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Introduction
The concept of a moduli space is of central importance in mathematics, parametrising collections of

all objects of a given kind – solutions to an equation, manifolds with certain properties, configurations of
points, submanifolds or fields, etc. The overarching goal of my research so far has been to understand the
topology of different kinds of moduli spaces, through their homology (§1) and their fundamental groups
(§2). The kinds of moduli spaces that I have studied include:
• Configuration spaces of points in manifolds (§1.1).
• Non-local configuration spaces, in which configurations are equipped with some kind of additional

“non-local” structure, such as:
• an ordering modulo even permutations (§1.1.1),
• a “field” defined on the complement of the configuration (§1.1.2),
• non-local data encoding the interactions of asymptotic magnetic monopoles (§1.1.3).

• Moduli spaces of disconnected submanifolds, where points are replaced with higher-dimensional
closed manifolds (§1.2). This is related to moduli spaces of manifolds with Baas-Sullivan singulari-
ties, via the operation of collapsing each connected component of a submanifold to a point.

• Mapping class groups of surfaces, including surfaces of infinite type (§1.3 and §2.2.6).

Homology of moduli spaces. A frequently-occurring phenomenon in the homology of moduli spaces is
homological stability. For a family of moduli spaces indexed by a parameter n, this is the phenomenon
where their homology is independent of n in higher and higher degrees as n→∞. An important example of
this is for the mapping class groups of compact, connected, orientable surfaces: homological stability with
respect to genus was proven by Harer [Har85] and the limiting homology was computed by Madsen and
Weiss [MW07], together proving the Mumford conjecture [Mum83].
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Several results in my previous work have established homological stability in new contexts, including:
• Configuration spaces with different kinds of non-locality: §1.1.1–§1.1.3.
• In particular, this includes configuration-section spaces (§1.1.2), a point in which consists of a config-

uration in a manifold and a “field” on the complement of the configuration with prescribed “charges”
around each particle. These generalise Hurwitz spaces, which correspond to the setting when the
underlying manifold is the plane and fields take values in the classifying space of a discrete group.

• The homology of configuration spaces with respect to polynomial twisted coefficient systems: §1.1.5.
• The motivic cohomology of configuration schemes on a given smooth scheme: §1.1.6.
• Moduli spaces of higher-dimensional disconnected submanifolds: §1.2.1.
• Mapping class groups of infinite-type surfaces: §1.3.1.
There are also settings where homological stability is false and instead there exist more complicated

periodic patterns in the homology in a stable range of degrees. This holds for example for configuration
spaces on closed manifolds: §1.1.4.

In the context of mapping class groups of infinite-type surfaces (“big mapping class groups”), I have
used homological stability techniques to prove that certain families of big mapping class groups have trivial
homology in all degrees (i.e. they are acyclic). In contrast, another result (§1.3.2) shows that many other
families of big mapping class groups have uncountable (integral) homology in all degrees.

Fundamental groups of moduli spaces. These groups are interesting objects in their own right and in-
clude motion groups (such as surface braid groups, loop braid groups, etc.) and mapping class groups. They
have connections to knot theory and also to physics via topological quantum field theories.

Understanding the lower central series of a group (and its associated Lie algebra) is typically a difficult
task, but it can lead to a deep understanding of the underlying structure of the group. Another powerful
method of understanding a group is to understand its representations. In particular, a key question for any
group is to know whether it has a faithful representation on a finite-dimensional vector space – in other
words, whether it is linear. This is known for the classical braid groups [Big01; Kra02] but is wide open
for almost all other motion groups and mapping class groups. In the context of representations of mapping
class groups, another important question is whether they may be extended to define a topological quantum
field theory (TQFT) – in other words, whether they may be defined not just on automorphisms of manifolds
but on a whole cobordism category of manifolds.

I have worked on understanding the lower central series of many different kinds of motion groups
(including surface braid groups, loop braid groups and generalisations thereof), in particular the question
of when the lower central series stops: §2.1. Motivated by the open question of linearity and by the goal of
constructing TQFTs, I have worked on new topological constructions of representations of (surface) braid
groups, loop braid groups and mapping class groups: §2.2.

1. The homology of moduli spaces
I have studied the homology (including homological stability phenomena) of various different kinds

of configuration spaces (§1.1), moduli spaces of submanifolds and manifolds with singularities (§1.2) and
mapping class groups of infinite-type surfaces (§1.3).

1.1. Configuration spaces
For a space M, the nth ordered configuration space C̃n(M) is the subspace of Mn consisting of all

n-tuples of pairwise distinct points in M. The symmetric group Sn acts on this space, and

Cn(M) = C̃n(M)/Sn

is the nth unordered configuration space on M. It is a classical result, going back to McDuff [McD75] and
Segal [Seg73; Seg79], that the sequence Cn(M), when M is a connected, open manifold, is homologically
stable. This means that, for each degree i, there are isomorphisms Hi(Cn(M)) ∼= Hi(Cn+1(M)) once n is
sufficiently large (depending on i).

Closed manifolds. In the results of McDuff and Segal, the condition that M is connected is clearly neces-
sary for homological stability, as one can see already by considering H0. On the other hand, the condition
that M is open (i.e. non-compact or with non-empty boundary) is not obviously necessary, and the situation
for closed manifolds M is much more subtle. This part of my previous work is discussed in §1.1.4.
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Non-local data. A relatively straightforward generalisation of the result of McDuff and Segal is homolog-
ical stability for labelled configuration spaces Cn(M,X) for a path-connected space X : a point in this space
consists of an unordered configuration in M together with an element of X attached to each configuration
point. (This is proven in [Ran13], for example.) The additional data associated to a configuration in this
setting is local in the sense that it is simply a product of several pieces of data, each associated to a single
point in the configuration.

Oriented configurations. However, one may also consider moduli spaces of configurations equipped with
non-local data of different kinds. An example of this is the sequence of oriented configuration spaces

C+
n (M) = C̃n(M)/An

given by quotienting by the action of the alternating group instead of the symmetric group. These are
double coverings of the unordered configuration spaces; the additional (binary) piece of data given by an
ordering modulo even permutations is not associated to any single point of the configuration. These spaces
are discussed in §1.1.1.

Configuration-section spaces. Another kind of non-local data for configurations is a “field” defined on the
complement of the configuration: these are configuration-sections spaces, discussed in §1.1.2 (homological
stability) and §1.1.7 (studying the monodromy action of the fibration given by forgetting the field).

Asymptotic magnetic monopoles. In the case where the underlying manifold is Euclidean 3-space, there is
another kind of non-local data, encoding the pairwise interactions of the particles and modelling “asymp-
totic” magnetic monopoles, which is discussed in §1.1.3.

Twisted coefficients. The homological stability result of McDuff and Segal is for untwisted (integral)
homology of configuration spaces. I have proven an extension of their result that applies to “polynomial”
systems of twisted coefficients on the spaces Cn(M); see §1.1.5.

Motivic cohomology. If M = X(C) is the manifold of complex points of a smooth scheme X , one may
wonder whether stability for the singular (co)homology of Cn(M) may be lifted to stability for the motivic
cohomology of the sequence of configuration schemes on X . This is discussed in §1.1.6.

