

Many families of groups G = {Gn} are known to be homologically stable in this sense (where we
set Xn = BGn in the above paragraph), for appropriately-defined categories CG, for example the symmetric
groups Sn, braid groups βn, general linear groups, automorphism groups of free groups Aut(Fn) and map-
ping class groups of surfaces and of 3-manifolds.1 In [Pal18b], I proved the first such result for a sequence
of spaces, namely the unordered configuration spaces Cn(M) on any connected, open manifold M. Note
that, when dim(M) > 3, these spaces are not aspherical (in contrast to the case of surfaces), so this does
not reduce to a statement about the homology of their fundamental groups. When dim(M) = 2, these con-
figuration spaces are aspherical, so the result may be thought of as twisted homological stability for their
fundamental groups, the surface braid groups Bn(M) = π1(Cn(M)).

Theorem ([Pal18b]) Let M be an open, connected manifold and let T be a twisted coefficient system for
{Cn(M)}. This includes in particular the data of a local coefficient system Tn for each Cn(M), as well as a
homomorphism

H∗(Cn(M);Tn)−→ H∗(Cn+1(M);Tn+1).

This homomorphism is split-injective in all degrees, and, if T has finite degree d, it is an isomorphism in
the range ∗6 n−d

2 .

This theorem also generalises to configuration spaces with labels in any path-connected space X , as in
the previous section.

Twisted coefficient systems. In connection with these results, I have also explored in more depth [Pal17]
the notion of twisted coefficient system (a.k.a. finite-degree or polynomial functor), and in particular the
degree of a twisted coefficient system. The main results of [Pal17] are:

• A comparison and unification of various different notions of “finite-degree” functor C →A , where
A is an abelian category and C is a category with various kinds of additional structure.

• The development of a functorial construction of (injective or partial) braid categories, which were
used in [Pal18b] as the domain of definition of twisted coefficient systems, and of finite-degree func-
tors on such braid categories.

3. Configurations on closed manifolds

When M is closed, homological stability for the unordered configuration spaces Cn(M) is not true in
general, for example one may calculate that H1(Cn(S2);Z)∼=Z/(2n−2), which does not stabilise as n→∞.
Moreover, the stabilisation maps mentioned in the theorem in §1 do not exist, since these depend on adding
a new configuration point in M “near infinity”. In joint work with Federico Cantero [CP15], we prove
three main results which show that the homology of configuration spaces on closed manifolds exhibits a
large amount of stability despite these issues.

1 Symmetric groups: [Bet02]; braid groups: [CF13; RW17; Pal18b]; general linear groups: [Dwy80; Kal80]; automorphism
groups of free groups: [RW17]; mapping class groups of surfaces: [Iva93; CM09; Bol12; RW17]; mapping class groups of 3-
manifolds: [RW17]. Note that these are references for the proofs of twisted homological stability; in each case, homological stability
with untwisted coefficients was known earlier.
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(1) When the Euler characteristic of M is zero, we construct replication maps Cn(M)→ Cλn(M) for any
integer λ > 2, and prove that they induce homological stability after inverting λ :

Theorem ([CP15]) These maps induce isomorphisms on Hi(−,Z[ 1
λ
]) in the range 2i 6 λ .

Note. A construction related to our replication maps has also been used in the paper [Ber+06], in which they
use something similar to a replication map in §3 to build a crossed simplicial group out of the configuration
spaces on any given manifold M that admits a non-vanishing vector field.

(2) When the manifold M is odd-dimensional, the configuration spaces Cn(M) do in fact satisfy homological
stability after inverting 2.

Theorem ([CP15]) When dim(M) is odd, there are isomorphisms

Hi(Cn(M);Z[ 1
2 ])
∼= Hi(Cn+1(M);Z[ 1

2 ]) and Hi(Cn(M);Z)∼= Hi(Cn+2(M);Z)

in the range 2i 6 n, induced by a zigzag of maps.

This strengthens a result of [BM14].

(3) When the manifold M is even-dimensional, and F is a field of characteristic 0 or 2, it is known by the
work of many people [BCT89; ML88; Chu12; Ran13; BM14; Knu17] that homological stability holds for
Cn(M) with coefficients in F, even when M is closed. When F has odd characteristic p, however, this is
false, as one can see from the example of M = S2 mentioned above. In fact:

H1(Cn(S2);F)∼=
{
F p | n−1
0 p - n−1

}
for n > 2.

