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Abstract

The overarching goal of my research so far has been to understand the topology of moduli spaces
through algebraic invariants, primarily homology and fundamental groups. This thesis presents six
different results, three concerned with the homology of moduli spaces and three concerned with
studying the fundamental groups of moduli spaces (motion groups and mapping class groups) via
their representations and their lower central series.

In the preliminary Chapter O, I first give a brief overview of my main research results since
my PhD thesis. Chapters 1–6 then form the core of the thesis and develop six of these results in
full detail.

Chapter 1 proves homological stability for two different flavours of asymptotic monopole mod-
uli spaces, namely moduli spaces of framed Dirac monopoles and moduli spaces of ideal monopoles.
The former are Gibbons-Manton torus bundles over configuration spaces whereas the latter are
obtained from them by replacing each circle factor of the fibre with a monopole moduli space by
the Borel construction. They form boundary hypersurfaces in a partial compactification of the
classical monopole moduli spaces. These results follow from a general homological stability result
for configuration spaces equipped with non-local data (non-local configuration spaces). This chap-
ter corresponds to a joint paper with U. Tillmann [PT23] published in the Proceedings of the Royal
Society A.

Moduli spaces of manifolds with marked points were proven in [Til16] to be homologically
stable as the number of marked points goes to infinity. Chapter 2 generalises this result to moduli
spaces of manifolds with conical singularities. (Marked points may be thought of as inessential
conical singularities, since a disc neighbourhood of a marked point is the cone on its boundary
sphere.) This is deduced as a special case of a more general homological stability result for classify-
ing spaces of symmetric diffeomorphism groups of manifolds, with respect to parametric connected
sum, an operation generalising ordinary connected sum and surgery (including Dehn surgery).

The key input for the proof of this result is homological stability for moduli spaces of subman-
ifolds as the number of components of the submanifold goes to infinity, which was proven in my
PhD thesis and published in [Pal21]. The relation to conical singularities is given by collapsing
tubular neighbourhoods of submanifolds to isolated points. The results of Chapter 2 correspond
to the preprint [Pal18a], which is submitted for publication.

Chapter 3 is concerned with “big mapping class groups”, i.e. mapping class groups of infinite-
type surfaces, and corresponds to a joint paper with X. Wu [PW22a] accepted for publication in
Documenta Mathematica. In this chapter we prove that, for any infinite-type surface S, the integral
homology of the closure of the compactly-supported mapping class group PMapc(S) and of the
Torelli group T (S) is uncountable in every positive degree. By our earlier results in [PW22b],
and other known computations, such a statement cannot be true for the full mapping class group
Map(S) for all infinite-type surfaces S. However, we are still able to prove that the integral
homology of Map(S) is uncountable in all positive degrees for a large class of infinite-type surfaces
S. The key property of this class of surfaces is, roughly, that the space of ends of the surface S
contains a limit point of topologically distinguished points. This result includes in particular all
finite-genus surfaces having countable end spaces with a unique point of maximal Cantor-Bendixson
rank α, where α is a successor ordinal.
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Understanding the lower central series of a group is, in general, a difficult task. However,
successfully computing the lower central series and the associated Lie algebras of a group or of
some of its subgroups can lead to a deep understanding of the underlying structure of that group.
The goal of Chapter 4 is to showcase several techniques aimed at carrying out part of this task. In
particular, we seek to answer the following question: when does the lower central series stop? We
introduce a number of tools to answer this question that we then apply to partitioned surface braid
groups on any surface and with respect to any partition. The path from our general techniques to
their application is far from straightforward, and a certain amount of tenacity is required to deal
with all of the cases encountered along the way. We finally arrive at an answer to our question
for every one of these groups, with the sole exception of one family of partitioned braid groups on
the projective plane. In a number of cases, we even compute completely the lower central series.
This chapter corresponds to a part of the monograph [DPS22b], joint with J. Darné and A. Soulié,
which is accepted for publication in the Memoirs of the American Mathematical Society.

Next, turning from lower central series to representations of motion groups, in Chapter 5 we
give a simple topological construction of the Burau representations of the loop braid groups. There
are four versions: defined either on the non-extended or extended loop braid groups, and in each
case there is an unreduced and a reduced version. Three are not surprising, and one could easily
guess the correct matrices to assign to generators. The fourth is more subtle, and does not seem
combinatorially obvious, although it is topologically very natural. This chapter corresponds to a
joint paper with A. Soulié [PS22a] published in the Comptes Rendus Mathématique.

Chapter 6 is concerned with constructing homological representations of mapping class groups
of surfaces, and corresponds to a joint paper with C. Blanchet and A. Shaukat [BPS23] accepted for
publication in Contemporary Mathematics. In previous work with the same co-authors [BPS21], we
constructed twisted representations of mapping class groups of surfaces, depending on a choice of
representation V of the Heisenberg group H. For certain V we were able to untwist these mapping
class group representations. In this chapter, we study the restrictions of our twisted representations
to different subgroups of the mapping class group. Notably, we prove that these representations
may be untwisted on the Torelli group for any given representation V of H. In the case when V is
the Schrödinger representation, we also construct untwisted representations of subgroups defined
as kernels of crossed homomorphisms studied by Earle and Morita.

In the final Chapter F, I describe various open problems and questions related to the topics
of the thesis, some of which are immediately approachable and others of which are very difficult.



Rezumat

Scopul global al cercetării mele de până acum a fost de a înt,elege topologia spat, iilor de moduli
prin invariant, i algebrici, în primul rând omologie s, i grupuri fundamentale. Această teză prezintă
s,ase rezultate diferite, trei se referă la omologia spat, iilor de moduli s, i trei se referă la studierea
grupurilor fundamentale ale spat, iilor de moduli (grupuri de deplasări s, i grupuri mapping class)
prin reprezentările lor s, i seriile lor centrale descendente.

În capitolul preliminar O, ofer mai întâi o scurtă prezentare generală a principalelor mele
rezultate de cercetare de după teza mea de doctorat. Capitolele 1–6 formează apoi partea principală
a tezei s, i dezvoltă s,ase dintre aceste rezultate în detaliu.

Capitolul 1 demonstrează stabilitatea omologică pentru două variante diferite de spat, ii de mod-
uli ale monopolurilor asimptotice, s, i anume spat, iile de moduli ale monopolurilor Dirac cu framing
s, i spat, iile de moduli ale monopolurilor ideale. Primele sunt fibrat, i în toruri Gibbons-Manton peste
spat, ii de configurat, ii, iar cele din urmă sunt obt, inute din ele prin înlocuirea fiecărui factor circular al
fibrei cu un spat, iu de moduli ale monopolurilor prin construct, ia Borel. Ele sunt hipersuprafet,e lim-
ită într-o compactificare part, ială a spat, iilor clasice de moduli ale monopolurilor. Aceste rezultate
rezultă dintr-un rezultat general de stabilitate omologică pentru spat, iile de configurat, ii echipate
cu date non-locale (spat,ii de configurat,ii non-locale). Acest capitol corespunde unei lucrări comune
cu U. Tillmann [PT23] publicată în Proceedings of the Royal Society A.

S-a demonstrat în [Til16] că spat, iile de moduli ale varietăt, ilor cu puncte marcate sunt omologic
stabile când numărul de puncte marcate tinde la infinit. Capitolul 2 generalizează acest rezultat
la spat,ii de moduli ale varietăt,ilor cu singularităt,i conice. (Punctele marcate pot fi considerate a fi
singularităt, i conice neesent, iale, deoarece o vecinătate de disc a unui punct marcat este conul sferei
sale de limită.) Acest lucru este dedus ca un caz special al unui rezultat de stabilitate omologică
mai general pentru spat, iile de clasificare ale grupurilor de difeomorfisme simetrice de varietăt, i,
în raport cu suma conexă parametrică, o operat, ie care generalizează suma conexă obis,nuită s, i
chirurgia (inclusiv chirurgia Dehn).

Cheia pentru demonstrarea acestui rezultat este stabilitatea omologică pentru spat,ii de moduli
ale subvarietăt,ilor, când numărul de componente conexe ale subvarietăt, ilor tinde la infinit, ceea ce
a fost demonstrat în teza mea de doctorat s, i publicat în [Pal21]. Relat, ia cu singularităt, ile conice
este dată de colapsarea vecinătăt, ilor tubulare ale subvarietăt, ilor la puncte izolate. Rezultatele
capitolului 2 corespund preprintului [Pal18a], care este trimis spre publicare.

Capitolul 3 se referă la “big mapping class groups”, adică grupuri mapping class de suprafet,e
de tip infinit s, i corespunde unei lucrări comune cu X. Wu [PW22a] acceptat pentru publicare în
Documenta Mathematica. În acest capitol demonstrăm că, pentru orice suprafat,ă de tip infinit S,
omologia integrală a închiderii grupului mapping class cu suport compact PMapc(S) s, i a grupului
Torelli T (S) este nenumărabilă în fiecare grad pozitiv. După rezultatele noastre anterioare în
[PW22b] s, i alte calcule cunoscute, o astfel de afirmat, ie nu poate fi adevărată pentru întregul grup
mapping class Map(S) pentru toate suprafet,e S de tip infinite. Cu toate acestea, demonstrăm că
omologia integrală a lui Map(S) este nenumărabilă în toate gradele pozitive pentru o clasă mare
de suprafet,e de tip infinit S. Proprietatea cheie a acestei clase de suprafet,e este, aproximativ, că
spat, iul capetelor suprafet,ei S cont, ine un punct limită de puncte distinse topologic. Acest rezultat
include în special fiecare suprafat,ă de gen finit al cărei spat, iu de capete este numărabil s, i are un
punct unic de rang Cantor-Bendixson maxim α, unde α este un ordinal succesor.
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Înt,elegerea seriei centrale descendente a unui grup este, în general, o problemă dificilă. Pe
de altă parte, calcularea seriei centrale descendente s, i a algebrelor Lie asociate ale unui grup sau
ale unora dintre subgrupurile sale poate duce la o înt,elegere profundă a structurii de bază a acelui
grup. Scopul capitolului 4 este de a prezenta mai multe tehnici care vizează realizarea unei părt, i
a acestei probleme. În special, căutăm să răspundem la următoarea întrebare: când se opres, te
seria centrală descendentă? Introducem mai multe tehnici pentru a răspunde la această întrebare,
pe care apoi le aplicăm grupurilor braid partit,ionate pe suprafet,e pentru orice suprafat,ă s, i pentru
orice partit, ie. Calea de la tehnicile noastre generale până la aplicarea lor este departe de a fi
simplă s, i este necesară o anumită tenacitate pentru a rezolva toate cazurile întâlnite pe parcurs.
În cele din urmă ajungem la un răspuns la întrebarea noastră pentru fiecare dintre aceste grupuri,
cu singura except, ie a unei familii de grupuri braid partit, ionate pe planul proiectiv. Într-un număr
de cazuri, chiar calculăm complet seria centrală descendentă. Acest capitol corespunde unei părt, i
a monografiei [DPS22b], împreună cu J. Darné s, i A. Soulié, care este acceptată pentru publicare
în Memoirs of the American Mathematical Society.

În continuare, trecând de la seria centrală descendentă la reprezentări grupurilor de deplasări,
în capitolul 5 oferim o construct, ie topologică simplă a reprezentărilor Burau ale grupurilor loop-
braid. Există patru versiuni: definite fie pe grupurile loop-braid neextinse, fie pe grupurile loop-
braid extinse, iar în fiecare caz există o versiune neredusă s, i una redusă. Trei nu sunt surprinzătoare
s, i s-ar putea ghici cu us,urint,ă matricele corecte de atribuit generatoarelor. Al patrulea este mai
subtil s, i nu pare evident din punct de vedere combinatoriu, des, i este foarte natural din punct de
vedere topologic. Acest capitol corespunde unei lucrări comune cu A. Soulié [PS22a] publicată în
Comptes Rendus Mathématique.

Capitolul 6 se ocupă de construirea reprezentărilor omologice ale grupurilor mapping class de
suprafet,e s, i corespunde unei lucrări comune cu C. Blanchet s, i A. Shaukat [BPS23] acceptate pentru
publicare în Contemporary Mathematics. În lucrările anterioare cu aceias, i coautori [BPS21], am
construit reprezentări twistate ale grupurilor mapping class de suprafet,e, în funct, ie de alegerea unei
reprezentări V a grupului Heisenberg H. Pentru anumite V am arătat cum aceste reprezentări ale
grupurilor mapping class pot fi de-twistate. În acest capitol, studiem restrict, iile reprezentărilor
noastre twistate la diferite subgrupuri ale grupului mapping class. Demonstrăm în special că
aceste reprezentări pot fi de-twistate pe grupul Torelli pentru orice reprezentare V a lui H. În
cazul în care V este reprezentarea Schrödinger, construim de asemenea reprezentări ne-twistate
ale subgrupurilor definite ca nuclee de homomorfisme încrucis,ate studiate de Earle s, i Morita.

În capitolul final F, descriu diverse probleme s, i întrebări deschise legate de subiectele tezei,
dintre care unele sunt imediat abordabile, iar altele sunt foarte dificile.
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Chapter O

Overview

My research interests lie primarily within Algebraic Topology and Geometric Topology. One
fundamental goal in the intersection of these subjects is to understand the topology of moduli
spaces of geometric objects through algebraic invariants. The concept of a moduli space is of
central importance in mathematics, parametrising collections of all objects of a given kind, such as
manifolds with certain properties or configurations of points, submanifolds or fields in an ambient
space.

My research so far divides broadly into two themes, concerned with understanding the topology
of moduli spaces through their homology and their fundamental groups. The kinds of moduli spaces
that I have studied include:
• Configuration spaces of points in manifolds. In particular, non-local configuration spaces, in

which configurations are equipped with some additional “non-local” structure, such as:
• an ordering modulo even permutations,
• a “field” defined on the complement of the configuration,
• non-local data encoding the interactions of asymptotic magnetic monopoles.

• Moduli spaces of higher-dimensional disconnected submanifolds. These are related to moduli
spaces of manifolds with Baas-Sullivan singularities.

• Mapping class groups of surfaces, including surfaces of infinite type.
In this preliminary chapter, I give a brief overview of these results: §O.1 on the homology and

§O.2 on the fundamental groups of moduli spaces. Three results of §O.1 are developed in detail in
the chapters of Part I and three results of §O.2 are developed in detail in the chapters of Part II.
Overview

O.1 Homology of moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
O.1.1 Configuration spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

O.1.1.1 Non-locality: oriented configurations . . . . . . . . . . . . . . . . . 2
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O.2.1 Lower central series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
O.2.2 Representations of motion groups and mapping class groups . . . . . . . . . 10

O.2.2.1 Lawrence-Bigelow representations . . . . . . . . . . . . . . . . . . 10
O.2.2.2 Unified topological construction . . . . . . . . . . . . . . . . . . . 11
O.2.2.3 Heisenberg homology and representations of mapping class groups 12

1



2 Chapter O. Overview

O.1 Homology of moduli spaces

O.1.1 Configuration spaces

For a space M , the nth ordered configuration space C̃n(M) is the subspace of Mn consisting of all
n-tuples of pairwise distinct points in M . The symmetric group Sn acts on this space, and

Cn(M) = C̃n(M)/Sn

is the nth unordered configuration space on M .
An important phenomenon that frequently occurs in the homology of moduli spaces is homo-

logical stability. For a family of moduli spaces indexed by a parameter n, this is the phenomenon
where their homology is independent of n in higher and higher degrees as n→∞. One key example
of this is for the mapping class groups of orientable surfaces: in this setting, homological stability
with respect to genus was proven by Harer [Har85] and the limiting homology was computed by
Madsen and Weiss [MW07], together proving the Mumford conjecture [Mum83].

In the setting of configuration spaces, it is a classical result, going back to McDuff [McD75]
and Segal [Seg73; Seg79], that the sequence Cn(M) of configuration spaces is homologically stable
with respect to the number of points n, whenever M is a connected, open manifold.

A relatively straightforward generalisation of this result is homological stability for labelled
configuration spaces Cn(M,X) for a path-connected space X: a point in this space consists of an
unordered configuration in M together with an element of X attached to each configuration point.
(This is proven in [Ran13], for example.) The additional data associated to a configuration in this
setting is local in the sense that it is simply a product of several pieces of data, each associated to
a single point in the configuration.

However, one may also consider moduli spaces of configurations equipped with non-local data
of different kinds. I have worked on three examples of this: §O.1.1.1–§O.1.1.3.

O.1.1.1 Non-locality: oriented configurations

An example of configuration spaces equipped with non-local data is the sequence of oriented con-
figuration spaces

C+
n (M) = C̃n(M)/An (O.1)

given by quotienting by the action of the alternating group instead of the symmetric group. These
are double coverings of the unordered configuration spaces; the additional (binary) piece of data
given by an ordering modulo even permutations is not associated to any single point of the config-
uration. Homological stability for the sequence (O.1) was proven in my PhD thesis and published
in [Pal13]. This result led to the question of whether one can identify the stable homology of the
sequence (O.1), in other words the colimit

limn→∞H∗(C+
n (M)), (O.2)

in terms of other well-understood spaces. In joint work with Jeremy Miller, we answered this
question positively by lifting the classical scanning map [Seg73; McD75] to a homology equivalence
between appropriate covering spaces.

Theorem A ([MP15b]). Writing ṪM →M for the fibrewise one-point compactified tangent bundle
of M and denoting its space of degree-0 compactly-supported sections by Γc(ṪM →M)◦, we have:

limn→∞H∗(C+
n (M)) ∼= H∗(Γ̃c(ṪM →M)◦), (O.3)

where Γ̃c(ṪM →M)◦ is the connected covering of Γc = Γc(ṪM →M)◦ corresponding to

π1(Γc) −→→ H1(Γc) ∼= H1(C2(M)) −→→ H1(C2(R∞)) ∼= Z/2,
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where the isomorphism H1(Γc) ∼= H1(C2(M)) arises from homological stability and the identifica-
tion of the stable homology for unordered configuration spaces and the projection H1(C2(M)) ↠
H1(C2(R∞)) is induced by any embedding M ↪→ R∞.

In the course of proving Theorem A, we generalised the McDuff-Segal group-completion theo-
rem [MS76] as well as McDuff’s homology fibration criterion [McD75, §5] to the setting of homology
with twisted coefficients; see [MP15a].

O.1.1.2 Non-locality: configuration-section spaces

Configuration-section spaces on a manifold M equipped with a bundle E → M are “non-local”
configuration spaces whose elements consist of a finite configuration in M together with a section of
E →M defined on the complement of the configuration. Such spaces may be thought of physically
as spaces of “fields” with point-particle singularities.

One often considers subspaces where the behaviour of the field (i.e. section) is constrained in
a neighbourhood of the singularities (particles) – this may be thought of as restricting the allowed
“charges” of the particles. More precisely, if the bundle E → M is trivial with fibre X, we fix a
set c ⊆ [Sd−1, X] of homotopy classes of maps Sd−1 → X, where d is the dimension of M . The
sections are then required to restrict to an element of c, up to homotopy, in a neighbourhood of
each particle (they are undefined at the particles themselves). For non-trivial bundles E → M ,
the definition is similar but a little more delicate.

Homological stability. When M = R2 and the fibre X of the bundle is BG for a discrete
group G, these are the Hurwitz spaces, classifying branched coverings of the 2-disc with deck
transformation group G (and prescribed monodromy, if we impose a condition c ⊆ [S1, BG] =
Conj(G)). These spaces have important connections with number theory through recent work of
Ellenberg, Venkatesh and Westerland [EVW16], who proved an asymptotic version of the Cohen-
Lenstra conjecture for function fields via a certain rational homological stability result for Hurwitz
spaces.

In joint work with Ulrike Tillmann, we have proven another homological stability result for
configuration-section spaces [PT21], which is in a sense both more and less general than that of
Ellenberg, Venkatesh and Westerland. It is more general in the sense that it holds for any bundle
over any connected, open manifold M , but it is also less general in the sense that we assume a
stronger condition on the allowed “charges” of the particles.

Theorem B ([PT21]). Let M be a connected manifold of dimension d ⩾ 2 with basepoint ∗ ∈ ∂M
and let ξ : E →M be a fibre bundle whose fibre over ∗ we denote by X. Assume that

the preimage of c under [Sd−1, X]←←− πd−1(X) is a single element, (O.4)

so c corresponds to a fixed point of the π1(X)-action on πd−1(X). Then the stabilisation maps of
configuration-section spaces

CΓc,∗
k (M ; ξ) −→ CΓc,∗

k+1(M ; ξ) (O.5)

induce isomorphisms on Hi(−;Z) in the range k ⩾ 2i+ 4 and surjections in the range k ⩾ 2i+ 2.
With field coefficients, these ranges improve to k ⩾ 2i+ 2 and k ⩾ 2i respectively.

Point-pushing actions. Let us now assume that the bundle E → M is trivial with fibre X;
in this case we write CMapc,∗

k (M ;X) and call these configuration-mapping spaces. They fit into a
natural fibre sequence

Mapc,∗(M ∖ k points, X) −→ CMapc,∗
k (M ;X) −→ Ck(M̊), (O.6)

which is obtained functorially from the universal fibre sequence

M ∖ k points −→ Uk(M) −→ Ck(M̊). (O.7)
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In [PT22], we obtain explicit formulas, when the dimension of M is at least 3, for the monodromy
action π1(Ck(M)) → π0(hAut(M ∖ k points)) of the universal fibre sequence (O.7), from which
we also deduce explicit formulas for the monodromy action of the fibre sequence (O.6). A special
case of this is as follows:

Theorem C ([PT22]). If d = dim(M) ⩾ 3 and M satisfies at least one of the following conditions:
• M is simply-connected, or
• the handle-dimension of M is at most d− 2;

then the “point-pushing” action of γ = (α1, . . . , αk;σ) ∈ π1(Ck(M)) ∼= π1(M)k⋊Σk on the mapping
space Mapc,∗(M ∖ k points, X) ≃ Map∗(M,X)× (Ωd−1

c X)k is given as follows:

(α1, . . . , αk;σ) · (f, g1, . . . , gk) = (f, ḡ1, . . . , ḡk), (O.8)

where ḡi = f∗(αi).gσ(i).sgn(αi), and
• for an element α ∈ π1(M) we write sgn(α) = +1 if α lifts to a loop in the orientation double

cover of M and sgn(α) = −1 otherwise,
• π1(X) acts up to homotopy on Ωd−1

c X in the natural way,
• {±1} acts on Ωd−1

c X through the involution given by precomposition with a reflection of Sd−1

in a hyperplane containing the basepoint.

As a corollary, we obtain a precise description of the set of path-components π0(CMapc,∗
k (M,X))

of the configuration-mapping space, under the above conditions. In addition, we investigate the
question of injectivity of the point-pushing maps

pk : π1(Ck(M)) −→ π0(Cat(M, z))
pk,∂ : π1(Ck(M)) −→ π0(Cat∂(M, z)),

where Cat ∈ {hAut,Homeo,Diff}, z denotes the basepoint configuration in Ck(M) and where ∂

means that the boundary of M is fixed, and prove:

Theorem D ([PT22, §8]). When the dimension of M is at least 3, we have

ker(pk) = ∆(ker(p1)),

i.e. the kernel of pk is equal to the diagonal of ker(p1)k ⊆ π1(M)k ⊆ π1(Ck(M)), where we identify
π1(Ck(M)) with π1(M)k ⋊ Σk. If ∂M ̸= ∅, then pk,∂ is injective.

O.1.1.3 Non-locality: asymptotic magnetic monopoles

In the special case where M = R3, there is another kind of non-local data, encoding the pairwise
interactions of the particles and modelling “asymptotic” magnetic monopoles.

The topology of the moduli spaces of magnetic monopolesMk has been the subject of intensive
study for many decades. By a theorem of Donaldson [Don84], they have a model as spaces of
rational functions on CP 1. Via this model, their homotopy and homology groups are known to
stabilise as k → ∞ by a theorem of Segal [Seg79] and their homology (both stable and unstable)
was completely computed by [Coh+91] in terms of the homology of the braid groups, which is
completely known by [CLM76].

The moduli spaces Mk are non-compact manifolds. Recently, a partial compactification of
Mk has been constructed by Kottke and Singer [KS22] by adding to Mk certain codimension-1
boundary hypersurfaces Iλ indexed by partitions λ = (k1, . . . , kr) of k. Points in these boundary
hypersurfaces are thought of as “ideal” or “asymptotic” monopoles of total charge k, with r “clus-
ters” centred at different points in R3, with charges k1, . . . , kr, which are “widely separated” but
interact with each other. The space Iλ has the structure of a fibre bundle

Iλ −→ Cλ(R3) (O.9)
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over the partitioned configuration space Cλ(R3) (the covering space of the unordered configuration
space of k1 + · · · + kr points where configurations are equipped with a partition of type λ) with
fibre Mk1 × · · · ×Mkr . The non-locality of the non-local configuration spaces Iλ comes from the
non-triviality of the bundle (O.9).

In joint work with Ulrike Tillmann, we have proven a homological stability result for these
asymptotic monopole moduli spaces as the number of clusters of a fixed charge c ⩾ 1 goes to
infinity. Fix a positive integer c and a tuple λ = (k1, . . . , kr) of positive integers ki ̸= c. Write
λ[n]c = (k1, . . . , kr, c, . . . , c), where c appears n times.

Theorem E ([PT23]; Chapter 1). There are natural stabilisation maps

Iλ[n]c
−→ Iλ[n+1]c

(O.10)

that induce isomorphisms on homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees
⩽ n/2 with field coefficients.

O.1.1.4 Configurations on closed manifolds

Let us return now to ordinary configuration spaces Cn(M) on a connected manifold M (without
boundary). The classical results of McDuff and Segal prove homological stability for these config-
uration spaces if M is open, i.e. non-compact. On the other hand, the situation when M is closed
is much more subtle.

Indeed, when M is closed, homological stability for the configuration spaces Cn(M) is not
true in general — for example, one may calculate that H1(Cn(S2);Z) ∼= Z/(2n − 2), which does
not stabilise as n → ∞. Moreover, the classical stabilisation maps used by McDuff and Segal do
not exist, since these depend on adding a new configuration point in M “near infinity”. In joint
work with Federico Cantero, we have proven three main results demonstrating that the homology
of configuration spaces on closed manifolds exhibits some more subtle kinds of stability.
(1) When the Euler characteristic of M is zero, we construct replication maps Cn(M)→ Cλn(M)
for any integer λ ⩾ 2, and prove that they induce homological stability after inverting λ:

Theorem F ([CP15]). These maps induce isomorphisms on Hi(−,Z[ 1
λ ]) in the range 2i ⩽ λ.

(2) When the manifold M is odd-dimensional, the configuration spaces Cn(M) do in fact satisfy
homological stability after inverting 2 in the coefficients (strengthening a result of [BM14]):

Theorem G ([CP15]). When dim(M) is odd, there are isomorphisms

Hi(Cn(M);Z[ 1
2 ]) ∼= Hi(Cn+1(M);Z[ 1

2 ]) and Hi(Cn(M);Z) ∼= Hi(Cn+2(M);Z)

in the range 2i ⩽ n, induced by a zigzag of maps.

(3) When the manifold M is even-dimensional, and F is a field of characteristic 0 or 2, it is known by
the work of many authors [BCT89; ML88; Chu12; Ran13; BM14; Knu17] that homological stability
holds for Cn(M) with coefficients in F, even when M is closed. When F has odd characteristic p,
however, this is false, as one can see from the example of M = S2 mentioned above. In fact:

H1(Cn(S2);F) ∼=
{
F p | n− 1
0 p ∤ n− 1

}
for n ⩾ 2.

From this example we see that the first homology of Cn(S2) is not stable, but it is p-periodic and
takes on only 2 different values. Our third result is that this phenomenon holds in general, when
the Euler characteristic χ of M is non-zero. Write a = νp(χ) for the p-adic valuation of χ, in other
words χ = pab with b coprime to p.

Theorem H ([CP15]). Suppose that dim(M) is even. For each fixed i, the sequence

Hi(Cn(M);F) for n ⩾ 2i (O.11)

is pa+1-periodic and takes on at most a + 2 values. Moreover, if χ ≡ 1 mod p then the above
sequence is 1-periodic, i.e. homological stability holds with coefficients in F.
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The pa+1-periodicity result is similar to a theorem of [Nag15], although his estimate of the
period is different, namely a power of p depending on i rather than on χ. The periodicity part
of Theorem H was later improved to p-periodicity in [KM16] (independent of i or χ). Combining
this with (a slightly more precise statement of) our result, a corollary is that the sequence (O.11)
above takes on only two different values.

O.1.1.5 Motivic cohomology

In the case when M = X(C) is the manifold of complex points of a smooth scheme X over a
number field K, one may ask whether stability for the singular (co)homology of Cn(M) may be
lifted to stability for the motivic or étale motivic cohomology of the sequence of configuration
schemes Cn(X). In joint work with Geoffroy Horel, we have answered this question as follows.

Theorem I ([HP23]). Suppose that X may be written as Y −D, where Y is a smooth scheme over
K and D ⊂ Y is a smooth, closed subscheme that has a K-point. Assume that the étale motive
of X is mixed Tate and that Y is geometrically connected. Then there are maps of étale motivic
cohomology groups

Hp,q
et (Cn+1(X); Λ) −→ Hp,q

et (Cn(X); Λ) (O.12)

that are isomorphisms for p ⩽ n/2 and under mild conditions on the coefficient ring Λ. In the case
when X = Ad is affine space, there are analogous maps of motivic cohomology groups

Hp,q(Cn+1(Ad); Λ) −→ Hp,q(Cn(Ad); Λ) (O.13)

that are isomorphisms for p ⩽ n/2− 1 and any coefficient ring Λ.

A key input for part (O.13) of Theorem I is a stability result for the homology of the symmetric
groups Sn with certain (polynomial) twisted coefficients, which was proven in my PhD thesis and
published as [Pal18b].

O.1.2 Higher-dimensional submanifolds and conical singularities

Instead of configurations of points (closed 0-dimensional submanifolds) in M , one may consider
configurations of higher-dimensional closed submanifolds of M that are isotopic to the disjoint
union of finitely many copies of a fixed (“model”) manifold L.

It was proven in my PhD thesis (and published as [Pal21]) that homological stability generalises
to this setting, as long as the dimension of L is at most 1

2 (dim(M)− 3). In later work [Pal18a], I
used this to prove homological stability for:
• Symmetric diffeomorphism groups, with respect to parametric connected sum. (Given embed-

dings L ↪→M and L ↪→ Q with isomorphic normal bundles, their parametric connected sum
M♯LQ is the result of cutting out a tubular neighbourhood of each embedding and gluing the
resulting boundaries. If L is a point this is the ordinary connected sum. Other examples of
this operation are surgery and Dehn surgery of 3-manifolds.) This generalises [Til16], which
corresponds to the case L = point, i.e., the usual connected sum operation.

• Diffeomorphism groups of manifolds with conical singularities, with respect to the number of
singularities.

Let us consider the second point in more detail. Fix an (m−1)-dimensional manifold T and let
cone(T ) = (T × [0,∞))/(T ×{0}) be the open cone on T . An m-dimensional manifold with conical
T -singularities is a space M that is locally homeomorphic to cone(T ), together with a smooth atlas
on the subset Mmfd ⊆ M of locally Euclidean points of M . (This is a special case of a manifold
with Baas-Sullivan singularities.) A diffeomorphism of M is a homeomorphism M → M that
restricts to a diffeomorphism Mmfd → Mmfd and is of the form cone(φ) for some diffeomorphism
φ : T → T near each point of the discrete subset M ∖Mmfd ⊆M . These form a subgroup

DiffT (M) ⩽ Homeo(M).
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For example, we may construct a manifold with conical singularities by collapsing a tubular
neighbourhood T (L) of any closed submanifold L ⊂M . The quotient ML = M/T (L) is a manifold
with a single conical ∂T (L)-singularity. Iterating this by collapsing tubular neighbourhoods of n
pairwise disjoint, isotopic copies of L inM , we obtain a manifold with n conical ∂T (L)-singularities,
which we denote by Mn·L.

Theorem J ([Pal18a]; Chapter 2). If M is connected, ∂M ̸= ∅ and dim(L) ⩽ 1
2 (dim(M)− 3),

then the sequence of classifying spaces BDiff∂T (L)(Mn·L) is homologically stable as n→∞.

O.1.3 Big mapping class groups

Connected, compact, orientable surfaces are classified by their genus and number of boundary
components; in particular there are countably many such surfaces. If we remove the assumption
of compactness (but still assume second countability and require the boundary to be compact),
surfaces are classified by:
• their genus (which may be a non-negative integer or ∞);
• their number of boundary components (a non-negative integer);
• their space of ends E (a space that is homeomorphic to a closed subset of the Cantor set C);
• their space of non-planar ends Enp (a closed subset of E).

The classification [Ker23; Ric63] says that homeomorphism classes of surfaces are in one-to-one
correspondence with choices of the above list of data, with the single restriction that Enp = ∅ if
and only if the genus is finite. In particular, there are uncountably many such surfaces.

A surface has finite type if its fundamental group is finitely generated (this occurs if and only
if both its genus and its space of ends are finite); otherwise it has infinite type. Examples of infinite
type surfaces (without boundary) include:
• the sphere minus a Cantor set (genus zero; E = C; Enp = ∅);
• the colimit of the compact surfaces Σg,1 as g →∞ (infinite genus; E = Enp = {∗});
• the “flute surface” C∖ Z (genus zero; E = [0, ω], Enp = ∅).

The space of ends in the last example is the closed ordinal space [0, ω], in other words the ordinal
ω + 1 in the order topology, which is homeomorphic to the subspace {1/n | n ∈ N} ∪ {0} ⊂ C.

The mapping class group Map(S) of a surface S is countable if and only if S has finite type.
Mapping class groups of infinite type surfaces (which are always uncountable discrete groups) are
often called big mapping class groups; a recent survey is [AV20].

O.1.3.1 Homological stability and acyclicity

The degree-one homology (i.e. abelianisation) of big mapping class groups is known in some cases.
For example, if Σ is a finite type surface and C ⊂ Σ is a subspace homeomorphic to the Cantor
set, the natural map

Map(Σ ∖ C) −→ Map(Σ)

(given by extending homeomorphisms of Σ ∖ C uniquely to Σ) induces an isomorphism on H1(−)
[CC22]. In the special case of the 2-sphere, it is also known that H2(Map(S2 ∖ C)) ∼= Z/2 [CC21].

In joint work with Xiaolei Wu, we gave the first complete calculation in all degrees of the
homology of certain big mapping class groups. To describe this, we first need to introduce some
constructions.

Definition. Let Σ be any surface with empty boundary. For n ⩾ 1 write Σ(n) for the surface
obtained by removing the interiors of n pairwise disjoint discs from Σ. Then:
• B(Σ) is the result of gluing together infinitely many copies of Σ(3) in a binary tree pattern;
• L(Σ) is the result of gluing together infinitely many copies of Σ(2) in a linear pattern.

Note that both B(Σ) and L(Σ) have one boundary component. Write B(Σ) and L(Σ) respectively
to denote the result of filling the boundary component with a disc.
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Examples. Some key examples are:
• L(S2) ∼= D2 ∖ {0};
• B(S2) ∼= D2 ∖ C;
• L(C) ∼= C∖ Z (the flute surface);
• L(T 2) is the colimit of the compact surfaces Σg,1 as g →∞ (the Loch Ness monster surface).

Theorem K ([PW22b]). For any surface Σ, the mapping class group Map(B(Σ)) is acyclic, i.e.

H̃∗(Map(B(Σ))) = 0.

As a consequence, we also have

Hi(Map(B(Σ) ∖ {∗})) ∼=

{
Z if i is even,
0 if i is odd.

In particular, when Σ = S2 the second part of this theorem gives a complete calculation of
the homology of the mapping class group of the plane minus a Cantor set C∖ C.

A key ingredient in the proof is a homological stability result for big mapping class groups:

Theorem L ([PW22b]). Let A be a connected surface with one boundary component and let Σ be
a connected surface with empty boundary. Then the sequence of big mapping class groups

Map(A♮B(Σ)♮n)

is homologically stable as n→∞, where ♮ denotes boundary connected sum. The same statement
is true for the sequence

Map(A♮L(Σ)♮n)

under a mild condition on the end space E of Σ.

The condition on the end space E of Σ in the above theorem is the following. First notice
that the end space of L(Σ) is (Eω)+, where Eω denotes the disjoint union of countably infinitely
many copies of E and (−)+ denotes one-point compactification. The condition is that the point at
infinity of (Eω)+ must be topologically distinguished, i.e. not locally homeomorphic to any other
point of (Eω)+. Although this is a mild condition, it is not vacuous: for example, in the case when
E is the Cantor set C, the space (Cω)+ ∼= C is homogeneous, so in particular the point at infinity
is not topologically distinguished.

O.1.3.2 Uncountability

In a contrasting direction, in further joint work with Xiaolei Wu, we have proven that other families
of big mapping class groups have uncountable homology in all positive degrees.

Theorem M ([PW22a]; Chapter 3). Let Σ be a connected surface with empty boundary. Assume
that Σ has genus zero and that its space of ends has a topologically distinguished point. Then there
is an embedding of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(Map(L(Σ))),

where c denotes the cardinality of the continuum and Λ∗(−) denotes the exterior algebra over Z on
an abelian group. In particular, the homology of the mapping class group of L(Σ) is uncountable
in each degree ⩾ 1.

In the special case when Σ = C this theorem proves uncountability in all positive degrees of
the homology of the mapping class group of the flute surface C∖ Z.
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Remark. The assumption in Theorem M that the space of ends of Σ has a topologically distin-
guished point is essential. Without this assumption we could set Σ = S2 ∖ C, in which case

L(S2 ∖ C) ∼= S2 ∖ C,

but it is known by [CC21; CC22] that the homology of Map(S2 ∖ C) is not uncountable in degrees
1 and 2 (it is isomorphic to 0 and Z/2 respectively).

We also prove similar uncountability results for certain subgroups of big mapping class groups.
Specifically, for any infinite-type surface S, we prove uncountability in all positive degrees of the
homology of the subgroups T (S) ⊆ PMapc(S) ⊆ Map(S), the Torelli group and the closure of the
compactly-supported mapping class group. See Chapter 3 for more details.

O.2 Fundamental groups of moduli spaces

Fundamental groups of moduli spaces include the classical braid groups Bn = π1(Cn(R2)) and their
relatives (loop/welded braid groups wBn = CnS1(R3), surface braid groups Bn(S) = π1(Cn(S)),
etc.) as well as mapping class groups Map(M) = π0(Homeo(M)) = π1(BHomeo(M)). These
groups are interesting objects in their own right, as well as having connections to knot theory and
to physics via topological quantum field theories.

Understanding the lower central series of a group (and its associated Lie algebra) is typi-
cally a difficult task, but it can lead to a deep understanding of the underlying structure of the
group. Another powerful method of understanding a group is to understand its representations.
In particular, a key question for any group is to know whether it has a faithful representation on a
finite-dimensional vector space – in other words, whether it is linear. This is known to be true for
the classical braid groups [Big01; Kra02] but it is wide open for almost all other braid-like groups
and mapping class groups. In the context of representations of mapping class groups, another
important question is whether they may be extended to define a topological quantum field theory
(TQFT) – in other words, whether they may be defined not just on automorphisms of manifolds
but on a whole cobordism category of manifolds.

I have worked on understanding the lower central series of many different braid-like groups
(including surface braid groups, loop braid groups and generalisations), especially the question of
when the lower central series stops; see §O.2.1. Motivated by the open question of linearity and by
the goal of constructing TQFTs, I have worked on new topological constructions of representations
of (surface) braid groups, loop braid groups and mapping class groups; see §O.2.2.