1.1.1. Non-locality: oriented configurations

In contrast to unordered configuration spaces, ordered configuration spaces C̃n(M) are not homologi-
cally stable: for example, the first homology of C̃n(R2) is the abelianisation of the pure braid group, which
is Z(

n
2). This raises the question of whether there is an intermediate covering space between C̃n(M) and

Cn(M) for which homological stability does hold. I proved in [Pal13] that the answer is positive for the
oriented configuration spaces C+

n (M), which doubly cover the unordered configuration spaces Cn(M):

Theorem ([Pal13]) The natural stabilisation map C+
n (M)→C+

n+1(M) induces isomorphisms on homology
in degrees ∗⩽ n−5

3 and surjections in degrees ∗⩽ n−2
3 .

The theorem also holds more generally for labelled configuration spaces, where each point is equipped
with a label in some fixed, path-connected parameter space X . The so-called slope of the stability range
here is 1

3 (and one may calculate explicitly for certain M to see that this is sharp), in contrast to the slope of
1
2 that holds for the unordered configuration spaces.

Twisted coefficients. The integral homology of C+
n (M) may be interpreted as the twisted homology group

H∗(Cn(M);Z[Z/2]), where π1(Cn(M)) acts on the group ring of Z/2 via the natural projection π1(Cn(M))→
Sn followed by the sign homomorphism. This is an example of an abelian twisted coefficient system on
Cn(M), and is a precursor, in a special case, of the notion of abelian homological stability, which was
subsequently developed by Randal-Williams and Wahl [RW17] and Krannich [Kra19]. See §1.1.5 for more
twisted homological stability results.

This result leads to the question of whether one can identify the stable homology of the sequence
{C+

n (M) | n ∈ N}, in other words the colimit

limn→∞H∗(C+
n (M)),

Last updated 2025-01-16 page 3 of 19 mdp.ac

https://mdp.ac


Research summary MARTIN PALMER-ANGHEL January 2025

in terms of other well-understood spaces. In joint work with Jeremy Miller, we answered this question
positively by lifting the classical scanning map [Seg73; McD75] to a homology equivalence between ap-
propriate covering spaces.
◦ First, in our paper [MP15a], we generalised the McDuff-Segal group-completion theorem [MS76] as

well as McDuff’s homology fibration criterion [McD75, §5] to the setting of homology with twisted
coefficients (more precisely to a setting where we consider homology with respect to all twisted
coefficient systems in a fixed class C that is closed under pullbacks).

◦ Using these tools, we proved in [MP15b] a new kind of scanning result, lifting the classical scanning
map to covering spaces and showing that it remains a homology equivalence after doing so. This
identifies the stable homology of oriented configuration spaces on M with the homology of an explicit
double cover of the section space of a certain bundle over M:

Theorem ([MP15b]) Writing Ṫ M→M for the fibrewise one-point compactified tangent bundle of M and
denoting its space of degree-0 compactly-supported sections by Γc(Ṫ M→M)◦, we have:

limn→∞H∗(C+
n (M)) ∼= H∗(Γ̃c(Ṫ M→M)◦), (1)

where Γ̃c(Ṫ M→M)◦ is the connected covering of Γc = Γc(Ṫ M→M)◦ corresponding to the projection

π1(Γc)−→→ H1(Γc)∼= H1(C2(M))−→→ H1(C2(R∞))∼= Z/2,

where the isomorphism H1(Γc)∼= H1(C2(M)) arises from homological stability and the identification of the
stable homology for unordered configuration spaces, and the map H1(C2(M)) ↠ H1(C2(R∞)) is induced
by any embedding M ↪→ R∞.

For example, when M =R∞ the right-hand side of (1) is the universal cover of (one component of) the
infinite loopspace Ω∞S∞ = QS0. When M = R2 it is the unique connected double cover of Ω2S3.

1.1.2. Non-locality: configuration-section spaces

Configuration-section spaces on a manifold M equipped with a bundle E→M are a kind of “non-local”
configuration space (in a difference sense from the non-locality of §1.1.1 above), whose elements consist of
a finite configuration in M together with a section of E→M defined on the complement of the configuration.
Such spaces may be thought of physically as spaces of “fields” with point-particle singularities.

One often considers subspaces where the behaviour of the field (section) is constrained in a neigh-
bourhood of the singularities (particles) – this may be thought of as restricting the allowed “charges” of the
particles. More precisely, if the bundle E→M is trivial with fibre X , we fix a set c⊆ [Sd−1,X ] of homotopy
classes of maps Sd−1 → X , where d is the dimension of M. The sections are then required to restrict to
an element of c, up to homotopy, in a neighbourhood of each particle (they are undefined at the particles
themselves). For non-trivial bundles E→M, the definition is similar but a little more delicate.

When M =R2 and the fibre X of the bundle is BG for a discrete group G, these are the Hurwitz spaces,
classifying branched coverings of the 2-disc with deck transformation group G (and prescribed monodromy,
if we impose a condition c⊆ [S1,BG] = Conj(G)). These spaces have important connections with number
theory through recent work of Ellenberg, Venkatesh and Westerland [EVW16], who proved an asymptotic
version of the Cohen-Lenstra conjecture for function fields via a certain rational homological stability result
for Hurwitz spaces.

In joint work with Ulrike Tillmann, we have proven another homological stability result for configuration-
section spaces [PT21], which is in a sense both more and less general than that of Ellenberg, Venkatesh and
Westerland. It is more general in the sense that it holds for any bundle over any connected, open manifold
M, but it is also less general in the sense that we assume a stronger condition on the allowed “charges” of
the particles.

Theorem ([PT21]) Let M be a connected manifold of dimension d ⩾ 2 with basepoint ∗ ∈ ∂M and let
ξ : E→M be a fibre bundle whose fibre over ∗ we denote by X. Assume that

the preimage of c under [Sd−1,X ]←←− πd−1(X) is a single element, (2)

so c corresponds to a fixed point of the π1(X)-action on πd−1(X). Then the stabilisation maps of configuration-
section spaces

CΓ
c,∗
k (M;ξ )−→ CΓ

c,∗
k+1(M;ξ ) (3)
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induce isomorphisms on Hi(−;Z) in the range k ⩾ 2i+4 and surjections in the range k ⩾ 2i+2. With field
coefficients, these ranges may be improved to k ⩾ 2i+2 and k ⩾ 2i respectively.

1.1.3. Non-locality: asymptotic magnetic monopoles

The topology of the moduli spaces of magnetic monopoles Mk has been the subject of intensive study
for many decades. By a theorem of Donaldson [Don84], they have a model as spaces of rational functions
on CP1. Via this model, their homotopy and homology groups are known to stabilise as k→∞ by a theorem
of Segal [Seg79] and their homology (both stable and unstable) was completely computed by [Coh+91] in
terms of the homology of the braid groups, which is completely known by [CLM76].

The moduli spaces Mk are non-compact manifolds. Recently, a partial compactification of Mk has
been constructed by Kottke and Singer [KS22] by adding to Mk certain codimension-1 boundary hypersur-
faces Iλ indexed by partitions λ = (k1, . . . ,kr) of k. Points in these boundary hypersurfaces are thought
of as “ideal” or “asymptotic” monopoles of total charge k, with r “clusters” centred at different points in
R3, with charges k1, . . . ,kr, which are “widely separated” but nevertheless interact. The space Iλ has the
structure of a fibre bundle

Iλ −→Cλ (R3) (4)

over the partitioned configuration space Cλ (R3) (the covering space of the unordered configuration space of
k1+ · · ·+kr points where configurations are equipped with a partition of type λ ) with fibre Mk1×·· ·×Mkr .
The non-locality of the non-local configuration spaces Iλ comes from the non-triviality of the bundle (4).