From this example we see that the first homology of Cn(S2) is not stable, but it is p-periodic and takes
on only 2 different values. Our third result is that this phenomenon holds in general, when the Euler
characteristic χ of M is non-zero. Write a = νp(χ) for the p-adic valuation of χ , in other words χ = pab
with b coprime to p.

Theorem ([CP15]) Suppose that dim(M) is even. For each fixed i, the sequence

Hi(Cn(M);F) for n > 2i (2)

is pa+1-periodic and takes on at most a+ 2 values. Moreover, if χ ≡ 1 mod p then the above sequence is
1-periodic, i.e. homological stability holds with coefficients in F.

The pa+1-periodicity result is similar to a theorem of [Nag15], although his estimate of the period is
different, namely a power of p depending on i rather than on χ . This result was later improved by [KM16]
to p-periodicity, independent of i or χ . Combining this with (a slightly more precise statement of) our
result, a corollary is that in fact the sequence (2) above takes on only two different values.

4. Moduli spaces of disconnected submanifolds

Instead of configurations of points in M (closed 0-dimensional submanifolds), one may consider con-
figurations of closed submanifolds of M of higher dimension, which are diffeomorphic to the disjoint union
of finitely many copies of a fixed (“model”) manifold L. In this setting, I proved [Pal21] that moduli spaces
of disconnected submanifolds of this kind are also homologically stable as the number of components goes
to infinity, just as in the classical setting of points [Seg73; McD75; Seg79] – under a certain hypothesis on
the relative dimensions of the manifolds involved.

Let M be a connected manifold with non-empty boundary and of dimension at least 2, and denote its
interior by M. Also fix a closed manifold L and an embedding ι0 : L ↪→ ∂M. Choose a self-embedding
e : M ↪→M which is isotopic to the identity and such that e(ι0(L)) is contained in the interior M ⊂M. We
then obtain a sequence of pairwise-disjoint embeddings of L into M by defining ιn := en ◦ ι0 for n > 0.

Let nL = {1, . . . ,n}×L and write ι1,...,n : nL ↪→M for the embedding (i,x) 7→ ιi(x).
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Definition Define CnL(M) to be the path-component of

Emb(nL,M)/Diff(nL)

containing [ι1,...,n]. Here, the embedding space is given the Whitney topology and CnL(M) the quotient
topology. There is a natural stabilisation map

CnL(M)−→C(n+1)L(M) (3)

defined by adjoining the embedding ι0 to a given embedding nL ↪→ M, to obtain a new embedding (n+
1)L ↪→M, and then composing with the self-embedding e. In symbols, this may be written as [φ ] 7→ [φ+],
where φ+(i,x) = e◦φ(i,x) for 1 6 i 6 n and φ+(n+1,x) = ι1(x).

Theorem ([Pal21]) Assume that the dimensions m = dim(M) and `= dim(L) satisfy

2` 6 m−3. (4)

Then (3) induces isomorphisms on homology in degrees ∗6 n−2
2 and surjections in degrees ∗6 n

2 .

This theorem may be extended further:

• There is a more general version of this setting, in which the submanifolds L ⊂ M are parametrised
modulo a subgroup of Diff(L) and come equipped with labels in some bundle over Emb(L,M). The
theorem proved in [Pal21] includes this more general setting.

• This setting is compatible with the techniques of §1 above, so we also have homological stability for
“oriented” (in the sense of §1) versions of these moduli spaces, in which the submanifolds L⊂M are
ordered modulo even permutations.

Applications to diffeomorphism groups. In the sequel [Pal18a], I used homological stability for the mod-
uli spaces CnL(M) (and their more refined versions mentioned in the first point above) to prove homological
stability for:

◦ Symmetric diffeomorphism groups, with respect to parametrised connected sum.
◦ Diffeomorphism groups of manifolds with conical singularities, with respect to the number of singu-

larities.

Definition Given two embeddings L ↪→M and L ↪→ Q with isomorphic normal bundles, one may cut out
a tubular neighbourhood of each embedding and glue the resulting boundaries to obtain the parametrised
connected sum M]LQ. If L is a point this corresponds to the ordinary connected sum of M and Q. Other
examples include the following.

◦ If L ↪→ Q is the canonical embedding Sk ↪→ Sm, where k 6 m = dim(M), then M]LQ is the result of a
k-surgery on M.

◦ If L ↪→Q is the embedding S1 ↪→T ↪→T∪p/q T = L(p,q), where T = D2×S1 denotes the solid torus,
then M]LQ is the result of a Dehn surgery of slope p/q on the 3-manifold M.