O.2.1 Lower central series

One of the most basic objects one needs to understand when studying the structure of a group G
is its lower central series G = Γ1(G) ⊇ Γ2(G) ⊇ · · · , defined recursively by

Γi+1(G) = [Γi(G), G] = {ghg−1h−1 | g ∈ Γi(G), h ∈ G}.

If G is perfect, its lower central series is completely trivial. On the other hand, if it is
nilpotent or residually nilpotent, the filtration Γ∗(G) and its associated graded Lie ring L∗(G) =⊕

i Γi(G)/Γi+1(G) contain deep information about the structure of G. The lower central series is
also deeply connected to the structure of the group ring of G.

The amount of information one can hope to extract from the study of a lower central series
depends in the first place on whether or not it stops, meaning that there exists an integer i ⩾ 1
such that Γi(G) = Γi+1(G). If there is such an integer, then the smallest such integer is the length
of the lower central series of G.

In joint work with Jacques Darné and Arthur Soulié, we give a complete answer to the question
of the length (finite or infinite) of the lower central series of surface braid groups, virtual braid
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groups and loop/welded braid groups, as well as partitioned versions of all of these groups. The
answer depends subtly on the number of strands, how they are partitioned and the topology of the
underlying surface. For example:

Theorem N ([DPS22b]; Chapter 4). For n ⩾ 3, the lower central series of:
• Bn(S) has length 2 if S ⊆ S2 or S is non-orientable;
• Bn(S) has length 3 if S ̸⊆ S2 and S is orientable;
• B(2,n)(R2) has length ∞;
• B(2,n)(S2) has length ν2(n) + 2 + ϵ, where ν2(n) is the 2-adic valuation of n and ϵ ∈ {0,±1}.

For a complete answer, see Tables 4.1–4.3 in Chapter 4.

O.2.2 Representations of motion groups and mapping class groups

I have several strands of research concerning (homological) representations of motion groups and
mapping class groups.

The Lawrence-Bigelow representations are an important family of representations of the braid
groups, which were used in the proof [Big01; Kra02] that the braid groups are linear. They come in
many different flavours, and in joint work with Cristina Anghel (§O.2.2.1) we have studied the pre-
cise relationships between these different flavours, for a general class of homological representations
of mapping class groups including the Lawrence-Bigelow representations.

In a sequence of joint work with Arthur Soulié (§O.2.2.2), we have given a unified foundation
for the construction of homological representations of motion groups and mapping class groups,
using a functorial approach. This has yielded new constructions, such as a pro-nilpotent extension
of the Lawrence-Krammer-Bigelow representation and extensions of the Burau representations to
(extended) loop braid groups, as well as polynomiality properties for families of representations.

In joint work with Christian Blanchet and Awais Shaukat (§O.2.2.3), we have constructed non-
commutative analogues of the Lawrence-Bigelow representations for higher-genus mapping class
groups using the representation theory of the Heisenberg group.

O.2.2.1 Lawrence-Bigelow representations

In joint work with Cristina Anghel, we have investigated the fundamental relationships between the
many different flavours of homological representations of mapping class groups – with the Lawrence-
Bigelow representations of the braid groups being our motivating example. Understanding the
relationships between these representations is important for applications in quantum topology (see
for example [Ang20]).

Consider a surface Σ equipped with a decomposition of its boundary into a “fixed” part and
a “free” part (this specifies which part of its boundary must be fixed by diffeomorphisms). Choose
a local system L on the configuration space Ck(Σ) that is preserved by the action of Map(Σ). For
each k we then obtain various different homological representations of the mapping class group
Map(Σ), depending on:
• whether we require configurations to be disjoint from the fixed or free part of the boundary;
• the homology theory that we apply: ordinary homology, Borel-Moore homology, homology

relative to the boundary of the configuration space, etc.
For example, if Σ = Σ0,n+1 with n of its boundary-components considered as free and one consid-
ered as fixed, we obtain (for an appropriate L) the various different flavours of the Lawrence-Bigelow
representations.

In [AP20], we have established general relationships between these different flavours of homo-
logical representations, expressed in terms of non-degenerate pairings, embeddings and completions.
More concretely, we have also defined free generating sets for each of the representations under
consideration, and described the corresponding matrices of these pairings and embeddings.
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O.2.2.2 Unified topological construction

In joint work with Arthur Soulié, we have given a unified foundation for the construction of homo-
logical representations of motion groups and mapping class groups. Namely, we define homological
representation functors encoding a large class of homological representations, defined on categories
containing all motion groups and mapping class groups in a fixed dimension d. These source cat-
egories are defined using a topological enrichment of the Quillen bracket construction applied to
categories of decorated manifolds. This unifies many previously-known constructions, including
those of Lawrence-Bigelow, and yields many new representations. The construction depends on
four parameters:
• a closed submanifold Z ⊂ Rd and open subgroup G ⩽ Diff(Z);
• a functorial quotient of groups Q;
• an integer i ⩾ 0.
For example, the family of Lawrence-Bigelow representations depends on an integer k ⩾ 1;

our construction (for d = 2) recovers this in the case when:
• Z is the 0-dimensional manifold {1, . . . , k} and G = Sk;
• Q is the abelianisation functor;
• i = k.

In higher dimensions d ⩾ 3, it is especially interesting to consider higher-dimensional submanifolds
Z ⊂ Rd, for example in the case of the loop braid groups.

An important choice of functorial quotient of groups is Q = Γℓ for an integer ℓ ⩾ 2: this is
the universal (ℓ− 1)-nilpotent quotient, generalising the abelianisation functor.

Theorem O ([PS19]). For a set of parameters {Z,G,Q, i} as above, the action of motion groups
and mapping class groups on the twisted homology of certain embedding spaces determines functors

Li(F(Z,G,Q)) : ⟨G◦,M◦⟩ −→ Modtw
Z[Q], (O.14)

where Q denotes a group built out of the deck transformation groups of the regular covering spaces
corresponding to the coefficients in the twisted homology. There is also a universal quotient Qunt

of the group Q, together with functors:

Li(Funt
(Z,G,Q)) : ⟨G◦,M◦⟩ −→ ModZ[Qunt]. (O.15)

The domain ⟨G◦,M◦⟩ is a Quillen bracket category of decorated d-manifolds. The superscript
tw in (O.14) denotes an enlargement of the module category to a category of twisted modules. The
functor (O.14) therefore restricts to twisted representations of motion groups and mapping class
groups, whereas the functor (O.15) restricts to untwisted representations.

Pro-nilpotent Lawrence-Krammer-Bigelow representation. By fixing the three parame-
ters {Z,G, i} and considering Q = Γℓ for all ℓ ⩾ 2 simultaneously, we construct pro-nilpotent towers
of representations of classical braid groups, surface braid groups and (extended and non-extended)
loop braid groups. (Some of the non-stopping results for lower central series from §O.2.1 are crucial
for this construction.) In particular, we prove:

Theorem P ([PS22b]). There is a pro-nilpotent tower of representations of the classical braid
groups Bn whose ℓ = 2 layer is the Lawrence-Krammer-Bigelow representation.

The limit as l→∞ of this tower of representations is a representation of Bn defined over the
integral group ring Z[RB2], where RB2 is the two-strand ribbon braid group. Since RB2 = Z2⋊Z,
this gives a non-commutative 3-variable enrichment of the classical Lawrence-Krammer-Bigelow
representation. Moreover, in [PS22b], we also compute explicit matrices over Z[RB2] describing
the actions of the standard generators σi of Bn for this 3-variable representation.
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Burau representations of loop braid groups. As a special case of Theorem O, we obtain a
topological construction of Burau representations of the loop braid groups wBn and the extended
loop braid groups w̃Bn. These each come in an unreduced version and a reduced version. In
Chapter 5 we give an explicit, more concrete construction of each of these representations, describe
free generating sets for their underlying modules and compute the corresponding matrices of the
representations. Three of these four representations are not surprising, and one could easily guess
the correct matrices to assign to generators. However, the fourth is more subtle, and does not
seem combinatorially obvious, although its topological construction is very natural:

Theorem Q ([PS22a]; Chapter 5). The reduced Burau representation of the extended loop braid
group w̃Bn, defined over the ring S = Z[Z/2] = Z[t±1]/(t2− 1), acts on generators as described in
Table 5.1 on page 158.

Polynomiality. The structure of the domain category ⟨G◦,M◦⟩ of the homological representa-
tions functors of Theorem O means that there is a notion of polynomiality for functors of this form.
For a wide range of homological representation functors produced by Theorem O — including those
encoding the Lawrence-Bigelow representations of the braid groups — we prove in [PS23] that they
are polynomial. This has applications to twisted homological stability as well as to understanding
the structure of the representation theory of these families of groups.

O.2.2.3 Heisenberg homology and representations of mapping class groups

In joint work with Christian Blanchet and Awais Shaukat, we have constructed analogues of the
Lawrence-Bigelow representations (of the braid groups) for the mapping class groups Map(Σg,1)
for g ⩾ 1. To do this, we first show that for each n ⩾ 2 there is a natural quotient

ϕ : Bn(Σg,1) −→→ H(Σg,1), (O.16)

where the Heisenberg group H(Σg,1) is the central extension of H1(Σg,1) classified by the inter-
section form. This determines a local system L, defined over the group ring Z[H(Σg,1)], on the
configuration space Cn(Σg,1). We also show that the kernel of (O.16) is preserved by the action
of Map(Σg,1), which implies that there is a well-defined action Φ: Map(Σg,1)→ Aut(H(Σg,1)).

Notation. For any representation ρ : H(Σg,1) → AutR(V ) and automorphism τ ∈ Aut(H(Σg,1))
we denote by τV the τ -twisted representation ρ ◦ τ . Write Σ′

g,1 for the non-compact surface given
by removing one point (equivalently, a closed interval) from the boundary of Σg,1.

Theorem R ([BPS21]). For any n ⩾ 2 and representation V of H(Σg,1) over R, there is a twisted
representation of Map(Σg,1) on the collection of Borel-Moore homology R-modules

Vn(•V ) =
{
Vn(τV ) := HBM

n (Cn(Σ′
g,1);L ⊗ τV ) for τ ∈ Aut(H(Σg,1))

}
(O.17)

where each f ∈ Map(Σg,1) acts by Vn(τ◦Φ(f)V )→ Vn(τV ).

This is a twisted representation since it involves a collection (O.17) of R-modules, rather than
a single R-module. Although the modules in this collection are all mutually isomorphic, they are
not canonically isomorphic. Upgrading (O.17) to an untwisted (genuine) representation requires a
consistent choice of identifications

τ◦Φ(f)V ∼= τV (O.18)

of coefficients for all f and τ . For certain choices of V this is possible:

Theorem S ([BPS21]). In the special case when V is the Schrödinger representation VSch, if we
pass to the stably universal central extension of Map(Σg,1), then there are consistent identifications
(O.18) and hence, for each n ⩾ 2, an untwisted unitary representation

M̃ap(Σg,1) −→ U(Vn(VSch)).
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When V is the regular representation Z[H(Σg,1)] we prove an upper bound on the kernels of
the twisted representations (O.17) of Theorem R.

Theorem T ([BPS21]). The kernel of the twisted representation Vn(•Z[H(Σg,1)]) of Map(Σg,1) is
contained in the intersection of the Magnus kernel and the nth term of the Johnson filtration.

In the special case when g = 1 and n = 2, we also compute explicit matrices for the action of
the twisted representation V2(•Z[H(Σ1,1)]) of Map(Σ1,1) ∼= B3 over the non-commutative ground
ring Z[H(Σ1,1)] ∼= Z[u±1]⟨a±1, b±1⟩/(ab = u2ba).

Untwisting on the Torelli group. In more recent work, we have proven a general untwisting
result for the twisted representations (O.17) of Theorem R after restricting to the Torelli group:

Theorem U ([BPS23]; Chapter 6). For any representation V of the Heisenberg group H(Σg,1),
if we restrict to the Torelli group T(Σg,1) ⊆ Map(Σg,1), the twisted representation (O.17) may be
untwisted to obtain, for each n ⩾ 2, a genuine, untwisted representation

T(Σg,1) −→ AutR(Vn(V )).
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Chapter 1

Homology stability for asymptotic
monopole moduli spaces

The results of this chapter have been published as [PT23] in joint work with Ulrike Tillmann.

Introduction

The topology of the moduli spaces of magnetic monopoles Mk has been the subject of intensive
study for many decades. By a theorem of Donaldson [Don84], they have a model as spaces of
rational functions on CP 1. Via this model, their homotopy and homology groups are known to
stabilise as k → ∞ by a theorem of Segal [Seg79] and their homology (both stable and unstable)
was completely computed by [Coh+91] in terms of the homology of the braid groups, which is
completely known [CLM76].

The moduli spaces Mk are non-compact manifolds. Recently, a partial compactification of
Mk has been constructed by Kottke and Singer [KS22] by adding certain boundary hypersurfaces
Iλ to Mk indexed by partitions λ = (k1, . . . , kr) of k.

Points in these boundary hypersurfaces are thought of as “ideal” monopoles of total charge
k, with r “clusters” centred at different points in R3, with charges k1, . . . , kr, which are “widely
separated” but nevertheless interact.

Our main theorem proves a homology stability result for these ideal monopole moduli spaces
as the number of clusters of a fixed charge c ⩾ 1 goes to infinity:

Theorem 1.A. Fix a positive integer c and a tuple λ = (k1, . . . , kr), of fixed length r, of positive
integers ki ̸= c. Write λ[n]c = (k1, . . . , kr, c, . . . , c), where c appears n times. There are natural
stabilisation maps

Iλ[n]c
−→ Iλ[n+1]c

(1.1)

that induce isomorphisms on homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees
⩽ n/2 with field coefficients.

We also prove an analogous result for moduli spaces of framed Dirac monopoles (in other words
Gibbons-Manton torus bundles; see §1.1.2 for the definitions) and, more generally, Gibbons-Manton
Z-bundles for any sequence Z of path-connected S1-spaces; see Theorems 1.3.1 and 1.3.9.

These results follow from a general homology stability result (Proposition 1.2.3) for unordered
configuration spaces with non-local parameters. Homology stability for configuration spaces whose
points are labelled by elements of a fixed space X is well-known; these are configuration spaces with
local parameters. However, the ideal monopole moduli spaces Iλ are non-local. The key observation
in §1.2 is that homology stability only requires the parameters associated to a configuration to

17
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satisfy much weaker properties, which allows us to consider interesting non-local parameters. In
[PT21], we recently proved a different homology stability result for non-local configuration spaces,
namely for configuration-section spaces; this encouraged us to try to prove homology stability also
in the context of ideal monopole moduli spaces. Proposition 1.2.3 is the abstract general result
that applies in our situation in the present chapter. Though similar in nature, it neither is implied
by nor implies the homology stability result in [PT21].

Outline. We first recall some background on moduli spaces of magnetic monopoles in §1.1: first
on the moduli spaces themselves in §1.1.1 and then on their partial compactifications introduced
by [KS22] in §1.1.2, whose boundary hypersurfaces are the ideal monopole moduli spaces. In
§1.2 we then prove a general homology stability result for configuration spaces equipped with
“non-local” data, deducing it from twisted homological stability for configuration spaces [Pal18b]
(see also [Kra19]). In §1.3 we apply it to prove our main theorem, homology stability for ideal
monopole moduli spaces, as well as an extension (Theorem 1.3.9) to Gibbons-Manton Z-bundles
more generally.

1.1 Monopole moduli space and boundary hypersurfaces

1.1.1 Monopole moduli space

We briefly recall from [AH88] some different monopole moduli spaces and the relations between
them.

A magnetic monopole on R3 is a pair consisting of a connection A on the trivial principal
SU(2)-bundle on R3 together with a field ϕ taking values in the associated Lie algebra su(2).
Fixing a framing, these may be viewed, respectively, as a smooth 1-form and a smooth function on
R3 taking values in su(2), which we may identify topologically as su(2) ∼= R3. These data A and ϕ
must satisfy the Bogomolny equations and a certain finiteness condition; see [AH88, pp. 14–15] for
details. This finiteness condition implies that ϕ(x) ̸= 0 for |x| sufficiently large, so the restriction
of ϕ to R3 ∖ BR(0) takes values in su(2) ∖ {0} for R ≫ 0. The degree of this map is the charge
of the monopole, and is always positive. The set of all magnetic monopoles of charge k ⩾ 1, up to
gauge equivalence (automorphisms of the trivial bundle R3 × su(2) → R3), suitably topologised,
is the monopole moduli space Nk. A slight variation of the construction, quotienting by a smaller
gauge group, yields a different space Mk related to Nk by a principal S1-bundle

Mk −→ Nk =Mk/S
1. (1.2)

Translation of solutions to the Bogomolny equations in R3 also defines a principal R3-bundle

Nk −→M0
k = Nk/R3. (1.3)

The spaces Mk and M0
k admit the structure of hyperKähler manifolds of dimensions 4k and

4k − 4 respectively. For charge k = 1 we have M0
1 = pt (and M1 ∼= S1 × R3) and for k = 2, the

4-manifoldM0
2 is known as the Atiyah-Hitchin manifold and has been studied in detail in [AH88].

By [Don84],Mk is homeomorphic to the space Rk of degree-k rational self-maps of CP 1 that
send ∞ to 0. Thus, it is also homeomorphic to the space R′

k of degree-k rational self-maps of CP 1

that send ∞ to 1. The points of the space R′
k may conveniently be described as pairs (p, q) of

coprime monic polynomials with coefficients in C, both of degree k. Identifying these polynomials
with their sets of roots, we obtain a natural embedding

R′
k ↪−→ SP k(C)× SP k(C)

whose image consists of all pairs (A,B) of multi-subsets of C that are disjoint. On the other hand,
the space Rk is convenient in that the circle action is easy to see: under the isomorphismMk

∼= Rk,
the circle action is given simply by multiplying rational self-maps of CP 1 by eiθ.
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The fundamental group of Mk is Z, by [Seg79, Proposition 6.4]. Also, by [AH88, chapter 2],
the fundamental group of Nk is Z/k and the projection map (1.2) induces the reduction-mod-k
map Z↠ Z/k. It follows from the long exact sequence that (1.2) induces isomorphisms on πi for
all i ⩾ 2, so Mk and Nk have the same universal cover, up to homotopy equivalence, which is
denoted by Xk.

There are stabilisation maps Mk → Mk+1, which may be defined under the isomorphism
Mk
∼= Rk by adding to a given rational self-map a new zero and a new pole “far away” from the

origin. (This is not invariant under the circle action, so it does not descend to a stabilisation map
on the moduli spacesNk.) The stabilisation mapsMk →Mk+1 induce isomorphisms on homotopy
groups (and hence also homology groups) in a stable range, by [Seg79]. Lifting to universal covers,
it follows that there are also stabilisation maps Xk → Xk+1 that induce isomorphisms on homotopy
(and homology) groups in a stable range.

By the main theorem of [Seg79], the homotopy colimit of the stabilisation maps Mk →
Mk+1 → · · · is weakly equivalent to Ω2

0S
2. Thus the stable homology of Mk is the homology of

Ω2
0S

2 and the stable homology of Xk is the homology of the universal cover of Ω2
0S

2. Moreover,
the unstable homology of Mk (i.e. its homology outside of the stable range) is also known: by the
main result of [Coh+91; Coh+93], the homology of Mk is isomorphic to the group homology of
the braid group B2k, which is completely computed [CLM76]. The rational unstable homology
of Xk has also been computed by [SS96], and is significantly more complicated than the rational
unstable homology of Mk: the rational homology H∗(Mk;Q) is the same as that of the circle,
so it has total dimension 2, whereas [SS96] shows that the rational homology H∗(Xk;Q) has total
dimension k, concentrated in degrees of the form 2(k − d) where d is a divisor of k.

Notation 1.1.1. The principal bundles (1.2) and (1.3) arise from a principal (in particular free)
action of the product S1 × R3 on on Mk. If we first quotient by R3 (Euclidean translations) we
obtain a principal R3-bundle

Mk −→Mc
k =Mk/R3. (1.4)

In particular, we have a homotopy equivalence Mc
k ≃ Mk. (The superscript c stands for centred

monopoles.) The quotientMc
k is a (4k−3)-dimensional manifold and there is a principal S1-bundle

Mc
k −→M0

k =Mc
k/S

1 = Nk/R3. (1.5)

1.1.2 Boundary hypersurfaces

Kottke and Singer [KS22] have constructed a partial compactification of Mc
k ≃Mk of the form

Mc

k =
⊔
λ

Ic
λ (1.6)

with strata indexed by sequences λ = (k1, . . . , kr) of positive integers that sum to k. The stratum
Ic

(k) is the interior Mc
k of Mc

k and the union of all strata Ic
λ for λ ̸= (k) is the boundary of Mc

k.
Points in Ic

λ are called centred ideal monopoles associated to the partition λ.
We will not recall here the construction of Ic

λ in [KS22]; instead we will take an alternative
characterisation of Ic

λ to be its definition (see Definitions 1.1.6 and 1.1.12 and Remark 1.1.13). To
begin with, we recall the definitions of ordered and unordered configuration spaces.

Definition 1.1.2. For any space M , let us write Fr(M) = {(v1, . . . , vr) ∈Mr | vi ̸= vj for i ̸= j}
for the ordered configuration space of r points in M , topologised as a subspace of the product Mr.
We also write Cr(M) = Fr(M)/Σr for the unordered configuration space of r points in M .

Recall (see for example [FH01, Theorem V.1.1]) that the degree-(d−1) cohomology of Fr(Rd)
is given by:

Hd−1(Fr(Rd);Z) ∼= Z
{
αij | 1 ⩽ i < j ⩽ r

}
, (1.7)

where αij is the pullback of a generator of Hd−1(Sd−1;Z) along the map ιij : Fr(Rd)→ Sd−1 given
by the formula

x = (x1, . . . , xr) 7−→ xi − xj

|xi − xj |
.
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Since principal S1-bundles over a space X are classified by H2(X;Z), this means that principal
S1-bundles over Fr(R3) are classified by integer linear combinations of the αij . (One dimension
lower, the same data classifies principal Z-bundles over Fr(R2), in other words regular coverings
of Fr(R2) with infinite cyclic deck transformation group.)

Definition 1.1.3 ([KS22, Definition 4.6 and the paragraph preceding it]). For a sequence of
integers λ = (k1, . . . , kr), the corresponding Gibbons-Manton circle factors are the principal S1-
bundles

Sλ,j −→ Fr(R3),
for j ∈ {1, . . . , r}, corresponding to the element

∑
i∈{1,...,r},i̸=j ki.αij , where we define αij = −αji

if i > j. The Gibbons-Manton torus bundle weighted by λ is the principal T r-bundle

T̃λ =
r⊕

j=1
Sλ,j −→ Fr(R3). (1.8)

A point in Sλ,j may be thought of as an ordered configuration together with a non-local circle
parameter encoding the interaction of the jth particle with all other particles, weighted by λ.
A point in T̃λ may similarly be thought of as an ordered configuration together with r non-local
circle parameters, each encoding the interaction of one of the particles with all of the others (again,
weighted by λ).

Definition 1.1.4. The symmetric group Σr acts on Fr(R3) by permuting the particles. Let
Σλ ⩽ Σr be the stabiliser of λ = (k1, . . . , kr) ∈ Zr under the obvious permutation action of Σr on
Zr. Then the action of Σλ on Fr(R3) lifts to a well-defined action on T̃λ. The Gibbons-Manton
configuration space is the quotient space Tλ = T̃λ/Σλ. Note that there is a principal T r-bundle

Tλ −→ Fr(R3)/Σλ. (1.9)

In particular, when k1 = k2 = · · · = kr, we have Σλ = Σr and Tλ is a principal T r-bundle over the
unordered configuration space Cr(R3).

Remark 1.1.5. One may make analogous definitions for Euclidean spaces Rd in general, replacing
S1 = K(Z, 1) with K(Z, d − 2), so that Tλ is a principal K(Z, d − 2)r-bundle over Fr(Rd). For
example, when d = 2, it is a regular covering space with deck transformation group isomorphic to
Zr. In particular, for d = 2 and λ = (1, 1, . . . , 1), it is the regular covering space corresponding to
the homomorphism

φr : π1(Fr(R2)) = PBr −→ Zr

that records, for each 1 ⩽ i ⩽ r, the total winding number of the ith strand of a given pure
braid around the other r − 1 strands. This is a disconnected covering with components indexed
by coker(φr); each connected component is a classifying space for the subgroup ker(φr) ⩽ PBr

consisting of those pure braids b where each strand of b has zero total winding number around the
other r − 1 strands: ⊔

coker(φr)

B(ker(φr)) −→ Fr(R2).

Definition 1.1.6. The moduli space of ideal monopoles of weight λ is defined as follows. Recall
that the monopole moduli spaceMk is equipped with a circle action. The productMk1×· · ·×Mkr

is therefore equipped with an action of the torus T r. We define Ĩλ to be the total space of the
fibre bundle associated to the principal T r-bundle T̃λ by changing the fibre to Mk1 × · · · ×Mkr

.
In other words, it is the Borel construction

Ĩλ = T̃λ ×T r

(
Mk1 × · · · ×Mkr

)
−→ Fr(R3).

We then define Iλ = Ĩλ/Σλ, where Σλ acts diagonally on T̃λ (see Definition 1.1.4) and on the
product Mk1 × · · · ×Mkr . The moduli space of ideal monopoles of weight λ is this space Iλ. It is
the total space of a fibre bundle

π : Iλ −→ Fr(R3)/Σλ (1.10)
with fibre Mk1 × · · · ×Mkr .
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Remark 1.1.7. This is not yet the boundary stratum Ic
λ constructed by [KS22] in their partial

compactification of Mc
k, since it has the wrong dimension. Recall that the dimension of Mc

k is
4k− 3, so its boundary strata must have dimension 4k− 4, whereas the dimension of Iλ is 4k+ 3r.
The definition of Ic

λ is similar to that of Iλ (and these two spaces are homotopy equivalent; see
Remark 1.1.10), using the centred moduli spaces Mc

ki
instead of Mki

and using a centred version
of the configuration space, which we define next.
Definition 1.1.8. The ordered centred configuration space F c

r (R3) ⊆ Fr(R3) is defined to be the
space of all ordered configurations (x1, . . . , xr) in Fr(R3) such that

r∑
i=1

xi = 0 and
r∑

i=1
|xi|2 = 1 (1.11)

and has dimension 3r − 4. The unordered version Cc
r(R3) ⊆ Cr(R3) is defined similarly and we

have Cc
r(R3) = F c

r (R3)/Σr.
Definition 1.1.9. The moduli space of centred ideal monopoles of weight λ is defined as follows.
Analogously to Definition 1.1.6, consider the Borel construction

Ĩc
λ = T̃ c

λ ×T r

(
Mc

k1
× · · · ×Mc

kr

)
−→ F c

r (R3),

where T̃ c
λ is the restriction of T̃λ → Fr(R3) to F c

r (R3) ⊆ Fr(R3). We then define Ic
λ = Ĩc

λ/Σλ,
which is the total space of a fibre bundle

π : Ic
λ −→ F c

r (R3)/Σλ (1.12)

with fibre Mc
k1
× · · · ×Mc

kr
.

Remark 1.1.10. Since the inclusion F c
r (R3) ⊆ Fr(R3) and the projection (1.4) are homotopy

equivalences, we also have
Ic

λ ≃ Iλ.

They are therefore interchangeable when studying their homotopical properties individually. How-
ever, they are not homeomorphic, and Ic

λ (rather than Iλ) is the boundary stratum corresponding
to λ in the partial compactification of [KS22]. Note that the space Ic

λ has the correct dimension,
namely (3r − 4) +

∑r
i=1(4ki − 3) = 3r − 4 + 4k − 3r = 4k − 4.

However, since we focus in this chapter on the homological properties of Iλ, the difference
between Iλ and Ic

λ will not be relevant to us.
Terminology 1.1.11. When λ = (1, 1, . . . , 1), the moduli space Iλ is called the moduli space of
widely separated magnetic monopoles. This terminology follows the intuition that points x ∈ Iλ

should be thought of as monopoles of total charge k, with r different “clusters” centred at the points
π(x), with charges ki, which are “widely separated” but nevertheless interact: these interactions
are encoded in the structure group T r of the bundle (1.10).
Definition 1.1.12. The moduli space of framed Dirac monopoles of weight λ is the Gibbons-
Manton configuration space Tλ of Definition 1.1.4, which has the total space of the Gibbons-Manton
torus bundle (1.8) as a finite covering.
Remark 1.1.13 (On definitions.). Definitions 1.1.6 and 1.1.12 are not precisely the definitions
given in [KS22]. By [KS22, Theorem 4.9], the moduli space of ideal monopoles of weight λ –
according to their definition – is equivalent to the space denoted by Ĩλ in Definition 1.1.6. However,
as pointed out in [KS22] (see the Remark on page 53), this is not the correct space to form
the boundary hypersurfaces of the compactification Mk of Mk, and one should instead pass to
the quotient space Iλ = Ĩλ/Σλ. We have therefore made this replacement in Definition 1.1.6.
(The difference between Iλ and its finite covering space Ĩλ is not significant in [KS22] since they
are interested primarily in studying the geometry of these spaces locally.) Similarly, by [KS22,
Proposition 4.8], the moduli space of framed Dirac monopoles of weight λ – according to their
definition – is equivalent to the total space T̃λ of the Gibbons-Manton torus bundle (1.8). For the
same reasons as above, we instead consider the moduli space of framed Dirac monopoles to be the
quotient space Tλ = T̃λ/Σλ (Definition 1.1.12). Henceforth, we treat Definitions 1.1.6 and 1.1.12
as the definitions of the ideal and framed Dirac monopole moduli spaces respectively.
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Remark 1.1.14. Another small difference between our definition and that of [KS22] concerns the
action of the symmetric group Σλ. In [KS22], the ordered centred configuration spaces (cf. Defini-
tion 1.1.8) are defined in a slightly asymmetric way, which does not allow for taking a quotient by
Σλ (as we do above), since they single out one point of the configuration to lie at 0 ∈ R3. We have
modified the definition to be more symmetric by instead requiring the centre of mass to lie at 0.
This does not change the homeomorphism type of the centred ordered configuration space and it
has the advantage of having a natural action of the full symmetric group Σr, not just Σr−1.

Remark 1.1.15. When k = 1, the monopole moduli space Mc
1, as an S1-space, is simply S1

itself. Thus, according to Definition 1.1.6, we have Ĩ(1,...,1) = T̃(1,...,1). The moduli space of widely
separated magnetic monopoles I(1,...,1) (cf. Terminology 1.1.11) is therefore the quotient of the
total space of the Gibbons-Manton torus bundle T̃(1,...,1) by the symmetric group Σr.

Remark 1.1.16 (Higher codimension boundary strata.). The space (1.6) is only a partial compact-
ification ofMk: it is a manifold with boundary whose interior isMk, but it is still non-compact. In
a recent preprint [FKS18], a full compactification ofMk is proposed,1 which is a smooth manifold
with corners that recovers the partial compactification Mk if one discards corners of codimension
greater than 1. It would be interesting to extend our study of the homology of Iλ to the deeper
boundary strata of this full compactification.

1.2 Homology stability for configurations with non-local
data

The goal of this section is to prove Proposition 1.2.3, which gives sufficient conditions that im-
ply homology stability for configuration spaces equipped with additional (possibly “non-local”)
parameters.

Labelled configuration spaces, where each separate point of a configuration is equipped with a
label taking values in a fixed space, are the most obvious examples of this setting – we refer to these
as configuration spaces with local data, since the labels are associated to individual points of the
configuration. However, the key observation of this section is that the proof of homology stability
requires only weaker properties of the parameters, which are satisfied also in other interesting,
non-local settings.

In particular, in §1.3 we will apply this to our key motivating example of non-local con-
figuration spaces, Gibbons-Manton torus bundles and moduli spaces of ideal monopoles, where
the parameters are genuinely non-local, encoding the pairwise interactions of the points of the
configuration.

For the general setting of non-local configuration spaces, let us consider a connected manifold
M with non-empty boundary and denote its interior by M . We first recall the definition of the
stabilisation maps between the ordered and unordered configuration spaces Fn(M) and Cn(M)
(see Definition 1.1.2).

Definition 1.2.1. Choose a collar neighbourhood of M , in order words an open neighbourhood
U of ∂M and an identification φ : U ∼= ∂M × [0, 1) that restricts to φ(p) = (p, 0) for p ∈ ∂M ⊂ U .
(This exists by [Bro62].) Let M̂ be the result of thickening the collar neighbourhood, i.e. the union
of M and ∂M × (−1, 1) along the identification φ. Also, choose a diffeomorphism (−1, 1) ∼= (0, 1)
that restricts to the identity on (1 − ϵ, 1) for some ϵ > 0. Taking the product with the identity
on ∂M and extending by the identity on M ∖ U , this determines a diffeomorphism θ : M̂ ∼= M .
Finally, choose a basepoint ∗ ∈ ∂M . These choices determine a stabilisation map

Fn(M) −→ Fn+1(M) (1.13)

between ordered configuration spaces on M by adjoining the point (∗,− 1
2 ) ∈ M̂ to a configuration

in M and then applying the diffeomorphism θ to each point, i.e. the configuration (p1, . . . , pn) is
1 Although full details of its (recursive) construction are deferred to forthcoming work of the same authors.
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sent to (θ(p1), . . . , θ(pn), θ((∗,− 1
2 ))). This evidently respects the actions of the symmetric groups

on Fn(M) and on Fn+1(M), so it also descends to a stabilisation map at the level of unordered
configuration spaces:

Cn(M) −→ Cn+1(M), (1.14)

as well as intermediate quotients between ordered and unordered configuration spaces, namely:

Fn(M)/G −→ Fn+1(M)/H (1.15)

for any subgroups G ⊆ Σn and H ⊆ Σn+1 such that the natural inclusion Σn ↪→ Σn+1 takes G
into H.

Remark 1.2.2. Up to homotopy, the stabilisation maps (1.13) and (1.14) depend only on the
choice of boundary-component of M containing the basepoint ∗. These maps (or maps homotopic
to them) were introduced in [McD75, §4] and [Seg79, Appendix]; see also [Ran13, §4] or [Pal18b,
§2.2].

Let us now consider the sequence

· · · → Cn(M) −→ Cn+1(M)→ · · · (1.16)

given by the stabilisation maps (1.14) and let

· · · → En −→ En+1 → · · · (1.17)

be another sequence of spaces and maps, equipped with fibrations

fn : En −→ Cn(M) (1.18)

making the evident squares commute. Also choose basepoints cn ∈ Cn(M) compatible with the
stabilisation maps (1.16).

Proposition 1.2.3. Fix path-connected spaces Y and Z and suppose that f−1
n (cn) = Zn × Y for

all n. Fix a basepoint ∗ ∈ Z. Moreover, we assume also that
• the monodromy π1(Cn(M))→ hAut(Zn × Y ) of (1.18) is the projection onto the symmetric

group followed by the obvious permutation action on the factors of the product Zn;
• the restriction Zn × Y → Zn+1 × Y of the lifted stabilisation map (1.17) to fibres over

basepoints is the natural inclusion (z1, . . . , zn, y) 7→ (∗, z1, . . . , zn, y).
Then the sequence (1.17) is homologically stable: the map En → En+1 induces isomorphisms on
homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees ⩽ n/2 with field coefficients.

Example 1.2.4. One source of examples of fibrations (1.18) over configuration spaces Cn(M)
equipped with lifted stabilisation maps (1.17) that satisfy the two conditions of Proposition 1.2.3
is configuration spaces with local data. This means that we choose a fibration f : E → M̄ with
path-connected fibres, where M = int(M̄), trivialised over a disc D ⊂ ∂M̄ . Then we set

En =
{
{y1, . . . , yn} ∈ Cn(E)

∣∣ f(yi) ̸= f(yj) for i ̸= j
}
,

the space of unordered configurations in M where each point x of the configuration is equipped
with a label y ∈ f−1(x). In this setting, the space Z is the fibre of f over ∗ ∈ D. The data in this
example is “local” in the sense that each label is associated to a single point in the configuration.

However, there also exist labelling data (1.18) and (1.17), satisfying the two conditions of
Proposition 1.2.3, that do not arise in this way. We will call these “non-local” data:

Definition 1.2.5. A system of configuration spaces equipped with non-local data is a choice of
(1.18) and (1.17) that do not arise as described in Example 1.2.4 above.

Remark 1.2.6. Proposition 1.2.3, in the setting of configuration spaces with local data, is well-
known: see [KM18, Appendix A] or [CP15, Appendix B]. The point of this section is to observe
that it also holds in a more general setting, requiring just the two assumptions of Proposition 1.2.3,
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which includes also configuration spaces with non-local data. We will see in §1.3 that asymptotic
monopole moduli spaces are examples of configuration spaces with non-local data: this is our key
motivating example. We note, on the other hand, that configuration-mapping spaces, considered
in [PT21], are in general not examples of configuration spaces with non-local data in the sense
of Proposition 1.2.3, as the associated monodromy action does not in general factor through the
symmetric group. See [PT22, §9] for a detailed study of the monodromy action for configuration-
mapping spaces.

In order to prove Proposition 1.2.3, we first need to recapitulate some definitions and results
from [Pal18b]. Recall that we are considering a connected manifold M with non-empty boundary
whose interior we denote by M . Associated to this manifold there is a certain category B(M),
the partial braid category on M , whose objects are non-negative integers {0, 1, 2, . . .} and whose
morphisms are “partial braids” in M × [0, 1]; the precise definition is given in [Pal18b, §2.3].2 This
category comes equipped with an endofunctor S that acts by +1 on objects as well as a natural
transformation ι : id⇒ S.

Definition 1.2.7 ([Pal18b, Definitions 2.2 and 3.1]). A twisted coefficient system for the sequence
(1.16) of unordered configuration spaces on M , defined over a ring R, is a functor T : B(M) →
R-Mod. The degree of a twisted coefficient system T , taking values in {−1, 0, 1, 2, 3, . . .} ∪ {∞}, is
defined recursively by setting deg(0) = −1 and declaring that deg(T ) ⩽ d if and only if deg(∆T ) ⩽
d− 1, where ∆T is the cokernel of the natural transformation Tι : T ⇒ TS.

Remark 1.2.8. In [Pal18b], the ground ring R is always assumed to be Z, but everything gener-
alises directly to an arbitrary ground ring R.

For any twisted coefficient system T , the morphisms ιn : n→ Sn = n+1, which between them
constitute the natural transformation ι, induce homomorphisms T (n)→ T (n+ 1). Together with
the stabilisation maps (1.16), these induce homomorphisms

H∗(Cn(M);T (n)) −→ H∗(Cn+1(M);T (n+ 1)) (1.19)

of twisted homology groups. The main result of [Pal18b] is the following.

Theorem 1.2.9 ([Pal18b, Theorem A]). If T is a twisted coefficient system for (1.16) of degree
d, then the map of twisted homology groups (1.19) is an isomorphism in the range of degrees
∗ ⩽ 1

2 (n− d).

An important family of examples of finite-degree twisted coefficient systems are defined on the
category FI♯,3 which is the category whose objects are non-negative integers and whose morphisms
from m to n are the partially-defined injections from {1, . . . ,m} to {1, . . . , n}. For any manifold
M , there is a canonical functor fM : B(M) → FI♯, so any functor FI♯ → R-Mod determines a
twisted coefficient system for any manifold M .

Construction 1.2.10 (A generalisation of [Pal18b, Example 4.1]). Choose path-connected spaces
Y,Z and a basepoint ∗ ∈ Z. Also choose an integer q ⩾ 0 and a field K. There is a functor

TZ,Y,q,F : FI♯ −→ K-Mod (1.20)

that acts on objects by n 7→ Hq(Zn × Y ;K) and, on morphisms, sends each partially-defined
injection j : {1, . . . ,m} 99K {1, . . . , n} to the map on homology induced by the map Zm × Y →
Zn × Y defined by (z1, . . . , zm, y) 7→ (zj−1(1), . . . , zj−1(n), y). Notice that j−1(i) is either a single
element or empty; for the latter case, we interpret z∅ to mean the basepoint ∗ of Z.