In joint work with Ulrike Tillmann, we have proven a homological stability result for these asymptotic
monopole moduli spaces as the number of clusters of a fixed charge c ⩾ 1 goes to infinity. Fix a positive
integer c and a tuple λ = (k1, . . . ,kr) of positive integers ki ̸= c. Write λ [n]c = (k1, . . . ,kr,c, . . . ,c), where c
appears n times.

Theorem ([PT23]) There are natural stabilisation maps

Iλ [n]c −→Iλ [n+1]c (5)

that induce isomorphisms on homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees ⩽ n/2
with field coefficients.

1.1.4. Configurations on closed manifolds

When M is closed, homological stability for the unordered configuration spaces Cn(M) is not true in
general, for example one may calculate that H1(Cn(S2);Z)∼=Z/(2n−2), which does not stabilise as n→∞.
Moreover, the classical stabilisation maps used by McDuff and Segal do not exist, since these depend on
adding a new configuration point in M “near infinity”. In joint work with Federico Cantero, we have proven
three main results demonstrating that the homology of configuration spaces on closed manifolds exhibits
some more subtle kinds of stability.
(1) When the Euler characteristic of M is zero, we construct replication maps Cn(M)→ Cλn(M) for any
integer λ ⩾ 2, and prove that they induce homological stability after inverting λ :

Theorem ([CP15]) These maps induce isomorphisms on Hi(−,Z[ 1
λ
]) in the range 2i ⩽ λ .

Note. A construction related to our replication maps has also been used in the paper [Ber+06], in which they
use something similar to a replication map in §3 to build a crossed simplicial group out of the configuration
spaces on any given manifold M that admits a non-vanishing vector field.
(2) When the manifold M is odd-dimensional, the configuration spaces Cn(M) do in fact satisfy homological
stability after inverting 2 in the coefficients (strengthening a result of [BM14]):

Theorem ([CP15]) When dim(M) is odd, there are isomorphisms

Hi(Cn(M);Z[ 1
2 ])
∼= Hi(Cn+1(M);Z[ 1

2 ]) and Hi(Cn(M);Z)∼= Hi(Cn+2(M);Z)

in the range 2i ⩽ n, induced by a zigzag of maps.

(3) When the manifold M is even-dimensional, and F is a field of characteristic 0 or 2, it is known by the
work of many authors [BCT89; ML88; Chu12; Ran13; BM14; Knu17] that homological stability holds for
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Cn(M) with coefficients in F, even when M is closed. When F has odd characteristic p, however, this is
false, as one can see from the example of M = S2 mentioned above. In fact:

H1(Cn(S2);F)∼=
{
F p | n−1
0 p ∤ n−1

}
for n ⩾ 2.

From this example we see that the first homology of Cn(S2) is not stable, but it is p-periodic and takes
on only 2 different values. Our third result is that this phenomenon holds in general, when the Euler
characteristic χ of M is non-zero. Write a = νp(χ) for the p-adic valuation of χ , in other words χ = pab
with b coprime to p.

Theorem ([CP15]) Suppose that dim(M) is even. For each fixed i, the sequence

Hi(Cn(M);F) for n ⩾ 2i (6)

is pa+1-periodic and takes on at most a+ 2 values. Moreover, if χ ≡ 1 mod p then the above sequence is
1-periodic, i.e. homological stability holds with coefficients in F.

The pa+1-periodicity result is similar to a theorem of [Nag15], although his estimate of the period is
different, namely a power of p depending on i rather than on χ . This result was later improved by [KM16]
to p-periodicity, independent of i or χ . Combining this with (a slightly more precise statement of) our
result, a corollary is that the sequence (6) above takes on only two different values.

1.1.5. Polynomial twisted homology

As well as the notion of abelian homological stability mentioned in §1.1.1, another sense in which
a sequence of spaces (or groups) can satisfy twisted homological stability is with respect to a so-called
polynomial twisted coefficient system. This consists of a choice of local coefficient system on each space Xn
in the sequence, together with additional morphisms of local coefficient systems between them, organised
into a functor C → Ab, where C is a certain category whose automorphism groups are the fundamental
groups π1(Xn). To be polynomial, the degree of this functor (defined using the intrinsic structure of C ) is
required to be finite.

Many families of groups G = {Gn} are known to be homologically stable in this sense (where we
set Xn = BGn in the above paragraph), for appropriately-defined categories CG, for example the symmetric
groups Sn, braid groups βn, general linear groups, automorphism groups of free groups Aut(Fn) and map-
ping class groups of surfaces and of 3-manifolds.1 In [Pal18b], I proved the first such result for a sequence
of spaces, namely the unordered configuration spaces Cn(M) on any connected, open manifold M. Note
that, when dim(M) ⩾ 3, these spaces are not aspherical (in contrast to the case of surfaces), so this does
not reduce to a statement about the homology of their fundamental groups. When dim(M) = 2, these con-
figuration spaces are aspherical, so the result may be thought of as twisted homological stability for their
fundamental groups, the surface braid groups Bn(M) = π1(Cn(M)).

Theorem ([Pal18b]) Let M be an open, connected manifold and let T be a twisted coefficient system for
{Cn(M)}. This includes in particular the data of a local coefficient system Tn for each Cn(M), as well as a
homomorphism

H∗(Cn(M);Tn)−→ H∗(Cn+1(M);Tn+1).

This homomorphism is split-injective in all degrees, and, if T has finite degree d, it is an isomorphism in
the range ∗ ⩽ n−d

2 . This result also generalises to configuration spaces with labels in any path-connected
space X.

1.1.6. Motivic cohomology

In joint work with Geoffroy Horel, we have proven stability for the motivic and étale cohomology of
configuration schemes on a smooth scheme X . In more detail, if X is a smooth scheme over a number field
K, one may ask whether the corresponding unordered configuration schemes Cn(X) exhibit stability in their
étale or motivic cohomology – lifting the classical stability for the singular (co)homology of the complex
manifolds Cn(X(C)), where X(C) denotes the complex points of X .

1 References for these results are as follows. Symmetric groups: [Bet02]; braid groups: [CF13; RW17; Pal18b]; general linear
groups: [Dwy80; Kal80]; automorphism groups of free groups: [RW17]; mapping class groups of surfaces: [Iva93; CM09; Bol12;
RW17]; mapping class groups of 3-manifolds: [RW17]. These are references for the proofs of twisted homological stability; in each
case, homological stability with untwisted coefficients was known earlier.
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Theorem ([HP23]) Suppose that X may be written as Y −D, where Y is a smooth scheme over K and
D ⊂ Y is a smooth, closed subscheme that has a K-point. Assume that the étale motive of X is mixed Tate
and that Y is geometrically connected. Then there are maps of étale motivic cohomology groups

H p,q
et (Cn+1(X);Λ)−→ H p,q

et (Cn(X);Λ)

that are isomorphisms for p ⩽ n/2 and under mild conditions on the coefficient ring Λ. In the case when
X = Ad is affine space, there are analogous maps of motivic cohomology groups

H p,q(Cn+1(Ad);Λ)−→ H p,q(Cn(Ad);Λ)

that are isomorphisms for p ⩽ n/2−1 and any coefficient ring Λ.