If we now iterate the operation−]LQ many times, using a different copy of Q and a disjoint embedding
L ↪→M each time (but always using the same copy of M), we obtain a sequence

M M]LQ M]LQ]LQ M]LQ]LQ]LQ · · · (5)

of manifolds, which we abbreviate to M]n
LQ, the nth iterated parametrised connected sum.

A diffeomorphism of M]n
LQ is called symmetric if it fixes the boundary of M and preserves the decom-

position of M]n
LQ into pieces of the form MrnT (L) and QrT (L), where T (L) is a tubular neighbour-

hood of L in M or Q. The corresponding subgroup

ΣDiff(M]n
LQ) 6 Diff(M]n

LQ)

is called the symmetric diffeomorphism group of M]n
LQ.2

2 A mild technical condition has been elided from the definition of symmetric diffeomorphism group and in the statement of the
theorem below, in order to simplify the discussion.
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Theorem ([Pal18a]) If M is connected and has non-empty boundary and dim(L) 6 1
2 (dim(M)− 3), the

sequence
· · · −→ BΣDiff(M]n

LQ)−→ BΣDiff(M]n+1
L Q)−→ ·· ·

of (classifying spaces of) symmetric diffeomorphism groups is homologically stable.

This generalises a result of Tillmann [Til16], which corresponds to the case L = point (i.e. the usual
connected sum operation).

Informal definition Fix an (m− 1)-dimensional manifold T . Let cone(T ) = (T × [0,∞))/(T ×{0}) be
the open cone on T . An m-dimensional manifold with conical T -singularities is a space M that is locally
homeomorphic to cone(T ), together with a smooth atlas on the subset Mmfd ⊆M of locally Euclidean points
of M. A diffeomorphism of M is a homeomorphism M→M that restricts to a diffeomorphism Mmfd→Mmfd
and is of the form cone(ϕ) for some diffeomorphism ϕ : T → T near each point of the discrete subset
MrMmfd ⊆M. These form a subgroup

DiffT (M) 6 Homeo(M).

For example, we may construct a manifold with conical singularities by collapsing a tubular neigh-
bourhood T (L) of any submanifold L ⊂M. The quotient ML = M/T (L) is then a manifold with a single
conical ∂T (L)-singularity. In particular, using the setting at the beginning of this subsection, we may col-
lapse a tubular neighbourhood of each submanifold ιi(L)⊂M for 1 6 i 6 n, to obtain a manifold Mn·L with
(precisely n) conical ∂T (L)-singularities.

Theorem ([Pal18a]) If M is connected and has non-empty boundary and dim(L) 6 1
2 (dim(M)− 3), the

sequence of classifying spaces BDiff∂T (L)(Mn·L) is homologically stable.

Special values of ` and m. The condition (4) on the relative dimensions of L and M excludes some interest-
ing special cases of the moduli space CnL(M). One such special case is `= 1, m = 3, in other words, moduli
spaces of links in a 3-manifold. If one considers moduli spaces of unlinks in a 3-manifold M, then this is
known to be homologically stable as the number of components of the unlink goes to infinity, by a result of
Kupers [Kup20]. However, the techniques of Kupers do not generalise to moduli spaces of non-trivial links
(even if the components are pairwise unlinked), so this question is open for general links.

Another special case is `= 0, m = 2. If L is a point, this corresponds to configuration spaces of points
on a surface M, for which homological stability is known classically. However, the only assumption that
we have made about L is that it is closed, not necessarily connected, so we could also take L = {1, . . . ,ξ}
for any positive integer ξ . The moduli space CnL(M) is then the covering space of Cnξ (M) with

pξ (n) =
(nξ )!

n!(ξ !)n

sheets, whose fibres correspond to all ways of partitioning the nξ points of a configuration into n subsets of
size ξ . Since configuration spaces on M are aspherical (M is a connected surface with non-empty boundary),
this is equivalent to studying the corresponding index-pξ (n) subgroup of the surface braid group Bnξ (M),
called the partitioned surface braid group Bξ |n(M), consisting of all braids that preserve a given partition
nξ = ξ +ξ + · · ·+ξ of their endpoints. In joint work with TriThang Tran, we have shown that homological
stability holds also in this special case, corresponding to (`,m) = (0,2).

Theorem ([PT14]) Let M be a connected surface with non-empty boundary. Then the sequence of parti-
tioned surface braid groups Bξ |n(M) is homologically stable as n→ ∞, for any fixed ξ > 1.