Lemma 1.2.11. For any manifold M , the twisted coefficient system

TZ,Y,q,F ◦ fM : B(M) −→ K-Mod (1.21)

given by composing (1.20) with the canonical functor fM : B(M)→ FI♯ has degree at most q.
2 In [Pal18b], the theory is developed more generally for configuration spaces with (local) labels in a space X.

We will not need this level of generality here, so we will suppress it (equivalently, we take X to be the one-point
space).

3 This is denoted Σ in [Pal18b], but we use the more common notation FI♯.
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Proof. When Y is the one-point space, this is [Pal18b, Lemma 4.2]. The extra factor of Y in the
product does not affect the proof at all (as long as Y is path-connected), so the proof of the general
case is identical to that of [Pal18b, Lemma 4.2].

This completes our recapitulation of the necessary definitions and results of [Pal18b], and we
may now complete the proof of Proposition 1.2.3.

Proof of Proposition 1.2.3. We will take field coefficients and prove homological stability up to
degree n/2. This will automatically imply homological stability up to degree n/2− 1 with integral
coefficients (and hence any untwisted coefficients), via the short exact sequences of coefficients

1→ Z/(pn) −→ Z/(pn+1) −→ Z/(p)→ 1 and 1→ Z −→ Q −→ Q/Z→ 1

and the fact that Q/Z decomposes into the direct sum of colimn(Z/(pn)) over all primes p.
We therefore consider the Serre spectral sequence, with coefficients in a field K, associated

to the fibration (1.18) and the map of Serre spectral sequences induced by the stabilisation maps
downstairs (1.16) and upstairs (1.17). The map of E2 pages is of the form

Hp(Cn(M);Hq(Zn × Y ;K)) −→ Hp(Cn+1(M);Hq(Zn+1 × Y ;K)). (1.22)

The first assumption of the proposition implies that the local coefficients appearing in the source
and target of (1.22) are precisely those arising from the twisted coefficient system (1.21). The
second assumption implies that the map (1.22) is precisely the one induced by the stabilisation
maps (1.16) together with the morphisms +1: n → n + 1 of FI♯; thus it is the map (1.19) for
T = (1.21). By Lemma 1.2.11, this twisted coefficient system has degree at most q. Hence
Theorem 1.2.9 implies that (1.22) is an isomorphism for all p ⩽ 1

2 (n − q), in particular for all
p + q ⩽ n/2. A spectral sequence comparison argument then implies that the map on H∗(−;K)
induced by En → En+1 is an isomorphism in degrees ∗ ⩽ n/2.

Remark 1.2.12. One may prove Proposition 1.2.3 using the twisted homological stability result
[Kra19, Theorem D] instead of the twisted homological stability result [Pal18b, Theorem A], al-
though this results in a range of degrees one smaller, namely n/2 − 1 for field coefficients and
n/2− 2 for integral coefficients.

Remark 1.2.13. The map (1.22) of E2 pages of Serre spectral sequences is split-injective in
all degrees by [Pal18b, Theorem A]. However, this does not in general imply split-injectivity in
the limit, so we cannot deduce from this that En → En+1 induces split-injections on homology.
Anticipating Remark 1.3.7, there are obstructions to proving split-injectivity on homology for
configurations with non-local data, in contrast to the case of ordinary configurations and twisted
homology.

1.3 Homology stability for asymptotic monopole moduli
spaces

Fix a positive integer c and a tuple λ = (k1, . . . , kr) of positive integers that sum to k. Denote
by λ[n]c the tuple (k1, . . . , kr, c, . . . , c), where there are n appearances of c. For simplicity we will
assume that ki ̸= c for each i (if this is not the case we may simply remove these entries from λ
and increase n appropriately). Our main theorem is the following.

Theorem 1.3.1. There are natural stabilisation maps

Tλ[n]c
−→ Tλ[n+1]c

and Iλ[n]c
−→ Iλ[n+1]c

(1.23)

that induce isomorphisms on homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees
⩽ n/2 with field coefficients.
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We first prove Theorem 1.3.1 for the Gibbons-Manton configuration spaces Tλ[n]c
in §1.3.1.

We then show in §1.3.2 that homological stability is preserved in general when replacing each
circle factor in the torus fibre of Tλ[n]c

with another space that is equipped with a circle action.
In particular, we deduce the second part of Theorem 1.3.1, since moduli spaces of ideal monopoles
Iλ[n]c

are special cases of this construction.

1.3.1 Gibbons-Manton torus bundles

Recall that the Gibbons-Manton torus bundle Tλ[n]c
has base space Fr+n(R3)/Σλ[n]c

, where Σλ[n]c
=

Σλ × Σn. By abuse of notation, we will write

Fr+n(R3)/Σλ[n]c
=: Cλ,n(R3).

A point in this space consists of two disjoint configurations in R3: one λ-partitioned configuration
of r points and one unordered configuration of n points.

Our first goal in this section is to lift the classical stabilisation maps of configuration spaces

Cλ,n(R3) −→ Cλ,n+1(R3) (1.24)

(see Definition 1.2.1) to the Gibbons-Manton torus bundles:

Tλ[n]c
Tλ[n+1]c

Cλ,n(R3) Cλ,n+1(R3).

(1.25)

Our second goal is to show that these lifted stabilisation maps satisfy the two hypotheses of
Proposition 1.2.3. This will imply homological stability for Gibbons-Manton torus bundles, i.e. the
first part of Theorem 1.3.1.

We begin with a lemma about pullbacks of Gibbons-Manton circle factors. To prepare for this,
we first choose an explicit concrete model for the stabilisation maps (1.24); i.e. we make explicit
some of the choices involved in Definition 1.2.1 in the case M = R3. Up to homotopy, this does
not make any difference, but it will be convenient for the proof of Lemma 1.3.3 below to choose a
specific representative of this homotopy class of maps.

Definition 1.3.2. We will in fact replace R3 with the open upper half-space M = R2 × (0,∞).
We may then take M = R2× [0,∞) with the obvious collar neighbourhood, so M̂ = R2× (−1,∞).
Take ∗ = (0, 0, 0) ∈ ∂M = R2 × {0} as basepoint. With these choices (and identification of R3

with R2 × (0,∞)), the stabilisation map

Fr−1(R3) −→ Fr(R3) (1.26)

of Definition 1.2.1 acts as follows. To a configuration (x1, . . . , xr−1) in R2 × (0,∞), we adjoin the
new point (0, 0,− 1

2 ) and then “push upwards” the resulting configuration in R2× (−1,∞), i.e., we
keep the first two coordinates of all points fixed and modify their third coordinates according to a
chosen diffeomorphism (−1,∞) ∼= (0,∞).

Lemma 1.3.3. Let λ = (k1, . . . , kr) for positive integers ki and write λ′ = (k1, . . . , kr−1). Then the
pullback of the circle bundle Sλ,j → Fr(R3) along the stabilisation map (1.26) is Sλ′,j → Fr−1(R3)
if j ⩽ r − 1 and a trivial bundle if j = r.

Proof. Recall that the bundle Sλ,j → Fr(R3) is the pullback of the universal S1-bundle on CP∞

along the map Fr(R3) → CP∞ given by the sum
∑r

i=1,i̸=j ki.ιij where ιij : Fr(R3) → S2 ⊂ CP∞

is given by
x = (x1, . . . , xr) 7−→ xi − xj

|xi − xj |
. (1.27)



1.3. Homology stability for asymptotic monopole moduli spaces 27

Figure 1.1 Any configuration in the image of the stabilisation map (1.26) has the form depicted on the
right-hand side above (only the points xj and xr are actually depicted). Namely, xj is the image, after
applying the chosen diffeomorphism (−1, ∞) ∼= (0, ∞) to vertical coordinates, of an arbitrary point
in R2 × (0, ∞), whereas xr is the image of (0, 0, − 1

2 ). Since the diffeomorphism (−1, ∞) ∼= (0, ∞) is
order-preserving, the vertical coordinate of xj is higher than the vertical coordinate of xr. Hence the
(normalised) vector from xj to xr lies in the bottom hemisphere of S2.

(Recall from Definition 1.3.2 that we have implicitly replaced R3 with R2 × (0,∞); the formula
above remains true after this replacement.) Its pullback to Fr−1(R3) along the stabilisation map
(1.26) is therefore given by the same formula, restricting ιij to Fr−1(R3) along (1.26).

The key observation is the following. When i = r and we restrict ιrj to Fr−1(R3) along (1.26),
the vertical (third) coordinate of the point xr will always be smaller than the vertical coordinate
of the point xj , due to the choices made in the construction of (1.26) in Definition 1.3.2; see
Figure 1.1 for a detailed explanation. Thus the right-hand side of (1.27) always takes values in
the bottom hemisphere of S2 ⊂ CP∞, and hence ιrj restricted along (1.26) is nullhomotopic. By
exactly analogous reasoning, when j = r the map ιir restricted along (1.26) takes values in the top
hemisphere of S2 ⊂ CP∞ and hence is also nullhomotopic.

Putting this all together, we deduce that the map Fr−1(R3)→ CP∞ classifying the pullback
of Sλ,r is nullhomotopic, so this pullback is trivial. It also implies that the map Fr−1(R3)→ CP∞

classifying the pullback of Sλ,j , for j ⩽ r− 1, is the sum
∑r−1

i=1,i̸=j ki.ιij , which is by definition the
map that classifies Sλ′,j .

Remark 1.3.4. Recalling that we denote by αij the pullback of a fixed generator of H2(S2;Z)
along the map ιij : Fr(R3) → S2, the discussion in the proof above implies that the stabilisation
map Fr−1(R3)→ Fr(R3) acts on H2(−;Z), in the basis (1.7), by αij 7→ αij if j ⩽ r−1 and αir 7→ 0.
It is also easy to see that the automorphism σ∗ : Fr(R3)→ Fr(R3) induced by a permutation σ ∈ Σr

acts on generators of H2(Fr(R3);Z) by αij 7→ ασ−1(i),σ−1(j). It follows from this that the pullback
of the circle bundle Sλ,j along σ∗ is the circle bundle Sσ−1(λ),σ−1(j).

Corollary 1.3.5. The stabilisation map (1.24) lifts to (1.25).

Proof. Let us write µ = λ[n + 1]c and µ′ = λ[n]c. Lemma 1.3.3 then implies that the pullback of
the Gibbons-Manton torus bundle T̃µ =

⊕r+n+1
j=1 Sµ,j → Fr+n+1(R3) along the stabilisation map

Fr+n(R3)→ Fr+n+1(R3) is
r+n⊕
j=1

Sµ′,j ⊕ tr = T̃µ′ ⊕ tr −→ Fr+n(R3),

where tr denotes the trivial S1-bundle. We therefore have bundle maps

T̃λ[n]c
T̃λ[n]c

⊕ tr T̃λ[n+1]c

Fr+n(R3) Fr+n(R3) Fr+n+1(R3),id

(1.28)

where the left-hand square is an inclusion of a direct summand and the right-hand square is a
pullback. This is equivariant with respect to the actions of Σλ × Σn and Σλ × Σn+1. Quotienting
by these actions, we obtain the lifted stabilisation map (1.25).
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In order to apply Proposition 1.2.3 to prove the first part of Theorem 1.3.1, we recall the
following general fact about mondromy actions of fibrations.

Lemma 1.3.6. Let p : E → B be a fibration over a based, path-connected space B admitting a
universal covering π : B̃ → B. Write p̃ : Ẽ → B̃ for the pullback of p along π. Let F denote the
fibre of p over the basepoint b0 ∈ B and note that the fibre of p̃ over each point in π−1(b0) ⊂ B̃ is
also canonically identified with F . Then the monodromy action π1(B)→ hAut(F ) of p is equal to

π1(B) ∼= Aut(π : B̃ → B) −→ hAut(F ),

where the left-hand isomorphism is the action by deck transformations and the right-hand map is
given by the action on Ẽ → B̃ by pullback.

Proof of Theorem 1.3.1 for Tλ[n]c
. We first assume that λ = () and r = 0, so that λ[n]c is the tuple

(c, c, . . . , c) of n copies of c ⩾ 1. We are now in the setting of Proposition 1.2.3 with (1.16) = (1.24),
(1.17) = (1.25), (1.18) = (1.9) and Z = S1.4

To complete the proof under this assumption, it suffices to check the two hypotheses of Proposi-
tion 1.2.3. The first hypothesis says that the monodromy π1(Cn(R3))→ hAut(Tn) of the Gibbons-
Manton torus bundle (1.9) is the obvious permutation action on the circle factors of the torus Tn.
To check this property, we use Lemma 1.3.6. In our setting, the universal covering of Cn(R3)
is Fn(R3) and the pullback of Tλ[n]c

→ Cn(R3) is T̃λ[n]c
→ Fn(R3). The deck transformation

action of π1(Cn(R3)) ∼= Σn sends a loop (permutation) σ to the obvious automorphism σ∗ of the
ordered configuration space Fn(R3). By Remark 1.3.4, the action of σ∗ by pullback on Gibbons-
Manton circle factors sends Sλ[n]c,j to Sλ[n]c,σ−1(j) (here we use the fact that λ[n]c = (c, c, . . . , c), so
σ−1(λ[n]c) = λ[n]c). Hence σ∗ simply permutes the different circle factors in the Gibbons-Manton
torus bundle; in particular its action on the torus fibre simply permutes the different copies of S1,
as required.

The second hypothesis of Proposition 1.2.3 says that the restriction of the lifted stabilisation
map (1.25) to the fibres over the basepoints is the natural inclusion Tn → Tn+1. This is immediate
by construction of the lifted stabilisation map: it is given (before quotienting by symmetric groups
and therefore also afterwards) by including into a direct sum with a (trivial) circle bundle and then
a pullback of bundles.

Proposition 1.2.3 therefore implies that the stabilisation map Tλ[n]c
→ Tλ[n+1]c

induces iso-
morphisms on homology in all degrees ⩽ n/2−1 with integral coefficients and in all degrees ⩽ n/2
with field coefficients, under our assumption that λ = ().

To complete the proof of Theorem 1.3.1 for Tλ[n]c
we deduce the general case from the special

case λ = () that we have just proven. To do this, we first observe that the constructions and results
so far generalise directly to Gibbons-Manton torus bundles with fixed points. In this setting,
we consider the subspace of the configuration space Cλ,n(R3) where the λ-partitioned r-point
configuration x is fixed and the unordered n-point configuration is free to move in the complement
of x; in other words, we consider the fibre of the projection Cλ,n(R3)→ Cλ(R3) over x ∈ Cλ(R3).
Let us denote this subspace by Cλ,n(R3; x) and consider the restriction of Tλ[n]c

→ Cλ,n(R3) to
Cλ,n(R3; x), which we denote by Tλ[n]c

|x. The difference between this setting and the λ = ()
setting considered above is that (1) the unordered n-point configuration now lies in R3 ∖ x, (2)
there are r additional Gibbons-Manton circle factors encoding the pairwise interactions of the fixed
points x with the free points and (3) the n Gibbons-Manton circle factors that encode the pairwise
interactions of the n free points with each other are now modified to also take into account their
interactions with the fixed points x. The arguments above generalise directly to this setting and
prove that restricted stabilisation maps

Tλ[n]c
|x −→ Tλ[n+1]c

|x (1.29)

4 Proposition 1.2.3 requires us to fix a basepoint on Z = S1. This may initially appear problematic, since the
circle fibres of the Gibbons-Manton circle factors (Definition 1.1.3) cannot be given consistent basepoints, since the
Gibbons-Manton circle factors do not admit global sections. However, Proposition 1.2.3 only requires a choice of
basepoint on a single fibre, namely the fibre over the base configuration, so this issue does not arise.
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induce isomorphisms on homology in all degrees ⩽ n/2 − 1 with integral coefficients and in all
degrees ⩽ n/2 with field coefficients. To deduce the same for the unrestricted stabilisation maps
(1.25), we note that Tλ[n]c

|x is the fibre of the composite fibration

Tλ[n]c
−→ Cλ,n(R3) −→ Cλ(R3),

where the second map forgets the unordered n-point configuration, consider the map of fibrations

Tλ[n]c
|x Tλ[n+1]c

|x

Tλ[n]c
Tλ[n+1]c

Cλ(R3)

(1.29)

(1.25) (1.30)

and apply a spectral sequence comparison argument to the corresponding map of Serre spectral
sequences.

Remark 1.3.7. For unordered configuration spaces, the stabilisation maps Cn(R3) → Cn+1(R3)
have the additional property that they are split-injective on homology. This is essentially a con-
sequence of the existence of forgetful maps Fn(R3)→ Fr(R3) at the level of ordered configuration
spaces that forget the last n− r points of a configuration. Using these maps, standard techniques
using transfer maps (see [McD75] or [MT14]) imply split-injectivity on homology for stabilisation
maps of unordered configuration spaces. We record here the observation that the forgetful maps

τn,r : Fn(R3) −→ Fr(R3) (1.31)

do not naturally lift to Gibbons-Manton torus bundles (in contrast to the stabilisation maps, which
do lift, by Corollary 1.3.5). In order to lift τn,r to Gibbons-Manton torus bundles T̃λ → T̃λ|r

, where
λ = (k1, . . . , kn) and λ|r = (k1, . . . , kr), one would like it to be true that the pullback of the circle
bundle Sλ|r,j along τn,r is Sλ,j — given this, one would then be able to pre-compose the pullback
of T̃λ|r

with the projection of T̃λ onto a sub-direct-sum. However, this is false. For every i < j ⩽ r,
the pullback of the cohomology class αij along τn,r is αij , so we have

τ∗
n,r

 r∑
i=1
i ̸=j

ki.αij

 =
r∑

i=1
i ̸=j

ki.αij .

The left-hand side classifies the pullback of Sλ|r,j along τn,r, but the right-hand side classifies Sλ,j

only if kr+1 = · · · = kn = 0, which is impossible since all ki are assumed positive.
More informally, one could say that the reason why we cannot naturally lift forgetful maps

to Gibbons-Manton torus bundles is because of the non-local nature of the additional circle pa-
rameters: each circle parameter is associated to all configurations points simultaneously, since it
encodes the pairwise interactions of one of the points with all of the others. Thus there is no well-
defined way of forgetting a subset of the configuration points in the presence of these non-local
parameters.

1.3.2 Changing the fibre

For a sequence of spaces Z = {Z1, Z2, . . .}, we will consider the family of finite products of the
form Zλ = Zk1 × · · · × Zkr

for tuples λ = (k1, . . . , kr) of positive integers. If each Zi is a G-space
for some topological group G, we consider each Zλ as a G-space via the diagonal action.

Definition 1.3.8. Let Z be a sequence of S1-spaces and let λ = (k1, . . . , kr). Let T̃λ(Z) be the
total space of the fibre bundle obtained from the principal T r-bundle T̃λ by the Borel construction:

T̃λ(Z) = T̃λ ×T r Zλ −→ Fr(R3).
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We then let Tλ(Z) = T̃λ(Z)/Σλ, where Σλ acts diagonally on T̃λ and on the finite product Zλ. The
Gibbons-Manton Z-bundle of weight λ is the space Tλ(Z). It is the total space of a fibre bundle

Tλ(Z) −→ Fr(R3)/Σλ (1.32)

with fibre Zλ.

In particular, we have Iλ = Tλ(Z) for Z = {M1,M2,M3, . . .}. We now prove:

Theorem 1.3.9. For any sequence Z = {Z1, Z2, . . .} of path-connected S1-spaces, there are natural
stabilisation maps

Tλ[n]c
(Z) −→ Tλ[n+1]c

(Z) (1.33)

that induce isomorphisms on homology in all degrees ⩽ n/2−1 with Z coefficients and in all degrees
⩽ n/2 with field coefficients.

Theorem 1.3.1 corresponds to two special cases of Theorem 1.3.9, namely the sequences
{S1, S1, . . .} and {M1,M2, . . .} of S1-spaces. It therefore remains only to prove Theorem 1.3.9.

Proof of Theorem 1.3.9. The proof is a direct generalisation of the proof of Theorem 1.3.1 for
Tλ[n]c

, so we just explain the differences. First of all, the lifts of the stabilisation maps exist by
the proof of Corollary 1.3.5, where we additionally apply the (functorial) Borel construction to the
outer square of (1.28) before quotienting by the symmetric group actions.

We begin by assuming that λ = () and r = 0, so that λ[n]c = (c, c, . . . , c) where there are
n copies of c ⩾ 1. We are therefore in the setting of Proposition 1.2.3 with Z = Zc. The two
hypotheses of that proposition are satisfied by the same argument as in the proof of Theorem 1.3.1
for Tλ[n]c

, together with the evident observation that applying the Borel construction that replaces
each circle factor in the fibre with the S1-space Zc has the effect, on fibres, that permutation maps
Tn → Tn and natural inclusions Tn → Tn+1 are sent to the corresponding permutation maps
(Zc)n → (Zc)n and natural inclusions (Zc)n → (Zc)n+1. Thus Proposition 1.2.3 completes the
proof in the case λ = ().

This generalises to Gibbons-Manton Z-bundles with fixed points exactly as for Gibbons-
Manton torus bundles with fixed points, and one may then deduce the general case of the theorem
from this by a spectral sequence comparison argument applied to the analogue of the diagram
(1.30).



Chapter 2

Stability for moduli spaces of
manifolds with conical
singularities

The results of this chapter are contained in the arXiv preprint [Pal18a], which is submitted for
publication.

Introduction

Let M be a connected manifold with ∂M ̸= ∅. As the number of points n→∞, the homology of
the unordered configuration spaces Cn(M) stablises: there are maps Cn(M)→ Cn+1(M) inducing
isomorphisms on integral homology in a diverging range of degrees. This was proved first for the
plane M = R2 by Arnol’d [Arn70] and in general by McDuff and Segal [Seg73; McD75; Seg79]. This
has been extended to labelled configuration spaces Cn(M ;X), where the configuration points are
equipped with labels in a path-connected space X [Ran13], as well as homology with polynomially
twisted coefficients [Pal18b].

Closely related, there are moduli spaces of manifolds with marked points. Formally, these
are the classifying spaces BDiff(M, {x1, . . . , xn}) of the groups of diffeomorphisms of M fixing a
given set of n points in its interior, and they may be realised more concretely as the spaces of
submanifolds of R∞ that are diffeomorphic to M and equipped with an n-point configuration in
their interiors. Stability for the homology of these moduli spaces was proven in [Til16] using their
connection to labelled configuration spaces on M .

We may think of marked points in M as conical singularities by writing a disc neighbourhood
of each marked point as the cone on its boundary sphere – see the left-hand side of Figure 2.1
on the next page. However, the cone on a sphere is still a manifold, so these singularities are
“inessential”. More general conical singularities of an m-dimensional manifold are points where the
manifold is locally homeomorphic to the cone on an (m − 1)-dimensional manifold L, the link of
the singularity. Hence it, in fact, fails to be a manifold at these points unless L ∼= Sm−1. See the
right-hand side of Figure 2.1 for an illustration of a conical singularity whose link is a 2-torus.

In this chapter we prove stability, as the number of singularities goes to infinity, for the
homology of moduli spaces of manifolds with conical L-singularities, where L = ∂T is the boundary
of a tubular neighbourhood of a closed submanifold P ⊂M of sufficiently high codimension. These
are the classifying spaces BDiffL(Mn) of the L-diffeomorphism groups of the singular manifolds
Mn obtained by collapsing n tubular neighbourhoods of copies of P down to n conical singularities.
Note that taking P = point recovers the case of marked points (inessential singularities).

This will turn out to be a special case of our main result: stability for the homology of the
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Figure 2.1 A marked point viewed as an inessential singularity given by the cone on a codimension-1
sphere; an essential singularity given by the cone on a torus.

classifying spaces of

ΣDiff(M♯PN♯P · · · ♯PN), (2.1)

where ♯P denotes parametric connected sum along a submanifold P and the symmetric diffeomor-
phism group ΣDiff is, roughly, the group of diffeomorphisms that preserve this iterated parametric
connected sum decomposition. Parametric connected sum is a natural generalisation of connected
sum, and one may encode surgery and, in dimension 3, Dehn surgery as the operation −♯PN by
taking P and N to be appropriate spheres or lens spaces.

The essential input for our proofs, as in the case of marked points, is stability for the ho-
mology of labelled configuration spaces – except that we consider configurations of disconnected
submanifolds of M rather than points, and the labels of the components take values in a bundle
over a space of embeddings into M . Without labels (and with a bound on the dimension of the
submanifolds), this was proven by the author in [Pal21]. In order to apply it to prove stability for
(2.1) (and thus for moduli spaces of manifolds with conical singularities), we extend this stability
result to configurations of disconnected submanifolds with labels. To do this, we first extend it to
homology with polynomially twisted coefficients – a higher-dimensional analogue of [Pal18b].

A diagram illustrating this sequence of implications, starting from [Pal21] and [Pal18b], is
given on page 35 below.

In the remainder of this introduction, we describe parametric connected sum in more detail,
state precisely our main stability results (Theorems 2.A, 2.C, 2.D and Corollary 2.B) and then
briefly discuss the stable homology and analogues of our results for mapping class groups.

Parametric connected sum

Definition 2.0.1. Given two smooth embeddings f : L ↪→ M and g : L ↪→ N with isomorphic
normal bundles, we may form the parametric connected sum of M and N along L as follows.
It depends also on the choice of a bundle isomorphism θ : ν(f) ∼= ν(g) between the two normal
bundles.

First choose a metric on the vector bundle ν(f)→ L and tubular neighbourhoods f̄ : ν(f) ↪→
M and ḡ : ν(g) ↪→ N . (This is a contractible choice.) For a vector bundle E with a metric and an
interval I ⊆ [0,∞), write EI for the subbundle consisting of all vectors with norm in I.

The parametric connected sum M♯LN is formed by removing the neighbourhood f̄(ν(f)[0,1])
of f(L) from M and the neighbourhood ḡ(ν(g)[0,1]) of g(L) from N and then gluing together the
slightly larger neighbourhoods f̄(ν(f)(1,2)) and ḡ(ν(g)(1,2)) by θ ◦ σ, where σ is the involution of
ν(f)(1,2) that acts radially on each fibre, sending vectors of norm r to vectors of norm 3− r. This
may be written as a pushout diagram:
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ν(f)(1,2)

M ∖ f̄(ν(f)[0,1])

N ∖ ḡ(ν(g)[0,1])

M♯LN

f̄ ◦ σ

ḡ ◦ θ

When L is a point, this recovers the usual definition of connected sum of two manifolds.

Example 2.0.2. Take g to be the standard inclusion of Sp into Sm, for p < m and let M have
dimension m. Since ν(g) is trivial, an embedding f : Sp ↪→M together with a bundle isomorphism
θ as in Definition 2.0.1 is the same thing as a framed embedding. The parametric connected sum
of M with Sm along Sp is the result of p-surgery along this framed embedding.

Example 2.0.3. Take N to be the lens space L(p, q), thought of as the union of two solid tori along
an appropriate identification of their boundaries, and take g : S1 ↪→ L(p, q) to be the inclusion of
the core of one of these solid tori. As in the previous example, ν(g) is trivial. Given a framed knot
in a 3-manifold M , the parametric connected sum of M with L(p, q) along this knot is the result
of Dehn surgery of slope p/q along this knot.

Apart from these ubiquitous examples of surgery and Dehn surgery, instances of the more
general parametric connected sum have also appeared numerous times before in the literature. For
example, the notion of “connected sum along a k-skeleton” was used by Kreck [Kre85, pp. 25–26]
(see also [Kre16, §5 and §6]) to give a geometric definition of the group structure on the set of
2n-manifolds with normal (n− 1)-smoothing up to stable diffeomorphism. This uses Wall’s theory
of thickenings [Wal66], which allows one, under certain conditions, to approximate a map from
a CW-complex to a manifold M by a homotopy equivalence onto a compact, codimension-zero
submanifold of M ; these approximations play a role analogous to that of the tubular neighbour-
hoods in Definition 2.0.1 above. A version of the parametric connected sum in a context where all
manifolds are equipped with embeddings into a fixed Euclidean space was defined in [Sko07, page
264]; this is also where the name parametric connected sum seems to have been first introduced.
More details and further references may be found at [Man].

Results

Let M be a connected m-manifold with boundary and P a closed p-manifold. Choose embeddings
P ↪→ ∂M and P ↪→ N , where N is another compact m-manifold. Assume that the normal bundles
of these embeddings (after pushing the first one into the interior of M) are isomorphic, and choose
an isomorphism between them. We may then define

M ♯
nP
nN

to be the result of performing n parametric connected sum operations, each with a different copy
of N , along pairwise disjoint embeddings of P into a collar neighbourhood of M , parallel to the
chosen embedding into its boundary. (See Definition 2.1.2.)

Definition 2.0.4 (Informal). A diffeomorphism of this manifold is called symmetric if it preserves,
setwise, the decomposition into (a) M minus n tubular neighbourhoods of P and (b) n copies of
N minus a tubular neighbourhood of P . Moreover, on the intersection of (a) and (b), it must act
by fibrewise diffeomorphisms of the tubular neighbourhood (and permutations). We also require
it to act by the identity on a neighbourhood of ∂M .

Write Difffib(T ) for the group of fibrewise diffeomorphisms of the tubular neighbourhood
(normal bundle) T → P , namely those diffeomorphisms of T that cover some diffeomorphism
of P . We may more generally fix a subgroup H ⩽ Difffib(T ) and say that a diffeomorphism is
H-symmetric if it acts by H (and permutations) on the intersection of (a) and (b). We write

ΣHDiff(M ♯
nP
nN)
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for the group of H-symmetric diffeomorphisms, and we omit the subscript H if it is the whole
group Difffib(T ). See Definition 2.2.1 for the precise definition.

Since M has boundary, and symmetric diffeomorphisms are required to fix a neighbourhood
of it pointwise, there is an inclusion

M ♯
nP
nN ↪−→M ♯

(n+1)P

(n+ 1)N,

given by extending the collar neighbourhood of ∂M and performing another parametric connected
sum with N along an embedding of P into this extension, and a homomorphism

ΣHDiff(M ♯
nP
nN) −→ ΣHDiff(M ♯

(n+1)P

(n+ 1)N), (2.2)

given by extending symmetric diffeomorphisms by the identity. Our main result will hold under
the following hypotheses (see also §2.4):

(a) The dimensions p and m satisfy p ⩽ 1
2 (m− 3).

(b) Let z : Difffib(T )→ Diff(P ) be the homomorphism that sends a fibrewise diffeomorphism to
the diffeomorphism of P that it covers. Then z(H) is open in Diff(P ) and H∩ker(z) is closed
in ker(z). Moreover, we assume that the coset space ker(z)/(H ∩ ker(z)) is path-connected.

(c) Every diffeomorphism in H (thought of as a diffeomorphism of a tubular neighbourhood of
P in N) extends to the whole manifold N .

We will discuss these hypotheses in more detail shortly, but first we state the main results of
the chapter.

Theorem 2.A. (Theorem 2.4.1) Under these hypotheses, the homomorphism (2.2) induces iso-
morphisms on homology up to degree n

2 − 1 and split-injections in all degrees.

Note. When we speak of the homology of a diffeomorphism group, we will always mean the
homology of its classifying space (as a topological group, equipped with the Whitney C∞ topology).

In §2.7 we reinterpret a special case of this as a result about diffeomorphism groups of manifolds
with conical singularities. Write ∂T for the boundary of the disc bundle T → P , in other words,
the unit sphere bundle of the normal bundle of our chosen embedding of P into M . The group
of fibrewise diffeomorphisms of T is naturally a subgroup of Diff(∂T ), and therefore so is H. In
§2.7.4 we construct a sequence Mn of manifolds with conical singularities of “type” ∂T by collapsing
tubular neighbourhoods of embedded copies of P in M . There is an inclusion Mn ↪→Mn+1, which
may be thought of as adjoining a new singularity of type ∂T , and a homomorphism

Diff∂T
H (Mn) −→ Diff∂T

H (Mn+1) (2.3)

given by extending diffeomorphisms by the identity. The notation Diff∂T
H ( ) means the group of

diffeomorphisms of a manifold with conical ∂T -singularities that act by the cone on H near each
singularity. See Definition 2.7.4 for more precise details.

Corollary 2.B. (Corollary 2.7.12) Under the hypotheses (a) and (b) above, the homomorphism
(2.3) induces isomorphisms on homology up to degree n

2 − 1 and split-injections in all degrees.

These are proved as corollaries of an extension of the main theorem of [Pal21]. Let G be
a subgroup of Diff(P ) and let CnP (M ;G) be the space whose points consist of an unordered
collection of pairwise disjoint submanifolds in the interior of M that are each diffeomorphic to P
and parametrised modulo G, and such that the whole collection is isotopic to a standard collection
of parallel copies of P in a collar neighbourhood of ∂M . The main theorem of [Pal21] is that this
sequence is homologically stable as n→∞, as long as:

(a) The dimensions p and m satisfy p ⩽ 1
2 (m− 3).

(b*) The subgroup G ⩽ Diff(P ) is open.
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In this chapter we extend this result to moduli spaces of labelled disconnected submanifolds.
Let Z be a right G-space and π : Z → Emb(P,M) a G-equivariant Serre fibration with path-
connected fibres (plus some auxiliary data; see §2.5 for the precise definitions). Then CnP (M,Z;G)
is the space of submanifolds of the interior of M (as above) that are equipped with labels in the
appropriate fibres of Z/G.

Theorem 2.C. (Theorem 2.5.8) There are natural stabilisation maps

CnP (M,Z;G) −→ C(n+1)P (M,Z;G)

that induce split-injections on homology in all degrees, and – under the hypotheses (a) and (b*) –
isomorphisms up to degree n

2 − 1.

This, in turn, follows from the fact that the sequence CnP (M ;G) of (unlabelled) moduli spaces
is homologically stable also with respect to (polynomial) twisted coefficient systems:

Theorem 2.D. (Theorem 2.8.3) The stabilisation maps CnP (M ;G) → C(n+1)P (M ;G) induce
split-injections on homology twisted by any polynomial functor T . Under the hypotheses (a) and
(b*), if T has finite degree d, they induce isomorphisms on homology twisted by T up to degree
n−d

2 .

See §2.8 for the definition of “polynomial functor” (“finite-degree twisted coefficient system”)
in this context. We prove this twisted homological stability result as a consequence of the untwisted
homological stability result of [Pal21], adapting the techniques of [Pal18b] to do so.

In summary, the sequence of implications that we prove is:

[Pal21] Theorem 2.D Theorem 2.C Theorem 2.A Corollary 2.B
§2.8 and

[Pal18b]

§2.9 §2.6 §2.7

Remark 2.0.5. In the special case where P is a point, Theorem 2.A is Theorem 1.3 of [Til16], and
states that the symmetric diffeomorphism groups of a sequence of manifolds obtained by iterated
connected sum (in the usual sense) is homologically stable. When P is a point, the manifolds Mn

considered in Corollary 2.B are in fact non-singular, since in this case ∂T = Sm−1 and a singularity
whose link (type) is a sphere is locally Euclidean. However, Mn is still a manifold with marked
points, so in this case Corollary 2.B is homological stability for diffeomorphism groups of manifolds
with marked points, with respect to the number of marked points: this is Theorem 1.1 of [Til16].

Remark 2.0.6. In the special case where P ↪→ N is the inclusion Sp ↪→ Sm (see Example 2.0.2),
Theorem 2.A is homological stability for the symmetric diffeomorphism groups of a sequence of
manifolds obtained from M by iterated p-surgery along a collection of pairwise disjoint, mutually
isotopic, framed embeddings Sp ×Dm−p ↪→M , for p ⩽ 1

2 (m− 3).

The hypotheses

Remark 2.0.7. The dimension condition (a) is not used in any of the proofs of the four implica-
tions in the diagram above; the only place where it is used is in the proof of homological stability
for CnP (M ;G) in [Pal21].1 Thus we may apply the same implications to the main result of [Kup20]
instead of [Pal21], with the result that Theorems 2.A, 2.C, 2.D and Corollary 2.B are also true if
the dimension assumption (a) is replaced with the assumption that P = S1, M is a 3-manifold
and the embedding P = S1 ↪→ ∂M extends to a 2-disc.

Putting together Remarks 2.0.6 and 2.0.7, we have the following special cases of Theorem 2.A.

Corollary 2.0.8. We have homological stability for the symmetric diffeomorphism groups of se-
quences of manifolds obtained from M by:

1 See Remark 1.8 of [Pal21] for a discussion of exactly where the dimension hypothesis is used in that paper.
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• iterated surgery along a framed p-sphere that may be isotoped into ∂M , if p ⩽ 1
2 (dim(M)−3),

• iterated Dehn surgery along an unknot, if dim(M) = 3.
Remark 2.0.9. The subgroup condition (b) is always satisfied if we take H to be the full group
Difffib(T ) of fibrewise diffeomorphisms of T . This is because the map Difffib(T )→ Diff(P ), given
by restriction along the zero-section, is a fibre bundle, so its image is open.
Remark 2.0.10. When P is a point, the fibrewise diffeomorphism group is the orthogonal group
O(m), and condition (b) says that H must be a closed subgroup of O(m), not contained in SO(m).
Condition (c) says that any element of H must extend to a diffeomorphism of N . If P is a point
and H ⊆ SO(m), then this is always possible. However, in view of condition (b), we know that
H must not be contained in SO(m), and in this case condition (c) is satisfied if and only if N is
either non-orientable or admits an orientation-reversing diffeomorphism.

Stable homology

Knowing that a sequence of groups or spaces is homologically stable motivates the question of
identifying the stable homology of the sequence, i.e. the colimit of the homology of the sequence.
As far as the author is aware, this question is open, both for symmetric diffeomorphism groups
(corresponding to Theorem 2.A) and for diffeomorphism groups of manifolds with conical singu-
larities (corresponding to Corollary 2.B). However, the stable homology in the latter case may
be related to the work of Perlmutter [Per15; Per13] on cobordism categories of manifolds with
Baas-Sullivan singularities.

For a discussion of the (also mostly open) question of identifying the stable homology of the
moduli spaces of disconnected submanifolds CnP (M ;G), see §⟨vi.⟩ of the introduction of [Pal21].
Remark 2.0.11. The author has been informed of forthcoming work of James Griffin and Allen
Hatcher on the homology (both stable and unstable) of a space closely related to CnS1(D3). Here,
we suppress mention of the subgroup G ⩽ Diff(S1), which we take to be the full group of diffeomor-
phisms, so this is the moduli space of unoriented n-component unlinks in R3. This has a subspace
Rn of all unlinks whose components are all round (meaning a rotation, translation and dilation of
the standard inclusion of S1 into R3), and it is shown in [BH13] that the inclusion Rn ↪→ CnS1(D3)
is a homotopy equivalence. If we write PRn for the ordered version of this space, where the com-
ponents of the unlink are numbered by {1, . . . , n}, there is a projection PRn → (RP2)n given by
remembering the normal vectors of a configuration of round circles, which was shown in [BH13]
to be a quasifibration. The fibre is the space of ordered configurations of pairwise disjoint round
circles in R3 that are each contained in R2×{h} for some h ∈ R. The forthcoming result of Griffin
and Hatcher is a computation of the integral homology of this fibre.

Mapping class groups

In §5 of [Til16] it is shown how to modify the methods of that paper — whose main result is
homological stability for symmetric diffeomorphism groups of manifolds with respect to connected
sum at a point — to prove homological stability instead for the symmetric mapping class groups,
in other words, the (discrete) groups of path-components of the symmetric diffeomorphism groups.