1.1.7. Point-pushing actions

Following on from §1.1.2, where we discussed homological stability for configuration-section spaces,
let us now assume that the bundle E →M is trivial with fibre X ; in this case we write CMapc,∗

k (M;X) and
call these configuration-mapping spaces. They fit into a natural fibre sequence

Mapc,∗(M∖ k points,X)−→ CMapc,∗
k (M;X)−→Ck(M̊), (7)

which is obtained functorially from the universal fibre sequence

M∖ k points−→Uk(M)−→Ck(M̊). (8)

In [PT22], we obtain explicit formulas, when the dimension of M is at least 3, for the monodromy action
π1(Ck(M)) → π0(hAut(M ∖ k points)) of the universal fibre sequence (8), from which we also deduce
explicit formulas for the monodromy action of the fibre sequence (7). A special case of this is as follows:

Theorem ([PT22]) If d = dim(M)⩾ 3 and M satisfies at least one of the following conditions:
• M is simply-connected, or
• the handle-dimension of M is at most d−2;

then the “point-pushing” action of γ = (α1, . . . ,αk;σ) ∈ π1(Ck(M))∼= π1(M)k ⋊Σk on the mapping space
Mapc,∗(M∖ k points,X)≃Map∗(M,X)× (Ωd−1

c X)k is given as follows:

(α1, . . . ,αk;σ) · ( f ,g1, . . . ,gk) = ( f , ḡ1, . . . , ḡk), (9)

where ḡi = f∗(αi).gσ(i).sgn(αi), and
• for an element α ∈ π1(M) we write sgn(α) = +1 if α lifts to a loop in the orientation double cover

of M and sgn(α) =−1 otherwise,
• π1(X) acts up to homotopy on Ωd−1

c X in the natural way,
• {±1} acts on Ωd−1

c X through the involution given by precomposition with a reflection of Sd−1 in a
hyperplane containing the basepoint.

As a corollary, we obtain a precise description of the set of path-components π0(CMapc,∗
k (M,X)) of

the configuration-mapping space, under the above conditions.
In addition, we investigate the question of injectivity of the point-pushing maps

pk : π1(Ck(M))−→ π0(Cat(M,z))

pk,∂ : π1(Ck(M))−→ π0(Cat∂ (M,z)),

where Cat ∈ {hAut,Homeo,Diff}, z denotes the basepoint configuration in Ck(M) and where ∂ means that
the boundary of M is fixed, and prove:

Theorem ([PT22, §8]) When the dimension of M is at least 3, we have

ker(pk) = ∆(ker(p1)),

i.e. the kernel of pk is equal to the diagonal of ker(p1)
k⊆ π1(M)k⊆ π1(Ck(M)), where we identify π1(Ck(M))

with π1(M)k ⋊Σk. If ∂M ̸=∅, then pk,∂ is injective.
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1.2. Higher-dimensional submanifolds and conical singularities
Instead of configurations of points (closed 0-dimensional submanifolds) in M, one may consider con-

figurations of higher-dimensional closed submanifolds of M that are isotopic to the disjoint union of finitely
many copies of a fixed (“model”) manifold L.

In this setting, I proved (see §1.2.1) that moduli spaces of disconnected submanifolds of this kind
are homologically stable as the number of components goes to infinity, just as in the classical setting of
points [Seg73; McD75; Seg79], under a restriction on the relative dimensions of the manifolds involved.
As a corollary, I proved (see §1.2.2) a homological stability result for moduli spaces of manifolds with
conical singularities.

1.2.1. Moduli spaces of disconnected submanifolds

We first define the moduli spaces under consideration precisely. Let M be a connected manifold with
non-empty boundary and of dimension at least 2, and denote its interior by M. Also fix a closed manifold
L and an embedding ι0 : L ↪→ ∂M. Choose a self-embedding e : M ↪→ M that is isotopic to the identity
and such that e(ι0(L)) is contained in the interior M ⊂M. We then obtain a sequence of pairwise-disjoint
embeddings of L into M by defining ιn := en ◦ ι0 for n ⩾ 0. Intuitively, this is just a sequence of “parallel”
copies of ι0(L) in a tubular neighbourhood of the boundary of M.

Let nL = {1, . . . ,n}×L and write ι1,...,n : nL ↪→M for the embedding (i,x) 7→ ιi(x).

Definition Let CnL(M) denote the path-component of

Emb(nL,M)/Diff(nL)

containing [ι1,...,n]. Here, the embedding space is given the Whitney topology and CnL(M) the quotient
topology. There is a natural stabilisation map

CnL(M)−→C(n+1)L(M) (10)

defined by
• adjoining the embedding ι0 to a given embedding nL ↪→M, to obtain a new embedding (n+1)L ↪→M,
• composing with the self-embedding e to push this into the interior M of M.

In symbols, this is [φ ] 7→ [φ+], where φ+(i,x) = e◦φ(i,x) for 1 ⩽ i ⩽ n and φ+(n+1,x) = ι1(x).

Theorem ([Pal21]) Assume that dim(L)⩽ 1
2 (dim(M)−3). Then (10) induces isomorphisms on homology

in degrees ∗⩽ n−2
2 and surjections in degrees ∗⩽ n

2 .

The theorem proven in [Pal21] is in fact a more general version of this theorem, for moduli spaces of
submanifolds where each copy of L⊂M in a configuration:
• is parametrised modulo a fixed subgroup of Diff(L);
• comes equipped with labels in a fixed bundle over the embedding space Emb(L,M).

1.2.2. Manifolds with conical singularities

In the sequel [Pal18a], I used homological stability for the moduli spaces CnL(M) (and their more
refined versions mentioned just after the theorem above) to prove homological stability for:
• Symmetric diffeomorphism groups, with respect to parametric connected sum. (Given embeddings

L ↪→ M and L ↪→ Q with isomorphic normal bundles, their parametric connected sum M♯LQ is the
result of cutting out a tubular neighbourhood of each embedding and gluing the resulting boundaries.
If L is a point this is the ordinary connected sum. Other examples of this operation are surgery and
Dehn surgery of 3-manifolds.) This generalises [Til16], which corresponds to the case L = point (i.e.
the usual connected sum operation).

• Diffeomorphism groups of manifolds with conical singularities, with respect to the number of singu-
larities.

Let us describe the second point above in more detail. Fix an (m− 1)-dimensional manifold T and
let cone(T ) = (T × [0,∞))/(T ×{0}) be the open cone on T . An m-dimensional manifold with conical
T -singularities is a space M that is locally homeomorphic to cone(T ), together with a smooth atlas on the
subset Mmfd ⊆M of locally Euclidean points of M. (This is a special case of a manifold with Baas-Sullivan
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singularities.) A diffeomorphism of M is a homeomorphism M → M that restricts to a diffeomorphism
Mmfd → Mmfd and is of the form cone(ϕ) for some diffeomorphism ϕ : T → T near each point of the
discrete subset M∖Mmfd ⊆M. These form a subgroup

DiffT (M) ⩽ Homeo(M).

For example, we may construct a manifold with conical singularities by collapsing a tubular neighbour-
hood T (L) of any submanifold L ⊂ M. The quotient ML = M/T (L) is a manifold with a single conical
∂T (L)-singularity. In the setting of §1.2.1, we may collapse a tubular neighbourhood of each submanifold
ιi(L)⊂M for 1 ⩽ i ⩽ n, to obtain a manifold with n conical ∂T (L)-singularities, which we denote by Mn·L.

Theorem ([Pal18a]) If M is connected and has non-empty boundary and dim(L) ⩽ 1
2 (dim(M)− 3), the

sequence of classifying spaces BDiff∂T (L)(Mn·L) is homologically stable as n→ ∞.

1.3. Big mapping class groups
Connected, compact, orientable surfaces are classified by their genus and number of boundary compo-

nents; in particular there are countably many such surfaces. If we remove the assumption of compactness
(but still assume second countability and require the boundary to be compact), surfaces are classified by:
• their genus (which may be a non-negative integer or ∞);
• their number of boundary components (a non-negative integer);
• their space of ends E (a space that is homeomorphic to a closed subset of the Cantor set C );
• their space of non-planar ends Enp (a closed subset of E).