This recovers the classical case of homological stability for configuration spaces of points when ξ = 1,
and is new for ξ > 2.
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5. Homological representations of motion groups and mapping class groups

Mapping class groups, braid groups and more generally motion groups (fundamental groups of moduli
spaces of submanifolds) typically have “wild” representation theory. It is therefore very useful to be able
to construct representations of these groups by topological or geometric means, in order to be able to
understand them with topological or geometric tools. As one very important example, Lawrence [Law90]
and Bigelow [Big04] constructed families of linear representations of the classical braid groups starting
from actions on the twisted homology of configuration spaces — these were used by Bigelow [Big01] and
Krammer [Kra02] to prove the linearity of the braid groups.

In joint work [PS19] with Arthur Soulié, we give a unified construction of such topological represen-
tations, which:

• applies simultaneously to all mapping class groups and motion groups in a given dimension d,
• produces a much wider family of representations,
• produces interesting representations also over non-commutative rings.

In more detail, in each dimension d, we construct a large family of representations of a category UDd whose
automorphism groups contain all mapping class groups and motion groups in dimension d. There are three
parameters that one may vary in the construction:

• a submanifold Z ⊂ Rd ,
• two integers `> 2 and i > 0.

Each of these parameters may be varied to obtain interesting representations. For example, the family
of Lawrence-Bigelow representations depends on an integer parameter k > 1; our construction recovers this
in the case when Z is a 0-dimensional manifold of size k (and d = 2, ` = 2, i = k). In dimensions d > 3,
it becomes interesting to take higher-dimensional submanifolds of Rd for Z, in particular in the case of the
loop-braid groups (the group of motions of an n-component unlink in R3).

The parameter `> 2 controls the ground ring over which the representation is defined: it is the group-
ring of a group of nilpotency class at most `− 1. There are cases where the output of our construction is
independent of ` (hence the ground ring is commutative), but there are also many interesting cases where
we obtain an infinite tower of representations as `→ ∞. In particular, the family of Lawrence-Krammer-
Bigelow representations is the `= 2 term of such a tower.

The parameter i > 0 controls the degree in which we take homology. In the case of the Lawrence-
Bigelow representations, there is only one interesting degree in which we can take homology (the homology
in other degrees being trivial). However, more generally there can be many interesting degrees in which to
take homology. For example, if we consider the family of loop-braid groups and the “naive” analogue of
the Lawrence-Bigelow representations (taking Z to be a 0-dimensional manifold of size k), then there are
non-trivial homology groups in all degrees k 6 i 6 2k.

There is also an iterative version of our construction, which recovers, in the case of the classical braid
groups, the Long-Moody construction [Lon94].

As a sample of our construction, applied to the (extended and non-extended) loop-braid groups, we
have the following. The family of loop-braid groups LBn naturally forms a category UL β , and similarly
the family of extended loop-braid groups LB′n forms a category UL β

′. For an integer k > 1, if we take
either Z = k or Z =Uk (an unlink with k components), as well as `= 2 and i = k, we obtain:

Theorem ([PS19]) Our construction specialises to define representations:

L1(1,L β ) : UL β −→ModZ[Z] L1(1,L β
′) : UL β

′ −→ModZ[Z/2]

Lk(k,L β ) : UL β −→ModZ[Z⊕(Z/2)] Lk(k,L β
′) : UL β

′ −→ModZ[(Z/2)2]

L1(U1,L β ) : UL β −→ModZ[Z⊕(Z/2)2] L1(U1,L β
′) : UL β

′ −→ModZ[(Z/2)3]

Lk(Uk,L β ) : UL β −→ModZ[Z⊕(Z/2)4] Lk(Uk,L β
′) : UL β

′ −→ModZ[(Z/2)5]

L+
1 (U1,L β ) : UL β −→ModZ[Z2] L+

1 (U1,L β
′) : UL β

′ −→ModZ[Z⊕(Z/2)]

L+
k (Uk,L β ) : UL β −→ModZ[Z3⊕(Z/2)] L+

k (Uk,L β
′) : UL β

′ −→ModZ[Z2⊕(Z/2)2],

where k > 2.
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The representations encoded by the first two functors L1(1,L β ) and L1(1,L β
′) are studied in more

detail, with explicit matrices, in [PS21]; see §12 for more details.