This depends on knowing homological stability for the fundamental groups π1(Cn(M)) of
configuration spaces (instead of homological stability for the configuration spaces themselves) as
an input for the argument. The reason why π1(Cn(M)) is homologically stable is:

(i) If M is a surface (which we are assuming to be connected and with non-empty boundary),
then Cn(M) is an aspherical space, so its homology is the same as the homology of its
fundamental group.

(ii) If dim(M) ⩾ 3, then Cn(M) is not aspherical, but its fundamental group nevertheless has a
configuration space model for its classifying space. Namely, π1(Cn(M)) decomposes as the
wreath product π1(M) ≀Σn, as shown in Lemma 4.1 of [Til16], and a model for the classifying
space of this wreath product is the labelled configuration space Cn(R∞, Bπ1(M)), which is
homologically stable.
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When P ̸= pt, homological stability is in general not known for the motion groups π1(CnP (M)).
The author is not aware of any CnP (M) that is aspherical, except when P is a point and M is a
surface, so argument (i) does not help us. In particular, the moduli spaces CnS1(D3) are not as-
pherical. However, their fundamental groups nevertheless are known to be homologically stable, by
different means: they are isomorphic to certain quotients of mapping class groups of 3-manifolds,
and a special case of the main result of [HW10] implies that they are homologically stable. We
may therefore adapt the methods of the present chapter, as in §5 of [Til16], using as input the
result of [HW10], to deduce homological stability for the symmetric mapping class groups of any
sequence of 3-manifolds obtained from D3 by iterated parametric connected sum (with copies of a
fixed manifold) along the components of an unlink.

It seems likely that argument (ii) above, i.e. the argument of §4 of [Til16], could be extended to
obtain homological stability for the motion groups π1(CnP (M)) whenever the dimensions of P and
M satisfy condition (a), i.e., dim(M) ⩾ 2.dim(P ) + 3, and then to deduce homological stability for
the corresponding symmetric mapping class groups with respect to iterated parametric connected
sum.

Outline. In sections 2.1 and 2.2 we give precise definitions of iterated parametric connected sum
and symmetric diffeomorphism groups. Then in the short sections 2.3 and 2.4 we explain how to
define stabilisation maps and state our first main result, Theorem 2.A. In section 2.5 we give a
careful definition of the notion of moduli spaces of disconnected labelled submanifolds that we will
need, and state Theorem 2.C. In sections 2.6–2.9 we prove our main results, as explained in the
diagram of implications above, which we repeat here for convenience:

[Pal21] Theorem 2.D Theorem 2.C Theorem 2.A Corollary 2.B
§2.8 and

[Pal18b]

§2.9 §2.6 §2.7

where the longest and most delicate step is the deduction in §2.6 of Theorem 2.A from Theorem
2.C.

2.1 Iterated parametric connected sum

Let M be a smooth connected m-dimensional manifold with boundary and write

M̂ = M ∪
∂M×[0,∞]

(∂M × [−1,∞]),

where ∂M× [0,∞] is considered as a subspace of M via a choice of collar neighbourhood, namely a
proper embedding col : ∂M×[0,∞] ↪→M sending ∂M×{0} to ∂M by the obvious map. Also let N
be a smooth compact m-dimensional manifold and P be a smooth closed p-dimensional manifold.
Fix embeddings

i : P ↪−→ ∂M ⊆ M̂,

j : P ↪−→ N̊ = int(N),

assume that the normal bundles νi → P and νj → P are isomorphic, and choose an isomorphism
between them. Choose a metric on the bundle νi so that its structure group is O(m− p), and give
νj the corresponding metric via the chosen isomorphism. Let D(νi) ⊆ νi and D(νj) ⊆ νj denote
the subbundles consisting of vectors of norm at most one. We implicitly identify D(νi) and D(νj)
via the chosen isomorphism, and write

ξ : T = D(νi) = D(νj) −→ P,

which is a fibre bundle with fibres diffeomorphic to the closed disc Dm−p and structure group
O(m− p). Write o : P ↪→ T for the zero-section. We now also choose tubular neighbourhoods for
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νi and νj , namely embeddings

τi : T ↪−→ M̂,

τj : T ↪−→ N̊,

such that i = τi ◦ o and j = τj ◦ o, and assume that τi(T ) ⊆ ∂M × (− 1
2 ,

1
2 ) ⊂ M̂ . We may define

an embedding
Φ: nT = {1, . . . , n} × T ↪−→ M̊

of n disjoint, parallel copies of the tubular neighbourhood T in the interior of M by

Φ(α, x) = τi(x) + α− 1
2 ,

where for r ∈ [0,∞) the notation + r denotes the self-map ∂M × [−1,∞]→ ∂M × [−1,∞] given
by the identity on ∂M and adding r in the second coordinate.

Notation 2.1.1. For a space X, we will henceforth use the notations nX and {1, . . . , n} × X
interchangeably. We will also write n̂X for {0, . . . , n} ×X. Note that n̂X ⊋ nX!

Definition 2.1.2. With this data, we may form the parametric connected sum

M ♯
nP
nN = (M ∖ Φ(nT ′)) ∪

n(T̊∖T ′)
n(N ∖ τj(T ′)),

where T̊ → P is the interior of T , equivalently the subbundle of vectors of length less than 1, and
T ′ → P is the subbundle of T of vectors of length at most one half. The union is formed along
n(T̊ ∖T ′), which is viewed as a subspace of M ∖Φ(nT ′) via Φ, and as a subspace of n(N ∖ τj(T ′))
via id× τj precomposed with the involution of T̊ ∖T ′ = ∂T × (0.5, 1) given by (x, t) 7→ (x, 1.5− t).

Remark 2.1.3. The boundary of the parametric connected sum is ∂
(
M ♯

nP
nN

) ∼= ∂M ⊔ n(∂N).

2.2 Symmetric diffeomorphism groups

Recall that we have a disc bundle ξ : T → P with structure group O(m− p). Let

Difffib(T ) ⩽ Diff(T )

denote the subgroup of diffeomorphisms φ such that ξ ◦φ = φ̄ ◦ ξ for some diffeomorphism φ̄ of P
and φ restricts to a linear isometry on each fibre of ξ. Write

z : Difffib(T ) −→ Diff(P )

for the continuous homomorphism given by φ 7→ φ̄, equivalently, by restricting fibrewise diffeo-
morphisms of T to P via the zero-section of ξ. Its kernel is the group of bundle automorphisms of
ξ. Choose a subgroup

H ⩽ Difffib(T ),
and write G = z(H) ⩽ Diff(P ) and K = H ∩ ker(z) ⩽ ker(z).

Definition 2.2.1. The symmetric diffeomorphism group ΣHDiff(M ♯
nP
nN) ⩽ Diff(M ♯

nP
nN) con-

sists of those diffeomorphisms that are the identity on a neighbourhood of ∂M , send the subman-
ifold

n(T̊ ∖ T ′) ⊂ M ♯
nP
nN

to itself setwise and act on this submanifold through the wreath product H ≀ Σn.
The subgroup ΣHDiff(M,nT ) of Diff(M) consists of those diffeomorphisms that are the iden-

tity on a neighbourhood of the boundary, send the submanifold

Φ(nT ) ⊂ M

to itself setwise and act on this submanifold through the wreath product H ≀ Σn.
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Remark 2.2.2. Each diffeomorphism of ΣHDiff(M,nT ) is determined by its restriction to the
submanifold MΦ = M ∖ Φ(nT̊ ), whose boundary splits as ∂MΦ = ∂M ⊔ Φ(n∂T ), so it may
also be viewed as the subgroup of Diff(MΦ) of diffeomorphisms that act by the identity on a
neighbourhood of ∂M ⊂ ∂MΦ and by H ≀ Σn on Φ(n∂T ) ⊂ ∂MΦ. We will call this the boundary-
permuting diffeomorphism group of MΦ. See §2.7 for another interpretation in terms of manifolds
with conical singularities.

Remark 2.2.3. There is a continuous homomorphism

ΣHDiff(M ♯
nP
nN) −→ ΣHDiff(M,nT ) (2.4)

given by restricting a diffeomorphism to M∖Φ(nT ′) and then extending to M by extending linearly
across each fibre of ξ : T → P . Similarly, there is a continuous homomorphism

ΣHDiff(M ♯
nP
nN) −→ DiffH(N) ≀ Σn,

where DiffH(N) ⩽ Diff(N) denotes the subgroup of diffeomorphisms that send the submanifold
τj(T ) ⊂ N to itself setwise and act on it through the subgroupH ⩽ Diff(T ). These homomorphisms
fit into the following pullback square of topological groups:

ΣHDiff(M ♯
nP
nN) DiffH(N) ≀ Σn

ΣHDiff(M,nT ) H ≀ Σn

(2.5)

Via this description, we could generalise the notion of symmetric diffeomorphism group, exactly
as on page 133 of [Til16] (the diagram (2.5) corresponds exactly to the diagram at the top of that
page), by replacing DiffH(N) with an arbitrary topological group L equipped with a surjective2

continuous homomorphism L→ H, and then taking the pullback of the diagram

ΣHDiff(M,nT ) −→ H ≀ Σn ←− L ≀ Σn.

The results of this chapter hold also in this higher level of generality, but for concreteness we
will stick to the symmetric diffeomorphism groups as defined above, with L = DiffH(N) for some
manifold N equipped with an embedding T ↪→ N̊ .

Remark 2.2.4. Up to a canonical homotopy equivalence, the boundary-permuting diffeomorphism
group ΣHDiff(M,nT ) is a special case of the symmetric diffeomorphism group ΣHDiff(M ♯

nP
nN).

To see this, let us fix the initial data of an embedding i : P ↪→ M̂ whose image lies in ∂M ⊂
M̂ , a metric on the normal bundle νi → P of this embedding and a tubular neighbourhood
T = D(νi) ↪→ M̂ . Together with a choice of subgroup H ⩽ Difffib(T ), this determines the group
ΣHDiff(M,nT ).

We are now free to choose any compact m-dimensional manifold N , an embedding j : P ↪→ N̊
and isomorphism νi

∼= νj . In particular, we may choose N = D2(νi), the total space of the
subbundle of νi consisting of all vectors of norm at most two, and let j : P ↪→ N̊ = D̊2(νi) be
the zero-section. The normal bundles νi and νj are then canonically isomorphic. We also have to
choose a tubular neighbourhood

T = D(νj) ↪−→ D̊2(νj) = N̊,

which we simply take to be the inclusion. It is then easy to see that, in this case, the parametric
connected sum M ♯

nP
nD2(νi) deformation retracts onto its submanifold MΦ (cf. Remark 2.2.2).

2 We will shortly impose the assumption that DiffH(N) → H is surjective, in other words, that each element of
H ⩽ Diff(T ) may be extended over N . We do not, however, need this extension to preserve composition, i.e. we do
not require this surjection to split.
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Moreover, in this case, the continuous homomorphism (2.4) admits a continuous, homomorphic
section given by extending fibrewise automorphisms of D(νi) → P linearly to D2(νi) → P , and
this is a homotopy inverse (in the 2-category of topological groups) for (2.4).3

2.3 Stabilisation maps

We may extend Φ to an embedding

Φ̂ : n̂T = {0, . . . , n} × T ↪−→ M̂

defined by the same formula Φ̂(α, x) = τi(x) + α − 1
2 as before. In other words, we adjoin the

embedding τi − 1
2 to Φ. Using this Φ̂ and n + 1 copies of the tubular neighbourhood τj : T ↪→ N

we define
M ♯

n̂P
n̂N = (M̂ ∖ Φ̂(n̂T ′)) ∪

n̂(T̊∖T ′)
n̂(N ∖ τj(T ′))

as above, as well as groups ΣHDiff(M ♯
n̂P
n̂N) and ΣHDiff(M, n̂T ) and a continuous homomorphism

ΣHDiff(M ♯
n̂P
n̂N) −→ ΣHDiff(M, n̂T ).

Extending diffeomorphisms by the identity along the inclusion M ♯
nP
nN ↪−→ M ♯

n̂P
n̂N , we obtain

the horizontal maps in the commutative square

ΣHDiff(M ♯
nP
nN) ΣHDiff(M ♯

n̂P
n̂N)

ΣHDiff(M,nT ) ΣHDiff(M̂, n̂T )

(2.6)

of topological groups. These are the stabilisation maps.

2.4 Homological stability for symmetric diffeomorphism
groups

We now make three assumptions (cf. the discussion of the hypotheses in the introduction).
(a) The dimensions p and m satisfy p ⩽ 1

2 (m− 3).
(b) The subgroup G = z(H) ⩽ Diff(P ) is open and K ⩽ ker(z) is closed. Moreover, we assume

that the coset space ker(z)/K is path-connected.
(c) Every diffeomorphism in H extends across N . More precisely, given any h ∈ H ⩽ Diff(T ),

there exists a diffeomorphism φ of N such that φ(τj(T )) = τj(T ) and φ|τj(T ) = τj ◦h◦τ−1
j . In

the notation of Remark 2.2.3, this says that the continuous homomorphism DiffH(N) → H
is surjective (but not necessarily split).

The first main result of this chapter is the following theorem.

Theorem 2.4.1. (Theorem 2.A) Under these assumptions, the two horizontal morphisms in (2.6)
induce split-injections on homology in all degrees and isomorphisms in degrees ∗ ⩽ n

2 − 1.

Remark 2.4.2. If we take coefficients in a field or Q/Z, the range of surjectivity improves to
∗ ⩽ n

2 .

3 Here it is important that, in Definition 2.2.1, we require symmetric diffeomorphisms to act as the identity near
∂M , but there is no condition on how they act near the rest of the boundary of M ♯

nP

nN , i.e. the n copies of ∂N .
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2.5 Moduli spaces of labelled disconnected submanifolds

We will deduce Theorem 2.A from a generalisation of the main theorem of [Pal21], so we will first
state this generalisation precisely (see Theorem 2.5.8 on page 42 below).

Notation 2.5.1. By construction of M̂ , there is a smooth embedding

côl : ∂M × [−1,∞] ↪−→ M̂.

For any r ∈ [−1,∞) we will write M(r) = M̂ ∖ côl([−1, r]) and M [r] = M̂ ∖ côl([−1, r)).

Definition 2.5.2. Write Diff [−1,1](R) for the topological group of diffeomorphisms R→ R whose
support is contained in [−1, 1] ⊂ R. There is an evaluation map

ev0 : Diff [−1,1](R) −→ (−1, 1)

taking φ to φ(0), which is a fibre bundle. We now make some choices that will be used in several
constructions in this section and in subsequent sections. First, we choose an odd4 diffeomorphism
θ : R → (−1, 1). Second, we choose a lift θ̄ : R → Diff [−1,1](R) of θ (i.e. ev0 ◦ θ̄ = θ) that is also a
homomorphism with respect to addition on R and composition of diffeomorphisms.

Remark 2.5.3. Given θ, one may try to define θ̄(r) : R→ R on t ∈ (−1, 1) by

θ̄(r)(t) = θ(θ−1(t) + r)

and extend by the identity outside of (−1, 1). This will work as long as the function so defined
is smooth at t = 1, which depends on how well θ has been chosen. For example, if we only care
about C1 diffeomorphisms, the function θ(t) = 2

π arctan(t) would work for this construction of θ̄.

Definition 2.5.4. Recall that we chose an embedding i : P ↪→ ∂M . For any r ∈ R we denote the
shifted embedding

côl ◦ (i(−), θ(r)) : P ↪−→ M̂

by ir and we define a diffeomorphism

shr : M̂ −→ M̂

by shr(côl(x, t)) = côl(x, θ̄(r)(t)) and shr(x) = x if x ∈ M̂ is not in the image of côl.
Now write E = Emb(P, M̂). There is a continuous group homomorphism γ : R→ Homeo(E)

given by γ(r)(φ) = shr ◦ φ. Moreover, since G ⩽ Diff(P ) acts on E by precomposition, and γ(r)
acts by postcomposition, we in fact have a continuous group homomorphism

γ : R −→ HomeoG(E)

into the topological group of G-equivariant self-homeomorphisms of E. Note that γ(r)(is) = ir+s

for all r, s ∈ R.

Input 2.5.5. Now we fix the additional input data needed to define moduli spaces of disconnected
submanifolds with labels (see Definition 2.5.6). Choose a G-equivariant Serre fibration π : Z → E
and a continuous homomorphism

γ̄ : R −→ HomeoG(Z)

such that π ◦ γ̄(r) = γ(r) ◦ π for all r ∈ R. Also choose a basepoint ı̄0 ∈ Z such that π(̄ı0) = i0.
For any r ∈ R, define ı̄r = γ̄(r)(̄ı0) and note that π(̄ır) = ir.

(The purpose of the data (γ̄, ı̄0) is to allow us to lift the operation of “shifting” an embedding
via shr ◦ − from the space of embeddings to the total space Z of the fibration.)

4 In the sense of odd functions, i.e. θ(−t) = −θ(t).
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Definition 2.5.6 (Moduli spaces of labelled disconnected submanifolds). Fix a subgroup G ⩽
Diff(P ) as above. Then πn : Zn → En is a (G ≀ Σn)-equivariant fibration. Let πn : Zn →
Emb(nP,M(0)) be its restriction to the (G ≀ Σn)-invariant subspace Emb(nP,M(0)) ⊂ En. We
then define

CnP (M,Z;G) =
(
Zn/(G ≀ Σn)

)
{[̄ı1],...,[̄ın]},

the path-component of the quotient Zn/(G≀Σn) ⊆ Spn(Z/G) containing the element {[̄ı1], . . . , [̄ın]}.
Similarly, we may restrict πn+1 to the subspace Emb(n̂P,M(−1)) ⊂ En+1 to obtain a (G ≀Σn+1)-
equivariant fibration πn̂ : Zn̂ → Emb(n̂P,M(−1)), and define

Cn̂P (M,Z;G) =
(
Zn̂/(G ≀ Σn+1)

)
{[̄ı0],...,[̄ın]}.

Viewing these as subspaces of the symmetric powers Spn(Z/G) and Spn+1(Z/G) respectively, we
may define a map

sn : CnP (M,Z;G) −→ Cn̂P (M,Z;G)

by sn({[φ1], . . . , [φn]}) = {[̄ı0], [φ1], . . . , [φn]}.
These constructions are functorial in P , M , G and Z in an appropriate sense. We will

describe how they are functorial in Z when the other data P , M and G are fixed. For i = 1, 2 let
πi : Zi → E be based, G-equivariant Serre fibrations and let γ̄i : R → HomeoG(Zi) be continuous
homomorphisms such that πi ◦ γ̄i(r) = γ(r) ◦ πi for all r. Given any based, G-equivariant map
F : Z1 → Z2 such that π2 ◦ F = π1 and F ◦ γ̄1(r) = γ̄2(r) ◦ F for all r, there are induced maps
making the square

CnP (M,Z1;G) Cn̂P (M,Z1;G)

CnP (M,Z2;G) Cn̂P (M,Z2;G)

sn

sn

commute. These form a category with terminal object given by (π, γ̄) = (id: E → E, γ). When the
fibration π : Z → E (and the map γ̄) are taken to be this terminal object, we drop the Z from the
notation and write simply sn : CnP (M ;G) → Cn̂P (M ;G). For any other choice of (π : Z → E, γ̄)
there is a commutative square

CnP (M,Z;G) Cn̂P (M,Z;G)

CnP (M ;G) Cn̂P (M ;G).

sn

sn

(2.7)

Theorem 2.5.7 ([Pal21, Theorem A]). The map sn : CnP (M ;G) → Cn̂P (M ;G) induces split-
injections on homology in all degrees. It induces isomorphisms on homology up to degree n

2 if
p ⩽ 1

2 (m− 3) and G is an open subgroup of Diff(P ).

Recall that p and m are the dimensions of P and M respectively. We will lift this to the top
horizontal map in (2.7), under a condition on the fibration π : Z → E.

Theorem 2.5.8. (Theorem 2.C) The map sn : CnP (M,Z;G) → Cn̂P (M,Z;G) induces split-
injections on homology in all degrees. If p ⩽ 1

2 (m − 3), the fibres of π are path-connected and
G is an open subgroup of Diff(P ), then it induces isomorphisms on integral homology up to degree
n
2 − 1 and on homology with coefficients in a field up to degree n

2 .

Remark 2.5.9. If a map induces isomorphisms on homology (up to a certain degree) with co-
efficients in any field, then it also induces isomorphisms up to the same degree with coefficients
in any abelian group that may be constructed from fields by iterated extensions and colimits. In
particular, Q/Z is such a group, so the conclusion of the above theorem also implies that sn induces
isomorphisms on homology with Q/Z coefficients up to degree n

2 .
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2.6 Proof of stability for symmetric diffeomorphism groups

We will deduce Theorem 2.A from Theorem 2.C by a spectral sequence comparison argument.
First we need some more constructions to set up the appropriate map of spectral sequences.

2.6.1 Some fibre bundles

Notation 2.6.1. For any real number r we will write R∞,r = R∞ × [r,∞). Most of the time r
will be 0, −1 or −2.

Fix an embedding b : ∂M ↪→ R∞. Write Embb(M,R∞,0) for the space of embeddings e : M ↪→
R∞,0 such that

(i) e ◦ côl|∂M×[0,ϵ) = b× incl for some ϵ > 0.
We then define

Xn ⊆ Embb(M,R∞,0)× Emb(M ♯
nP
nN,R∞,0)

to be the subspace of pairs of embeddings (e, f) such that
(ii) e|M∖Φ(nT ′) = f |M∖Φ(nT ′).

Note that there is a continuous action of the symmetric diffeomorphism group ΣHDiff(M ♯
nP
nN) on

Xn by precomposition in each factor (and the homomorphism (2.4) for the first factor). Similarly,
we write Embb(M̂,R∞,−1) for the space of embeddings e : M̂ ↪→ R∞,−1 such that

(î) e ◦ côl|∂M×[−1,−1+ϵ) = b× incl for some ϵ > 0
and we define

Xn̂ ⊆ Embb(M̂,R∞,−1)× Emb(M ♯
n̂P
n̂N,R∞,−1)

to be the subspace of pairs of embeddings (e, f) such that
(îî) e|M̂∖Φ̂(n̂T ′) = f |M̂∖Φ̂(n̂T ′).

There is a continuous action of the symmetric diffeomorphism group ΣHDiff(M ♯
n̂P
n̂N) on Xn̂,

given by precomposition in each factor and the right-hand vertical map of (2.6) for the first factor.

Lemma 2.6.2. The spaces Xn and Xn̂ are contractible and the quotient maps

Xn −→ Xn/ΣHDiff(M ♯
nP
nN) Xn̂ −→ Xn̂/ΣHDiff(M ♯

n̂P
n̂N)

are principal bundles with structure groups ΣHDiff(M ♯
nP
nN) and ΣHDiff(M ♯

n̂P
n̂N) respectively.

Proof. The contractibility of the spaces Xn and Xn̂ may be seen by the usual argument for the
contractibility of spaces of embeddings into R∞: any family of such embeddings parametrised by
Si is contained in some finite-dimensional subspace of R∞ (by compactness of Si), and this may
be used to extend it to Di+1.

A mild extension of Proposition 4.15 of [Pal21] shows that the action of Diff∂(R∞,0) on the
quotient Xn/ΣHDiff(M ♯

nP
nN) is locally retractile. Then Proposition 4.8 of [Pal21] implies that

the projection of Xn onto this quotient is a principal bundle. An identical argument implies that
the other projection is also a principal bundle.

This gives us explicit models for the classifying spaces of ΣHDiff(M ♯
nP
nN) and ΣHDiff(M ♯

n̂P
n̂N).

Write Diff∂(M) for the group of diffeomorphisms of M that act by the identity on a neigh-
bourhood of its boundary. There is a forgetful map

Ψ: Xn/ΣHDiff(M ♯
nP
nN) −→ Embb(M,R∞,0)/Diff∂(M), (2.8)
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and an analogous map Ψ̂, replacing n with n̂ and R∞,0 with R∞,−1.

Lemma 2.6.3. The maps Ψ and Ψ̂ are fibre bundles.

Proof. As above, by a mild extension of Proposition 4.15 of [Pal21], the action of Diff∂(R∞,0) on
the quotient Embb(M,R∞,0)/Diff∂(M) is locally retractile, and then Theorem A of [Pal60] (see
also Proposition 4.7 of [Pal21]) implies that Ψ is a fibre bundle (and an identical argument implies
the same for Ψ̂).

2.6.2 Moduli spaces of submanifolds labelled by parametric connected
sum data

Recall from §2.2 that K = H ∩ ker(z) ⩽ H ⩽ Difffib(T ), and that G = z(H) ⩽ Diff(P ), where

z : Difffib(T ) −→ Diff(P )

is the restriction along the zero-section o : P ↪→ T of ξ : T → P .

Notation 2.6.4. Write N ′ = N ∖ τj(T ′) and U = T̊ ∖ T ′. There is an involution

σ : U −→ U

given by (x, t) 7→ (x, 1.5 − t), where we identify U with ∂T × (0.5, 1) (cf. Definition 2.1.2). Note
also that τj restricts to an embedding U ↪→ N ′.

Definition 2.6.5. The subgroup DiffK(N ′) of Diff(N ′) consists of those diffeomorphisms that
send the subset τj(U) ⊂ N ′ to itself and act on it via τjKτ

−1
j .

Construction 2.6.6. Fix an embedding e0 ∈ Embb(M,R∞,0). For convenience, we assume that
(a) e0(col(x, t)) = (b(x), t) for (t, x) ∈ ∂M × [0, 1],
(b) e0(M ∖ col(∂M × [0, 1])) ⊆ R∞ × (1,∞).

The fact that we are making this assumption will not cause problems later, since Embb(M,R∞,0)
is path-connected (in fact contractible). Also, it will be convenient to extend M̂ slightly further to

ˆ̂M = M ∪
∂M×[0,∞]

(∂M × [−2,∞]),

and write cˆ̂ol : ∂M × [−2,∞] ↪→ ˆ̂M for the inclusion of the right-hand side of this pushout. We
may extend e0 to an embedding

ˆ̂e0 : ˆ̂M ↪−→ R∞,−2,

defining ˆ̂e0(cˆ̂ol(x, t)) = (b(x), t) for (x, t) ∈ ∂M × [−2, 0]. There is a diagram of topological spaces

Emb(N ′,R∞,−2)/DiffK(N ′)

Embc(T, ˆ̂M)/K Emb(U,R∞,−2)/K,

(2.9)

where Embc(T, ˆ̂M) ⊂ Emb(T, ˆ̂M) is the subspace of embeddings T ↪→ ˆ̂M such that the image of
the zero-section o(P ) ⊂ T is contained in M̂ ⊂ ˆ̂M . The vertical map is given by precomposition
by τj ◦σ and the horizontal map is given by postcomposition by ˆ̂e0 (and restriction of the domain).

Lemma 2.6.7. The diagram (2.9) is a diagram of right G-spaces with respect to the following well-
defined actions. For the bottom two spaces, the action of g ∈ G is given by choosing any element
h ∈ H such that z(h) = g and acting by precomposition by h. For the top-right space, the action
is given by first choosing any element h ∈ H such that z(h) = g and then any diffeomorphism of
N ′ whose restriction to U along the embedding τj is h.
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Proof. The well-defined-ness of the described G-actions on the bottom two spaces follows from the
fact that we have a short exact sequence

1→ K ↪−→ H
z|H−−−→ G→ 1,

and the horizontal map of (2.9) is clearly equivariant with respect to these actions. By one of
our assumptions just before the statement of Theorem 2.4.1 on page 40, the map DiffH(N ′) =
DiffH(N) → H given by restriction along the embedding τj is surjective. It is therefore also
surjective after composing with z|H : H → G, and we have another short exact sequence

1→ DiffK(N ′) ↪−→ DiffH(N ′) −→ G→ 1,

which shows that the described G-action on the top-right space of (2.9) is well-defined. To see
that the vertical map of (2.9) is equivariant, we note that the action of H ⩽ Difffib(T ) on U ⊂ T
commutes with the involution σ : U → U . To see this, note that, under the identification U ∼=
∂T × (0.5, 1), the H-action is trivial on the second component and the involution σ is trivial on
the first component.

Definition 2.6.8. Let Z be the pullback in the category of topological spaces of the diagram (2.9).
Since this is a diagram of right G-spaces, Z is also a right G-space if we give it the diagonal action.
In other words, we take Z to be the pullback in the category of right G-spaces.

Lemma 2.6.9. The composite map

π : Z −→ Embc(T, ˆ̂M)/K −→ Emb(P, M̂) = E

is a Serre fibration with path-connected fibres.

Proof. By a mild extension of Theorem B of [Pal60] (see also [Cer61]) allowing manifolds with
boundary, the action of Diff∂(M̂) on Emb(P, M̂) is locally retractile. Similarly, a mild extension of
Proposition 4.15 of [Pal21] implies that the action of Diff∂(R∞,−2) on Emb(U,R∞,−2)/K is locally
retractile. Theorem A of [Pal60] then implies that the right-hand map Embc(T, ˆ̂M)/K → E above
and the vertical map of (2.9) are fibre bundles. The left-hand map Z → Embc(T, ˆ̂M)/K above
is a pullback of the vertical map of (2.9), so it is also a fibre bundle. A composition of two fibre
bundles is not necessarily a fibre bundle, but it is at least a Serre fibration.

It is not hard to show that the fibres of the vertical map of (2.9) are path-connected, using
the fact that we are considering embeddings into infinite-dimensional Euclidean space. The fibres
of Z → Embc(T, ˆ̂M)/K are therefore also path-connected.

Fix an embedding e ∈ Emb(P, M̂) and denote the fibre of the map Embc(T, ˆ̂M)→ Emb(P, M̂)
over e by Emb(T, ˆ̂M)e. Note that we do not yet take the quotient by K. This is almost the space
Tub(e) of tubular neighbourhoods of e. More accurately, there is a fibration Emb(T, ˆ̂M)e → Aut(T )
to the topological group of bundle automorphisms of T (as a disc bundle with structure group
O(m− p)), and the fibre over the identity is Tub(e). This may be summarised as follows:

Tub(e) Emb(T, ˆ̂M)e Embc(T, ˆ̂M)

Aut(T ) Emb(P, M̂) ∋ e
(2.10)

Now, the space Tub(e) of tubular neighbourhoods of e is contractible [God07, Proposition 31], so
the fibres of Embc(T, ˆ̂M)→ Emb(P, M̂) are homotopy equivalent to Aut(T ). Note that this group
is exactly the kernel of the map

z : Difffib(T ) −→ Diff(P )
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defined at the beginning of §2.2. To study the fibres of Embc(T, ˆ̂M)/K → Emb(P, M̂), we quotient
three of the spaces in (2.10) by the action of K:

Tub(e) Emb(T, ˆ̂M)e/K Embc(T, ˆ̂M)/K

Aut(T )/K Emb(P, M̂) ∋ e
(2.11)

As Tub(e) is contractible, the fibres of Embc(T, ˆ̂M)/K → Emb(P, M̂) are homotopy equivalent to

Aut(T )/K = ker(z)/K.

But we assumed just before the statement of Theorem 2.4.1 on page 40 that this coset space is path-
connected. Thus both of the fibrations Z → Embc(T, ˆ̂M)/K → Emb(P, M̂) have path-connected
fibres, so the composite fibration π also has path-connected fibres.

Note that, by construction, the map π is G-equivariant. Recall from §2.5 (see Input 2.5.5) that
we also need to choose a basepoint ı̄0 ∈ Z and a continuous homomorphism γ̄ : R → HomeoG(Z)
in order to define the moduli space of labelled submanifolds CnP (M,Z;G).

Choose an embedding υ : N ′ ↪→ R∞ × (−0.5, 0.5) ⊂ R∞,−2 so that the following diagram
commutes:

U N ′

U ˆ̂M

R∞,−2σ

τj |U

τi|U

υ

ˆ̂e0

Remark 2.6.10. The choice of υ can be made independently of e0, since we have prescribed how
e0 acts on col(∂M × [0, 1]), and therefore how ˆ̂e0 acts on cˆ̂ol(∂M × [−2, 1]), and the image τi(U)
is contained in cˆ̂ol(∂M × (−0.5, 0.5)).

Then ([τi], [υ]) ∈ Z and π([τi], [υ]) = i = i0. So we may set ı̄0 = ([τi], [υ]).
We may extend the “shift” map of Definition 2.5.4 by the identity to a diffeomorphism

shr : ˆ̂M → ˆ̂M for each r ∈ R. We write id × θ̄(r) for the self-diffeomorphism of R∞,−2 =
R∞× [−2,∞) that is the identity on R∞ and acts by (the restriction of) θ̄(r) : R→ R on [−2,∞).
With this notation, we define a map γ̄ : R→ Map(Z,Z) by

γ̄(r) : ([α], [β]) 7−→ ([shr ◦ α], [(id× θ̄(r)) ◦ β]).

One may easily check that γ̄ is a well-defined, continuous map and that its image lies in HomeoG(Z) ⩽
Map(Z,Z). It is also a group homomorphism (since θ̄ is) and each γ̄(r) covers the self-homeomorphism
γ(r) = shr ◦− of E. This completes the construction of the input data needed (see Input 2.5.5) in
order to apply Definition 2.5.6.

Definition 2.6.11. We may now apply Definition 2.5.6 to the data (π : Z → E, γ̄, ı̄0) constructed
above to obtain spaces CnP (M,Z;G) and Cn̂P (M,Z;G), as well as a stabilisation map

sn : CnP (M,Z;G) −→ Cn̂P (M,Z;G).

These may be thought of as moduli spaces of disconnected submanifolds labelled by parametric-
connected-sum-data.

In the rest of this subsection, we will show that the moduli space CnP (M,Z;G), for this
particular fibration π : Z → E, is homotopy equivalent to the fibres of the bundle (2.8): see
Proposition 2.6.14. First we establish a lemma that we will need in the proof of this proposition.
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Lemma 2.6.12. The space Emb(nT,M)/(H ≀ Σn) has a left-action of the group Diff∂(M) of
diffeomorphisms of M that act by the identity on a neighbourhood of its boundary. The embedding
Φ from §2.1 gives us a basepoint [Φ] for Emb(nT,M)/(H ≀ Σn). The orbit of this basepoint under
the action of Diff∂(M) is path-connected.

Remark 2.6.13. The map [−◦Φ]: Diff∂(M)→ Emb(nT,M)/(H ≀Σn) is a fibre bundle, by Propo-
sitions 4.15 and 4.7 of [Pal21], so its image, the orbit of [Φ], must be a union of path-components.
By Lemma 2.6.12 it is exactly the path-component of Emb(nT,M)/(H ≀ Σn) containing [Φ].

Proof of Lemma 2.6.12. Let φ ∈ Diff∂(M); we will find a path of embeddings nT ↪→M from φ◦Φ
to Φ. The image of Φ is contained in a collar neighbourhood of ∂M , so we may choose a path
t 7→ φt in Diff∂(M) so that φ0 = φ and φ1 restricts to the identity on this collar neighbourhood,
in particular on the image of Φ. Then t 7→ φt ◦ Φ is the required path of embeddings.

Proposition 2.6.14. The fibre of (2.8) over [e0] ∈ Embb(M,R∞,0)/Diff∂(M) is homotopy-equivalent
to CnP (M,Z;G). More precisely, there is a canonical inclusion Ψ−1([e0]) ↪→ CnP (M,Z;G), which
is a homotopy equivalence. The corresponding statement for Ψ̂ also holds : Write ê0 = ˆ̂e0|M̂ . There
is a canonical inclusion Ψ̂−1([ê0]) ↪→ Cn̂P (M,Z;G), which is a homotopy equivalence.

Proof. We will do this in three steps: (1) give an explicit description of Ψ−1([e0]) and note that
it is path-connected, (2) give an explicit description of CnP (M,Z;G) and show that it contains a
homeomorphic copy of Ψ−1([e0]), and (3) show that the inclusion is a homotopy equivalence.

Step 0. Before this, however, we recall a basic fact that we will use in the next step.
Let X be a left G-space, and assume that the G-action on X is locally retractile (see for ex-
ample Definition 4.5 of [Pal21]). Then for any x ∈ X there is a G-equivariant homeomorphism
G/stabG(x) ∼= orbit(x). To see this, first note that the action map − ·x : G→ X induces a contin-
uous bijection G/stabG(x) → orbit(x) ⊆ X, which is G-equivariant. Then Theorem A of [Pal60]
implies that this map is a fibre bundle, in particular an open map, and so it is a homeomorphism.

Step 1. Rewriting the definition of Xn a little, we may describe it as the subspace of

Pullback
(

Embb(M,R∞,0) −→ Emb(nU,R∞,0)←− Emb(nN ′,R∞,0)
)

of pairs of embeddings (e, f) such that f(nN ′) is disjoint from the closure5 of e(M ∖Φ(nT̊ )). The
first map in the pullback diagram is given by restriction along Φ and the second map is given by
restriction along τj followed by the involution σ of U . The quotient Xn/ΣHDiff(M ♯

nP
nN) may

therefore be described as the subspace of

Pullback
(

Embb(M,R∞,0)
ΣHDiff(M,nT ) −→

Emb(nU,R∞,0)
H ≀ Σn

←− Emb(nN ′,R∞,0)
DiffH(N) ≀ Σn

)
of pairs ([e], [f ]) satisfying the same disjointness condition (cf. the pullback square (2.5) in §2.2).
The fibre Ψ−1([e0]) is the subspace where the image of e agrees with the image of e0, so it may be
described as the subspace of

Pullback
(

Diff∂(M)
ΣHDiff(M,nT ) −→

Emb(nU,R∞,0)
H ≀ Σn

←− Emb(nN ′,R∞,0)
DiffH(N) ≀ Σn

)
of pairs ([η], [f ]) such that f(nN ′) is disjoint from the closure of e0(M ∖ η(Φ(nT̊ ))). A mild
extension of Proposition 4.15 of [Pal21] shows that Emb(nT,M)/(H ≀ Σn) is Diff∂(M)-locally
retractile. The stabiliser of [Φ] ∈ Emb(nT,M)/(H ≀ Σn) is the subgroup ΣHDiff(M,nT ) ⩽
Diff∂(M), so via the “topological orbit-stabiliser theorem” (see Step 0 above) we deduce that
Diff∂(M)/ΣHDiff(M,nT ) is homeomorphic to the orbit of [Φ] in Emb(nT,M)/(H ≀Σn). By Lemma
2.6.12 and Remark 2.6.13, the orbit of [Φ] in Emb(nT,M)/(H ≀Σn) is the path-component of [Φ] in

5 We need to take the closure here since M was not assumed to be compact.
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Emb(nT,M)/(H ≀ Σn). Thus Diff∂(M)/ΣHDiff(M,nT ) is homeomorphic to the path-component
of [Φ] in Emb(nT,M)/(H ≀ Σn). We may therefore describe Ψ−1([e0]) as the subspace of

Pullback
(

Emb(nT,M)
H ≀ Σn

−→ Emb(nU,R∞,0)
H ≀ Σn

←− Emb(nN ′,R∞,0)
DiffH(N) ≀ Σn

)
of pairs ([Φ′], [f ]) such that f(nN ′) is disjoint from the closure of e0(M ∖Φ′(nT̊ )) and there exists
a path [Φ′]⇝ [Φ] in Emb(nT,M)/(H ≀ Σn).