The classification [Ker23; Ric63] says that homeomorphism classes of surfaces are in one-to-one corre-
spondence with choices of the above list of data, with the single restriction that Enp = ∅ if and only if the
genus is finite. In particular, there are uncountably many such surfaces.

A surface has finite type if its fundamental group is finitely generated (this occurs if and only if both its
genus and its space of ends are finite); otherwise it has infinite type. Some examples of infinite type surfaces
(without boundary) are:
• the sphere minus a Cantor set (genus zero; E = C ; Enp =∅);
• the colimit of the compact surfaces Σg,1 as g→ ∞ (infinite genus; E = Enp = {∗});
• the “flute surface” C∖Z (genus zero; E = [0,ω], Enp =∅).

The space of ends in the last example is the closed ordinal space [0,ω], in other words the ordinal ω +1 in
the order topology, which is homeomorphic to the subspace {1/n | n ∈ N}∪{0} ⊂ C.

The mapping class group Map(S) of a surface S is countable if and only if S has finite type. Mapping
class groups of infinite type surfaces (which are uncountable) are often called big mapping class groups.
See [AV20] for a recent survey.

1.3.1. Homological stability and acyclicity

The degree-one homology (i.e. abelianisation) of big mapping class groups is known in some cases.
For example, if Σ is a finite type surface and C ⊂ Σ is a subspace homeomorphic to the Cantor set, the
natural map

Map(Σ∖C )−→Map(Σ)

(given by extending homeomorphisms of Σ∖C uniquely to Σ) induces an isomorphism on H1(−) [CC22].
In the special case of the 2-sphere, it is also known that H2(Map(S2 ∖C )) ∼= Z/2 [CC21]. On the other
hand, the first (integral) homology of Map(C∖Z) is known to contain a summand isomorphic to Qc ∼= R,
where c denotes the cardinality of the continuum [MT24].

In joint work with Xiaolei Wu, we gave the first complete calculation in all degrees of the homology
of certain big mapping class groups. To describe this, we first need to introduce some constructions.

Definition Let Σ be any surface with empty boundary. For n ⩾ 1 write Σ(n) for the surface obtained by
removing the interiors of n pairwise disjoint discs from Σ. Then:
• B(Σ) is the result of gluing together infinitely many copies of Σ(3) in a binary tree pattern;
• L(Σ) is the result of gluing together infinitely many copies of Σ(2) in a linear pattern.

Note that both B(Σ) and L(Σ) have one boundary component. Write B(Σ) and L(Σ) respectively to denote
the result of filling the boundary component with a disc.
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Examples Some key examples are:
• L(S2)∼= D2 ∖{0};
• B(S2)∼= D2 ∖C ;
• L(C)∼= C∖Z (the flute surface);
• L(T 2) is the colimit of the compact surfaces Σg,1 as g→ ∞ (the Loch Ness monster surface).

Theorem ([PW24c]) For any surface Σ, the mapping class group Map(B(Σ)) is acyclic, i.e.

H̃∗(Map(B(Σ))) = 0.

As a consequence, we also have

Hi(Map(B(Σ)∖{∗}))∼=

{
Z if i is even,
0 if i is odd.

In particular, when Σ= S2 the second part of this theorem gives a complete calculation of the homology
of the mapping class group of the plane minus a Cantor set C∖C .

A key ingredient in the proof is a homological stability result for big mapping class groups:

Theorem ([PW24c]) Let A be a connected surface with one boundary component and let Σ be a connected
surface with empty boundary. Then the sequence of big mapping class groups

Map(A♮B(Σ)♮n)

is homologically stable as n→∞, where ♮ denotes boundary connected sum. The same statement is true for
the sequence

Map(A♮L(Σ)♮n)

under a mild condition on the end space E of Σ.

The condition on the end space E of Σ in the above theorem is the following. First notice that the end
space of L(Σ) is (Eω)+, where Eω denotes the disjoint union of countably infinitely many copies of E
and (−)+ denotes one-point compactification. The condition is that the point at infinity of (Eω)+ must be
topologically distinguished, i.e. not locally homeomorphic to any other point of (Eω)+.

Although this is a mild condition, it is not vacuous: for example, in the case when E is the Cantor
set C , the space (C ω)+ ∼= C is homogeneous, so in particular the point at infinity is not topologically
distinguished.

1.3.2. Uncountability

In a contrasting direction, in further joint work with Xiaolei Wu, we have proven that other families of
big mapping class groups have uncountable homology in all positive degrees.

Theorem ([PW24a]) Let Σ be a connected surface with empty boundary. Assume that Σ has genus zero
and that its space of ends has a topologically distinguished point. Then there is an embedding of graded
abelian groups

Λ
∗
(⊕

c

Z
)
↪−→ H∗(Map(L(Σ))),

where c denotes the cardinality of the continuum and Λ∗(−) denotes the exterior algebra over Z on an
abelian group. In particular, the homology of the mapping class group of L(Σ) is uncountable in all positive
degrees.

In particular, when Σ = C this theorem proves uncountability in all degrees of the homology of the
mapping class group of the flute surface C∖Z.

Remark The assumption in the above theorem, that the space of ends of Σ has a topologically distinguished
point, is essential. Without this assumption we could set Σ = S2 ∖C , in which case

L(S2 ∖C )∼= S2 ∖C ,

but it is known by [CC21; CC22] that the homology of Map(S2 ∖C ) is not uncountable in degrees 1 and 2
(is is isomorphic to 0 and Z/2 respectively).
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We also prove uncountability results for certain subgroups of big mapping class groups in [PW24a].
Specifically, for any infinite type surface S, we prove uncountability in all positive degrees of the homology
of the subgroups T (S)⊆ PMapc(S)⊆Map(S), the Torelli group and the closure of the compactly-supported
mapping class group.

The proofs of our uncountability results build on work of [APV20], [Dom22] and [MT24], which
focused on homological degree one.

1.3.3. Homology classes with compact or finite-type support

Let us say that a homology class α ∈ H∗(Map(S)) has compact support (resp. finite-type support) if
there is a compact (resp. finite-type and properly embedded) subsurface Σ ⊂ S such that α is in the image
of H∗(Map∂ (Σ))→ H∗(Map(S)), where Map∂ (−) means mapping classes fixing boundary pointwise and
Map∂ (Σ)→Map(S) is defined by extending homeomorphisms by the identity.

A basic question for any infinite-type surface S is:

Question Are there non-zero homology classes in H∗(Map(S)) with compact (resp. finite-type) support?

If we write MapC(S) (resp. MapF(S)) for the colimit of Map∂ (Σ) over all compact (resp. finite-type
and properly embedded) subsurfaces Σ ⊂ S, then there are natural maps MapC(S)→MapF(S)→Map(S)
and the question may be rephrased as:

Question Does MapC(S)→Map(S) (resp. MapF(S)→Map(S)) induce a non-zero map on homology?

Whenever S has infinite genus, it follows from the Madsen-Weiss theorem [MW07] and Harer stability
[Har85] that the homology of MapC(S) is isomorphic to the homology of Ω∞

0 MT SO(2). In particular, its
rational homology is generated by the duals of monomials in the Miller-Morita-Mumford classes. The
question in this case (when taking rational coefficients) is therefore equivalent to asking whether any of
these classes survive in the homology of the big mapping class group.