For example, this means that, if we take Z to be an unoriented unlink with two components, we obtain
representations of all loop-braid groups LBn, defined over the group-ring Z[Z⊕ (Z/2)4], which may be
thought of as a Laurent polynomial ring in 5 variables x1,x2,x3,x4,x5 modulo the ideal generated by x2

i −1
for i = 2,3,4,5. If we quotient also by x2

1−1, then these representations extend to the extended loop-braid
groups LB′n ⊃ LBn.

Moreover, using non-stopping results for lower central series of partitioned tripartite welded braid
groups from [DPS22] (see §13 for details), we obtain infinite towers of representations when we consider
all ` > 2 in the cases Z ∈ {2,U2,U3} (that is, a configuration of two points or an unlink with either two or
three components).

6. Higher crossing diagrams in knot theory

Another theme of my previous work is in knot theory (which one may think of as the study of π0 of the
moduli space of 1-dimensional submanifolds of the 3-sphere), and more precisely with the representation
of links by diagrams in the plane (or 2-sphere). A classical link diagram is an immersion of a 1-manifold
into the plane, which is an embedding except at a finite number of double points, where the 1-manifold
must intersect itself transversely, together with additional data at each intersection point specifying which
strand passes “over” the other at that point. For a given link, such a diagram is unique up to ambient isotopy
and the well-known Reidemeister moves.

In joint work with Colin Adams and Jim Hoste [AHP19], we study instead triple-crossing diagrams,
which consist of an immersed 1-manifold in the plane, which is an embedding except at a finite number of
points, at which exactly three strands must intersect transversely (plus additional data at each intersection
point specifying which strands pass “over” others). We introduce an analogue of the Reidemeister moves
for such diagrams, consisting of:

◦ Analogues of the (classical) I- and II-moves, which may be thought of as surgeries supported on a
small subdisc of a diagram.

◦ The trivial pass move, which consists of cutting a strand and re-attaching it through another part
of the diagram without introducing any new crossings. This may be thought of as a surgery on an
annular neighbourhood of a diagram.

◦ Two families of moves, called the band moves and basepoints moves, which each consist of a surgery
supported on a pair of disjoint subdiscs of the diagram.

Definition For a link L in S3, a maximal nonsplit sublink of L is a sublink L1 of L such that (a) there exists an
embedded 2-sphere in S3 rL separating L1 and LrL1, and (b) there does not exist any embedded 2-sphere
in S3 rL1 separating L1 into two smaller sublinks.

A relative orientation of L is an orientation of L modulo orientation-reversal of each maximal nonsplit
sublink. Equivalently, this is a choice, for each maximal nonsplit sublink L1 of L, of an orientation of L1
modulo complete reversal (reversing every component of L1 simultaneously).

Theorem ([AHP19]) A triple-crossing diagram determines a relatively oriented link. Any two triple-
crossing diagrams representing the same relatively oriented link differ by a finite sequence of I-moves,
II-moves, trivial pass moves, band moves, basepoints moves and ambient isotopy.

The notion of triple-crossing diagram may be generalised to any integer n > 2, with n = 2 corre-
sponding to the classical notion of link diagram. The n-crossing number cn(L) of a link L is then the
smallest number of crossings among all n-crossing diagrams of that link. One can ask how the sequence
{cn(L) | n ∈ N} behaves for each L, and which relations between the crossing numbers hold for all links L
(or for all but finitely many links L). For example, it is not hard to show that cn(L)> cn+2(L) for all n and
L, and this inequality is known be strict for n = 2. We prove that, with a few small exceptions, it is also
strict for n = 3.

Theorem ([AHP19]) Let L be a non-split link that is neither the unlink nor the Hopf link. Then

c3(L)> c5(L). (6)
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Note that this inequality is clearly false for the unlink and the Hopf link: for these links, c3(L) and
c5(L) are both equal to 0 and both equal to 1, respectively.

Also note that, if L can be written as the union of maximal nonsplit sublinks L1, . . . ,Lk, then cn(L) =
cn(L1)+ · · ·+ cn(Lk). Thus the strict inequality (6) holds whenever L has at least one maximal nonsplit
sublink that is nontrivial and not the Hopf link.

7. Configuration-section spaces

Configuration-section spaces on a manifold M equipped with a bundle E → M are a kind of “non-
local” configuration space (in a difference sense from the non-locality of §1), whose elements consists of a
finite configuration in M together with a section of E →M on the complement of the configuration. Such
spaces may be thought of physically as spaces of “fields” with singularities.