It is now not hard to show that the fibre Ψ−1([e0]) is path-connected. Choose a basepoint
([Φ′

0], [f0]) for it and consider any other point ([Φ′], [f ]). There is a path [Φ′] ⇝ [Φ′
0] in the

left-hand space of the pullback diagram. The image of this path in the middle space may be
lifted to a path [f ] ⇝ [f1] in the right-hand space, since the right-hand map of the pullback
diagram is a fibre bundle, and therefore a Serre fibration. Since we are considering embeddings
into R∞,0 we may easily ensure that this path of embeddings satisfies the disjointness condition,
at each point in time during the path, with respect to the path [Φ′] ⇝ [Φ′

0], so we have a path
([Φ′], [f ])⇝ ([Φ′

0], [f1]) in Ψ−1([e0]). Choose a path f1 ⇝ f0 of embeddings nN ′ ↪→ R∞,0 disjoint
from the closure of e0(M ∖ Φ′

0(nT̊ )) and constant when restricted to nU . This gives us a path
([Φ′

0], [f1])⇝ ([Φ′
0], [f0]) in Ψ−1([e0]). Thus we have shown that Ψ−1([e0]) is path-connected.

Step 2. Recall from Definition 2.5.6 that CnP (M,Z;G) is a certain path-component of
Zn/(G ≀ Σn). Unravelling this definition for the fibration π : Z → E of Lemma 2.6.9, we may
describe Zn as the subspace of

Pullback
(

Emb(T, ˆ̂M)n

Kn
−→ Emb(U,R∞,−2)n

Kn
←− Emb(N ′,R∞,−2)n

DiffK(N ′)n

)
of tuples of embeddings (([φ1], . . . , [φn]), ([f1], . . . , [fn])) such that each φα(P ) is contained in M̊
and the images φ1(P ), . . . , φn(P ) are pairwise disjoint. The quotient Zn/(G ≀ Σn) is therefore the
subspace of

Pullback
(

Emb(T, ˆ̂M)n

H ≀ Σn
−→ Emb(U,R∞,−2)n

H ≀ Σn
←− Emb(N ′,R∞,−2)n

DiffH(N) ≀ Σn

)
of collections of embeddings ({[φ1], . . . , [φn]}, {[f1], . . . , [fn]}) satisfying the same two conditions.
Comparing this with the final description of Ψ−1([e0]) in the previous step, we see that there is a
canonical inclusion Ψ−1([e0]) ↪→ Zn/(G ≀Σn). Moreover, Ψ−1([e0]) is path-connected and contains
the basepoint configuration {[̄ı1], . . . , [̄ın]}, so there is in fact a canonical inclusion

Ψ−1([e0]) ↪−→ CnP (M,Z;G).

Step 3. A point in CnP (M,Z;G) lies in the subspace Ψ−1([e0]) if and only if
(a) φ1(T ), . . . , φn(T ) are pairwise disjoint and contained in M ,
(b) f1(N ′), . . . , fn(N ′) are pairwise disjoint and contained in R∞,0,
(c)

⋃
α fα(N ′) is disjoint from the closure of e0(M ∖

⋃
β φβ(T̊ )),

(d) there is a path in Emb(nT,M)/(H ≀ Σn) from {[φ1], . . . , [φn]} to [Φ].
In fact, property (d) is automatic once we have property (a). Since CnP (M,Z;G) is path-connected,
there is a path in Emb(T, ˆ̂M)n/(H ≀ Σn) from {[φ1], . . . , [φn]} to [Φ], and the n embedded copies
of P ⊂ T in ˆ̂M are pairwise disjoint and contained in M̊ at each point in time during this path.
We may therefore shrink the tubular neighbourhoods T ⊃ P by an appropriate amount at each
point during the path, to obtain a new path in Emb(nT,M)/(H ≀Σn) from {[φ1], . . . , [φn]} to [Φ].

Thus, we would like to define a deformation retraction that begins with a point in CnP (M,Z;G)
and ends with a new point in CnP (M,Z;G) satisfying the disjointness properties (a), (b) and (c). In
fact, we will not do this for CnP (M,Z;G), but instead for its ordered analogue FnP (M,Z;G), the
covering space in which the n embedded copies of T in ˆ̂M are equipped with an ordering. If we write
Ψ̃−1([e0]) ⊂ FnP (M,Z;G) for the restriction of this covering space to Ψ−1([e0]) ⊂ CnP (M,Z;G),
we have a map of fibre sequences:
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FnP (M,Z;G) CnP (M,Z;G) BΣn

Ψ̃−1([e0]) Ψ−1([e0]) BΣn

=

If we can define a deformation retraction for the inclusion Ψ̃−1([e0]) ⊂ FnP (M,Z;G), then the map
of long exact sequences of homotopy groups will imply that the inclusion Ψ−1([e0]) ⊂ CnP (M,Z;G)
is also a (weak) homotopy equivalence.

We now sketch a deformation retraction that begins with a point in FnP (M,Z;G) and ends
with a new point in FnP (M,Z;G) satisfying properties (a), (b) and (c). Since the “cores” φα(P ) are
pairwise disjoint and contained in M̊ , we may shrink the tubular neighbourhoods T ⊃ P as above
to ensure property (a); this may moreover be done in a canonical way, so that the deformation
retraction is continuous. To ensure property (c), we may choose k such that e0(M) ⊆ Rk ⊂ R∞,0

and modify the embedded copies of N ′ in R∞,−2 so that their (k+ 1)-st coordinate is non-zero on
N ∖ τj(T ) ⊂ N ′.

Finally, we need to ensure property (b). We may push R∞,−2 into R∞,0 by increasing its last
coordinate to ensure that the embedded copies of N ′ are contained in R∞,0. To ensure that they
are pairwise disjoint, we modify them by straight-line homotopies so that, for each r ∈ {1, . . . , n},
the (k + 1 + r)-th coordinate of the r-th copy of N ′ is non-zero on N ∖ τj(T ) ⊂ N ′, and the
(k+ 1 + r)-th coordinate of every other copy of N ′ is zero on N ∖V ⊂ N ′, where V is a very small
open neighbourhood of τj(T ) in N . (This is where we need to use the ordering.) This will force
the different copies of N ′ to be pairwise disjoint, except possibly on the subsets V ∖ τj(T ) ⊂ N ′.
However, we may control these neighbourhoods to be very small, i.e. very close to the corresponding
φr(T ), so, by shrinking these further if necessary, we may ensure that the different copies of N ′

are pairwise disjoint everywhere.

2.6.3 A map of fibre bundles

We now define a continuous map Xn → Xn̂, in order to obtain a map of bundles from Ψ to Ψ̂.

Definition 2.6.15. Define
stn : Xn −→ Xn̂

to send a pair of embeddings (e, f) to (ê, f̂), where:
(i) ê = e on M ⊂ M̂ and ê(côl(x, t)) = (b(x), t) for (x, t) ∈ ∂M × [−1, 0].
(ii) Recall that

M ♯
n̂P
n̂N = (M̂ ∖ Φ̂(n̂T ′)) ∪̂

nU
n̂N ′

(cf. Definition 2.1.2 and Notation 2.6.4). We define f̂ = ê on the subspace M̂ ∖ Φ̂(n̂T ′), and
also f̂ = f on the subspace nN ′ ⊆M ♯

nP
nN , so it remains to define f̂ on n̂N ′∖nN ′ = {0}×N ′.

Here we define it by

{0} ×N ′ = N ′ υ−−→ R∞ × (−0.5, 0.5) (id,−0.5)−−−−−−→ R∞ × (−1, 0) ⊂ R∞,−1.

It is then an easy exercise to check that (ê, f̂) is an element of Xn̂ and that stn is continuous.

Remark 2.6.16. Recall that Xn and Xn̂ have actions of ΣHDiff(M ♯
nP
nN) and ΣHDiff(M ♯

n̂P
n̂N)

respectively. Since we defined ê and f̂ above so that ê = e on M and f̂ = f on M ♯
nP
nN , it follows

that stn is equivariant with respect to the top horizontal map (continuous homomorphism) of the
diagram (2.6), which we now denote by

σn : ΣHDiff(M ♯
nP
nN) −→ ΣHDiff(M ♯

n̂P
n̂N).
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It therefore follows from Lemma 2.6.2 that the induced map

stn : Xn/ΣHDiff(M ♯
nP
nN) −→ Xn̂/ΣHDiff(M ♯

n̂P
n̂N)

is a model for Bσn, the map induced on classifying spaces by σn. It also fits into a map of bundles

Xn/ΣHDiff(M ♯
nP
nN) Xn̂/ΣHDiff(M ♯

n̂P
n̂N)

Embb(M,R∞,0)/Diff∂(M) Embb(M,R∞,−1)/Diff∂(M),

stn

Ψ Ψ̂ (2.12)

where the bottom horizontal map is defined by [e] 7→ [ê], where ê is defined as in (i) in Definition
2.6.15 above.

Lemma 2.6.17. The map stn induces split-injections on homology in all degrees.

Proof. In order to apply Lemma 2 of [Dol62] to deduce split-injectivity, it suffices to define maps

Xn/Dn −→ Sp(n
k)(Xk/Dk)

satisfying a certain equation up to homotopy, where we are using the temporary abbreviation
Dn = ΣHDiff(M ♯

nP
nN). We briefly sketch how to construct such maps. They may be defined by

[e, f ] 7−→
∑

S⊆{1,...,n} , |S|=k

[e′
S , f

′
S ],

where f ′
S is the composition

M ♯
kP
kN ∼= M ♯

S×P
(S ×N) ↪−→M ♯

nP
nN

f−−→ R∞,0 (2.13)

and e′
S = e ◦ ηS , where ηS ∈ Diff∂(M) corresponds to the left-hand diffeomorphism of (2.13) in

the sense that these two diffeomorphisms agree on M ∖ Φ(kT ′).

2.6.4 Stability for symmetric diffeomorphism groups

Lemma 2.6.18. The map of base spaces in (2.12) is a homotopy equivalence.

Proof. In order to define a homotopy inverse, we need a path of compactly-supported embeddings
γt : [−1,∞) ↪→ [−1,∞) such that γ0(−1) = 0, γt(0) ⩾ 0 for all t and γ1 = id. Then applying this
isotopy to the last coordinate of R∞,−1 determines a homotopy inverse for the bottom horizontal
map in (2.12). The finer details of the construction are similar to those of Lemma 5.26 of [Pal21].

Now fix a point [e0] in the base space of Ψ as in Construction 2.6.6. There is a commutative
square6

CnP (M,Z;G) Cn̂P (M,Z;G)

Ψ−1([e0]) Ψ̂−1([ê0])

sn

stn|[e0]

(2.14)

6 In fact this square does not commute on the nose, but if we replace the top horizontal map sn with a homotopic
map s′

n, then it does commute on the nose. Recall that sn adjoins the element [̄ı0] = [[τi], [υ]] ∈ Z/G to an unordered
tuple of elements of Z/G. The map s′

n instead adjoins the element [[τi − 0.5], [υ − 0.5]], where the − 0.5 denotes a
shift along the collar neighbourhood of ˆ̂M (for τi) and in the last coordinate of R∞,−2 (for υ).
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whose vertical maps are homotopy equivalences by Proposition 2.6.14. The map of bundles (2.12)
induces a map of Serre spectral sequences, which is an isomorphism on E2 pages up to vertical
degree n

2 − 1 (or n
2 if we take field coefficients), by Theorem 2.C and Lemma 2.6.9. The Zeeman

comparison theorem [Zee57] (cf. also [Iva93, Theorem 1.2] or [CDG13, Remarque 2.10]) then implies
that stn = Bσn induces isomorphisms on homology up to degree n

2 −1 (or n
2 with field coefficients).

Together with Lemma 2.6.17, this proves homological stability for the top horizontal map of (2.6).
By Remark 2.2.4, a special case of this implies homological stability also for the bottom horizontal
map of (2.6).7 This completes the proof of Theorem 2.A, assuming Theorem 2.C.

2.7 Diffeomorphism groups of manifolds with conical
singularities

Before proving Theorem 2.C, we first discuss manifolds with (discrete) conical singularities and
their diffeomorphism groups. These are a special case of manifolds with Baas-Sullivan singularities,
introduced in [Sul67; Baa73], for which the singular set is not necessarily discrete, but may itself
be a smooth manifold of positive dimension (see §2.7.3 for a brief overview). We then prove
homological stability for diffeomorphism groups of manifolds with conical singularities, with respect
to adding new singularities of a fixed type — in fact, we will see that this is nothing more than
a special case of homological stability for symmetric diffeomorphism groups, already contained in
Theorem 2.A.

2.7.1 Manifolds with conical singularities

Fix a smooth, closed (m− 1)-dimensional manifold L. The open cone on L is

cone(L) = (L× [0,∞))/(L× {0})

and we write ⋆ = [L× {0}] ∈ cone(L) for the point at the tip of the cone.

Definition 2.7.1. An m-dimensional smooth manifold with conical L-singularities consists of a
space M equipped with a discrete subset Σ ⊆ M and the structure of a smooth manifold on
M ∖ Σ. In addition, the points σ ∈ Σ are equipped with pairwise disjoint open neighbourhoods
σ ∈ Uσ ⊆M and homeomorphisms Uσ

∼= cone(L) sending σ to ⋆ and restricting to diffeomorphisms
Uσ ∖ {σ} ∼= L× (0,∞).

For example, when m = 1, this amounts to a graph of fixed valency k (i.e. every vertex has
the same valency k). In this case Σ is the set of vertices of the graph and L is the 0-manifold
{1, . . . , k}. Two other examples are as follows.

Example 2.7.2. If M is a smooth m-dimensional manifold, then we may take Σ = ∅. Alterna-
tively, we may also take Σ to be any discrete subset and L = Sm−1, although in this case we forget
the smooth structure at the marked points Σ.

Example 2.7.3. If ℓ ⊂ R3 is a link with k components, then M = R3/ℓ is a manifold with a single
conical singularity (Σ is the single point [ℓ] ∈M) of type L =

⊔
k(S1 × S1).

2.7.2 Diffeomorphisms of singular manifolds

Now we also fix a subgroup H ⩽ Diff(L). Note that each self-diffeomorphism ψ of L determines a
self-homeomorphism cone(ψ) of cone(L) via cone(ψ)([x, t]) = [ψ(x), t].

7 We need to check that the third assumption stated just before Theorem 2.4.1 is satisfied for this special case
(i.e. for this choice of N), but this is clear (cf. the last sentence of Remark 2.2.4).
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Definition 2.7.4. Let M be a manifold with conical L-singularities. A diffeomorphism of M
is then a homeomorphism φ : M → M such that φ(Σ) = Σ and the restriction φ|M∖Σ is a dif-
feomorphism. Moreover, for each σ ∈ Σ we require that φ(Uσ) = Uφ(σ) and that the induced
homeomorphism cone(L) ∼= Uσ → Uφ(σ) ∼= cone(L) is of the form cone(h) for some h ∈ H. These
form a subgroup

DiffL
H(M) ⩽ Homeo(M).

2.7.3 Relation to manifolds with Baas-Sullivan singularities

Manifolds with discrete conical singularities are a special case (s = 0) of the more general notion
of a manifold with Baas-Sullivan singularities, in which the singular set is a smooth s-dimensional
manifold. Fix a smooth, closed manifold L of dimension m− s− 1, which will be called the type,
or link, of the singular set.

Definition 2.7.5. A manifold with Baas-Sullivan singularities [Sul67; Baa73] consists of a topo-
logical space M equipped with the following data: a subset Σ ⊆ M , a structure of a smooth
s-dimensional manifold (without boundary) on Σ and a structure of a smooth m-dimensional
manifold (possibly with boundary) on M ∖ Σ, an open neighbourhood U ⊇ Σ in M and a homeo-
morphism

θ : (U,Σ) −→ (Σ× cone(L),Σ× {⋆})
whose restriction to U ∖ Σ −→ Σ× L× (0,∞) is a diffeomorphism.

Definition 2.7.6. Given a manifold M = (M,Σ, U, θ) with Baas-Sullivan singularities of type L,
a diffeomorphism of M is a homeomorphism φ : M → M fixing Σ and U setwise, such that the
restrictions φ|Σ and φ|M∖Σ are diffeomorphisms and φ|U = θ−1 ◦ (φ|Σ × cone(ψ)) ◦ θ for some
diffeomorphism ψ : L → L. We may also fix a subgroup H ⩽ Diff(L) and require ψ to be an
element of H, in which case this is an H-diffeomorphism of M.

Remark 2.7.7. There is a another viewpoint on manifolds with Baas-Sullivan singularities, where,
instead of a singular set Σ ⊆ M equipped with a conical open neighbourhood, one instead has
a smooth manifold M with boundary, equipped with a collar neighbourhood and an embedding
Σ×L ↪→ ∂M whose image is a union of components of ∂M . A morphism φ : M →M ′ between such
objects is then defined to be a smooth map, compatible with the collar neighbourhoods, sending
Σ×L to Σ′×L, such that the restriction φ|Σ×L is a product of smooth maps Σ→ Σ′ and L→ L.
A diffeomorphism of M is an automorphism in this category. The definitions above are recovered
by taking the quotient of M by the equivalence relation corresponding to the partition

{{σ} × L | σ ∈ Σ} ∪ {{x} | x ∈M ∖ (Σ× L)}.

In particular, the conical neighbourhood of Σ is the image of the collar neighbourhood under this
quotient. For more details, see [Bot92] or [Per15]. (Note: our definition of a diffeomorphism of a
manifold with Baas-Sullivan singularities is a mild generalisation of that of [Per15, Definition 3.1],
where the restriction φ|Σ×L is required to be the product of a smooth map Σ→ Σ′ and the identity
L→ L. In Definition 2.7.6 this corresponds to H-diffeomorphisms of M with H = {id} ⩽ Diff(L).)

Remark 2.7.8. The definition of manifolds with Baas-Sullivan singularities may be generalised
to allow a collection of smooth, closed manifolds Lk of dimension m − s − 1. In the case where
s = 0 (corresponding to Definition 2.7.1), this amounts to saying that each open neighbourhood
Uσ should be identified with cone(Lk) for some k. See [Bot92] or [Per13] for more details.

2.7.4 Relation to symmetric diffeomorphism groups

We now construct a specific sequence Mn of manifolds with n conical singularities of a fixed type.

Definition 2.7.9. As in §2.1, we fix an embedding i : P ↪→ ∂M ⊆ M̂ , a metric on the normal
bundle νi → P of i and a tubular neighbourhood T = D(νi) ↪→ ∂M × (− 1

2 ,
1
2 ) ⊆ M̂ . As described

in §2.1, this induces an embedding

Φ: nT = {1, . . . , n} × T ↪−→ M̊.
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Recall that T̊ denotes the interior of T and T ′ ⊂ T denotes the closed sub-disc-bundle of radius 1
2 .

Given these inputs, we construct Mn, a manifold with n conical ∂T -singularities, as fol-
lows: starting with the manifold M , collapse the subset Φ({k} × T ′) to a point σk, for each
k ∈ {1, 2, . . . , n}. Then the singularity set is Σ = {σ1, σ2, . . . , σn} and each point σk is equipped
with a conical neighbourhood Uσk

∼= cone(∂T ) given by the image of Φ({k}× T̊ ) under the collapse
map M →Mn.
Remark 2.7.10. As a space, Mn is homeomorphic to the quotient of MΦ obtained by collapsing
each Φ({k} × ∂T ) ⊂ ∂MΦ to a point — see Remark 2.2.2.

For a smooth fibre bundle ξ : E → B with structure group G, write Difffib(E) ⩽ Diff(E) for
the subgroup of diffeomorphisms φ that respect the partition of E into fibres of ξ (it then follows
that ξ ◦ φ = φ̄ ◦ ξ for some diffeomorphism φ̄ of B) and that act on fibres by elements of G. In
particular we may apply this definition to the disc and sphere bundles (cf. §2.2)

ξ : T −→ P and ξ∂ = ξ|∂T : ∂T −→ P,

whose structure groups are both O(m − p). Since an element of O(m − p) is determined by its
action on Sm−p−1 = ∂Dm−p, the restriction map Difffib(T )→ Difffib(∂T ) is an isomorphism, and
we will identify these groups via this isomorphism.
Lemma 2.7.11. There is a natural isomorphism

H∗(Diff∂T
H (Mn)) ∼= H∗(ΣHDiff(M,nT ))

for any subgroup H ⩽ Difffib(T ) = Difffib(∂T ) ⩽ Diff(∂T ).

Proof. This follows directly from the construction of Mn, unravelling Definitions 2.2.1 and 2.7.4.

Now Theorem 2.A and Lemma 2.7.11 immediately imply:
Corollary 2.7.12. (Corollary 2.B) Suppose that p ⩽ 1

2 (m− 3) and the subgroup H ⩽ Difffib(T ) ⩽
Diff(∂T ) has been chosen so that condition (b) of §2.4 holds. Then there are isomorphisms

H∗(Diff∂T
H (Mn)) ∼= H∗(Diff∂T

H (Mn+1))

for ∗ ⩽ n
2 − 1, and for ∗ ⩽ n

2 if we take field coefficients.

2.8 Twisted homological stability

We will prove Theorem 2.C in §2.9 as a corollary of a twisted homological stability theorem for
moduli spaces of disconnected submanifolds, which we prove in this section. This is a direct
analogue of the main result of [Pal18b], which deals with configuration spaces of points, so we
will not include all possible details in this section, since most of the constructions and proofs go
through verbatim as in [Pal18b], with just minor changes of notation.

We return to the setup of §2.5, but without any labels for now. So we have a smooth, connected
m-dimensional manifold M with non-empty boundary, a collar neighbourhood col : ∂M× [0,∞] ↪→
M and an embedding i : P ↪→ ∂M . Recall also that we have extended M by lengthening its collar:

M̂ = M ∪
∂M×[0,∞]

(∂M × [−1,∞]),

and in Definition 2.5.4 we constructed “shifted” embeddings ir : P ↪→ M̂ for any r ∈ R, where
i0 = i.

Fix a subgroup G ⩽ Diff(P ) and write E = Emb(P, M̂). Then in Definition 2.5.6 we con-
structed moduli spaces CnP (M ;G) ⊆ Spn(E/G) and Cn̂P (M ;G) ⊆ Spn+1(E/G) and a stabilisa-
tion map

sn : CnP (M ;G) −→ Cn̂P (M ;G) ∼= C(n+1)P (M ;G) (2.15)
between them.
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Remark 2.8.1. The identification on the right-hand side of (2.15) is given by identifying the
interior M(−1) of M̂ (cf. Notation 2.5.1) with the interior M(0) of M via a diffeomorphism
supported on the collar neighbourhood col(∂M × [−1,∞]) ⊂ M̂ . It will be more convenient in
this section to think of the target of the stabilisation map as C(n+1)P (M ;G). There is a natural
basepoint {[i1], . . . , [in]} of CnP (M ;G), and sn is basepoint-preserving.

Definition 2.8.2. The category BP (M) associated to these data has non-negative integers as
objects, and a morphism m→ n is given by a choice of k ⩽ min(m,n) and a path ℓ in CkP (M ;G)
with ℓ(0) ⊆ {[i1], . . . , [im]} and ℓ(1) ⊆ {[i1], . . . , [in]}, up to endpoint-preserving homotopy. The
identities are given by constant paths and composition is defined by concatenation of paths, as well
as forgetting any “strand” of a path that does not match up with a “strand” of the other path,
analogous to the composition of partially-defined functions. See (2) on page 151 of [Pal18b] for an
illustration. The construction in §3.1 of [Pal18b] extends directly to this setting, and equips this
category with an endofunctor

S : BP (M) −→ BP (M),

whose effect on objects is n 7→ n+ 1, together with a natural transformation ι : idBP (M) → S. Any
functor T : BP (M)→ Ab to the category of abelian groups (or any abelian category) may then be
given a degree by defining deg(0) = −1 and recursively

deg(T ) = deg(coker(T → T ◦ S)) + 1

for T ̸= 0. The automorphism group of n in BP (M) is π1(CnP (M ;G)), so there are well-defined
twisted homology groups H∗(CnP (M ;G);T (n)). The homomorphism T (ιn) : T (n) → T (n + 1) is
equivariant with respect to the map induced on π1 by (2.15), so there are induced maps on twisted
homology

H∗(CnP (M ;G);T (n)) −→ H∗(C(n+1)P (M ;G);T (n+ 1)). (2.16)

Theorem 2.8.3. (Theorem 2.D) If p ⩽ 1
2 (m−3), G is an open subgroup of Diff(P ) and T : BP (M)→

Ab is a functor of degree d < ∞, then (2.16) is split-injective in all degrees, and an isomorphism
for ∗ ⩽ n−d

2 .

The proof of Theorem 2.D is a direct generalisation of §3 and §6 of [Pal18b], so we will just
sketch the steps involved. Fix a functor T : BP (M)→ Ab.

Definition 2.8.4. For S ⊆ {1, . . . , n} let fS : n→ n be the morphism of BP (M) given by the con-
stant path in C(n−|S|)P (M) at the point {[is] | s ∈ {1, . . . , n}∖S}. Then T (fS) is an endomorphism
of T (n) and we may define a subgroup

T k
n = im(T (f{1,...,n−k})) ∩

n⋂
i=n−k+1

ker(T (f{i}))

of T (n) for any 0 ⩽ k ⩽ n. We write

C(n−k,k)P (M ;G) −→ CnP (M ;G) (2.17)

for the covering space in which k copies of P are coloured red and the remaining n− k copies are
coloured green. Equivalently, this is the connected covering space of CnP (M ;G) corresponding to
the subgroup

end−1
n (Σn−k × Σk) ⊆ π1(CnP (M ;G)),

where endn : π1(CnP (M ;G))→ Σn is the homomorphism that remembers just the permutation of
{[i1], . . . , [in]} induced by a path. We also write

red(n−k,k) : C(n−k,k)P (M ;G) −→ CkP (M ;G) (2.18)

for the map that forgets all green parts of a configuration.

Proposition 3.5 and Lemma 6.4 of [Pal18b] generalise directly to the following.
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Proposition 2.8.5. Each T k
n is invariant under the action of π1(C(n−k,k)P (M ;G)) on T (n), and

therefore gives a twisted coefficient system for C(n−k,k)P (M ;G). The pullback of the coefficient
system T k

k along the map (2.18) is naturally isomorphic to T k
n . There is a natural isomorphism of

Z[π1(CnP (M ;G))]-modules

T (n) ∼=
n⊕

k=0

(
Z[π1(CnP (M ;G))] ⊗

Z[π1(C(n−k,k)P (M ;G))]
T k

n

)
.

Lemma 3.16 of [Pal18b] also generalises directly:

Lemma 2.8.6. We have deg(T ) ⩽ d if and only if T k
n = 0 for all n ⩾ 0 and all k > d.

The final lemma that we will need before proving Theorem 2.D is the following.

Lemma 2.8.7. The map (2.18) is a fibre bundle.

Proof. By Proposition 4.15 of [Pal21], the action of Diffc(M̊) on Emb(kP, M̊)/(G ≀ Σk) is locally
retractile. By Lemma 4.6(i) of [Pal21], the restriction of this action to the path-component of
the identity Diffc(M̊)0 is also locally retractile. This restricted action obviously fixes setwise the
path-component CkP (M ;G) ⊆ Emb(kP, M̊)/(G ≀ Σk), so by Lemma 4.6(iii) of [Pal21], the action
of Diffc(M̊)0 on CkP (M ;G) is locally retractile. Hence Theorem A of [Pal60] implies that (2.18)
is a fibre bundle.

Proof of Theorem 2.D. The idea is exactly the same as on pages 172–173 of [Pal18b], so we just
give a sketch of how to adapt it. By Proposition 2.8.5, Lemma 2.8.6 and Shapiro’s lemma for
covering spaces (see Lemma 6.1 of [Pal18b]) there are natural isomorphisms

H∗(CnP (M ;G);T (n)) ∼=
d⊕

k=0
H∗(C(n−k,k)P (M ;G);T k

n ). (2.19)

It therefore suffices to show that the lift of the stabilisation map

C(n−k,k)P (M ;G) −→ C(n+1−k,k)P (M ;G) (2.20)

that adds a new green copy of P to the configuration induces isomorphisms on twisted homology
with respect to the coefficient systems T k

n and T k
n+1 up to degree n−k

2 . This stabilisation map is a
map of fibre bundles (by Lemma 2.8.7) over the space CkP (M ;G). Our default basepoint of this
space is {[i1], . . . , [ik]}, but for the next argument it will be more convenient to choose a different
basepoint {[i′1], . . . , [i′k]}, where each embedding i′α : P ↪→M has image disjoint from the image of
the collar neighbourhood. We may then define

M ′ = M ∖
k⋃

α=1
i′α(P )

and take the same collar neighbourhood for M ′ as for M . The restriction of the map (2.20) to the
fibres over {[i′1], . . . , [i′k]} is the stabilisation map

C(n−k)P (M ′;G) −→ C(n+1−k)P (M ′;G).

There is a subtlety in this statement: it is not hard to see that there are topological embeddings

red−1
(n−k,k)({[i

′
1], . . . , [i′k]}) red−1

(n+1−k,k)({[i
′
1], . . . , [i′k]})

C(n−k)P (M ′;G) C(n+1−k)P (M ′;G)
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making the square commute, defined by adjoining {[i′1], . . . , [i′k]} to a configuration. It remains to
see that they are surjective: this follows from Proposition 5.10 of [Pal21]. Using this identification
and the first part of Proposition 2.8.5, we therefore have a map of twisted Serre spectral sequences
(cf. Proposition 5.7 of [Pal18b]), which is as follows on the E2 pages:

Hs(CkP (M ;G);Ht(C(n−k)P (M ′;G);T k
k )) −→ Hs(CkP (M ;G);Ht(C(n+1−k)P (M ′;G);T k

k )),

where T k
k is a constant coefficient system for the fibres, and which converges to the map on twisted

homology induced by (2.20) with respect to the coefficient systems T k
n and T k

n+1. By Theorem A of
[Pal21] and the universal coefficient theorem, the map of E2 pages is an isomorphism for t ⩽ n−k

2 .
The Zeeman comparison theorem therefore implies that the map in the limit is also an isomorphism
up to degree n−k

2 . This completes the proof of Theorem 2.D, except for the split-injectivity
statement.

The proof of split-injectivity in §7 of [Pal18b] generalises verbatim to establish the split-
injectivity statement of Theorem 2.D.

2.9 Stability for moduli spaces of labelled disconnected
submanifolds

We now prove Theorem 2.C as a corollary of Theorem 2.D. This will be another spectral sequence
comparison argument, using a map of Serre spectral sequences induced by the square (2.7), so as
a first step we prove:

Lemma 2.9.1. The vertical maps in the square (2.7) are Serre fibrations.

Proof. We will show that the map CnP (M,Z;G) → CnP (M ;G) is a Serre fibration; an identical
argument will then show that the other vertical map of (2.7) is also a Serre fibration.

By assumption (see Input 2.5.5), the map π : Z → E is a Serre fibration and also G-equivariant.
The n-fold product πn : Zn → En is also a Serre fibration, and so is its pullback πn : Zn → En

along the inclusion En = Emb(nP, M̊) ⊂ En = Emb(P, M̂)n. Since the map πn : Zn → En is also
(G ≀ Σn)-equivariant, there is an induced square

Zn Zn/(G ≀ Σn)

En En/(G ≀ Σn),

πn π̄n

⌟
(2.21)

which is a pullback as indicated. By Propositions 4.15 and 4.8 of [Pal21], the bottom horizontal
map is a principal (G ≀Σn)-bundle. So we know that the left-hand vertical map πn and the bottom
horizontal map in (2.21) are Serre fibrations, and the bottom horizontal map is also obviously
surjective. Thus Lemma 4.19 of [Pal21] implies that the right-hand vertical map π̄n is also a Serre
fibration. Finally, the map CnP (M,Z;G) → CnP (M ;G) is just the restriction of π̄n to one path-
component of its source and one path-component of its target, so it is also a Serre fibration.

Let R be a ring. There is an induced map of Serre spectral sequences, converging to

H∗(CnP (M,Z;G);R) −→ H∗(Cn̂P (M,Z;G);R)

and whose map of E2 pages is of the form

Hs(CnP (M ;G);Ht(f−1
n (i{1,...,n});R)) −→ Hs(Cn̂P (M ;G);Ht(f−1

n̂ (i{0,...,n});R)),

where fn and fn̂ denote the vertical maps in the square (2.7) and where i{1,...,n} = {[i1], . . . , [in]}
and i{0,...,n} = {[i0], [i1], . . . , [in]} are the basepoints.
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Remark 2.9.2. In this section (as in §2.8, see Remark 2.8.1) it will be more convenient to view
the targets of the stabilisation maps in (2.7) as C(n+1)P (M,Z;G) and C(n+1)P (M ;G) respectively,
so the map of Serre spectral sequences is then

H∗(CnP (M,Z;G);R) −→ H∗(C(n+1)P (M,Z;G);R) (2.22)

in the limit and

Hs(CnP (M ;G);Ht(f−1
n (i{1,...,n});R)) −→ Hs(C(n+1)P (M ;G);Ht(f−1

n+1(i{1,...,n+1});R)) (2.23)

on the E2 pages.
For these identifications, we use modifications of the maps γ(1) = sh1 ◦ − : E → E and

γ̄(1) : Z → Z (cf. Definition 2.5.4). Namely, we choose a diffeomorphism κ : M̂ → M (note that
there is noˆon the codomain) so that κ = sh1 on M ⊂ M̂ . This induces a G-equivariant endomor-
phism κ ◦ − : E → E, where we recall that E = Emb(P, M̂). We then choose a G-equivariant lift
κ̄ : Z → Z of this so that κ̄ = γ̄(1) on π−1(Emb(P,M)) ⊂ Z. Then the identifications

Cn̂P (M ;G) ∼= C(n+1)P (M ;G) Cn̂P (M,Z;G) ∼= C(n+1)P (M,Z;G)

are defined by

{[φ0], . . . , [φn]} 7−→ {[κ ◦ φ0], . . . , [κ ◦ φn]} {[z0], . . . , [zn]} 7−→ {[κ̄(z0)], . . . , [κ̄(zn)]}

respectively.

Proposition 2.9.3. Suppose that R is a principal ideal domain and that the fibration π : Z → E
has path-connected fibres, whose homology is a flat R-module in each degree. Then for each t ⩾ 0
there is a functor Tt : BP (M) → Ab of degree at most t such that, up to isomorphism, the map
Tt(ιn) : Tt(n)→ Tt(n+ 1) is the map

Ht(f−1
n (i{1,...,n});R) −→ Ht(f−1

n+1(i{1,...,n+1});R) (2.24)

induced by the restriction of the top horizontal map of (2.7).

Proof. As in [Pal18b], write Σ for the category with objects {1, . . . , n} for non-negative integers n
(with n = 0 corresponding to the empty set) and whose morphisms are partially-defined injections.
This may be viewed as a special case of BP (M): for example, Bpt(R3) ∼= Σ.

The map π : Z → E is G-equivariant; write π̄ : Z/G → E/G for the induced map of orbit
spaces. Let Y be the fibre π̄−1([i0]) with basepoint [̄ı0]. Example 4.1 of [Pal18b] gives us a functor

Tt : Σ −→ Ab

such that Tt(ιn) : Tt(n) → Tt(n + 1) is the map on Ht induced by the inclusion of pointed spaces
Y n ↪→ Y ×Y n = Y n+1, in other words, the map ([̄ı0],−, . . . ,−). By Lemma 4.2 and Remark 4.4 of
[Pal18b] this functor has degree at most t. There is a functor BP (M)→ Σ given by remembering
just the partial injection {[i1], . . . , [im]} 99K {[i1], . . . , [in]} induced by a path ℓ of configurations
as in Definition 2.8.2. Precomposition by this functor preserves the degree of functors into the
category Ab,8 so the composition

Tt : BP (M) −→ Σ −→ Ab

also has degree at most t.
The map (2.24) is induced by the composition f−1

n (i{1,...,n})→ f−1
n̂ (i{0,...,n})→ f−1

n+1(i{1,...,n+1}),
which may equivalently be written

n∏
α=1

π̄−1([iα]) −→
n∏

α=0
π̄−1([iα]) −→

n+1∏
α=1

π̄−1([iα]),

8 See §4.3 of [Pal17] for a more general discussion of when precomposition by a functor preserves degree.
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where the first map is ([̄ı0],−, . . . ,−) and the second is a restriction of ¯̄γ(1)n+1 (cf. Remark 2.9.2),
where ¯̄γ(r) denotes the map Z/G → Z/G induced by the G-equivariant map γ̄(r) : Z → Z. The
domain may be identified with Y n via the homeomorphism ¯̄γ(1) × · · · × ¯̄γ(n) and the codomain
with Y n+1 via the homeomorphism ¯̄γ(1)×· · ·× ¯̄γ(n+1). Under these identifications (using the fact
that γ̄ is a homomorphism), we see that (2.24) becomes the map induced on Ht by the inclusion
Y n ↪→ Y × Y n, which is exactly Tt(ιn), as required.

Proof of Theorem 2.C. The argument in §5.2 of [Pal21] for the split-injectivity part of the state-
ment generalises verbatim to the setting of moduli spaces of disconnected submanifolds with labels.
All one needs, in order to apply Lemma 2 of [Dol62] to deduce split-injectivity, is to be able to
define maps

CnP (M,Z;G) −→ Sp(n
k)(CkP (M,Z;G))

satisfying a certain equation up to homotopy. Viewing CnP (M,Z;G) as a subspace of the sym-
metric power Spn(Z/G) (cf. Definition 2.5.6), we construct such maps as restrictions of the maps

Spn(Z/G) −→ Sp(n
k)(Spk(Z/G))

that forget n− k points in all possible ways. Thus (2.22) is always split-injective.
It remains to prove the second part of the statement, that when π : Z → E has path-connected

fibres, p ⩽ 1
2 (m− 3) and G is an open subgroup of Diff(P ), the map (2.22) is an isomorphism for

∗ ⩽ n
2 − 1, and also for ∗ ⩽ n

2 if R is a field.
First let R be a field, so that every R-module is flat. Then these three assumptions, together

with Theorem 2.D and Proposition 2.9.3, imply that the map (2.23) is an isomorphism for s ⩽ n−t
2 ,

in particular for total degree s+ t ⩽ n
2 . The Zeeman comparison theorem then implies that (2.22)

is also an isomorphism for ∗ ⩽ n
2 .

In general, if a continuous map X → Y induces isomorphisms on homology up to degree i with
all field coefficients, then it induces isomorphisms on integral homology (and therefore with any
untwisted coefficients, by the universal coefficient theorem) up to degree i − 1. This follows from
the five-lemma applied to the natural long exact sequences induced by the short exact sequences

0→ Z/(pr)→ Z/(pr+1)→ Z/(p)→ 0 0→ Z→ Q→ Q/Z ∼=
⊕

p prime
colim
r→∞

Z/(pr)→ 0

of coefficient groups. Thus the statement in the special case when R is a field implies the statement
for general R.



Chapter 3

Big mapping class groups with
uncountable integral homology

The results of this chapter are accepted for publication as [PW22a] in joint work with Xiaolei Wu.

Introduction

There has been a recent wave of interest in big mapping class groups (mapping class groups of
infinite-type surfaces); see [AV20] for a survey. In [PW22b], the authors recently computed the ho-
mology of a large family of big mapping class groups, namely the families of (1-holed or punctured)
binary tree surfaces (see the introduction of [PW22b] for this terminology). Precisely, the mapping
class group of every 1-holed binary tree surface is acyclic and the homology of the mapping class
group of every punctured binary tree surface is periodic with Z in every even degree and zero in
every odd degree. One instance of this result says that the mapping class group Map(D2 ∖ C)
is acyclic and that Hi(Map(R2 ∖ C)) is Z for i even and zero for i odd, where C is a Cantor set
embedded in the interior of the disc. In particular, in all of these examples, the homology groups
Hi(Map(S)) are finitely generated for each i. Some earlier results on the homology of big mapping
class groups – in degrees 1 and 2 – include: H1(Map(S ∖ C)) ∼= H1(Map(S)) if C is a Cantor set
embedded in the interior of a finite-type surface S [CC22] (see also [Vla21] for three special cases
of this) and H2(Map(S2 ∖ C)) ∼= Z/2 [CC21].