In joint work with Xiaolei Wu, we have given an almost-complete answer to this question when S has
infinite genus, and a partial answer when it has finite genus.

Theorem ([PW24b]) Let S be an infinite-genus surface. Then the map induced on homology by MapC(S)→
Map(S) is zero, when taking coefficients in any field.

In particular, this implies that none of the duals of monomials in the Miller-Morita-Mumford classes
survive in H∗(Map(S);Q).

(Note that it does not follow from the theorem above that the map induced on integral homology is
also zero, and we do not currently know whether this is true.)

The answer for finite-type support is a little more complicated. A puncture of S is an end that is both
planar and isolated (i.e. not a limit point of other ends). The number of punctures of S is always finite or
countably infinite. A mixed end of S is one that is both non-planar and a limit point of punctures. (Note that
the existence of a mixed end implies that the number of punctures is infinite.)

Theorem ([PW24b]) Let S be an infinite-genus surface with p ∈ {0,1,2, . . . ,∞} punctures. Then the map
induced on homology by MapF(S)→Map(S) is:

(if p = 0) zero, when taking coefficients in any field.
(if 0 < p < ∞) non-zero, when taking coefficients in any abelian group.
(if p = ∞ and ∃ mixed end) zero, when taking coefficients in any field.

The remaining open case for infinite-genus surfaces S is when p = ∞ but S does not have a mixed end.
If S is an infinite-type surface of finite but non-zero genus, then we prove that Map(S) always has

non-zero homology classes with compact (and therefore finite-type) support.
If S is an infinite-type surface of genus zero, then the answer is much more complicated, and depends

subtly on the topology of the space of ends of S. For example, if the number of punctures of S is finite
but at least 4, then Map(S) has non-zero homology classes with compact support. In the other direction,
we prove for S = C∖Z that Map(S) does not have any non-zero homology classes with compact support
(when taking coefficients in any field). For full details, see Table I on page 3 of [PW24b].
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2. Fundamental groups of moduli spaces
Examples of fundamental groups of moduli spaces include the classical braid groups Bn = π1(Cn(R2))

and their relatives (loop/welded braid groups wBn = CnS1(R3), surface braid groups Bn(S) = π1(Cn(S)),
etc.) as well as mapping class groups Map(M) = π0(Homeo(M)) = π1(BHomeo(M)). I have studied these
groups from the point of view of their lower central series (§2.1) and their representation theory (§2.2).

2.1. Lower central series
One of the most basic objects one needs to understand when studying the structure of a group G is its

lower central series G = Γ1(G)⊇ Γ2(G)⊇ ·· · , defined recursively by

Γi+1(G) = [Γi(G),G] = {ghg−1h−1 | g ∈ Γi(G),h ∈ G}.

If G is perfect, its lower central series is completely trivial. On the other hand, if it is nilpotent or
residually nilpotent, the filtration Γ∗(G) and its associated graded Lie ring L∗(G) =

⊕
i Γi(G)/Γi+1(G)

contain deep information about the structure of G. The lower central series is also deeply connected to the
structure of the group ring of G.

The amount of information one can hope to extract from the study of a lower central series depends in
the first place on whether or not it stops, meaning that there exists an integer i⩾ 1 such that Γi(G) =Γi+1(G).
If there is such an integer, then the smallest such integer is the length of the lower central series of G.

In joint work with Jacques Darné and Arthur Soulié, we give a complete answer to the question of
the length (finite or infinite) of the lower central series of surface braid groups, virtual braid groups and
loop/welded braid groups, as well as partitioned versions of all of these groups. The answer depends subtly
on the number of strands, how they are partitioned and the topology of the underlying surface. For example:

Theorem ([DPS22]) For n ⩾ 3, the lower central series of:
• Bn(S) has length 2 if S⊆ S2 or S is non-orientable;
• Bn(S) has length 3 if S ̸⊆ S2 and S is orientable;
• B(2,n)(R2) has length ∞;
• B(2,n)(S2) has length ν2(n)+2+ ε , where ν2(n) is the 2-adic valuation of n and ε ∈ {0,±1}.

For a complete answer, see the tables on pages xi–xiii of [DPS22].

2.2. Representations of motion groups and mapping class groups
I have several strands of research concerning (homological) representations of motion groups and

mapping class groups.
The Lawrence-Bigelow representations are an important family of representations of the braid groups,

which were used in the proof [Big01; Kra02] that the braid groups are linear. They come in many dif-
ferent flavours, and in joint work with Cristina Anghel (§2.2.1) we have studied the precise relationships
between these different flavours, for a general class of homological representations of mapping class groups
including the Lawrence-Bigelow representations.

In a sequence of joint work with Arthur Soulié (§2.2.2–§2.2.5), we have given a unified foundation
for the construction of homological representations of motion groups and mapping class groups, using a
functorial approach. This has yielded new constructions, such as a pro-nilpotent extension of the Lawrence-
Krammer-Bigelow representation (§2.2.3) and extensions of the Burau representations to (extended) loop
braid groups (§2.2.4), as well as polynomiality properties for families of representations (§2.2.5).

In joint work with Christian Blanchet and Awais Shaukat (§2.2.6), we have constructed non-commutative
analogues of the Lawrence-Bigelow representations for higher-genus mapping class groups using the rep-
resentation theory of the Heisenberg group.

2.2.1. Lawrence-Bigelow representations

In joint work with Cristina Anghel, we have investigated the fundamental relationships between the
many different flavours of homological representations of mapping class groups – with the Lawrence-
Bigelow representations of the braid groups being our motivating example. Understanding the relationships
between these representations is important for applications in quantum topology (see for example [Ang24]).
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Consider a surface Σ equipped with a decomposition ∂inΣ∪∂outΣ of its boundary (a surface triad). We
think of ∂inΣ as its inner “free” boundary and ∂outΣ as its outer “fixed” boundary, and consider the mapping
class group

Map(Σ) = π0(Diff(Σ,∂outΣ)).

For example, if Σ = Σ0,n+1 with n of its boundary-components considered as inner and one considered as
outer, this is isomorphic to the braid group on n strands. Choose a local system L (defined over a ring
R) on the configuration space Ck(Σ) that is preserved by the action of Map(Σ). For each k, we then obtain
various different homological Map(Σ)-representations

H•(C◦),

where C◦ is either Cout =Ck(Σ∖∂inΣ) or Cin =Ck(Σ∖∂outΣ) and H• denotes one of
• ordinary homology H, twisted by L ,
• homology relative to the boundary H∂ , twisted by L ,
• locally-finite (Borel-Moore) homology H lf , twisted by L ,
• locally-finite homology of the associated covering space C̃k(Σ)→Ck(Σ) (in the case where L arises

from such a covering), denoted H lf ,∼.
For example, when Σ = Σ0,n+1 we may take L to be the local system arising from the covering correspond-
ing to the kernel of the homomorphism

ϕ : π1(Ck(Σ))−→

{
Z{c} k = 1
Z{c,x} k ⩾ 2

given by ϕ(γ) = ic+ jx, where i is the total winding number of γ around the n inner boundary components
and j is the writhe of the braid obtained from γ by filling in the n inner boundary components with discs. In
this example the Bn-representations above are 8 different flavours of the Lawrence-Bigelow representations.

Theorem ([AP20]) (i) For ◦ ∈ {in,out}, there is a non-degenerate pairing

H lf (C◦)⊗H∂ (C◦)−→ R.

Moreover, these representations are free as R-modules. We describe explicit bases such that the pairing
above is given by the identity matrix.