One often considers subspaces where the behaviour of the field (section) is constrained in a neigh-
bourhood of the singularities (particles) – this may be thought of as restricting the allowed “charges” of the
particles. More precisely, if the bundle E→M is trivial with fibre X , we fix a set c⊆ [Sd−1,X ] of homotopy
classes of maps Sd−1 → X , where d is the dimension of M. The sections are then required to restrict to
an element of c, up to homotopy, in a neighbourhood of each particle (they are undefined at the particles
themselves). [For non-trivial bundles E→M, the definition is similar but a little more delicate.]

When M =R2 and the fibre X of the bundle is BG for a discrete group G, these are the Hurwitz spaces,
classifying branched coverings of the 2-disc with deck transformation group G (and prescribed monodromy,
if we impose a condition c⊆ [S1,BG] = Conj(G)). These spaces have important connections with number
theory through recent work of Ellenberg, Venkatesh and Westerland [EVW16], who proved an asymptotic
version of the Cohen-Lenstra conjecture for function fields via a certain rational homological stability result
for Hurwitz spaces.

In joint work with Ulrike Tillmann, we have proven another homological stability result for configuration-
section spaces [PT21], which is in a sense both more and less general than that of Ellenberg, Venkatesh and
Westerland. It is more general in the sense that it holds for any bundle over any connected, open manifold
M, but it is also less general in the sense that we assume a stronger condition on the allowed “charges” of
the particles.

Theorem ([PT21]) Let M be a connected manifold of dimension d > 2 with basepoint ∗ ∈ ∂M and let
ξ : E→M be a fibre bundle whose fibre over ∗ we denote by X. Assume that

the preimage of c under [Sd−1,X ]←←− πd−1(X) is a single element, (7)

so c corresponds to a fixed point of the π1(X)-action on πd−1(X). Then the stabilisation maps of configuration-
section spaces

CΓ
c,∗
k (M;ξ )−→ CΓ

c,∗
k+1(M;ξ ) (8)

induce isomorphisms on Hi(−;Z) in the range k > 2i+4 and surjections in the range k > 2i+2. With field
coefficients, these ranges may be improved to k > 2i+2 and k > 2i respectively.

8. Point-pushing actions

Following on from the previous section, let us now assume that the bundle E→M is trivial with fibre
X ; in this case we write CMapc,∗

k (M;X) and call these configuration-mapping spaces. They fit into a natural
fibre sequence

Mapc,∗(Mr k points,X)−→ CMapc,∗
k (M;X)−→Ck(M̊) (9)

(the right-hand map is a “configuration-mapping bundle”), which is obtained functorially from the universal
fibre sequence

Mr k points−→Uk(M)−→Ck(M̊). (10)

In [PT20], we obtain explicit formulas, when the dimension of M is at least 3, for the monodromy action
π1(Ck(M))→ π0(hAut(M r k points)) of the universal fibre sequence (10), from which we also deduce
explicit formulas for the monodromy action of the fibre sequence (9). A special case of this is as follows:
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Theorem ([PT20]) If d = dim(M)> 3 and M satisfies at least one of the following conditions:

• M is simply-connected, or
• the handle-dimension of M is at most d−2;

then the “point-pushing” action of γ = (α1, . . . ,αk;σ) ∈ π1(Ck(M))∼= π1(M)k oΣk on the mapping space
Mapc,∗(Mr z,X)'Map∗(M,X)× (Ωd−1

c X)k is given as follows:

(α1, . . . ,αk;σ) · ( f ,g1, . . . ,gk) = ( f , ḡ1, . . . , ḡk), (11)

where ḡi = f∗(αi).gσ(i).sgn(αi), and

• for an element α ∈ π1(M) we write sgn(α) = +1 if α lifts to a loop in the orientation double cover
of M and sgn(α) =−1 otherwise,

• π1(X) acts up to homotopy on Ωd−1
c X in the natural way,

• {±1} acts on Ωd−1
c X through the involution given by precomposition with a reflection of Sd−1 in a

hyperplane containing the basepoint.

As a corollary, we obtain a precise description of the set of path-components π0(CMapc,∗
k (M,X)) of

the configuration-mapping space, under the above conditions.

In addition, we investigate the question of injectivity of the point-pushing maps. We show that, up to
isomorphism, the kernel of the point-pushing map is independent of k regardless whether diffeomorphisms,
homeomorphisms or homotopy equivalences are considered. Precisely, we consider the point-pushing maps

pk : π1(Ck(M))−→ π0(Cat(M,z))

pk,∂ : π1(Ck(M))−→ π0(Cat∂ (M,z))

where Cat ∈ {hAut,Homeo,Diff}, and where ∂ means that the boundary of M is fixed, and prove:

Theorem ([PT20, §8]) When the dimension of M is at least 3, we have

ker(pk) = ∆(ker(p1)),

i.e. the kernel of pk is equal to the diagonal of ker(p1)
k⊆ π1(M)k⊆ π1(Ck(M)), where we identify π1(Ck(M))

with π1(M)k oΣk. If ∂M 6=∅, then pk,∂ is injective.