In this chapter we prove a contrasting result: for many infinite-type surfaces S, the group
Hi(Map(S)) is uncountable for all i > 0. In addition, we prove – for all infinite-type surfaces S
– that Hi(PMapc(S)) and Hi(T (S)) are uncountable for all i > 0, where PMapc(S) and T (S)
denote, respectively, the closure of the compactly-supported mapping class group and the Torelli
group of S.

Our proofs are built on ideas from [APV20; Dom22; MT23]. In [APV20], Aramayona, Patel
and Vlamis determined H1(PMap(S)) for any infinite-type surface S of genus at least 2; in par-
ticular, they showed that it is countable. (This was extended to genus 1 in [DP20], where it was
also shown that H1(PMap(S)) is uncountable when S has genus 0.) Along the way they proved
that, when S has infinitely many non-planar ends, its pure mapping class group PMap(S) admits a
split-surjection onto the Baer-Specker group ZN. Later, Domat proved that big pure mapping class
groups PMap(S) are never perfect [Dom22]. Morover, he showed that H1(PMap(S)) is uncountable
for many infinite-type surfaces S and that H1(T (S)) and H1(PMapc(S)) are uncountable for all
infinite-type surfaces S. Malestein and Tao [MT23] were able to push the results of Domat further
and prove that the first homology of the full mapping class group H1(Map(S)) is uncountable for
a certain class of surfaces S, including S = R2 ∖ Z.
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Uncountable homology

Given a surface S, recall that its pure mapping class group PMap(S) is the subgroup of its mapping
class group Map(S) = π0(Homeo(S)) consisting of all those mapping classes that fix the ends
of S pointwise. Its Torelli group T (S) is the kernel of the natural homomorphism Map(S) →
Aut(H1(S)). Recall also that PMapc(S) denotes the subgroup of Map(S) of mapping classes that
admit representative homeomorphisms with compact support, and PMapc(S) denotes its closure
in Map(S) in the quotient topology induced by the compact-open topology on Homeo(S). We
note that in general we have inclusions T (S) ⊆ PMapc(S) ⊆ PMap(S) ⊆ Map(S). (The only
non-obvious inclusion is the first one: it is explained during the proof of Theorem 3.4.10 below.)
Our first result concerns the first two groups of this nested sequence and holds for all infinite-type
surfaces S.

Theorem 3.A (Corollary 3.4.5 and Theorem 3.4.10). Let S be any infinite-type surface. Then the
integral homology groups

Hi(PMapc(S)) and Hi(T (S))

are uncountable for every i ⩾ 1. Moreover, they each contain
⊕

c Z in every degree, where c denotes
the cardinality of the continuum.

Remark 3.0.1. One might hope that our methods could be used to prove that the homology
of the pure mapping class group Hi(PMap(S)) is also uncountable for every i ⩾ 1 and for any
infinite-type surface S. However, the methods of the present chapter can only prove this result
in the case when S has at most one or infinitely many non-planar ends; see Remark 3.4.7 for
more information. When S has n non-planar ends for 1 < n < ∞, one can in fact prove that the
(uncountably many) elements constructed in Domat’s paper [Dom22, Theorem 6.1] all vanish in
H1(PMap(S)); see Remark 3.4.9 for more information.

In order to state our result for the full mapping class groups Map(S), we first recall some
background about ends of surfaces; more details are given in §3.1 and §3.2. Every surface S has
a space of ends E, which is a compact, separable, totally disconnected topological space. The key
hypothesis in our main theorem is a condition on the structure of the space E.

Definition 3.0.2. For points x, y ∈ E, we write x ∼ y and say that x is similar to y if and
only if there are open neighbourhoods U, V of x, y respectively such that (U, x) and (V, y) are
homeomorphic as based spaces. A point x ∈ E is topologically distinguished if it is not equivalent
to any other point of E under this equivalence relation.

Definition 3.0.3. For a topological space E, write Υ+(E) = Eω+1, where Eω means a countably
infinite disjoint union of copies of E and X + 1 means the one-point compactification of X.

Theorem 3.B. Let S be a connected, finite-genus surface with finitely many boundary components,
whose space of ends E is of the form E = E1 ⊔Υ+(E2), where E2 has a topologically distinguished
point x and no point of E1 is similar to x. Then the integral homology group

Hi(Map(S))

is uncountable for every i ⩾ 1. In fact, there is an injective homomorphism of graded abelian
groups

Λ∗
(⊕

c

Z
)
−→ H∗(Map(S)),

where Λ∗ denotes the exterior algebra on an abelian group.

Remark 3.0.4. In the course of the proof of Theorem 3.B, we also prove the same statement with
S replaced by the Loch Ness monster surface L, see Proposition 3.4.3.

Remark 3.0.5. All countable end spaces of surfaces (equivalently: countable compact Hausdorff
spaces) are of the form E = ωα.n + 1 for a countable ordinal α and a positive integer n [MS20].
Hence a surface S of finite genus with this end space satisfies the assumption of Theorem 3.B
whenever n = 1 and α is a successor ordinal.
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Thus for a large class of infinite-type surfaces S with countably many ends we know that
Map(S) has uncountable integral homology in all positive degrees. This suggests the following
question.
Question 3.0.6. Let S be an infinite-type surface with countably many ends. Is the homology of
Map(S) uncountable in all positive degrees?
Remark 3.0.7. Without the hypothesis on the structure of the space of ends E of S, the conclusion
of Theorem 3.B is false. For example, as mentioned above, we prove in [PW22b] that

Hi(Map(R2 ∖ C)) ∼=

{
Z i even
0 i odd.

Remark 3.0.8. The hypotheses of this chapter and the hypotheses of [PW22b] are in some sense
opposite, with opposite conclusions. In [PW22b] we consider 1-holed binary tree surfaces, whose
end spaces are Cantor compactifications (Eω)C (see [PW22b, §1.2] for the definition), which are
highly self-similar (in particular (Eω)C ∼= C if E = ∅ or E = C, which is homogeneous), and we
prove that Hi(Map(S)) = 0 for all i > 0. On the other hand, in this chapter we consider surfaces S
whose end spaces E satisfy the “homogeneity breaking” hypothesis of Theorem 3.B (roughly: E has
a limit point of topologically distinguished points), and conclude that Hi(Map(S)) is uncountable
for all i > 0.

Non-trivial torsion

So far, the elements that we have constructed in the homology of big mapping class groups all have
infinite order. It would be interesting also to find some torsion elements. In fact, the following
question was asked by Domat in [Dom22, Question 11.3].
Question 3.0.9. Let S be an infinite-type surface. Are there torsion elements in H1(PMapc(S))?

Recall that PMapc(S) denotes the subgroup of Map(S) of mapping classes that admit repre-
sentative homeomorphisms with compact support, and PMapc(S) denotes its closure in Map(S)
in the quotient topology induced by the compact-open topology on Homeo(S). Also recall that
PMapc(S) ⊆ PMap(S) coincides with PMap(S) if and only if S has at most one non-planar end
[PV18, Theorem 4]. Our third result answers Domat’s question in the positive.
Theorem 3.C. Let S be an infinite-type surface of genus 2 and with finitely many (possibly
zero) boundary components. Then the homology groups H1(PMap(S)) = H1(PMapc(S)) and
H1(Map(S)) both contain an order-10 element. Moreover, the cyclic group generated by this ele-
ment is a direct summand.
Remark 3.0.10. By comparing the stable homology of (orientable, finite-type) mapping class
groups with rational coefficients [MW07] and with mod-p coefficients [Gal04], one sees that there
are also many torsion elements in the integral homology of mapping class groups in the stable
range. Using this and Lemma 3.6.2, one may find many higher-degree torsion elements in the
homology of mapping class groups of infinite-type surfaces of finite genus.

In a sense, our answer to Domat’s question is “cheating”, since we simply show that a certain
torsion element in the homology of the mapping class group of a finite-type subsurface of S injects
into the homology of the mapping class group of S. Together with our uncountability results above
(Theorems 3.A and 3.B), this suggests two refinements of Domat’s question:
Question 3.0.11. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or
H1(PMap(S)) contain torsion elements that are not supported on any finite-type subsurface of S?
Question 3.0.12. Let S be an infinite-type surface. Do the homology groups H1(PMapc(S)) or
H1(PMap(S)) contain an uncountable torsion subgroup?

We note that a positive answer to Question 3.0.12 would imply a positive answer to Question
3.0.11, since torsion admitting finite-type support can only account for countably many torsion
elements.
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Outline

We begin with two sections of background: §3.1 on infinite-type surfaces and big mapping class
groups and §3.2 on notions of topologically distinguished points. In §3.3 we prove a basic lemma
that gives a sufficient criterion for the homology of a group to contain an embedded copy of the
exterior algebra on a direct sum of continuum many copies of Z. We also discuss techniques of
[Dom22] that may be used to construct the inputs for this lemma.

Theorems 3.A and 3.B are then proven in §3.4–§3.5. In §3.4 we prove uncountability of
the homology of the mapping class group of the Loch Ness monster surface, which is the first
step in the proof of Theorem 3.B. We then adapt these techniques to prove Theorem 3.A on the
homology of the closure of the compactly-supported mapping class group and the Torelli group of
an arbitrary infinite-type surface S. In §3.5 we apply the results of §3.4, together with a covering
space argument inspired by a technique of Malestein and Tao [MT23], to complete the proof of
Theorem 3.B. The covering space argument in this section is the step in which we use in an essential
way the hypothesis on the structure of the end space of the surface.

We prove Theorem 3.C on torsion elements in §3.6. Finally, in §3.7, we record some related
open questions, in particular discussing the cohomology of mapping class groups in §3.7.2. Ap-
pendix 3.8 gathers some basic facts about abelian groups that are needed in several of our proofs.

3.1 Surfaces, ends and mapping class groups

3.1.1 Infinite-type surfaces

All surfaces will be assumed to be second countable, connected, orientable and to have compact
boundary. If the fundamental group of S is finitely generated, we say that S has finite type,
otherwise it has infinite type. The classification of surfaces of possibly infinite type was proven by
von Kerékjártó [Ker23] and Richards [Ric63]. Recall that an end of a surface S is an element of
the set

Ends(S) = lim←−π0(S \K), (3.1)

where the inverse limit is taken over all compact subsets K ⊂ S. The Freudenthal compactification
of S is the union

S = S ⊔ Ends(S)

equipped with the topology generated by U ⊔ {e ∈ Ends(S) | e < U} for all open subsets U ⊆ S.
Here e < U means that there is a compact subset K ⊂ S such that U contains the component of
S \K hit by e under the canonical map Ends(S) → π0(S \K). The induced subspace topology
on Ends(S) coincides with the limit topology induced from the discrete topology on each term in
the inverse system. With this topology, Ends(S) is homeomorphic to a closed subset of the Cantor
set. We call an end e ∈ Ends(S) planar if it has a neighbourhood (in the topology of S) that
embeds into the plane, otherwise we call it non-planar. The (closed) subspace of non-planar ends
is denoted by Endsnp(S) ⊆ Ends(S).

Theorem 3.1.1 ([Ric63, Theorems 1 and 2]). Let S1, S2 be two surfaces of genus g1, g2 ∈ N∪{∞}
and with b1, b2 ∈ N boundary components. Then S1 ∼= S2 if and only if g1 = g2, b1 = b2 and there
is a homeomorphism of pairs of spaces

(Ends(S1),Endsnp(S1)) ∼= (Ends(S2),Endsnp(S2)).

Conversely, given g ∈ N∪{∞}, b ∈ N and a pair X ⊆ Y of closed subsets of the Cantor set, where
we require that g = ∞ if and only if X ̸= ∅, there exists a surface S of genus g with b boundary
components such that (Ends(S),Endsnp(S)) ∼= (Y,X).
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Figure 3.1 The 3-valent vertices of this graph are globally topologically distinguished but not topo-
logically distinguished, since they are similar (but not globally similar) to each other.

3.1.2 Mapping class groups

For a surface S, the mapping class group of S is the group of isotopy classes of orientation-preserving
diffeomorphisms of S fixing the boundary of S pointwise, i.e.

Map(S) := π0(Diff+(S, ∂S)).

The pure mapping class group PMap(S) of S is the subgroup of Map(S) consisting of all
elements whose induced action on Ends(S) is the identity. It follows from the construction of [Ric63,
Theorem 2] (or, more precisely, from the naturality of this construction) that every homeomorphism
of Ends(S) sending the subspace Endsnp(S) onto itself is induced by some homeomorphism of S.
This implies that we have the following short exact sequence.

Proposition 3.1.2. Let S be any surface. Then there is a short exact sequence of groups

1→ PMap(S) −→ Map(S) −→ Homeo(Ends(S),Endsnp(S))→ 1,

where Homeo(Ends(S),Endsnp(S)) denotes the group of homeomorphisms of the pair of spaces
(Ends(S),Endsnp(S)).

3.2 Topologically distinguished points

We now recall from the introduction the notion of topologically distinguished points (Definition
3.0.2) and compare it to a weaker notion of globally topologically distinguished points.

Definition 3.2.1. Let E be a topological space. Two points x, y ∈ E are called similar if there
are open neighbourhoods U and V of x and y respectively and a homeomorphism U ∼= V taking
x to y. This is an equivalence relation on E. A point x ∈ E is called topologically distinguished if
its equivalence class under this relation is {x}, in other words it is similar only to itself.

Definition 3.2.2. Let E be a topological space. Two points x, y ∈ E are called globally similar
if there is a homeomorphism φ ∈ Homeo(E) with φ(x) = y. This is an equivalence relation on
E. A point x ∈ E is called globally topologically distinguished if its equivalence class under this
relation is {x}, in other words it is globally similar only to itself. Equivalently, x ∈ E is globally
topologically distinguished if it is a fixed point of the action of Homeo(E) on E.

Remark 3.2.3. We record two immediate observations:
• If x and y are globally similar then they are similar.
• If x is topologically distinguished then it is globally topologically distinguished.

The converses of these two statements are false in general. For example, the two vertices of
valence 3 in the graph pictured in Figure 3.1 are similar but not globally similar; also, both of
them are globally topologically distinguished but not topologically distinguished. However, for
zero-dimensional (Hausdorff) spaces the converse does hold:

Lemma 3.2.4. Suppose that E is Hausdorff and zero-dimensional, i.e. it has a basis for its topol-
ogy consisting of clopen subsets. Then two points x, y ∈ E are similar if and only if they are
globally similar. Thus x ∈ E is topologically distinguished if and only if it is globally topologically
distinguished.
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Proof. The second statement follows from the first one, so we only have to prove the first statement,
that x, y ∈ E are similar if and only if they are globally similar. One implication is obvious; we
will prove the opposite implication. So let us assume that x, y ∈ E are similar and choose open
neighbourhoods U and V of x and y respectively and a homeomorphism φ : U → V taking x to
y. Assume that x ̸= y (otherwise the result is obvious). Since E is zero-dimensional, we may
assume, by shrinking them if necessary, that U and V are clopen. Since E is Hausdorff, we may
assume, by shrinking them if necessary, that U and V are disjoint. We may therefore extend φ to
a homeomorphism φ̄ ∈ Homeo(E) by:
• φ̄(e) = φ(e) for e ∈ U ;
• φ̄(e) = φ−1(e) for e ∈ V ;
• φ̄(e) = e for e ∈ E ∖ (U ⊔ V ).

This bijection is continuous since {U, V,E ∖ (U ⊔ V )} is an open cover of E and φ̄ is continuous
when restricted to each of these subsets. Its inverse is continuous for the same reason, so it is a
homeomorphism of E taking x to y. Thus x and y are globally similar.

Remark 3.2.5. End spaces of surfaces are always Hausdorff and zero-dimensional, so Lemma
3.2.4 implies that topologically distinguished and globally topologically distinguished are the same
for end spaces.

Lemma 3.2.6. If a space E has a topologically distinguished point, then Eω + 1 has a globally
topologically distinguished point. In fact, the point at infinity is globally topologically distinguished.

Proof. Let∞ denote the point at infinity of the one-point compactification Eω+1 of Eω =
⊔

ω E.
Let φ ∈ Homeo(Eω + 1). We just need to show that φ(∞) = ∞, since it will then follow that
∞ is a globally topologically distinguished point of Eω + 1. Suppose for a contradiction that
φ(∞) ̸=∞. Write Ei = E for each i ∈ N, and identify Eω =

⊔
i∈NEi. By assumption, φ(∞) ∈ Ej

for some j ∈ N. Let x ∈ E be a topologically distinguished point. Every open neighbourhood U
of ∞ ∈ Eω + 1 contains infinitely many points that are similar to x, since, by definition of the
one-point compactification, U must contain Ei for infinitely many i. Since φ is a homeomorphism,
it must also be true that every open neighbourhood of φ(∞) ∈ Eω + 1 contains infinitely many
points that are similar to x. But Ej is an open neighbourhood of φ(∞) ∈ Eω + 1 and it contains
only one point that is similar to x, a contradiction.

Corollary 3.2.7. Suppose that E is Hausdorff and zero-dimensional. If E has a topologically
distinguished point, then the point at infinity of Eω + 1 is topologically distinguished.

Proof. By Lemma 3.2.6, the point at infinity of Eω+1 is globally topologically distinguished. Haus-
dorffness and zero-dimensionality of E automatically imply Hausdorffness and zero-dimensionality
of Eω + 1, so Lemma 3.2.4 then implies that the point at infinity of Eω + 1 is topologically
distinguished.

Remark 3.2.8. There is another, a priori different, equivalence relation on topological spaces,
defined by [MR22]. They define, for points x, y ∈ E:

x ⩽ y ⇐⇒ ∀ open neighbourhoods U ∋ y, ∃z ∈ U : z ∼ x,

where z ∼ x means that z and x are similar in the sense of Definition 3.2.1. This is a pre-order on
E, so it induces an equivalence relation

x ≈ y ⇐⇒ x ⩽ y and y ⩽ x

on E and a poset structure on the quotient E/≈. Clearly x ∼ y implies x ≈ y. Also, if we
now assume that E is the end space of a surface Σ, it is not hard to see (using Lemma 3.2.4
and Proposition 3.1.2) that x ∼ y if and only if there is a homeomorphism of Σ taking x to
y. Theorem 1.2 of [MR22] says that if x ≈ y then there is a homeomorphism of Σ taking x to
y. It follows that ∼ and ≈ are the same equivalence relation on E if it is the end space of a
surface. In [MR23], the authors often consider the condition that “Σ has a unique maximal end”,
i.e. there is a unique maximal equivalence class [x] ∈ E/≈ and the equivalence class [x] has size
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1. The condition that we require in this chapter is however much weaker, namely that “Σ has a
topologically distinguished end”, i.e. there is an equivalence class [x] ∈ E/≈ of size 1 (but it need
not be maximal in the poset structure of E/≈).

3.3 Tools for proving uncountability

We start with a key lemma, which we use several times to conclude uncountability of the homology
of a given group G in all positive degrees.

Notation 3.3.1. Let us fix some notation that will be used throughout the rest of the chapter.
• For an abelian group A, denote by Λ∗(A) the exterior algebra on A.
• We denote by c the cardinality of the continuum.

Lemma 3.3.2. Let G be a group, denote by α : G↠ Gab = H1(G) the quotient onto its abeliani-
sation and let ι :

⊕
c Z→ G be a homomorphism. Suppose that there is an embedding f :

⊕
c Q ↪→

H1(G) such that the diagram ⊕
c

Z G

⊕
c

Q H1(G),

ι

α

f

(3.2)

commutes, where
⊕

c Z ↪→
⊕

c Q is the canonical inclusion. Then there is an injective homomor-
phism of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(G).

In particular, Hi(G) is uncountable for all i ⩾ 1.

Proof. By Lemma 3.8.1, the embedding f admits a retraction. Hence the canonical inclusion⊕
c

Z ↪−→
⊕
c

Q (3.3)

factors through G. It follows that the induced homomorphism of graded abelian groups

H∗

(⊕
c

Z
)
−→ H∗

(⊕
c

Q
)

(3.4)

factors through H∗(G). The integral homology of a torsion-free abelian group A is naturally iso-
morphic to the exterior algebra Λ∗(A) (see [Bro82, Theorem V.6.4(ii)]), so we have homomorphisms
of graded abelian groups

Λ∗
(⊕

c

Z
)
−→ H∗(G) −→ Λ∗

(⊕
c

Q
)
, (3.5)

whose composition is injective by Lemma 3.8.3. In particular the first map must be injective.

In order to apply Lemma 3.3.2, we will need to be able to construct embeddings of direct sums
of copies of Q into the first homology of big mapping class groups. The key topological input for
this is a theorem of Domat, which we recall below and whose proof uses the machinery of Bestvina,
Bromberg and Fujiwara [BBF15]. We first make some definitions that are implicit in the statement
of [Dom22, Theorem 6.1].

Definition 3.3.3. Let S be a connected surface with at least two ends. Let us call a sequence
{γi}i∈N of isotopy classes of simple closed curves on S an escaping sequence if:
• each γi is end-separating, i.e., cutting along it disconnects S into two non-compact surfaces;
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Figure 3.2 The once-punctured Loch Ness monster surface equipped with a sequence {γi}i∈N of simple
closed curves that is a well-spaced, escaping sequence in the sense of Definition 3.3.3. The fact that
it is well-spaced is witnessed by the associated sequence of simple closed curves {γ′

i}i∈N given by
γ′

i = Tαi (γi).

Figure 3.3 The flute surface equipped with a sequence {γi}i∈N of simple closed curves that is an
escaping sequence in the sense of Definition 3.3.3. After passing to the subsequence {γ2i}i∈N, it
becomes well-spaced, as explained in Example 3.3.6.

• γi and γj have pairwise-disjoint representatives for i ̸= j;
• the sequence γ1, γ2, . . . eventually leaves every compact subset of S, i.e., if K ⊂ S is a compact

subset then only finitely many γi may be isotoped to lie in K.
An escaping sequence {γi}i∈N is well-spaced if there exists another escaping sequence {γ′

i}i∈N such
that:
• γ′

i is not isotopic to γi;
• γ′

i and γj have pairwise-disjoint representatives for i ̸= j;
• there is a (necessarily non-trivial) element gi ∈ PMapc(S) taking γi to γ′

i.

Remark 3.3.4. It follows from the classification of surfaces that an escaping sequence exists on
S if and only if S has infinite type. In addition, any escaping sequence becomes well-spaced after
passing to an appropriate subsequence.

Example 3.3.5. In the key example of S = L′ the once-punctured Loch Ness monster surface,
we may for example take {γi}i∈N to be the sequence of curves pictured in Figure 3.2. Each γi

is clearly end-separating, they are pairwise disjoint and no compact subset of L′ contains more
than finitely many of them, so this sequence is escaping. Moreover, taking γ′

i = Tαi
(γi) using the

curves αi also pictured in Figure 3.2, we obtain another escaping sequence {γ′
i}i∈N witnessing that

{γi}i∈N is well-spaced.

Example 3.3.6. As another example, we may consider the flute surface depicted in Figure 3.3,
together with the curves γi illustrated. These form an escaping sequence {γi}i∈N, but this is not
a well-spaced escaping sequence: for example, one may attempt to construct another escaping
sequence witnessing that it is well-spaced by setting γ′

i = Tαi(γi) using the curves αi illustrated,
but then γ′

i intersects γ′
i+1, so {γ′

i}i∈N is not an escaping sequence as in Definition 3.3.3. However,
the subsequence {γ2i}i∈N is well-spaced, as witnessed by the subsequence {γ′

2i}i∈N.

Theorem 3.3.7 ([Dom22, Theorem 6.1]). Let S be an infinite-type surface with at least two ends
and let {γi}i∈N be a well-spaced escaping sequence of simple closed curves on S. Let a1, a2, . . . be
an unbounded sequence of positive integers. Then

∞∏
i=1

(Tγi)ai ∈ PMapc(S)

projects to a non-zero element in
(
PMapc(S)

)ab.
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In fact, what is used in practice in [Dom22] is the following stronger fact, in the case when
S has genus at least three. It is implicit in [Dom22, §8.1.1]; here we make the statement and the
details of the proof explicit.

Corollary 3.3.8. Let S be an infinite-type surface of genus at least three with at least two ends
and let {γi}i∈N be a well-spaced escaping sequence of simple closed curves on S. Let a1, a2, a3, . . .
be a strictly increasing sequence of positive integers. Then there is an injective homomorphism
φ : Q ↪→

(
PMapc(S)

)ab sending 1/n ∈ Q to the element
∞∏

i=rn

(Tγi)ai!/n ∈
(
PMapc(S)

)ab
,

where rn ⩾ 1 is any integer sufficiently large so that ai ⩾ n for all i ⩾ rn.

Proof. Using the presentation Q ∼= ⟨x1, x2, x3, . . . | (xn)n = xn−1⟩, where xn corresponds to
1/n! ∈ Q, we see that in order to define a homomorphism φ : Q → G, for any group G, it suffices
to choose an element φ(1) of G, a square root φ(1/2!) of φ(1), a cube root φ(1/3!) of φ(1/2!), etc.
We begin by choosing

φ(1) =
∞∏

i=1
(Tγi

)ai! ∈
(
PMapc(S)

)ab
.

This is non-trivial by Theorem 3.3.7, since the sequence (ai!) is unbounded. In fact, Theorem 3.3.7
implies that φ(1) has infinite order, since the sequence (nai!) is unbounded for all n ⩾ 1. We next
need to choose a square root φ(1/2!) of this element. First choose r2 ⩾ 1 so that ai ⩾ 2 for all
i ⩾ r2 (this is possible since (ai) is strictly increasing). Then set

φ(1/2!) =
∞∏

i=r2

(Tγi)ai!/2! ∈
(
PMapc(S)

)ab

and notice that
φ(1)

2φ(1/2!) =
r2−1∏
i=1

(Tγi
)ai! ∈

(
PMapc(S)

)ab
.

This is a finite product of Dehn twists, so it is the image of the corresponding element of PMapc(S)ab.
Restricting further, choose a compact subsurface S′ ⊂ S containing the curves γ1, . . . , γr2−1 in its
interior and having genus at least three. The element above is then the image of the corresponding
element of Map(S′)ab. But the mapping class group of any compact, orientable surface of genus at
least three is perfect [Bir70; Pow78], so Map(S′)ab = 0 and hence φ(1) = 2φ(1/2!). Continuing in
the same way, we construct a cube root of φ(1/2!), etc. Thus we have constructed a homomorphism
φ from Q.

Recall that any homomorphism defined on Q is injective as long as its restriction to Z ⊂ Q
is injective. We observed above that φ(1) has infinite order; hence φ is injective. Finally, the
formula for φ(1/n) in the statement follows immediately from the construction, noting again that
we may remove finitely many terms from the infinite product without changing the element of the
abelianisation.

The following corollary is again implicit in [Dom22, §8.1.1], but we prefer to make the state-
ment and the details of the proof explicit. Let the surface S and the sequences {γi}i∈N and {ai}i∈N
be as in Corollary 3.3.8. For any infinite subset F ⊆ N, denote by

φF : Q ↪−→
(
PMapc(S)

)ab

the embedding obtained by applying Corollary 3.3.8 to the sequences {γi}i∈N and {ai}i∈N.

Corollary 3.3.9. Let F be a family of infinite subsets of N such that any two of them have finite
intersection. Then the homomorphism

ΦF =
⊕
F ∈F

φF :
⊕
F ∈F

Q −→
(
PMapc(S)

)ab
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is also injective.

Proof. Let (rF ) ∈ ker(ΦF ). Since the domain of ΦF is a direct sum, there are only finitely many
F ∈ F such that rF ̸= 0; let us enumerate these as F1, . . . , Fs. Also choose n ⩾ 1 so that
mF := nrF ∈ Z. We therefore have

0 = ΦF (n(rF )) = ΦF ((mF )) =
∏

i∈F1

(
(Tγi

)ai!
)mF1 · · ·

∏
i∈Fs

(
(Tγi

)ai!
)mFs

.

By Theorem 3.3.7, this product can only be zero if it is a finite product. But each F1, . . . , Fs is
infinite. Moreover, two terms of the product can only cancel if they are indexed by an element of
one of the pairwise intersections Fp∩Fq for p ̸= q ∈ {1, . . . , s}, all of which are finite by assumption.
Thus only finitely many cancellations can occur, so the only possible way for this product to be
zero is if s = 0, which means that (rF ) = 0. Thus ΦF is injective.

3.4 Proof of Theorem 3.A

We are now ready to prove Theorem 3.A. The tools of the previous section imply almost immedi-
ately the following result.

Proposition 3.4.1. Let S be an infinite type surface of genus at least three with at least two ends.
Then there is an injective homomorphism of graded abelian groups

Λ∗
(⊕

c

Z
)
↪−→ H∗(PMapc(S)).

Proof. Choose a well-spaced escaping sequence {γi}i∈N of simple closed curves on S (such a se-
quence always exists by Remark 3.3.4) and set ai = i. Choose a family F of infinite subsets of N
such that any two of them have finite intersection, and such that the family F has the cardinality
of the continuum. (For example, we may identify N with Q and choose for each a ∈ R a sequence
of distinct rationals converging to a.) There is then a commutative diagram⊕

F
Z PMapc(S)

⊕
F

Q
(
PMapc(S)

)ab
,

ΦF

(3.6)

where the bottom horizontal map ΦF is injective by Corollary 3.3.9 and its lift to PMapc(S) after
restricting to Z ⊂ Q in each summand is given by sending the generator 1 ∈ Z of the summand
corresponding to F ∈ F to the element∏

i∈F

(Tγi
)i! ∈ PMapc(S).

The result then follows by an application of Lemma 3.3.2.

Remark 3.4.2. Proposition 3.4.1 also holds without the assumption that S has genus at least 3.
This follows from an analogue of Corollary 3.3.8 that involves a sequence of pseudo-Anosov elements
supported on pairwise-disjoint compact subsurfaces of S instead of Dehn twists; see [Dom22, §8.1.2]
for more details of this construction. One then obtains a diagram of the form (3.6), where the
horizontal maps are defined using infinite products of powers of these pseudo-Anosov elements
instead of Dehn twists, and the result then follows from Lemma 3.3.2.

We next deduce the analogue of Theorem 3.B for the Loch Ness monster surface L and the
surface L′ obtained by removing one puncture from L.
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Proposition 3.4.3. The graded abelian groups H∗(Map(L′)) and H∗(Map(L)) each contain an
embedded copy of the exterior algebra Λ∗(⊕

c Z
)
.

Proof. Since L′ has at most one non-planar end, [PV18, Theorem 4] implies that PMapc(L′) =
PMap(L′). We also have PMap(L′) = Map(L′) since L′ has only two punctures, which cannot be
interchanged by a homeomorphism of L′ since exactly one of them is non-planar. Thus the result
for L′ is a special case of Proposition 3.4.1. In this case, the sequence of simple closed curves γi

may be taken to be those illustrated in Figure 3.2 (see Example 3.3.5).
In order to deduce the result for L, we use the Birman exact sequence, which takes the form

1→ π1(L) −→ Map(L′) −→ Map(L)→ 1. (3.7)

Since abelianisation is a right-exact functor, it follows that the kernel ofH1(Map(L′))→ H1(Map(L))
is a quotient of H1(L); in particular it is countable. Consider the diagram⊕

F
Z Map(L′) Map(L)

⊕
F

Q (Map(L′))ab (Map(L))ab,
ΦF (∗)

(3.8)

where the left-hand square is (3.6) in the case S = L′ and the right-hand square is induced by
(3.7). We know that (∗) has countable kernel by the discussion above, so Lemma 3.8.2 implies that,
after removing countably many terms from the direct sum on the left-hand side, the composition
across the bottom of (3.8) is also injective. We therefore obtain a diagram⊕

c

Z Map(L)

⊕
c

Q (Map(L))ab,
(∗)′

(3.9)

where (∗)′ is injective and the direct sums on the left-hand side are still indexed by a set with the
cardinality of the continuum. The result for L thus follows from Lemma 3.3.2.

Remark 3.4.4. We noted in Remark 3.4.2 that Proposition 3.4.1 holds without the assumption
on the genus of S, i.e. it holds for any infinite type surface S with at least two ends. On the other
hand, if S is an infinite type surface with at most one end, it must be the Loch Ness monster surface
S = L, and the result then follows from Proposition 3.4.3 (see also [Dom22, Appendix]). Thus, in
fact, Proposition 3.4.1 holds for any infinite type surface S. This is the first part of Theorem 3.A:

Corollary 3.4.5. Let S be any infinite-type surface. Then the graded abelian group H∗(PMapc(S))
contains an embedded copy of the exterior algebra Λ∗(⊕

c Z
)
, induced by an embedding

⊕
c Z ↪→

PMapc(S).

Remark 3.4.6. There are two points where this proof is not entirely constructive. The first is
the choice of the family F = {Λa | a ∈ R} of infinite subsets of N. However, this may easily be
made explicit by choosing an explicit bijection between N and Q and then letting Λa ⊆ Q, for
a ∈ R, be the sequence of rational numbers converging to a ∈ R given by truncating the binary
expansion of a (to avoid ambiguity and to ensure that Λa is infinite, we specify that if a has a
binary expansion ending in a sequence of 0’s, we choose its other binary expansion ending in a
sequence of 1’s). The second point where it is non-constructive is in passing from diagram (3.8)
to diagram (3.9) by throwing away countably many real numbers indexing the direct sum on the
left-hand side. However, looking carefully at the proof of Lemma 3.8.2, one may make this step
constructive too.
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Remark 3.4.7. When S has at most one non-planar end, the pure mapping class group PMap(S)
coincides with PMapc(S), by [PV18, Theorem 4]. Thus Corollary 3.4.5 says that H∗(PMap(S)) is
uncountable in every positive degree when S has at most one non-planar end. This statement also
holds when S has infinitely many non-planar ends. Indeed, by [APV20, Corollary 6], we have in
this case that

PMap(S) ∼= PMapc(S) ⋊ ZN.

In particular, ZN is a retract of PMap(S), so the natural induced map Hi(ZN)→ Hi(PMap(S)) is
split-injective in every degree. The fact that that H∗(PMap(S)) is uncountable in every positive
degree in this case is therefore an immediate corollary of the following lemma.

Lemma 3.4.8. The homology group Hi(ZN) contains a direct summand isomorphic to ZN in every
degree i > 0. Hence it contains a subgroup isomorphic to

⊕
c Z in every degree i > 0.

Proof. The first statement follows from the Künneth theorem applied to the decomposition ZN ∼=
ZN × Zi. The second statement then follows from the fact that ZN contains free abelian groups of
rank c. To see this, choose a family F , of cardinality |F| = c, of infinite subsets of N such that any
pair have finite intersection. (For example, as in the proof of Proposition 3.4.1, we may identify N
with Q and choose for each a ∈ R a sequence of distinct rationals converging to a.) It is then easy
to check that the collection

{χF ∈ ZN | F ∈ F},

where χF : N→ {0, 1} ⊂ Z denotes the indicator function of F ⊆ N, is Z-linearly independent and
hence generates a subgroup of ZN isomorphic to

⊕
c Z.

Remark 3.4.9. When S has n non-planar ends with 1 < n < ∞, by [APV20, Corollary 6] we
have:

PMap(S) ∼= PMapc(S) ⋊ Zn−1, (3.10)

where Zn−1 is freely generated by n − 1 handle shifts h1, . . . , hn−1. As indicated in the proof of
[APV20, Theorem 5], one may choose the handle shifts hj to have pairwise disjoint support. Let
Yj be the support of hj . Recall that each Yj is a subsurface homeomorphic to the result of gluing
handles onto R × [0, 1] periodically with respect to the transformation (x, y) 7→ (x + 1, y). For
convenience, we shall require that the i-th handle is attached to [i, i+ 1]× [0, 1] and that hj maps
the i-th handle to the (i+ 1)-st handle. See Figure 3.4 for an illustration. The semi-direct product
decomposition (3.10) implies that

H1(PMap(S)) ∼= H1(PMapc(S))Zn−1 ⊕ Zn−1, (3.11)

where (−)Zn−1 denotes the coinvariants under the action of the handle shifts. By Theorem 3.3.7,
choosing the sequence of curves γi as illustrated in Figure 3.4 and any unbounded sequence of
positive integers ai, the infinite product of Dehn twists f =

∏∞
i=1(Tγi)ai ∈ PMapc(S) represents

a non-trivial element in the abelianisation H1(PMapc(S)). But it vanishes in H1(PMap(S)) – in
other words, in the coinvariants under the action of the handle shifts – since [f ] = [g]− [h1gh

−1
1 ],

where g =
∏∞

i=1(Tγi
)bi , bi = Σi

j=1aj .

Recall that the Torelli group T (S) is the kernel of the natural homomorphism Map(S) →
Aut(H1(S)).

Theorem 3.4.10. Let S be an infinite-type surface. The integral homology group Hi(T (S)) is
uncountable for every i ⩾ 1. In fact it contains an embedded copy of

⊕
c Z in every positive degree.

Proof. By Corollary 3.4.5, there is an embedding⊕
c Z ↪−→ PMapc(S) (3.12)

that induces on homology an embedding of Λ∗(⊕
c Z
)

into H∗(PMapc(S)). It will therefore suffice
to show that (3.12) factors through the Torelli group T (S).
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Figure 3.4 A surface with n non-planar ends e1, . . . , en for 2 ⩽ n < ∞. The top and bottom edges
are identified to obtain a sphere, then the points e1, . . . , en (together with a set of planar ends, which
is not pictured) are removed, then we take a connected sum with a torus along each of the (infinitely
many) small grey discs. The planar ends (not pictured) may have some or all of the non-planar ends
e1, . . . , en as limit points, but in any case lie outside of the subsurfaces Y1, . . . , Yn−1, which support
the handle shifts h1, . . . , hn−1. The curves γ1, γ2, γ3, . . . are chosen as illustrated such that the handle
shift h1 sends γi to γi+1 (up to isotopy).

We first note that the Torelli group is contained in PMapc(S) ⊂ Map(S): it clearly lies
in PMap(S) since any non-trivial action on the space of ends of S implies a non-trivial action on
H1(S); then the fact that it lies in PMapc(S) follows from [APV20, Corollary 6], which decomposes
PMap(S) as a semi-direct product of PMapc(S) and a direct product of copies of Z generated by
handle shifts, together with the fact that handle shifts act non-trivially on H1(S).

Finally, we just have to note that the elements of PMapc(S) used to define the homomorphism
(3.12) actually lie in T (S). When the genus of S is at least 3, these elements are infinite products of
Dehn twists around (pairwise disjoint) separating curves; hence they act trivially on H1(S). When
the genus is at most 2, we instead use infinite products of (pairwise disjointly-supported) pseudo-
Anosov elements, as explained in Remark 3.4.2. These elements are of the form T 2

αT
2
βT

−2
α T−2

β for
a pair of separating curves α, β that fill a finite-type subsurface of S, as explained in [Dom22,
p. 715], and they also act trivially on H1(S).

Remark 3.4.11. In degree one, H1(T (S)) contains an embedded copy of
⊕

c Q, by [Dom22,
Theorem 9.1].

3.5 Descending along double branched covers

In this section we generalise techniques of Malestein and Tao [MT23] – who proved uncountability
of homology in degree 1 for the mapping class group of R2 ∖N – to higher degrees and to the more
general class of surfaces from Theorem 3.B, completing the proof of that theorem. To do this, we
will need the notion of a ray surface associated to a surface Σ.

Definition 3.5.1. Let Σ be any connected surface without boundary and write Σ1 (respectively
Σ2) for the surface obtained by removing one (respectively two disjoint) open discs from Σ. The ray
surface R(Σ) is the surface obtained by gluing together infinitely many copies of Σ2 and “capping
off” in one direction with a single copy of Σ1. See the top half of Figure 3.5 for an example where
Σ = T 2 is the torus; thus R(T 2) is the Loch Ness monster surface.