(ii) Under a mild condition on the local system L , there are embeddings of representations

H∂ (Cin)−→ H lf (Cout)

H∂ (Cout)−→ H lf (Cin).

When k ⩾ 2 this implies that H lf (Cout) and H lf (Cin) are reducible. In fact, with respect to the explicit bases
that we describe, the matrices of these embeddings are diagonal, and their diagonal entries are products of
quantum factorials in R.

(iii) For ◦ ∈ {in,out}, there is a natural injective map

H lf (C◦)−→ H lf ,∼(C◦).

If B denotes a free basis for H lf (C◦) as a module over R = k[G], then H lf ,∼(C◦) is a direct sum over B of
copies of the completion k[[G]] = ∏

G
k of k[G] =

⊕
G

k.

2.2.2. Unified topological construction

In joint work with Arthur Soulié, we have given a unified foundation for the construction of homolog-
ical representations of motion groups and mapping class groups. Namely, we define homological represen-
tation functors encoding a large class of homological representations, defined on categories containing all
motion groups and mapping class groups in a fixed dimension d. These source categories are defined using
a topological enrichment of the Quillen bracket construction applied to categories of decorated manifolds.
This unifies many previously-known constructions, including those of Lawrence-Bigelow, and yields many
new representations. The construction depends on four parameters:
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• a closed submanifold Z ⊂ Rd and open subgroup G ⩽ Diff(Z);
• a functorial quotient of groups Q;
• an integer i ⩾ 0.
For example, the family of Lawrence-Bigelow representations depends on an integer k ⩾ 1; our con-

struction (for d = 2) recovers this in the case when:
• Z is the 0-dimensional manifold {1, . . . ,k} and G =Sk;
• Q is the abelianisation functor;
• i = k.

In higher dimensions d ⩾ 3, it is especially interesting to consider higher-dimensional submanifolds Z⊂Rd ,
for example in the case of the loop braid groups.

An important choice of functorial quotient of groups is Q =Γℓ for an integer ℓ⩾ 2: this is the universal
(ℓ−1)-nilpotent quotient, generalising the abelianisation functor.

Theorem ([PS24]) For a set of parameters {Z,G,Q, i} as above, the action of motion groups and mapping
class groups on the twisted homology of certain embedding spaces determines functors

Li(F(Z,G,Q)) : ⟨G◦,M◦⟩ −→Modtw
Z[Q], (11)

where Q denotes a group built out of the deck transformation groups of the regular covering spaces corre-
sponding to the coefficients in the twisted homology. There is also a universal quotient Qunt of the group
Q, together with functors:

Li(F
unt
(Z,G,Q)) : ⟨G◦,M◦⟩ −→ModZ[Qunt]. (12)

The domain ⟨G◦,M◦⟩ is a Quillen bracket category of decorated d-manifolds. The superscript tw

in (11) denotes an enlargement of the module category to a category of twisted modules. The functor
(11) therefore restricts to twisted representations of motion groups and mapping class groups, whereas the
functor (12) restricts to untwisted representations.

2.2.3. Pro-nilpotent Lawrence-Krammer-Bigelow representation

Continuing from §2.2.2, by fixing the three parameters {Z,G, i} and considering Q = Γℓ for all ℓ ⩾ 2
simultaneously, we construct pro-nilpotent towers of representations of classical braid groups, surface braid
groups and (extended and non-extended) loop braid groups. (Some of the non-stopping results for lower
central series from §2.1 are crucial for this construction.) In particular, we prove:

Theorem ([PS22b]) There is a pro-nilpotent tower of representations of the classical braid groups Bn
whose ℓ= 2 layer is the Lawrence-Krammer-Bigelow representation.

The limit as l→ ∞ of this tower of representations is a representation of Bn defined over the integral
group ring Z[RB2], where RB2 is the two-strand ribbon braid group. This is a special case of a more general
construction:

Theorem ([PS22b]) For each k ⩾ 2, there is a representation of Bn defined over the integral group ring
Z[RBk] that recovers the kth Lawrence-Bigelow representation, defined over Z[Z2], when reduced along
the abelianisation RBk ↠ (RBk)

ab = Z2.

In the case k = 2, we compute explicit matrices, over the group ring Z[RB2], describing the action of
the standard generators σi of Bn. Since RB2 =Z2⋊Z, these give a non-commutative 3-variable enrichment
of the classical Lawrence-Krammer-Bigelow representation.

2.2.4. Burau representations of loop braid groups

Loop (=welded) braid groups wBn and w̃Bn appear in many guises in topology and group theory. They
may be seen geometrically as fundamental groups of trivial links in R3, diagrammatically as equivalence
classes of welded braids (closely related to virtual braids and virtual knot theory), algebraically as subgroups
of automorphism groups of free groups or combinatorially via explicit group presentations. They are also
related to physics via exotic string statistics [BWC07]. Generators for these groups are of the form:
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As a special case of the theorem of §2.2.2, we obtain a topological construction of Burau represen-
tations of the loop braid groups wBn and the extended loop braid groups w̃Bn. These each come in an
unreduced version and a reduced version. In [PS22a] we give an explicit, more concrete construction of
each of these representations, describe free generating sets for their underlying modules and compute the
corresponding matrices of the representations. Three of these four representations are not surprising, and
one could easily guess the correct matrices to assign to generators. However, the fourth is more subtle, and
does not seem combinatorially obvious, although its topological construction is very natural:

Theorem ([PS22a]) The reduced Burau representation of the extended loop braid group w̃Bn, defined over
the ring S = Z[Z/2] = Z[t±1]/(t2−1), acts on generators as described in Table 1.

i = 1 2 ⩽ i ⩽ n−2 i = n−1

τi

[
−1 1
0 1

]
⊕ In−2 Ii−2⊕

 1 0 0
1 −1 1
0 0 1

⊕ In−i−1 In−3⊕

 1 0 0
1 −1 −δ

0 0 1


σi

[
−t 1
0 1

]
⊕ In−2 Ii−2⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−1 In−3⊕

 1 0 0
t −t −δ

0 0 1


i = 1 2 ⩽ i ⩽ n−1 i = n

ρi


−t 0 · · · 0
−δ

In−1
...
−δ

1

 Ii−2⊕



1 0 0 · · · 0
δ −t 0 · · · 0
δ −δ

In−i
...

...
δ −δ

−1 1


In−2⊕

[
1 0
−1 −1

]

Table 1 Matrices for the reduced Burau representation of the extended loop braid group w̃Bn. Notation: δ = 1+ t.
All entries lie in S = Z[t±1]/(t2− 1), except for the bottom row, where they lie in S/(t− 1) ∼= Z (in other words, we
set t = 1 on the bottom row).

2.2.5. Polynomiality of homological representation functors

Due to the structure of the domain category ⟨G◦,M◦⟩ of the homological representation functors (11)
and (12), there is a notion of polynomiality for functors of this form. This is a recursive concept: very
roughly, a functor F is polynomial of degree at most d if the associated difference functor δ1(F) is polyno-
mial of degree at most d−1 (and constant functors are polynomial of degree 0).

For a wide range of homological representation functors F = (11) or (12), we prove in [PS23] a funda-
mental result, namely a decomposition of δ1(F) into a direct sum of “simpler” homological representation
functors. As a corollary, we deduce by induction that many of these homological representation functors are
polynomial. By the main theorem of [RW17], this implies twisted homological stability results for surface
braid groups and mapping class groups with coefficients in each of these families of representations.