9. Motivic homological stability

In joint work with Geoffroy Horel [HP20], we have proven that the motivic and étale cohomology of
configuration spaces on smooth algebraic varieties (or schemes) is stable.

In more detail, if X is a smooth scheme over a number field K, one may ask whether the corresponding
unordered configuration schemes Cn(X) exhibit stability in their étale or motivic cohomology – lifting the
classical stability for the singular (co)homology of the complex manifolds Cn(XC), where XC denotes the
complex points of X .

Theorem ([HP20]) Suppose that X may be written as Y −D, where Y is a smooth scheme and D is a
non-empty, closed, smooth subscheme admitting a K-point. If the étale motive of X is mixed Tate and the
complex manifold XC is connected, then there are maps of étale motivic cohomology groups

H p,q
et (Cn+1(X);Λ)−→ H p,q

et (Cn(X);Λ)

that are isomorphisms for p 6 n/2 and under mild conditions on the coefficient ring Λ. In the case when
X = Ad is affine space, there are analogous maps of motivic cohomology groups

H p,q(C̃n+1(Ad);Λ)−→ H p,q(C̃n(Ad);Λ)

that are isomorphisms for p 6 n/2 and any coefficient ring Λ. (Here, C̃n is a stacky version of the unordered
configuration scheme Cn.)

Last updated 2022-01-11 page 12 of 16 mdp.ac

https://mdp.ac


Previous work MARTIN PALMER-ANGHEL January 2022

10. Lawrence-Bigelow representations

In joint work with Cristina Anghel [AP20], we have investigated the fundamental relationships (in
terms of non-degenerate pairings, embeddings and isomorphisms) between the many different flavours of
homological representations of mapping class groups – with the Lawrence-Bigelow representations of the
braid groups being our motivating example. Understanding the relationships between these representations
is important for applications in quantum topology (see for example [Ang20]).

For any surface Σ equipped with a decomposition ∂inΣ∪ ∂outΣ of its boundary (a surface triad), we
think of ∂inΣ as its inner “free” boundary and ∂outΣ as its outer “fixed” boundary, and consider the mapping
class group

Γ(Σ) = π0(Diff(Σ,∂outΣ)).

For example, if Σ = Σ0,n+1 with n of its boundary-components considered as inner and one considered
as outer, this is isomorphic to the braid group on n strands. Choosing a local system L (defined over a
ring R) on the configuration space Ck(Σ) that is preserved by the action of Γ(Σ), we obtain homological
Γ(Σ)-representations

H•(C◦),

where C◦ is either Cout =Ck(Σr∂inΣ) or Cin =Ck(Σr∂outΣ) and H• denotes one of

• ordinary homology H, twisted by L ,
• homology relative to the boundary H∂ , twisted by L ,
• locally-finite (Borel-Moore) homology H lf , twisted by L ,
• locally-finite homology of the associated covering space C̃k(Σ)→Ck(Σ) (in the case where L arises

from such a covering), denoted H lf ,∼.

For example, when Σ = Σ0,n+1 we may take L to be the local system arising from the covering correspond-
ing to the kernel of the homomorphism

ϕ : π1(Ck(Σ))−→

{
Z{c} k = 1
Z{c,x} k > 2

given by ϕ(γ) = ic+ jx, where i is the total winding number of γ around the n inner boundary components
and j is the writhe of the braid obtained from γ by filling in the n inner boundary components with discs. In
this example the Bn-representations above are 8 different flavours of the Lawrence-Bigelow representations.

Theorem ([AP20]) (i) For ◦ ∈ {in,out}, there is a non-degenerate pairing

H lf (C◦)⊗H∂ (C◦)−→ R.

Moreover, these representations are free as R-modules. We describe explicit bases such that the pairing
above is given by the identity matrix.

(ii) Under a mild condition on the local system L , there are embeddings of representations

H∂ (Cin)−→ H lf (Cout)

H∂ (Cout)−→ H lf (Cin).

When k > 2 this implies that H lf (Cout) and H lf (Cin) are reducible. In fact, with respect to the explicit bases
that we describe, the matrices of these embeddings are diagonal, and their diagonal entries are products of
quantum factorials in R.