Remark 3.5.2. This is the same as the surface denoted by L(Σ) in [PW22b] with its boundary
capped off by a disc.

Before proving Theorem 3.B in general, we will prove it under certain stronger hypotheses on
the surface S. Namely, we assume that the surface S has genus 0, empty boundary and that its
space of ends is of the form Υ+(E),1 where E has a topologically distinguished point. This means
that S may be written as R(S2 ∖E), using the construction R(−) of ray surfaces from Definition
3.5.1 above.

Denote by L the Loch Ness monster surface and consider its branched double covering L→ R2

depicted in Figure 3.5. This may also be written as

L ∼= S2♯R(T 2) −→ S2♯R(S2) ∼= R2. (3.13)
1 Recall that the notation Υ+(−) was defined in Definition 3.0.3.
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Figure 3.5 The branched double covering (3.13). After removing the subset marked in red (which
includes the branch points), this restricts to the (genuine) double covering (3.14).

This decomposition corresponds to cutting along the curves depicted in the figure. Notice that
there are exactly two branch points (of order 2) in each copy of S2 in R(S2) and one additional
branch point in the copy of S2 in the extra connected summand. Let us now choose once and
for all a topologically distinguished point x ∈ E (this exists by hypothesis) and embed pairwise
disjoint copies of E into S2♯R(S2) so that:
• each copy of E lies entirely in one of the copies of S2,
• the point x ∈ E is sent to a branch point of (3.13),
• each branch point of (3.13) is in the image of one of the embeddings of E.

We denote by X the complement of these embedded copies of E and we denote by Y ⊂ S2♯R(T 2)
the pre-image of X ⊂ S2♯R(S2) under (3.13). Notice that:

Y ∼= (S2 ∖ V )♯R(T 2 ∖ (V ⊔ V ))
X ∼= (S2 ∖ E)♯R(S2 ∖ (E ⊔ E)) ∼= R(S2 ∖ E) ∼= S,

where V denotes the wedge sum of two copies of E at the basepoint x. Since we have in particular
removed all branch points of the branched double covering, we obtain by restriction a (genuine)
double covering

Y −→ X (3.14)

depicted in Figure 3.5.
We fix compatible basepoints on X and Y and denote by H the index-2 subgroup of π1(X)

corresponding to this double covering. We also write Map∗(X) and Map∗(Y ) for the based mapping
class groups of X and Y , given by isotopy classes of self-homeomorphisms that fix the basepoint.

Lemma 3.5.3. The action of Homeo∗(X) on π1(X) preserves the subgroup H.

Proof. We first describe the subgroup H ⊂ π1(X) intrinsically. A based loop γ in X lies in H if
and only if its lift to Y is a closed loop. This occurs if and only if the sum of its winding numbers
around all branch points of the branched double covering (3.13) is even. We therefore have to show
that if the sum of these winding numbers is even for γ, then the same is true for φ ◦ γ, where φ is
any based self-homeomorphism of X.

A subtle point here is the meaning of winding number (which we only need to define mod
2): a simple loop in the surface X has winding number ±1 around an end e ̸= ∞ if it separates
X into two pieces, one containing e and the other containing the end ∞. Here ∞ denotes the
end corresponding to going off to infinity to the right in Figure 3.5. More precisely, recall that
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the end space of X is the one-point compactification Υ+(E) = Eω + 1 of a countably infinite
disjoint union of copies of E and∞ denotes the point at infinity of this one-point compactification.
By Corollary 3.2.7 and our assumption that E has a topologically distinguished point, the point
∞ ∈ Eω + 1 is also topologically distinguished. Thus any self-homeomorphism φ of X fixes ∞,
meaning that the notion of “winding number” is preserved by φ.

Let us now show that if the sum of the winding numbers of γ around all branch points of X is
even, then the same is true for φ ◦ γ. The end space Eω+ 1 of X has a topologically distinguished
subset {x}ω given by the copy of the topologically distinguished point x in each copy of E. But
this is precisely the set of branch point of the branched double covering (3.13). Thus the self-
homeomorphism φ must send each end of X corresponding to a branch point to another end of X
corresponding to a branch point. Its effect on winding numbers around branch points is therefore
simply to permute them; so in particular their sum is preserved. Hence if the sum of winding
numbers around branch points is even for γ, then the sum of winding numbers around branch
points will also be even for φ ◦ γ.

Remark 3.5.4. The proof of Lemma 3.5.3 is where our assumption that the space E has a topo-
logically distinguished point is used decisively. The lemma would be false without this assumption.
See also Remark 3.5.5.

We may now complete the proof of Theorem 3.B under the stronger assumptions that we are
currently making (we explain how to remove these assumptions at the end of this section).

Proof of Theorem 3.B under additional assumptions. It follows from Lemma 3.5.3 that each based
homeomorphism of X lifts uniquely to a based homeomorphism of Y , giving us a continuous map
Homeo∗(X)→ Homeo∗(Y ), which on π0 induces

Map∗(X) −→ Map∗(Y ). (3.15)

Filling in all planar ends of a surface is a functorial operation on the category of surfaces, so
by filling in all planar ends of Y we obtain a continuous map Homeo∗(Y ) → Homeo∗(L) (see
Proposition 3.9.2), which on π0 induces

Map∗(Y ) −→ Map∗(L). (3.16)

Composing (3.15) and (3.16) with the forgetful map Map∗(L)→ Map(L), we obtain

Map∗(X) −→ Map(L). (3.17)

Let α1, α2, . . . be the collection of simple closed curves on X depicted in Figure 3.5. Since γi is a
double covering of αi, we see that

(Tαi)2 7−→ Tγi

under (3.17). Now recall that in §3.4 (see diagram (3.9)) we factored the inclusion
⊕

c Z ⊂
⊕

c Q
through a map

⊕
c Z → Map(L) that sends the generator 1 ∈ Z of each summand to a certain

infinite product of Dehn twists around the curves γi from the top of Figure 3.5. Replacing each
Tγi with (Tαi)2 in this infinite product, we obtain a map

⊕
c Z→ Map∗(X) making the following

triangle commute: ⊕
c

Z

Map∗(X) Map(L),(3.17)

(3.18)

where the right-hand diagonal map is part of a factorisation
⊕

c Z → Map(L) →
⊕

c Q of the
standard inclusion. We have therefore shown that the standard inclusion of

⊕
c Z into

⊕
c Q also

factors through Map∗(X). Now consider the diagram⊕
c Z Map∗(X)

⊕
c Q

Map(X),

φ

(3.19)
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Figure 3.6 A modification of the branched double covering depicted in Figure 3.5.

where the middle vertical map forgets the basepoint. This is part of the Birman exact sequence for
X, and its kernel is π1(X), which is in particular countable. Let us denote this kernel by K and
consider its image φ(K) ⊂

⊕
c Q. Since φ(K) is countable and each of its elements has only finitely

many non-zero coordinates in
⊕

c Q (because it is a direct sum), it is contained in the subgroup of⊕
c Q given by the direct sum of only countably many of the copies of Q. If we take the quotient

by this subgroup, the resulting group is again isomorphic to
⊕

c Q and the homomorphism φ now
descends to Map(X). On the left-hand side of (3.19), we may compose with the inclusion of the
corresponding sub-direct-summand of

⊕
c Z (which is again isomorphic to

⊕
c Z); this ensures that

the composition across the top row of the following diagram is still the standard inclusion of
⊕

c Z
into

⊕
c Q:

⊕
c Z

⊕
c Z Map∗(X)

⊕
c Q

⊕
c Q.

Map(X)

φ

(3.20)

Thus we have shown that the standard inclusion of
⊕

c Z into
⊕

c Q factors through Map(X).
This standard inclusion induces an injection on homology in all degrees, by Lemma 3.8.3 and the
fact that H∗(A) = Λ∗(A) for torsion-free abelian groups A, so it follows that we have an injection

Λ∗
(⊕

c

Z
)

= H∗

(⊕
c

Z
)
↪−→ H∗(Map(X)) = H∗(Map(S)).

This completes the proof of Theorem 3.B under the additional assumptions on the surface S.

We finish this section by showing how to modify the argument above to allow the more general
surfaces S considered in the theorem.

Proof of Theorem 3.B in general. The proof follows exactly the same strategy as the proof in the
special case above, so we just explain the steps that differ slightly.
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In general, the surface S is of the form pictured at the bottom of Figure 3.6, where we have
taken a connected sum of the surface considered previously with another surface of finite genus
having finitely many boundary components, such that none of the points of its end space are similar
to the topologically distinguished point x ∈ E. We may correspondingly modify the total space
of the double covering by taking two connected sums with this surface (no new branch points are
introduced).

Lemma 3.5.3 generalises directly to this setting, giving us a homomorphism that lifts (based)
mapping classes up the double covering. Filling in all planar ends upstairs, as well as the finitely
many boundary components, we obtain (as before) the Loch Ness monster surface L. With these
modifications, the rest of the proof is identical to the proof in the special case given above, using
the constructions of §3.4.

Remark 3.5.5. It is essential to assume in Theorem 3.B that E2 has a topologically distinguished
point. Indeed, if we do not assume this, then the theorem is false. For example, without this
assumption, the theorem would assert that the homology of Map(S2 ∖ C) is uncountable in all
positive degrees, since Υ+(C) ∼= C. However, the first and second homology groups of Map(S2 ∖ C)
are known to be 0 and Z/2 respectively [CC21].

3.6 Torsion elements

We prove in this section that, whenever S has genus 2, both H1(PMap(S)) and H1(Map(S))
contain an element of order 10 that generates a direct summand. We first recall that, for compact
surfaces of genus 2, the first homology of their mapping class groups is precisely Z/10. Denote
by Sg,b the connected, compact, orientable surface of genus g with b ⩾ 1 boundary components.
When g = 2, we have the following.

Theorem 3.6.1 ([Kor02, §5]; see also [Mum67]). For any b ⩾ 0, we have H1(Map(S2,b)) ∼= Z/10,
generated by [Tα], where α is any non-separating simple closed curve in S2,b.

Proof of Theorem 3.C. If S has genus 2, there is an embedding S2,1 ⊆ S. Also, filling in the ends
of S (all of which are planar since it has finite genus) to construct its Freudenthal compactification
results in the compact surface S2,b, where b ⩾ 0 is the number of boundary components of S. We
therefore have homomorphisms

Map(S2,1) −→ PMap(S) ⊆ Map(S) −→ Map(S2,b), (3.21)

where the first is given by extending homeomorphisms of S2,1 by the identity on S ∖ S2,1 and the
second is given by the unique extension of homeomorphisms to the Freudenthal compactification
(see Proposition 3.9.2). Let α be a non-separating simple closed curve in S2,1. By Theorem 3.6.1,
the composition across (3.21) induces a map Z/10→ Z/10 on first homology. Moreover, it clearly
sends [Tα] to itself, so it sends a generator of the first Z/10 to a generator of the second Z/10; thus
it is an isomorphism. Since we have factored an isomorphism of Z/10 through H1(PMap(S)) and
H1(Map(S)), it follows that these groups both contain Z/10 as a direct summand.

We record here a related general fact that (for example) allows one to embed torsion elements
of the homology of mapping class groups of compact surfaces into the homology of mapping class
groups of surfaces of infinite type.

Lemma 3.6.2. Let S and S′ be two surfaces with non-empty (compact) boundary and assume that
S′ is planar. Then there are embeddings of direct summands

H∗(PMap(S)) ↪−→ H∗(PMap(S♮S′)) and H∗(Map(S)) ↪−→ H∗(Map(S♮S′)), (3.22)

where −♮− denotes the boundary connected sum along one chosen interval in the boundary of each
of the two surfaces.
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Proof. Since S′ is planar, it must be of the form S′ = S0,b ∖ E, where b ⩾ 1 is the number of its
boundary components and E is its space of ends. We therefore have homomorphisms

PMap(S) −→ PMap(S♮S′) −→ PMap(S♮S0,b) −→ PMap(S♮S0,1) ∼= PMap(S), (3.23)

where the first is given by extending homeomorphisms by the identity on S′, the second is given
by the unique extension of homeomorphisms to the Freudenthal compactification (see Proposition
3.9.2) and the third is given by filling in all boundary components of S0,b with discs, except the
one along which we have taken the boundary connected sum, and extending homeomorphisms
by the identity on these new discs. The isomorphism on the right-hand side is induced by a
homeomorphism S♮S0,1 ∼= S given by pushing the disc S0,1 into a collar neighbourhood of the
boundary of S. The composition across (3.23) is given by extending homeomorphisms of S by the
identity on S0,1 and then conjugating by the homeomorphism S♮S0,1 ∼= S. This is clearly isotopic
to the identity, so, applying H∗, we have factored the identity map of H∗(PMap(S)) through
H∗(PMap(S♮S′)), which provides the first embedding of (3.22). The second embedding follows by
an identical argument, replacing PMap(−) with Map(−) everywhere.

3.7 Some open problems

In this section we propose some open questions, in addition to Questions 3.0.6, 3.0.11 and 3.0.12
discussed in the introduction. We divide them into §3.7.1 on homology and §3.7.2 on cohomology.

3.7.1 Homology

So far, our calculations suggest the answer to the following question could be positive.

Question 3.7.1. Let S be an infinite-type surface. Suppose that, for some i ⩾ 1, the group
Hi(Map(S)) is countable. Is Hi(Map(S)) finitely generated for all i?

This would imply a dichotomy between those S for which Hi(Map(S)) is finitely generated
for all i ⩾ 1 and those S for which Hi(Map(S)) is uncountable for all i ⩾ 1.

Question 3.7.2. Let Sg,1 be the connected, compact, orientable surface of genus g and with one
boundary component. Does the forgetful map Map(Sg,1 ∖ C) → Map(Sg,1) induce isomorphisms
on homology in all degrees?

Remark 3.7.3. When g = 0, a positive answer follows from [PW22b, Theorem B]. The answer in
degree one (and for any g) has been proven to be positive in [CC22, Theorem 2.3]. On the other
hand, the answer would be negative if we considered the sphere instead of Sg,1, since H2(Map(S2∖
C)) ∼= Z/2 by [CC21, Theorem A.2]. It would also be negative if we took the plane instead of Sg,1,
since Hi(Map(R2 ∖ C)) ∼= Z for all even i by [PW22b, Theorem A].

By [PW22b, Theorem C], the mapping class groups of 1-holed binary tree surfaces are acyclic.
One may wonder whether these are the only acyclic mapping class groups of infinite-type surfaces
with connected boundary:

Question 3.7.4. Let S be an infinite-type surface with a single boundary component and suppose
that its mapping class group Map(S) is acyclic. Is S necessarily a 1-holed binary tree surface?

3.7.2 Cohomology

Most of the results of this chapter may be summarised as follows. For any infinite-type surface S,
the natural inclusion

⊕
c Z ⊂

⊕
c Q factors as⊕

c

Z −→ T (S) ⊆ PMapc(S) −→
⊕
c

Q, (3.24)
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and similarly for the full mapping class group Map(S) if S satisfies the conditions of Theorem
3.B or if it is the Loch Ness monster surface (Proposition 3.4.3). Our results about integral
homology then follow from the fact that the natural inclusion

⊕
c Z ⊂

⊕
c Q induces an injective

homomorphism of exterior algebras Λ∗(
⊕

c Z) ⊂ Λ∗(
⊕

c Q) on homology (Lemma 3.8.3). It is
therefore natural to consider also the effect of the factorisation (3.24) on integral cohomology.
However, this factorisation does not tell us anything about cohomology, since the composition
across (3.24) induces the zero map on cohomology:

Lemma 3.7.5. For each i ⩾ 1, we have:

Hi
(⊕

c

Z
)
∼=
∏
c

Z,

Hi
(⊕

c

Q
)
∼=

{
0 if i = 1,⊕

2c Q if i ⩾ 2.

In particular, the inclusion
⊕

c Z ⊂
⊕

c Q induces the zero map on Hi.

Proof. The last statement follows from the two calculations, since the induced map on Hi has a
rational vector space as its domain, which is a divisible group. Its image must therefore also be
divisible, but the only divisible subgroup of

∏
c Z is the trivial group.

It therefore remains to check the two calculations. The first one follows from the fact that
Hi(
⊕

c Z) ∼=
⊕

c Z for all i ⩾ 1, the universal coefficient theorem, the fact that HomZ(−,−) and
ExtZ(−,−) take direct sums to products in the first variable and HomZ(Z,Z) ∼= Z and ExtZ(Z,Z) =
0.

For the second calculation, we again use the universal coefficient theorem, where this time we
use the facts that HomZ(Q,Z) = 0 and that ExtZ(Q,Z) is a rational vector space of dimension c
(see for example [Wie69]). Thus for i ⩾ 2 we have Hi(

⊕
c Q) ∼=

∏
c(
⊕

c Q), which is a divisible and
torsion-free abelian group, hence a rational vector space, of cardinality (and hence also dimension)
cc = 2c.

Since the composition across (3.24) induces the zero map on cohomology, we cannot deduce
anything about H∗(PMapc(S)) from this. However, we wonder whether the right-hand map of
(3.24) is nevertheless injective on cohomology. If it is, it would positively answer the first part of
the following question.

Question 3.7.6. Let S be an infinite-type surface and i ⩾ 2. Do the groups Hi(PMapc(S)) or
Hi(PMap(S)) contain a rational vector space of dimension 2c?

The second part of this question is motivated by the observation that, in the case when S has
infinitely many non-planar ends, the answer is yes. In fact, we have:

Proposition 3.7.7. Let S be a surface with infinitely many non-planar ends and let i ⩾ 2. Then
there is an embedding ⊕

2c

Q⊕
⊕
2c

Q/Z ↪−→ Hi(PMap(S)).

Proof. By [APV20, Corollary 6], PMap(S) admits a split-surjection onto the Baer-Specker group
ZN, so Hi(ZN) is a summand of Hi(PMap(S)). By the universal coefficient theorem, Hi(ZN) has
a direct summand of the form ExtZ(Hi−1(ZN),Z) and we know by Lemma 3.4.8 that Hi−1(ZN)
contains a direct summand isomorphic to ZN. Putting this together, it follows that Hi(PMap(S))
has a direct summand isomorphic to ExtZ(ZN,Z). This group is isomorphic to

⊕
2c Q⊕

⊕
2c Q/Z,

by [Nun61, Theorem 5] (see also [Fuc73, Exercise 2 of §99]).
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3.8 Appendix A: Abelian groups

We collect here a few facts about abelian groups that are needed in our proofs. For a comprehensive
treatment of the theory of abelian groups, we refer to [Fuc70; Fuc73].

Recall that an abelian group A is called divisible if for each element a ∈ A and positive integer
n, there is another element b ∈ A such that a = nb. An abelian group A is called injective if for
every injective homomorphism of abelian groups ι : B → C and homomorphism f : B → A, there
is a homomorphism g : C → A such that g ◦ ι = f . By [Fuc70, Theorems 21.1 and 24.5], an abelian
group is divisible if and only if it is injective. In particular:

Lemma 3.8.1. Every injective homomorphism from a divisible abelian group to another abelian
group admits a retraction.

Proof. Let A be a divisible abelian group and let ι : A→ C be an injective homomorphism. Since
A is injective, taking B = A and f = id above, we obtain a retraction of ι.

Lemma 3.8.2. Suppose that we have homomorphisms of abelian groups⊕
c

Q A B,
f g

where f is injective and g has countable kernel. Then, after restricting the direct sum on the left
to a subcollection of the same cardinality, the composition g ◦ f is also injective.

Proof. Consider the subgroup K := ker(g ◦ f) = f−1(ker(g)) ⊂
⊕

c Q. Since ker(g) is countable
and f is injective, K is a countable subgroup of

⊕
c Q. Each element of K has only finitely many

non-zero coordinates in the direct sum and K has countably many elements; thus K is contained
in the sub-direct-sum given by countably many Q summands. After removing these summands
from the direct sum, the composition g ◦ f is injective.

Lemma 3.8.3. For any set I, the canonical inclusion
⊕

I Z ↪→
⊕

I Q induces an injective map of
graded abelian groups

Λ∗
(⊕

I

Z
)
↪−→ Λ∗

(⊕
I

Q
)
. (3.25)

To prove this, we first recall the following basic calculation:

Lemma 3.8.4. Λ∗(Z) ∼= Z[0]⊕ Z[1] and Λ∗(Q) ∼= Z[0]⊕Q[1].

Proof. The only non-obvious statement is that Λi(Q) = 0 for i ⩾ 2. To see this, first recall that

Q⊗Z Q⊗Z · · · ⊗Z Q ∼= Q (3.26)

via an isomorphism that sends a1⊗a2⊗· · ·⊗ai 7→ a1a2 · · · ai. The Z-module Λi(Q) is the quotient
of this tensor power by the sub-Z-module generated by all elements a1⊗a2⊗· · ·⊗ai with aj = ak

for some j ̸= k. Thus to prove that Λi(Q) = 0 we have to show that every rational number is a
Z-linear combination of rational numbers of the form b2a3 · · · ai. For i ⩾ 3 this is obvious, as we
may take b = 1. For i = 2, consider a rational number p

q , where p, q ∈ Z with q ̸= 0. Lagrange’s
four-square theorem implies that we have pq = a2 + b2 + c2 + d2 for integers a, b, c, d. Dividing by
q2, we deduce that p

q is a sum of four rational squares.

Proof of Lemma 3.8.3. By [Bro82, §V.6.2, V.6.3], for any abelian group A we have

Λ∗
(⊕

I

A
)
∼= Λ∗

(
colim

J⊆I

⊕
J

A
)
∼= colim

J⊆I
Λ∗
(⊕

J

A
)
∼= colim

J⊆I

⊗
J

Λ∗(A), (3.27)
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where the colimit is taken over finite subsets J of I. For any finite set J , the canonical map⊗
J

Λ∗(Z) −→
⊗

J

Λ∗(Q)

is injective by Lemma 3.8.4 and the natural isomorphisms (3.26). Thus (3.25) is also injective since
the colimit on the right-hand side of (3.27), for A = Z or A = Q, is taken over a direct system in
which all maps are inclusions of direct summands.

3.9 Appendix B: Extending homeomorphisms to
Freudenthal compactifications

Notation 3.9.1. For a surface S, recall that we denote by S its Freudenthal compactification (see
§3.1.1). We will write P(S) = Ends(S) ∖ Endsnp(S) for its space of planar ends. We will also
write Ŝ ⊆ S for the subspace S ∖ Endsnp(S) where we have removed all non-planar ends from S.
Equivalently, it is the subspace of S consisting of all of its locally Euclidean points: in other words
it is the maximal subspace that is a surface. Intuitively, Ŝ is the result of “filling in” all planar
ends P(S) of S.

Since every homeomorphism of S extends (necessarily uniquely) to S and every homeomor-
phism of S sends Ŝ onto itself, we have well-defined injective functions

Homeo(S) −→ Homeo(S) −→ Homeo(Ŝ). (3.28)

Proposition 3.9.2. With respect to the compact-open topology, the left-hand function in (3.28) is
a topological embedding and the right-hand function is a homeomorphism.

Proof. The fact that the left-hand map is a topological embedding follows from Proposition 3.9.5
below applied to X = S. To deal with the right-hand map, first note that S is the Freudenthal
compactification of Ŝ (as well as of S), so we have a well-defined function

Homeo(Ŝ) −→ Homeo(S), (3.29)

given by extending homeomorphisms uniquely. It is evidently a set-theoretic inverse for the re-
striction map Homeo(S) → Homeo(Ŝ); hence both (3.29) and this restriction map are bijections.
Now applying Proposition 3.9.5 to X = Ŝ, we deduce that (3.29) is a topological embedding. Since
it is also a bijection, this means that it is a homeomorphism, and hence so is its inverse, which is
the restriction map on the right-hand side of (3.28).

Corollary 3.9.3. There is an isomorphism of topological groups Homeo(S) ∼= Homeo(Ŝ,P(S)).

Proof. This follows directly from Proposition 3.9.2, together with the observation that the image of
the composite topological embedding (3.28) is precisely Homeo(Ŝ,P(S)), the subspace of Homeo(Ŝ)
of homeomorphisms sending P(S) onto itself.

Remark 3.9.4. Corollary 3.9.3 says that filling in the planar ends of a surface and then fixing
them setwise does not change anything at the level of homeomorphism groups. This generalises
the usual dichotomy between thinking of punctures (isolated planar ends) either as punctures or
as marked points.

Proposition 3.9.5. Let X be a connected, locally connected, locally compact, Hausdorff and second
countable space, write X for its Freudenthal compactification and give all homeomorphism groups
the compact-open topology. Then the injective function Homeo(X) → Homeo(X) given by unique
extensions of homeomorphsims is a topological embedding, in particular it is continuous.
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Proof. We begin by rephrasing the statement. The topology on Homeo(X) induced from the
compact-open topology on Homeo(X) via the injection Homeo(X) → Homeo(X) is called the F-
topology. What we must show is that the F-topology coincides with the compact-open topology.
(For the weaker statement that Homeo(X)→ Homeo(X) is continuous, rather than a topological
embedding, we would just have to show that the compact-open topology is finer than the F-
topology.)

The collection of topologies on Homeo(X) making both the group operation and the evaluation
map Homeo(X)×X → X continuous was studied in [Are46], where it was proven that there exists
a minimum such topology if X is locally compact and Hausdorff. Moreover, if X is also locally
connected, this minimal topology is the compact-open topology. On the other hand, it is proven
in [Di 06] that, if X is rim-compact, Hausdorff and X is locally connected at any ideal point, then
the F-topology is minimal. Thus, if both sets of hypotheses are satisfied, we may conclude that
the F-topology coincides with the compact-open topology, as desired. Indeed, the assumptions of
the proposition do imply both sets of hypotheses: in particular rim-compactness is weaker than
local compactness (which we have assumed) and our assumptions also imply that the Freudenthal
compactification X is locally connected at any ideal point; see the paragraph before Theorem 9 in
[Di 13].
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Chapter 4

Lower central series of partitioned
surface braid groups

The results of this chapter form part of the monograph [DPS22b] (joint work with Jacques Darné
and Arthur Soulié), which is accepted for publication in the Memoirs of the American Mathematical
Society.

Note. The results of [DPS22b] concern the lower central series of (partitioned) surface braid
groups, virtual braid groups and welded braid groups (and further generalisations of the last of
these); in the interests of space, only the part of [DPS22b] concerning surface braid groups is
reproduced here.

Introduction

One of the most basic objects one needs to understand when studying the structure of a group
G is its lower central series (shortened to “LCS”) G = Γ1(G) ⊇ Γ2(G) ⊇ · · · . Its behaviour
varies greatly from one group to another. For instance, if G is perfect (i.e. all its elements can
be written as products of commutators), its LCS is completely trivial; this holds for instance for
mapping class groups of closed surfaces of genus g ⩾ 3 [Kor02, Thm 5.1]. On the contrary, if G
is nilpotent, or residually nilpotent, its LCS contains deep information about the structure of G;
examples of residually nilpotent groups include free groups [MKS04, Chap. 5], pure braid groups
[FR85; FR88], pure braid groups on surfaces [BB09b; BG16], pure welded braid groups [BP09,
§5.5], and conjecturally pure virtual braid groups [Bar+16]. The LCS is also deeply connected to
the structure of the group ring of G. In particular, Quillen [Qui68] proved that if we consider the
filtration of the group ring QG by the powers of its augmentation ideal, then the associated graded
algebra is isomorphic to the universal enveloping algebra of the Lie algebra L(G)⊗Q, where L(G)
is the graded Lie ring obtained from Γ∗(G).

The amount of information one can hope to extract from the study of a LCS depends in the
first place on whether or not it stops in the following sense:

Definition 4.0.1. The LCS of a group G is said to stop if there exists an integer i ⩾ 1 such
that Γi(G) = Γi+1(G). We say that it stops at Γi if i is the smallest integer for which this holds.
Otherwise, we say the LCS does not stop or else that it stops at ∞.

It follows from the definition of the LCS (recalled in §4.1.1 below) that if Γi(G) = Γi+1(G)
for some i ⩾ 1, then Γk(G) = Γk+1(G) for all k ⩾ i, whence our choice of terminology.
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Partitioned braid groups

In this chapter, we study the LCS of the surface braid group Bn(S) for any surface S, as well as
its partitioned versions, in the sense we describe now.

There is a notion of the underlying permutation of an element of Bn(S), corresponding to a
canonical surjection π : Bn(S)↠ Sn to the symmetric group, from which we can define partitioned
versions of Bn(S). Let us first fix our conventions concerning partitions of integers:

Definition 4.0.2. Let n ⩾ 1 be an integer. A partition of n is an l-tuple λ = (n1, . . . , nl) of
integers ni ⩾ 1, for some l ⩾ 1 called the length of λ, such that n is the sum of the ni. Given such
a λ, for j ⩽ l, let us define tj :=

∑
i⩽j ni, including t0 = 0. Then the set bj(λ) := {tj−1 +1, . . . , tj}

is referred to as the j-th block of λ, and ni is called the size of the i-th block.

For λ = (n1, . . . , nl) a partition of n, we consider the preimage

Bλ(S) := π−1(Sλ) = π−1 (Sn1 × · · · ×Snl
) ,

which is called the λ-partitioned version of Bn(S). There are two extremal situations: the trivial
partition λ = (n) simply gives the group Bn(S), whereas the discrete partition λ = (1, 1, . . . , 1)
corresponds to the subgroup of pure braids in Bn(S).

As we will see later on, the LCS of Bn(S) stops at Γ2 or Γ3 (when n is at least 3), whereas
the LCS of the subgroup of pure braids is a very complex object (in particular, it does not stop,
when n is at least 2 or 3, depending on the surface S). We can thus expect the partitioned braid
groups Bλ(S) to display a range of intermediate behaviours when λ varies, and this is indeed what
we observe.

Methods

A fundamental tool in the study of LCS is the graded Lie ring structure on the associated graded
L(G) :=

⊕
i⩾1Γi(G)/Γi+1(G). Namely, this is a graded abelian group endowed with a Lie bracket

induced by commutators in G. It is always generated, as a Lie algebra over Z, by its degree
one piece, which is the abelianisation Gab = G/Γ2(G). This often allows one to use disjoint
support arguments to show that the LCS stops, when it does. Precisely, if one can show that
pairs of generators of Gab have commuting representatives in G (which is the case if they have
representatives whose supports are disjoint, for a certain notion of support), then, by definition of
the Lie bracket, they commute in L(G). In this case, L(G) is abelian, and it is generated by Gab,
which means that it is reduced to Gab. In turn, that means that Γi(G) = Γi+1(G) whenever i ⩾ 2.
This type of argument is used throughout the chapter.

One other main line of argumentation for studying LCS is given by looking for quotients whose
LCS is well-understood. Namely, if we can find a quotient of G whose LCS does not stop, then
neither does the LCS of G; see Lemma 4.1.1. Typically, we look for a quotient that is a semi-direct
product of an abelian group with Z or Z/2, a free product of abelian groups or a wreath product
of an abelian group with some Sλ, whose LCS can be computed completely; see Appendix 4.5.

Finally, a very important tool in our analysis is the study of the quotient by the residue.
Precisely, if we denote by Γ∞(G) (abbreviated Γ∞ when the context is clear) the intersection
of the Γi(G), the LCS of G is “the same” as the LCS of G/Γ∞: each Γi(G) is the preimage of
Γi(G/Γ∞) by the canonical projection, and this projection induces an isomorphism between L(G)
and L(G/Γ∞). In particular, one of Γ∗(G) and Γ∗(G/Γ∞) stops if and only if the other does,
which happens exactly when G/Γ∞ is nilpotent. Considering G/Γ∞ instead of G can lead to
very important simplifications. Let us illustrate this by an example, variations of which are used
throughout the chapter. We know that Γ∞ = Γ2 for Bn, and that Γ2 contains the elements σiσ

−1
j

of Bn. Thus whenever we have a morphism Bn → G, the subgroup Γ∞(G) must contain the image
of Γ∞(Bn), which contains the images of σiσ

−1
j , so all the σi have the same image in G/Γ∞.
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Results

Does the LCS stop? We give a complete answer to this question for all of the families of groups
listed above, with the single exception of B2,m(P2) with m ⩾ 3 (see Conjecture 4.4.95). We also
obtain some information about the associated Lie rings: in particular, we completely compute the
Lie ring of Bλ(S) in the stable case.

Besides their intrinsic value, these results have several applications, notably to the represen-
tation theory of braid groups and their relatives. See for instance [BGG17] and the work of the
second and third authors [PS19], where the knowledge of the structure of such LCS is key in
the construction and the study of representations of these groups using homological approaches.
Furthermore, let us mention that one can see surface braid groups and their LCS as invariants of
the surfaces themselves; as an application of this point of view, we recover the Riemann-Hurwitz
formula for coverings of closed surfaces in Remark 4.4.47.

We summarise our results in three tables on pages 86–88, organised as follows:
• Table 4.1 gathers the stable cases, which are those where the blocks of the partitions are large

enough for the disjoint support argument described above to be applied readily.
• Table 4.2 gathers the cases where there are blocks in the partitions which are too small for

the disjoint support argument to be applied readily, but not too many of them, so that the
LCS still stops.

• Table 4.3 gathers the cases where the LCS does not stop.
Some of our results have already been obtained in the literature, by different methods. Namely,

the question of whether the lower central series stops has already been studied:
• by Gorin and Lin [GL69] for Bn and Kohno [Koh85] for the pure braid group Pn = B1,...,1,

which is moreover known to be residually nilpotent by Falk and Randell [FR85; FR88].
• by Bellingeri, Gervais and Guaschi [BGG08] for Bn(S) where S is a compact, connected,

orientable surface with or without boundary.
• by Bellingeri and Gervais [BG16] for the pure surface braid group Pn(S) where S is a compact,

connected, non-orientable surface with or without boundary and different from the projective
plane P2.

• by Gonçalves and Guaschi [GG09a; GG09b] for Bn(S2) and Bn(S2 − P) where P is a finite
set of points in S2.

• by Guaschi and de Miranda e Pereiro [GM20] for Bn(S) where S is a compact, connected,
non-orientable surface without boundary.

• by van Buskirk [Bus66] and by Gonçalves and Guaschi [GG04b; GG11; GG07], both for the
braid group on the projective plane Bn(P2).

Notation in the tables

The letter λ = (n1, . . . , nl) denotes a partition of n of length l ⩾ 1. The letter µ denotes a
partition that is either empty or whose blocks have size at least 3. On the other hand, ν denotes
any partition (possibly empty, unless stated otherwise).

In Table 4.2, the function f is defined by f(m) = max{v2(m), 1}, where v2 is the 2-adic
valuation. The number ϵ is either 0 or 1 (the precise value may depend on the case, in particular
on m, and is unknown, although we conjecture that it is always 1 for m even and 0 for m odd, so
that f(m) + ϵ = v2(m) + 1 in all cases).

The letter S denotes any connected surface (not necessarily compact nor orientable, and
possibly with boundary). Six exceptional surfaces are mentioned in the tables, denoted by D (the
disc), D − pt (the disc minus an interior point), T2 (the torus), M2 (the Möbius strip), S2 (the
2-sphere) and P2 (the projective plane). A surface S is called generic if it is not one of these six
exceptional surfaces.

The symbol (†) in front of a family of groups indicates that the result concerned is already
partly known in the literature quoted above.
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The stable cases
Family of groups Partition Stops

at Γk
Ref. Lie

Alg.
Classical braids Bλ ni ⩾ 3 (†) k = 2 4.3.6 (4.3.7) 4.3.5

Surface
braids
Bλ(S)

S ⊆ S2 ni ⩾ 3 (†) k = 2

4.4.53

4.4.48
S ⊈ S2, orientable ni ⩾ 3 (†) k = 3 §4.4.5

S non-orientable
l = 1, n1 ⩾ 3 k = 2 4.4.33
l ⩾ 2, ni ⩾ 3 k = 3 §4.4.5

Table 4.1 The stable cases.
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The unstable cases for which the LCS stops
Family of groups Partition Stops at Γk Ref. Lie Alg.

Classical braids Bλ

(2)
k = 2

B2 ∼= Z

(1, µ), (1, 1, µ) 4.3.6 (4.3.10, 4.3.11) 4.3.5

Surface braids
Bλ(S)

S = D− pt (1, µ) k = 2 4.4.64 4.3.5

S = T2 (1) k = 2 B1(T2) ∼= Z2

(1, µ), µ ̸= ∅ k = 3 4.4.66 4.4.48 and 4.4.57
S = M2 (1) k = 2 B1(M2) ∼= Z

S = S2

(2) or (2, 1)
k = 2

B2(S2) ∼= Z/2, B2,1(S2) ∼= Z/4
(1, µ), (1, 1, µ), (1, 1, 1, µ) 4.4.71 4.4.48

(2,m), m ⩾ 3 k = f(m) + 1 + ϵ 4.4.74 –

S = P2

(1,m), m ⩾ 3 k = f(m) + 2 + ϵ 4.4.81 –
(1) k = 2 B1(P2) ∼= Z/2

(1, 1) k = 3 B1,1(P2) ∼= Q8 (4.4.83)
(2) k = 4 B2(P2) ∼= Dic16 (4.4.83)

Table 4.2 The unstable cases for which the LCS stops.
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The unstable cases for which the LCS does not stop
Family of groups Partition Ref.

Classical braids Bλ

(1, 1, 1, ν) (†) 4.3.6 (4.3.8)

(2, ν), l ⩾ 2 4.3.6 (4.3.12, 4.3.15, 4.3.18)

Surface
braids
Bλ(S)

S generic (1, ν), (2, ν) (†) 4.4.63

S = D− pt
(1, 1, ν) 4.4.64
(2, ν) 4.4.63

S = T2 (1, 1, ν) 4.4.66
(2, ν) (†) 4.4.66 (4.4.63)

S = M2 (1, ν), l ⩾ 2 4.4.63, 4.4.68, 4.4.69
(2, ν) 4.4.63

S = S2 (1, 1, 1, 1, ν) 4.4.71 (4.4.72)

(2, ν), l ⩾ 3 or (2, 2) 4.4.71 (4.4.73, 4.4.76)

S = P2 (1, ν), l ⩾ 3 4.4.80
(2, ν), l ⩾ 3 or (2, 2) or (2, 1) 4.4.84, 4.4.92, 4.4.89

Table 4.3 The unstable cases for which the LCS does not stop.

4.1 General recollections

In this chapter, we recall some classical notions and tools to study the lower central series of groups.
These will be used throughout the chapter.

4.1.1 Commutator calculus and lower central series

Let G be a group. Recall that the lower central series (LCS) of G is the descending sequence of
normal subgroups G = Γ1(G) ⊇ Γ2(G) ⊇ · · · of G, also denoted by Γ∗(G), defined by

Γi(G) :=
{
G if i = 1,
[G,Γi−1(G)] if i ⩾ 2,

where [G,Γi(G)] is the subgroup of G generated by all commutators [x, y] := xyx−1y−1 with x
in G and y in Γi−1(G). The subgroups Γi(G) are fully invariant, and in particular normal in G.
As a consequence, one can also think of the LCS as an ascending chain of quotients G/Γi(G) of
G. Recall that the abelianisation Gab of G is the first of these quotients, namely G/Γ2(G). In
general, G/Γc+1(G) is the universal c-nilpotent quotient of G (recall that G is called c-nilpotent
if Γc+1(G) = {1}). The group G is called residually nilpotent if its residue Γ∞(G) :=

⋂
Γi(G) is

equal to {1}. The quotient G/Γ∞(G) is the universal (and, in particular, the largest) residually
nilpotent quotient of G.