For example, we consider the Lawrence-Bigelow representations of the classical braid groups, for any
parameter k ⩾ 2, which our construction in §2.2.2 encodes into a functor LBk on a certain domain category
U β . More generally, for each ordered partition λ = (λ1, . . . ,λr) of k ⩾ 2, there is a generalisation LBλ

of the Lawrence-Bigelow functor. We mention that the difference functor δ1(F) used in the definition of
polynomiality is by definition the cokernel of a certain natural transformation F → τ1(F).

Theorem ([PS23]) There is a short exact sequence of functors

0 LBλ τ1LBλ

⊕
1⩽ j⩽r

τ1LBλ [ j] 0, (13)

where λ [ j] is obtained from λ by decreasing the j-th term in the tuple by one. As a consequence, the functor
LBλ is polynomial of degree k. This applies in particular to the Lawrence-Bigelow functors, corresponding
to the trivial partitions λ = (k).
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2.2.6. Heisenberg homology and representations of mapping class groups

In joint work with Christian Blanchet and Awais Shaukat, we have constructed analogues of the
Lawrence-Bigelow representations (of the braid groups) for the mapping class groups Map(Σg,1) for g ⩾ 1.
To do this, we first show that for each n ⩾ 2 there is a natural quotient

φ : Bn(Σg,1)−→→H (Σg,1), (14)

where the Heisenberg group H (Σg,1) is the central extension of H1(Σg,1) classified by the intersection
form. This determines a local system L , defined over the group ring Z[H (Σg,1)], on the configuration
space Cn(Σg,1). We also show that the kernel of (14) is preserved by the action of Map(Σg,1), which implies
that there is a well-defined action

Φ : Map(Σg,1)−→ Aut(H (Σg,1)).

Notation. For any representation ρ : H (Σg,1)→AutR(V ) and automorphism τ ∈Aut(H (Σg,1)) we denote
by τV the τ-twisted representation ρ ◦ τ . Write Σ′g,1 for the non-compact surface given by removing one
point (equivalently, a closed interval) from the boundary of Σg,1.

Theorem ([BPS21]) For any n ⩾ 2 and representation V of H (Σg,1) over R, there is a twisted representa-
tion of Map(Σg,1) on the collection of Borel-Moore homology R-modules

Vn(•V ) =
{
Vn(τV ) := HBM

n (Cn(Σ
′
g,1);L ⊗ τV ) for τ ∈ Aut(H (Σg,1))

}
(15)

where each f ∈Map(Σg,1) acts by Vn(τ◦Φ( f )V )→ Vn(τV ).

This is a twisted representation since it involves a collection (15) of R-modules, rather than a single
R-module. Although the modules in this collection are all mutually isomorphic, they are not canonically
isomorphic. Upgrading (15) to an untwisted (genuine) representation requires a consistent choice of identi-
fications

τ◦Φ( f )V ∼= τV (16)

of coefficients for all f and τ . For certain choices of V this is possible, as we describe next.

Notation. Note that the left translation action of H (Σg,1) on itself is affine with respect to its canonical
structure as an affine space over Z. Linearising this, we obtain a Z-linear action on L := H (Σg,1)⊕Z. The
other specific representation of H (Σg,1) that we consider is the Schrödinger representation VSch, which is
a unitary representation over C.

Theorem ([BPS21]) When V = L there are consistent identifications (16) and hence, for each n ⩾ 2, an
untwisted representation

Map(Σg,1)−→ AutZ(Vn(L)).

When V =VSch, if we pass to the stably universal central extension of Map(Σg,1), then there are consistent
identifications (16) and hence, for each n ⩾ 2, an untwisted unitary representation

M̃ap(Σg,1)−→U(Vn(VSch)).

When V is the regular representation Z[H (Σg,1)] we prove an upper bound on the kernels of the
twisted representations (15):

Theorem ([BPS21]) The kernel of the twisted representation Vn(•Z[H (Σg,1)]) of Map(Σg,1) is contained
in the intersection of the Magnus kernel and the nth term of the Johnson filtration.

In the special case when g= 1 and n= 2, we also compute explicit matrices for the action of the twisted
representation V2(•Z[H (Σ1,1)]) of Map(Σ1,1)∼= B3 over the non-commutative ground ring Z[H (Σ1,1)]∼=
Z[u±1]⟨a±1,b±1⟩/(ab = u2ba). In particular, the Dehn twist around the boundary T∂ ∈Map(Σ1,1) acts by
the 3×3 matrix in Figure 1.
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

u−8b2+u−4a−2−ua−2b2+(u−1−u−2)a−2b+
(u−3−u−4)a−1b2+(u−4−u−5)a−1b

(u2+1−2u−1+u−2+u−4)a−2b2−ua−2b4+

(−u2+u+u−1−u−2)a−2b3−u−3a−2+

(−1+u−1+u−3−u−4)a−2b

(−1+2u−1−u−2−u−4+u−5)a−2b+
(u−1)a−2b3+(u2−u−u−1+2u−2−u−3)a−2b2+

(−u−3+u−4)a−1b+(u−4−u−5)a−1b3+

(−u−2+u−3+u−5−u−6)a−1b2+

(−u−3+u−4)a−2

−u−1−u−3+2u−4−u−5−u−7+u−2a2+
(u−1−u−2−u−4+u−5)a+u−6a−2+

(u−3−u−4−u−6+u−7)a−1

1+u−2−u−3+u−6+u−6a−2b2−u−1b2+
(u−3−u−4)a−1b2+(−1+u−1+u−3−u−4)b+
(u−2−2u−3+u−4+u−6−u−7)a−1b−u−5a−2+

(−u−2+u−3+u−5−u−6)a−1+(u−5−u−6)a−2b

(−u−6+u−7)a−2b+
(u−1−u−2−u−4+2u−5−u−6)b+

(−u−3+2u−4−u−5−u−7+u−8)a−1b+
1−u−1+u−2−3u−3+2u−4+u−6−u−7+
(−u−2+2u−3−u−4+u−5−2u−6+u−7)a−1

+(u−2−u−3)ab+(−1+u−1+u−3−u−4)a+
(−u−5+u−6)a−2

−u−6ab+(−u−3+u−4−u−7)b−u−4+

(u−1−u−4+u−5)a−1b+u−2a−2b+
(−u−3+u−6)a−1+u−5a−2

(−1−u−2+2u−3−u−6)a−1b+u−1a−1b3+

u−2a−2b3+(1−u−1−u−3+u−4)a−1b2+

(u−1−u−2+u−5)a−2b2+(−u−1+u−4−u−5)a−2b+
(u−2−u−5)a−1−u−4a−2

u−3+(u−2−u−3−u−5+u−6)a−1+

(−u−1+u−2−u−5+u−6)a−1b2+

(−u−2+u−3)a−2b2+

(−1+u−1+2u−3−3u−4+u−7)a−1b+
(−u−1+u−2−u−5+u−6)a−2b+(−u−4+u−5)b2+

(u−2−u−3−u−5+u−6)b+(−u−4+u−5)a−2


Figure 1 The action of T∂ ∈Map(Σ1,1) on V2(•Z[H (Σ1,1)]).

Untwisting on the Torelli group. In more recent work, we have proven a general untwisting result for the
twisted representations (15) after restricting to the Torelli group:

Theorem ([BPS23]) For any representation V of the Heisenberg group H (Σg,1), if we restrict to the Torelli
group T(Σg,1) ⊆Map(Σg,1), the twisted representation (15) may be untwisted to obtain, for each n ⩾ 2, a
genuine, untwisted representation

T(Σg,1)−→ AutR(Vn(V )).
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