(iii) For ◦ ∈ {in,out}, there is a natural injective map

H lf (C◦)−→ H lf ,∼(C◦).

If B denotes a free basis for H lf (C◦) as a module over R = k[G], then H lf ,∼(C◦) is a direct sum over B of
copies of the completion k[[G]] = ∏

G
k of k[G] =

⊕
G

k.
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11. Mapping class group representations via Heisenberg homology

As mentioned in §5, the Lawrence-Bigelow representations of the braid groups are very important in
the theory of braid groups. In particular, they were used by Bigelow [Big01] and Krammer [Kra02] to prove
that the braid groups are linear, i.e., they embed into general linear groups over a field. For the mapping
class group of the surface Σg,1, however, the question of linearity is wide open, except in very low genus.

Inspired by this question, in joint work [BPS21] with Christian Blanchet and Awais Shaukat, we
have constructed a wide family of analogues of the Lawrence-Bigelow representations for the mapping
class group M(Σ) of the surface Σ = Σg,1, as well as three of its important subgroups, the Torelli group
T(Σ), the Chillingworth subgroup Chill(Σ) and the Morita subgroup Mor(Σ), which fit together in the
following diagram, where H = H1(Σ;Z) and d is the Morita crossed homomorphism.

T(Σ) H

Chill(Σ) M(Σ) Sp(H)nH

Mor(Σ) Sp(H)

(s,d)

s

d

More precisely, for any integer m > 2 and representation V of the discrete Heisenberg group H (Σ),
we construct representations of Chill(Σ) and of T(Σ). When V is the Schrödinger representation of H (Σ),
we moreover construct a unitary representation of Mor(Σ), which extends to a unitary representation of the
stably universal central extension of M(Σ).

The kernels of each of these representations are contained in the intersection of the Magnus kernel
of M(Σ) and the m-th term of the Johnson filtration of M(Σ). We perform some explicit computations of
these representations when m = 2 and V = Z[H (Σ)] is the regular representation of H (Σ), and discover
that they are highly non-trivial already for genus g = 1.

12. Burau representations of loop braid groups

Loop braid groups appear in many guises in topology and group theory. They may be seen geomet-
rically as fundamental groups of trivial links in R3, diagrammatically as equivalence classes of welded
braids (closely related to virtual braids and virtual knot theory), algebraically as subgroups of automor-
phism groups of free groups or combinatorially via explicit group presentations. They are also related to
physics via exotic string statistics [BWC07]. Generators for these groups are of the form:

In joint work with Arthur Soulié [PS21], we give a topological construction of the Burau represen-
tations of the loop braid groups, which are higher-dimensional analogues of the classical Burau represen-
tations of the braid groups. There are four versions: defined either on the non-extended or extended loop
braid groups, and in each case there is an unreduced and a reduced version. Three are not surprising, and
one could easily guess the correct matrices to assign to generators. However, the fourth is more subtle, and
does not seem combinatorially obvious, although it is topologically very natural.

13. Lower central series of surface, virtual and welded braid groups

One of the most basic objects one needs to understand when studying the structure of a group G is
its lower central series G = L1(G) ⊇L2(G) ⊇ ·· · . If G is perfect, its lower central series is completely
trivial; on the other hand, if G is nilpotent or residually nilpotent, L∗(G) contains deep information about
the structure of G. The lower central series is also deeply connected to the structure of the group ring of G.
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The amount of information one can hope to extract from the study of a lower central series depends
in the first place on whether or not it stops, meaning that there exists an integer i > 1 such that Li(G) =
Li+1(G). If there is such an integer, then the smallest such integer is the length of the lower central series
of G.

In joint work with Jacques Darné and Arthur Soulié [DPS22], we give a complete answer to the
question of the length (finite or infinite) of the lower central series of surface braid groups, virtual braid
groups and welded (=loop) braid groups, as well as partitioned versions of all of these groups. The answer
depends subtly on the number of strands, how they are partitioned and the topology of the underlying
surface. For example, for n > 3, the lower central series of:

• Bn(S) has length 2 if S is planar or non-orientable;
• Bn(S) has length 3 if S is non-planar and orientable;
• B(2,n)(R2) has length ∞;
• B(2,n)(S2) has length ν2(n)+1 or ν2(n)+2, where ν2(n) is the 2-adic valuation of n.

For a complete answer, see the tables in the introduction of [DPS22].
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