The following lemma is folklore and will be used very often in the sequel. In particular, we
will often use its contrapositive: if a group G has a quotient whose LCS does not stop, then the
LCS of G does not stop either.

Lemma 4.1.1. Let H be a quotient of G. If Γi(G) = Γi+1(G) for some i, then Γi(H) = Γi+1(H).

Proof. For all k ⩾ 1, it follows from the definition of the LCS that ΓkH = π(ΓkG). As a conse-
quence, Γi+1H = ΓiH whenever Γi+1G = ΓiG.
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We now give two partial converses to Lemma 4.1.1. The first one (also the most obvious
one) is the case of a quotient by a subgroup having some finiteness properties. Since most of the
extensions that we consider in the sequel will not satisfy the required hypothesis, we will use it
only once, in the very simple case when the kernel is cyclic of order two. Nevertheless, we state it
in a general framework:

Lemma 4.1.2. Let K ↪→ G ↠ H be a short exact sequence of groups. Suppose that there exists
l ⩾ 0 such that every strictly decreasing central filtration of K stops after at most l steps, that is,
if K = K1 ⊋ K2 ⊋ · · · ⊋ Km is a nested sequence of subgroups satisfying [K,Ki] ⊂ Ki+1, then
m ⩽ l. Suppose moreover that for some i ⩾ 1, we have Γi+1H = ΓiH. Then Γi+l+1G = Γi+lG.

Proof. The filtration K ∩Γ∗(G) is a central filtration of K, so it can strictly decrease only l times.
If Γi+1H = ΓiH, then Γi(H) = Γi+k(H) is the image of Γi+k(G) in H, for all k ⩾ 0. Recall that if
L and M are subgroups of G such that L ⊆M , then L and M are equal if and only if their image
in H and their intersection with K are equal. As a consequence, for Γi+k(G) to decrease when k
grows, its intersection with the kernel must decrease, which can happen at most l times. So the
LCS of G must stop at most at Γi+l.

Example 4.1.3. If K is finite, such an l clearly exists. In fact, for any central filtration K∗ on
K, since the cardinal of K/Km is the product of the cardinals of the Ki/Ki+1, one can take l to
be the number of prime factors in the cardinal of K (a bound that is optimal if K is abelian). In
particular, we will apply this with K ∼= Z/2 and l = 1 in the proof of Proposition 4.4.81.

Remark 4.1.4. Finite groups are not the only ones for which the hypothesis holds. We could for
instance apply the Lemma with K simple, or more generally with K perfect (with l = 0). Also,
the class of groups K satisfying this hypothesis is stable by extensions. In fact, an equivalent way
of stating it is to ask that the maximal residually nilpotent quotient of K (that is, K/Γ∞(K)) is
finite.

The other partial converse to Lemma 4.1.1 that we will use concerns quotients by central
subgroups. This case is a bit more subtle, and requires the following result, which can be useful
when calculating quotients by residues.

Proposition 4.1.5. Let G be a group, and let N be a normal subgroup of G. Suppose that for some
i ⩾ 2, N ∩ Γi(G) = {1}. Then the canonical morphism Γ∞(G) → Γ∞(G/N) is an isomorphism.
In particular, G is residually nilpotent if and only if G/N is. Moreover, we have a short exact
sequence:

N ↪→ G/Γ∞ ↠ (G/N)/Γ∞.

Proof. Let π : G ↠ G/N be the canonical projection. Since N ∩ Γ∞(G) = {1}, the induced
morphism Γ∞(G) → Γ∞(G/N) is injective. Let us show that it is surjective. Let y ∈ Γ∞(G/N).
Since Γk(G/N) = π(ΓkG) by definition of the LCS, there is, for each k ⩾ 1, some xk ∈ Γk(G) such
that π(xk) = y. Then xkx

−1
k+1 ∈ N ∩ Γk(G), which implies that xkx

−1
k+1 = 1 whenever k ⩾ i. Thus

the sequence (xk) is stationary at x := xi, which must be in Γ∞(G) by definition of the xk, and is
sent to y by π. This proves the first part of the Proposition. Now, let us consider the commutative
diagram of groups:

1 Γ∞(G) Γ∞(G/N)

N G G/N

N G/Γ∞ (G/N)/Γ∞.

∼=

=

By the Nine Lemma, the bottom row must be a short exact sequence.

The following corollary provides the promised partial converse to Lemma 4.1.1:
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Corollary 4.1.6. Let G be a group and A be a central subgroup of G. Suppose that for some i ⩾ 2,
the canonical map A → G/Γi(G) is injective. If the LCS of G/A stops at Γk, then the LCS of G
stops at Γk or at Γk+1.

Proof. The extension A ↪→ G/Γ∞ ↠ (G/A)/Γ∞ from Proposition 4.1.5 is a central one. As a
consequence, if (G/A)/Γ∞ is k-nilpotent, then G/Γ∞ is nilpotent of class k or k + 1.

Remark 4.1.7. In explicit examples, the hypothesis of Corollary 4.1.6 is most easily checked
when i = 2, since we typically have a complete understanding of Gab; see for example the proof of
Proposition 4.4.74.

4.1.2 Lie rings of lower central series

We now recall the definition and basic properties of a key tool for studying the LCS of a group,
namely its associated Lie ring. We refer the reader to [Laz54, Chap. 1] for further details.

Note that, for all i ⩾ 1, [Γi(G), Γi(G)] ⊆ [G,Γi(G)] ⊆ Γi+1(G) ⊆ Γi(G). Thus, Γi(G) is a
normal subgroup of G, and the quotient Li(G) := Γi(G)/Γi+1(G) is an abelian group. Moreover,
one can show that [Γi(G), Γj(G)] ⊆ Γi+j(G) for all i, j ⩾ 1, which is the crucial property allowing
us to define the Lie ring associated with Γ∗(G):

Proposition 4.1.8 ([Laz54, Th. 2.1]). The graded abelian group defined by L(G) :=
⊕

i⩾1 Li(G)
is a Lie ring, with the Lie bracket induced by the commutator map of G.

Convention 4.1.9. Let g be an element of G. If there is an integer d such that g ∈ Γd(G) −
Γd+1(G), it is obviously unique. We then call d the degree of g with respect to Γ∗(G). The notation
g denotes the class of g in some quotient Li(G). If the integer i is not specified, it is assumed that
i = d, which means that g denotes the only non-trivial class induced by g in L(G). If such a d
does not exist (that is, if g ∈

⋂
Γi(G)), we say that g has degree ∞ and we put g = 0.

With this convention, the Lie bracket [−,−] of L(G) is given by the collection of bilinear maps
Li(G)× Lj(G)→ Li+j(G) defined by:

∀x ∈ Li(G), ∀y ∈ Lj(G), [x, y] := [x, y] ∈ Li+j(G).

The following lemma, which will be used several times in the sequel to identify G/Γ∞ for some
group G, is one illustration of the use of Lie rings in studying the LCS:

Lemma 4.1.10. Let p : G ↠ Q be a surjective group morphism. If Q is a residually nilpotent
group, then the following conditions are equivalent:
• L(p) : L(G)↠ L(Q) is an isomorphism.
• p induces an isomorphism G/Γ∞ ∼= Q.

Proof. If Q is residually nilpotent, p induces a map G/Γ∞ ↠ Q between two residually nilpotent
groups. Since G↠ G/Γ∞ induces an isomorphism between the associated Lie rings, the statement
for G can be deduced from the statement for G/Γ∞. Thus, we can assume that G is residually
nilpotent and, under this hypothesis, we need to show that p is an isomorphism if and only if L(p)
is. Clearly, if p is an isomorphism, then L(p) is too. Conversely, if p, which is surjective, is not an
isomorphism, then there is some non-trivial element x in its kernel. Since G is residually nilpotent,
x induces a non-trivial class x in L(G), which is sent to 0 by L(p). This implies that L(p) is not
injective, which concludes our proof.

4.1.3 Computing abelianisations from decompositions

Let us recall some classical tools for computing the abelianisation from some decomposition of a
given group. The abelianisation functor G 7→ Gab is a left adjoint, hence right exact. In order to
compute the abelianisation of an extension, one can say more. Given a short exact sequence of
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groups H ↪→ G↠ K, let us denote by (Hab)K the coinvariants of Hab with respect to the action
of K on Hab induced by conjugation in G.

Lemma 4.1.11. The short exact sequence H ↪→ G ↠ K induces the following exact sequence of
abelian groups:

(Hab)K → Gab → Kab → 0.

Proof. The conjugation action of G on Hab factors through G/H = K, hence (Hab)G = (Hab)K .
Since we have an exact sequence Hab → Gab → Kab → 0, it suffices to show that the morphism
Hab → Gab factors through (Hab)K . It is equivariant with respect to the action of G induced by
conjugation (which is obviously trivial on Gab), whence the result.

For split exact sequences, we can say even more:

Lemma 4.1.12. The abelianisation of a semidirect product H ⋊K is isomorphic to the product
(Hab)K ×Kab.

Proof. As a consequence of the usual formula [x, yz] = [x, y](x[x, z]x−1), one sees that the commu-
tator subgroup [H ⋊K,H ⋊K] is normally generated by [H,H], [H,K] and [K,K]. We can take
the quotient by these three sets of relations successively: (H⋊K)/[H,H] is isomorphic to Hab⋊K,
then killing [H,K] gives (Hab)K ×K and finally, ((Hab)K ×K)/[K,K] ∼= (Hab)K ×Kab.

4.2 Strategy and first examples

In this chapter, we present some general ideas used to decide whether the LCS stops or not. As a
first example, we then apply these ideas to Artin groups.

4.2.1 Generation in degree one – first consequences

The Lie ring associated to the LCS has the following fundamental property:

Proposition 4.2.1. The Lie ring L(G) is generated in degree one. That is, it is generated by the
abelianisation L1(G) = Gab as a Lie algebra over Z.

Proof. It is a direct consequence of the definitions: the equality Lk(G) = [L1(G),Lk−1(G)] is
obtained directly from Γk(G) = [Γ1(G), Γk−1(G)], by passing to the appropriate quotients.

A first consequence of this is the following:

Corollary 4.2.2. Let G be a group. If Gab is cyclic, then Γ2G = Γ3G.

Proof. Proposition 4.2.1 implies that the Lie ring L(G) is a quotient of the free Lie ring on Gab.
Since Gab is cyclic, the latter is the abelian Lie ring consisting only of Gab. As a consequence,
Γ2G/Γ3G = L2(G) = {0}.

Example 4.2.3 (Braids). Directly from their usual presentations, one computes the abelianisation
of the braid groups: Bab

n
∼= Z for n ⩾ 2. Thus Γ2(Bn) = Γ3(Bn). This fact is originally due to

Gorin and Lin [GL69], who proved it by different methods. This property of Bn, which is also true
for any quotient of Bn (such as the symmetric group Sn), may also be seen as a particular case of
the computations for Artin groups below (Proposition 4.2.11).

Example 4.2.4 (Knot groups). For any knot, the knot group has (infinite) cyclic abelianisation,
thus its LCS stops at Γ2. This generalises readily to the enveloping groups of any connected
quandle; see for instance [BNS19, Prop. 3.3].
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Example 4.2.5 (Automorphisms of free groups). Consider the automorphism group Aut(Fn) of
the free group on n letters. The kernel IAn of the projection from Aut(Fn) onto Aut(Fab

n ) ∼=
GLn(Z) is generated by the usual Kij and Kijk from [MKS04, §3.5], which are easily seen to be
commutators of automorphisms. Thus Aut(Fn)ab ∼= GLn(Z)ab. Whenever n ⩾ 3, this group is
cyclic of order two, so the LCS of Aut(Fn) stops at Γ2, and so does the one of GLn(Z).

An easy generalisation of Corollary 4.2.2 is:

Corollary 4.2.6. Let G be a group. Let S be a generating set of Gab. Suppose that, for each
pair (s, t) ∈ S2, we can find representatives s̃, t̃ ∈ G of s and t such that s̃ and t̃ commute. Then
Γ2G = Γ3G.

Proof. The Lie ring L(G) is generated by S. Moreover, the fact that
[
s̃, t̃
]

= 1 in G readily implies
that [s, t] = 0 in L(G). Since the brackets [s, t] for (s, t) ∈ S2 generate L2(G) = [L1(G),L1(G)],
we see that Γ2G/Γ3G = L2(G) = {0}. In fact, L(G) is an abelian Lie ring, reduced only to
L1(G) = Gab.

We have not made any effort to make the above corollary as general as possible. In particular,
s̃ and t̃ may commute only up to an element of Γ3G, and the conclusion still holds. Also, one
may think of similar statements showing that Γ3G = Γ4G, and so on. Weak as it may seem, our
statement is already very useful. In particular, when applied to groups whose elements have a
geometric interpretation, it will often happen that s̃ and t̃ can be chosen “with disjoint support”,
which readily implies that they commute. We will sometimes need a more refined version of the
above, but we will discuss it in each particular situation.

Example 4.2.7 (Automorphisms of F2). As an example of a case where Corollary 4.2.6 does not
work, but the same kind of technique does apply, let us consider Aut(F2). We have mentioned
that Aut(Fn)ab ∼= GLn(Z)ab; see Example 4.2.5. For n = 2, this is no longer cyclic, but isomorphic
to (Z/2)2, generated by the (equivalences classes of the) automorphisms σ and τ acting as follows
(fixing free generators x and y of F2):

σ(x) = y, σ(y) = x, τ(x) = x−1, τ(y) = y.

It follows that L2(Aut(F2)) is generated by the (equivalence class of the) automorphism ι = [σ, τ ]
acting by ι(x) = x−1 and ι(y) = y−1. It is easy to check that ι commutes with both σ and τ , so
L3(Aut(F2)) = 0. Thus, the LCS of Aut(F2) stops at Γ3, as does that of GL2(Z).

Let us spell out another useful consequence of Proposition 4.2.1:

Corollary 4.2.8. Let G be a group and d ⩾ 1 be an integer. If Lk(G) = ΓkG/Γk+1G is a d-torsion
abelian group for some k ⩾ 1, then Ll(G) = ΓlG/Γl+1G is too for all integers l ⩾ k.

Proof. If an element x ∈ L(G) is of d-torsion, then for all y ∈ L(G), the bracket [x, y] is too,
because d · [x, y] = [d · x, y] = 0. Since Ll+1(G) = [L1(G),Ll(G)], we get our result by induction
on l.

Example 4.2.9 (Virtual and welded braids). Let G be a group such that Gab ∼= Z× (Z/d), where
the factors are generated, respectively, by u and v. Then L2(G) is generated, as an abelian group,
by [u, v]. Since d · [u, v] = [u, d · v] = 0, L2(G) is of d-torsion, and then all the Lk(G), for k ⩾ 2,
must be too. This applies, with d = 2, to the virtual and welded braid groups on two strands vB2
and wB2, which are both isomorphic to Z ∗ Z/2.

4.2.2 Artin groups

Let S be a set, and M = (ms,t)s∈S be a Coxeter matrix, i.e. a symmetric matrix with coefficients
in N ∪ {∞}, with ms,s = 1, and ms,t ⩾ 2 if s ̸= t. Let AM be the associated Artin group, defined
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by the presentation:

AM =
〈
S

∣∣∣∣∣∣ststs · · ·︸ ︷︷ ︸
ms,t

= tstst · · ·︸ ︷︷ ︸
ms,t

(s, t ∈ S, ms,t ̸=∞)
〉
.

Let us consider the graph G whose incidence matrix is M modulo 2. Namely, G is obtained
by taking S as its set of vertices and by drawing an edge between s and t whenever ms,t is an odd
integer.

Lemma 4.2.10. The group Aab
M is free abelian on the set π0(G) of connected components of G.

Proof. This is clear from the presentation: in Aab
M , the relation between s and t becomes s̄ = t̄ if

ms,t is odd, and it becomes trivial if ms,t is even or ms,t =∞.

Let us now study the LCS of AM . Suppose first that G is connected. Then Aab
M is cyclic,

and Corollary 4.2.2 applies: the LCS of AM stops at Γ2. This holds in particular for the classical
braid group; see Example 4.2.3. Now, if G has several connected components, we need to study
the interactions between the corresponding generators of the Lie ring of AM . The simplest case
happens when all the even ms,t are equal to 2. Then AM splits into the (restricted) direct product
of the Artin groups corresponding to the connected components of our graph, thus L(AM ) is a
direct sum of copies of Z (concentrated in degree one). Thus, we obtain a first result (which
recovers [BGG08, Prop. 1] for spherical Artin groups):

Proposition 4.2.11. If all the coefficients of M are finite, and are either odd or equal to 2, then
the LCS of AM stops at Γ2.

In order to get a step further, we need to study more closely the interactions between the
generators of the Lie ring of AM corresponding to the connected components of G.

Lemma 4.2.12. Let s, t ∈ S. If ms,t = 2k for some integer k, then k · [s̄, t̄] = 0 in L(AM ).

Proof. If ms,t = 2k, then (st)k = (ts)k in AM . We can write this relation as (st)k(ts)−k = 1.
We recall that modulo Γ3(AM ), commutators commute with any other element. Hence, modulo
Γ3(AM ), we have:

1 = (st)k(ts)−k = (st)k−1[s, t](ts)−(k−1) = [s, t](st)k−1(ts)−(k−1) = · · · = [s, t]k.

Thus, in L2(AM ), we have 0 = k · [s, t] = k · [s̄, t̄], as claimed.

From this, we deduce that for x, y ∈ π0(G), we have dx,y · [x, y] = 0 in L2(AM ), where dx,x = 1
and dx,y = gcd

{ms,t

2
∣∣ s, t ∈ S, s̄ = x and t̄ = y

}
if x ̸= y. In particular, this proves:

Proposition 4.2.13. If all the coefficients of M are finite, then Γ2(AM )/Γ3(AM ) is of d-torsion,
where d = lcm {dx,y | x, y ∈ π0(G)}.

Remark 4.2.14. Proposition 4.2.13 is more general than Proposition 4.2.11, which is recovered
as a particular case where d = 1. In fact, for d to be equal to 1 (which implies that the LCS stops
at Γ2), we do not need the even ms,t to be equal to 2, but only all the dx,y to be equal to 1.

Remark 4.2.15. Proposition 4.2.13 does not say anything when at least one of the dx,y is infinite.
For instance, when all the ms,t are infinite, AM is the free group on S, whose Lie ring is without
torsion. More generally, Right-Angled Artin Groups (where all the ms,t are infinite or equal to
2) have torsion-free Lie rings [DK92]. Another example is the subgroup KBn of the virtual braid
group vBn given by the normal closure of Bn ⊂ vBn (denoted by Hn in [BB09a]). This is an
Artin group with all ms,t infinite or equal to 2 or 3 [BB09a, Prop. 17]; its abelianisation is free
abelian and its LCS stops at Γ2 for n ⩾ 3 [BB09a, Prop. 19].
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... ... .........

Figure 4.1 The standard generators σi and Aij of, respectively, the braid group and the pure braid
group.

4.3 Partitioned classical braids

This chapter is devoted to the study of the LCS of the group of partitioned braids; see Defini-
tion 4.3.2 below. Our main results are summarised in Theorem 4.3.6. The group of partitioned
braids is a subgroup of Bn, which has already been studied notably by Manfredini [Man97] and
by Bellingeri, Godelle and Guaschi [BGG17]. The former gave a presentation of this group, using
the Reidemeister-Schreier method, which may be applied to this finite-index subgroup of Artin’s
braid group.

Remark 4.3.1. One could use the aforementioned presentation of the partitioned braid group
[Man97] to get generators, a calculation of the abelianisation, and (with a little bit of work) the
stable case in the study of the LCS. However, we will avoid using this presentation altogether, for
several reasons. Firstly, we want the present chapter to be as self-contained as possible. Secondly,
even if a presentation is of some help in the study of the LCS of a group, there is only so much that
one can deduce directly from it; in fact, not much more than a computation of the abelianisation,
and that Γ2 = Γ3 when it holds. In particular, most of our non-stable results would not be
simplified by using the presentation. Thirdly, and perhaps most importantly, to the best of our
knowledge, nobody has written down a presentation of the other partitioned groups that we study
later on. This could certainly be done using the Reidemeister-Schreier technique (at least when we
have a presentation of the non-partitioned group), but this would require a fair amount of work,
which we intend to avoid. We will do so precisely by generalising proofs that do not depend on
the use of Manfredini’s presentation.

4.3.1 Reminders: braids

We recall that the standard generators σi and Aij of the braid group Bn and of the pure braid
group Pn respectively, are the braids drawn in Figure 4.1. In Figure 4.2, they also appear in a
“bird’s eye view” as paths of configurations.

4.3.2 Basic theory of partitioned braids

For a partition λ = (n1, . . . , nl) of an integer n, we denote by Sλ the subgroup Sn1 × · · · ×Snl

of the symmetric group Sn. Let us now consider the braid group Bn on n strands, and the usual
projection π : Bn ↠ Sn.

Definition 4.3.2. Let n ⩾ 1 be an integer, and let λ = (n1, . . . , nl) be a partition of n. The
corresponding partitioned braid group (also referred to as the group of λ-partitioned braids) is:

Bλ := π−1(Sλ) = π−1 (Sn1 × · · · ×Snl
) ⊆ Bn.

Lemma 4.3.3. Let λ = (n1, . . . , nl) be a partition of an integer n ⩾ 1. Then Bλ is the subgroup
of Bn generated by:
• The σα for 1 ⩽ α ⩽ n such that α and α+ 1 are in the same block of λ.
• The Aαβ for 1 ⩽ α < β ⩽ n such that α and β do not belong to the same block of λ.
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Proof. Consider the subgroup G of Bn generated by these elements. Clearly, G ⊆ Bλ, and we need
to show that G contains Bλ. First, we see that G contains Bn1 × · · · ×Bnl

, which is generated by
the chosen σα. As a consequence, π(G) = Sn1 × · · · ×Snl

. Then, G also contains the Aαβ , for all
1 ⩽ α < β ⩽ n. Indeed, the Aαβ missing in the list of the statement are the ones with α and β in
the same block of λ, which are exactly the ones belonging to Bn1×· · ·×Bnl

. Thus, the pure braid
group Pn is contained in G. Now, if β is any λ-partitioned braid, then π(β) ∈ Sn1 × · · · ×Snl

,
hence we can choose g ∈ G such that π(g) = π(β). Then g−1β is a pure braid, thus g−1β ∈ G,
which implies that β ∈ G.

Remark 4.3.4. The generating set of Bλ described in Lemma 4.3.3 is clearly redundant, since
Aαβ is conjugate to Aγδ if α (resp. β) is in the same block as γ (resp. δ). For instance, in B2,2,
we have σ1A13σ

−1
1 = A23. Since it is more convenient for our purpose, we prefer to keep it that

way. Notice however that it is easy to extract a minimal set of generators: using the computation
of Bab

λ below, it is easy to show that keeping all the σα and choosing only one lift Aαβ of each aij

(that is, one Aαβ for each pair of blocks) does give a minimal set of generators of Bλ. A similar
remark (with a similar method for choosing minimal sets of generators) applies to the generating
sets described later in this chapter for variants of partitioned braid groups.

We now compute Bab
λ , using the above generating set, together with the split projections

corresponding to forgetting blocks of strands. These projections can be seen as particular cases of
the projections from Proposition 4.4.15 below, applied to braids on the disc.

Proposition 4.3.5. Let λ = (n1, . . . , nl) be a partition of an integer n ⩾ 1. The abelianisation
Bab

λ is free abelian on the following basis:
• For each i ∈ {1, . . . , l} such that ni ⩾ 2, one generator si: this is the common class of the
σα for α and α+ 1 in the i-th block of λ.

• For each i, j ∈ {1, . . . , l} such that i < j, one generator aij: this is the common class of the
Aαβ for α in the i-th block of λ and β in the j-th one.

Proof. The abelianisation Bab
λ is generated by the classes of the generators from Lemma 4.3.3.

Moreover, we note that for any i, all the σα with α and α + 1 in the i-th block of λ (which exist
only if ni ⩾ 2) are conjugate to one another: for instance, if n1 ⩾ 3, then σ2 = (σ2σ1)−1σ1(σ2σ1)
is a conjugation relation inside Bλ. Similarly, for each choice of i < j, all the Aαβ with α in the
i-th block and β in the j-th one are conjugate to one another. Thus, the family described in the
statement is well-defined and generates Bab

λ . Let us show that it is linearly independent, by using
the projections obtained by forgetting strands.

Suppose that
∑
kisi +

∑
kijaij = 0 for some integers ki (i ⩽ l) and kij (i < j ⩽ l). Let us

fix i such that ni ⩾ 2, and let us apply the canonical projection Bab
λ ↠ Bab

ni

∼= Z to the above
relation. Since this projection kills all the generators save si, we get ki = 0. This holds for all i,
so we are left with the relation

∑
kijaij = 0. To which, for any choice of i < j, we can apply the

morphism Bab
λ ↠ Bab

ni,nj
→ Bab

ni+nj

∼= Z. This kills all the akl, save aij (which is sent to 2), hence
kij = 0, whence the result.

4.3.3 The lower central series

This section is devoted to the proof of the following result, which states exactly when the LCS of
the partitioned braid group stops. The proof requires different techniques for a number of different
cases. We consider each case in turn and then combine the individual results into a proof of
Theorem 4.3.6 at the very end of this section.

Theorem 4.3.6. Let n ⩾ 1 be an integer, let λ = (n1, . . . , nl) be a partition of n. The LCS of the
partitioned braid group Bλ:
• stops at Γ2 if ni ⩾ 3 for all i, save at most two indices for which ni = 1.
• does not stop in all the other cases, except for B2 ∼= Z.
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Figure 4.2 Choosing representatives with disjoint support for pairs of generators of the abelianisation
of the partitioned braid group. Braces indicate points that lie in the same block of the partition.

The stable case: a disjoint support argument

Proposition 4.3.7. Let n ⩾ 1 be an integer, let λ = (n1, . . . , nl) be a partition of n. Suppose that
all the ni are at least 3. Then the LCS of Bλ stops at Γ2.

Proof. Consider the generating set for Bab
λ described in Corollary 4.3.5. For any pair of such

generators, it is possible to find lifts in Bλ having disjoint support (as mapping classes of the
punctured disc), and thus commuting – see Figure 4.2 for the three cases that may arise. Then,
we can apply Corollary 4.2.6 to prove our claim.

Blocks of size 1

Lemma 4.3.8. If at least three blocks of the partition λ are of size 1, then the LCS of Bλ does
not stop.

Proof. Under the hypothesis, there is a surjection Bλ ↠ B1,1,1 ∼= P3 obtained by forgetting all the
blocks save three blocks of size 1. The LCS of P3 ∼= F2 ⋊ Z does not stop, since it is an almost-
direct product, and the LCS of F2 does not stop; see for instance [FR85]. As a consequence, the
one of Bλ does not either by Lemma 4.1.1.

The cases with one or two blocks of size 1 (and still no blocks of size 2) are more difficult to
handle. In both cases, we will have to use the following observation:

Lemma 4.3.9. The quotient of P3 by the relation [A13, A23] = 1 is Pab
3
∼= Z3.

Proof. Let N be the normal closure of [A13, A23] in P3. We want to show that N = Γ2(P3).
Clearly, N ⊆ Γ2(P3). To show the converse inclusion, we need to show that P3/N is abelian. We
check that the relations A12A13A

−1
12 = A−1

23 A13A23 and A−1
12 A23A12 = A13A23A

−1
13 hold in P3. As a

consequence, modulo the relation [A13, A23] = 1 (that is, modulo N), we get A12A13A
−1
12 ≡ A13 and

A−1
12 A23A12 ≡ A23. Thus A12, A13 and A23 commute modulo N and therefore P3/N is abelian.

Proposition 4.3.10. Let n ⩾ 1 be an integer, let λ = (1, n2, . . . , nl) be a partition of n, with
ni ⩾ 3 for i ⩾ 2. Then the LCS of Bλ stops at Γ2.

Proof. The case l = 2 (i.e. λ = (1,m) for some integer m ⩾ 3) works exactly like the stable case
of Proposition 4.3.7. Namely, the two generators of the abelianisation do have lifts with disjoint
supports, so that Γ2(B1,m) = Γ3(B1,m) by Corollary 4.2.6. This however does not work for l > 2.

Let us denote by µ the partition (n2, . . . , nl) of n − 1, so that λ = (1, µ). We are going to
show that Bλ/Γ∞ is abelian, which implies that Γ∞ = Γ2 for Bλ.
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It follows from Proposition 4.3.7 that Γ∞ = Γ2 for Bµ. As a consequence, the obvious
morphism Bµ → Bλ/Γ∞ factors through Bµ/Γ2 ∼= Bab

µ . Given the description of Bab
µ from

Proposition 4.3.5, we have that modulo Γ∞, σα ≡ σ′
α and Aαβ ≡ Aα′β′ if α and α′ (resp. β and

β′) are in the same block of µ. Moreover, the corresponding classes si and aij commute with one
another. In the same way, we can deduce from the case of B1,m for m ⩾ 3 treated above that
the class of a generator A1α depends only on the block of α. More precisely, we use the fact that
the obvious morphism B1,ni

→ B1,µ/Γ∞ factors through Bab
1,ni

, where all the A1α are identified.
Moreover, the corresponding a1i commutes with all the sp and apq coming from Bµ, since they
have lifts in Bλ with disjoint support.

We are left with showing that a1i commutes with a1j when i < j. This uses Lemma 4.3.9. Let
us choose any α in the i-th block and any β in the j-th one, and consider the morphism P3 → Bλ

induced by 1 7→ 1, 2 7→ α and 3 7→ β. If we compose it with the projection onto Bλ/Γ∞, we get a
morphism f sending A12 to a1i, A13 to a1j , and A23 to aij . Since aij commutes with a1j , f sends
[A13, A23] to 1. Lemma 4.3.9 then implies that it factors through Pab

3 , so that all the elements in
its image commute, including a1i and a1j . This finishes the proof that Bλ/Γ∞ is abelian, whence
equal to Bλ/Γ2.

Proposition 4.3.11. Let n ⩾ 1 be an integer, let λ = (1, 1, n3, . . . , nl) be a partition of n, with
ni ⩾ 3 for i ⩾ 3. Then the LCS of Bλ stops at Γ2.

Proof. Let µ denote the partition (n3, . . . , nl) of n − 2, so that λ = (1, 1, µ). It follows from
Proposition 4.3.10 that Γ∞ = Γ2 for B1,µ, hence both the obvious maps B1,µ → Bλ/Γ∞ factor
through Bab

1,µ. From this, we deduce that Bλ/Γ∞ is generated by elements si (3 ⩽ i ⩽ l) and aij

(1 ⩽ i < j ⩽ l), and that the a1j (resp. the a2j), the sp (p ⩾ 1) and the apq (q > p ⩾ 3) commute
with one another. Moreover, for all i, j ⩾ 3, a1i and a2j have lifts with disjoint support in Bλ, so
they commute (even when i = j).

We are left with showing that the class a12 of A12 commutes with all the other generators. A
disjoint support argument shows that it commutes with the sk and akl for l > k ⩾ 3. Now, for
i ⩾ 3, let us choose α in the i-th block, and let us consider the morphism P3 → Bλ induced by
1 7→ 1, 2 7→ 2 and 3 7→ α. If we compose it with the projection onto Bλ/Γ∞, we get a morphism
f sending A12 to a12, A13 to a1i, and A23 to a2i. Since a1i commutes with a2i, f sends [A13, A23]
to 1. Lemma 4.3.9 then implies that it factors through Pab

3 , so that all the elements in its image
commute, showing that a12 commutes with a1i and with a2i. Thus, we have proved that Bλ/Γ∞
is abelian, whence Γ∞(Bλ) = Γ2(Bλ).

Blocks of size 2

When there is exactly one block of size 2 and no block of size 1, we get a complete description of
the quotient of Bλ by its residue:

Proposition 4.3.12. Let n ⩾ 1 be an integer, let λ = (2, n2, . . . , nl) be a partition of n, with
ni ⩾ 3 if i ⩾ 2. Then Bλ/Γ∞ decomposes as a direct product of l(l − 1)/2 copies of Z with
Z2(l−1) ⋊ Z, where Z acts via the involution exchanging the elements e2i and e2i+1 of a basis of
Z2(l−1). In particular, if l ⩾ 2, then the LCS of Bλ does not stop.

Proof. Let µ denote the partition (n2, . . . , nl) of n − 2, so that λ = (2, µ). Then the canonical
projection B2,µ ↠ S2,µ ↠ S2 has B1,1,µ as its kernel. Moreover, Γ∞(B2,µ) contains Γ∞(B1,1,µ),
which is equal to Γ2(B1,1,µ) by Proposition 4.3.11. We show that these are in fact equal. In order
to do this, it is enough to show that B2,µ/Γ2(B1,1,µ) is residually nilpotent. In fact, we are going
to compute it completely.

First, let us remark that it makes sense to consider this quotient: Γ2(B1,1,µ) is a characteristic
subgroup of B1,1,µ, which is normal (of index 2) in B2,µ, hence it is a normal subgroup of B2,µ.
Next, we can write B2,µ/Γ2(B1,1,µ) as an extension:

Bab
1,1,µ B2,µ/Γ2(B1,1,µ) S2. (4.1)
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We can use the method from Appendix 4.6 to get a presentation of the group G := B2,µ/Γ2(B1,1,µ).
Namely, we have a presentation of the kernel: Bab

1,1,µ is free abelian on the si and the aij indexed
by the blocks of (1, 1, µ). We also know the action of S2 on Bab

1,1,µ induced by conjugation by σ1 in
B2,µ: it exchanges the a1j with the a2j with j ⩾ 3 and it acts trivially on all the other generators.
Finally, we can lift the only relation defining S2 to σ2

1 = A12 in B2,µ. As a consequence, we get
the presentation:

G =

〈
∀i, j, p, q, u, v, [si, sj ] = [si, apq] = [apq, auv] = 1,

s, ∀i ⩾ 1, [s, si] = 1,
si (3 ⩽ i ⩽ l + 1), ∀j > i ⩾ 3, [s, aij ] = 1,
aij (1 ⩽ i < j ⩽ l + 1). ∀j ⩾ 3, sa1js

−1 = a2j and sa2js
−1 = a1j ,

s2 = a12.

〉
One can deduce from this presentation that G decomposes as ZN × (Z2(l−1) ⋊ Z) where the first
factor is free abelian on the si (i ⩾ 3) and the aij (j > i ⩾ 3) (hence N = l(l − 1)/2), and the
action of Z (free on s) on Z2(l−1) (free abelian on the a1j and the a2j) is given by s exchanging the
a1j and the a2j . Checking that this holds is a matter of writing the appropriate split projections
from the presentations of Gl and its factors.

Finally, the decomposition of G allows us to apply Proposition 4.5.10 to compute its LCS.
Namely, we apply it to A = ⟨a1j , a2j⟩j⩾3 (which is free abelian on these generators) endowed with
the involution τ exchanging a1j with a2j for all j. Then V = Im(τ−1) is the free abelian subgroup
generated by the a1j − a2j , and for k ⩾ 2, we have Γk(Gl) = 2k−1V . In particular, this LCS does
not stop. However its intersection is trivial: the group Gl is residually nilpotent, which implies
that Γ∞(B2,µ) = Γ∞(B1,1,µ), and finishes our proof.

Remark 4.3.13. The Lie ring of G (which identifies with the Lie ring of B2,µ) can be completely
computed, using Corollary 4.5.11. Namely, it identifies with ZN × (L ⋊ Z), where L = Zl−1 ⊕
(Z/2)l−1 ⊕ (Z/2)l−1 ⊕ · · · and the action of the generator t of Z on L is via the degree-one map
Zl−1 ↠ (Z/2)l−1 ∼= (Z/2)l−1 ∼= · · · . In other words, as a Lie ring, L(B2,µ) admits the presentation
via generators t,X1, . . . , Xl−1, Y1, . . . , YN and relations:{

[Yi, Yj ] = [Yi, Xk] = [Yi, t] = [Xk, Xl] = 0,
2[t,Xi] = 0.

Let us now turn our attention to the case when there are two blocks of size 2 in the partition.

Proposition 4.3.14. The LCS of B2,2 does not stop.

Proof. Since B2,2 surjects onto B2,2(S2), this is a direct consequence of Proposition 4.4.76 below,
by an application of Lemma 4.1.1. Alternatively, one can adapt the proof of Proposition 4.4.76 to
this case, getting that:

B2,2/⟨A12, A34, Γ2(P4)⟩ ∼= (Z2)⊗2 ⋊ (S2)2,

where S2 acts on Z2 by permutation of the factors. Then the methods of Appendix 4.6 can be
used to compute completely the LCS of this group.

Corollary 4.3.15. If at least two blocks of the partition λ are of size 2, then the LCS of Bλ does
not stop.

Proof. Under the hypothesis, there is a surjection Bλ ↠ B2,2. Thus, this corollary is obtained
from a direct application of Lemma 4.1.1.

Blocks of size 1 and 2: study of B1,2

We use that B1,2 is isomorphic to the Artin group of type B2, a classical fact of which we give a
proof, for the sake of completeness.
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Lemma 4.3.16. The group B1,2 is isomorphic to the Artin group of type B2, that is, to G =
⟨σ, x | (σx)2 = (xσ)2⟩. As a consequence, it is residually nilpotent, but not nilpotent. In particular,
its LCS does not stop.

Proof. On the one hand, we can re-write the presentation of G as:

G = ⟨σ, x, y | (σx)2 = (xσ)2, y = σxσ−1⟩.

Then, modulo the second relation (which we conveniently rewrite yσ = σx), the first one is
equivalent to (yσ)2 = x(yσ)σ, and in turn to σyσ−1 = y−1xy. Thus:

G = ⟨σ, x, y | σxσ−1 = y, σyσ−1 = y−1xy⟩.

On the other hand, the projection B1,2 ↠ B2 ∼= Z splits, and its kernel identifies with the
fundamental group of the disc minus two points, which is free on two generators x and y. In fact,
the corresponding action of B2 ∼= ⟨σ⟩ on F2 is the usual Artin action. Which means exactly that
the above relations are true in B1,2. Whence a surjection of G onto B1,2, which induces a diagram
with (split) short exact rows:

⟨x, y⟩ G Z

F2 B1,2 B2 ∼= Z.

Using the freeness of their target, one sees that the left and right vertical maps must be isomor-
phisms, hence so is the middle map, by the Five Lemma. The rest of the statement is then a
reformulation of Proposition 4.5.21.

Remark 4.3.17. A more precise result is given by Proposition 4.5.23, which describes the Lie
ring of the group G (hence of B1,2). Notice, however, that this difficult calculation is not needed
if one only wants to see that its LCS does not stop; see Remarks 4.5.20 and 4.5.22.

Corollary 4.3.18. If the partition λ has both a block of size 1 and a block of size 2, then the LCS
of Bλ does not stop.

Proof. Apply Lemma 4.1.1 to a surjection Bλ ↠ B1,2.

Proof of Theorem 4.3.6. The first statement consists of Propositions 4.3.7, 4.3.10 and 4.3.11. The
second one consists of the cases where λ has at least three blocks of size 1 (Lemma 4.3.8), exactly
one block of size 2 together with blocks of size at least 3 (Proposition 4.3.12), at least two blocks of
size 2 (Corollary 4.3.15) or at least one block of size 1 and one block of size 2 (Corollary 4.3.18).

4.4 Braids on surfaces

In this chapter, we study the LCS of surface braid groups and their partitioned versions. This may
be seen as a generalisation of results from §4.3, where we studied classical Artin braids, that is,
braids on the disc. Contrary to what is usually done in the literature, we choose to consider braids
on any surface. In particular, our surfaces may be non-compact, and they may have (countably)
infinite genus or boundary components. For braids, which are always compactly supported and
can be pushed away from the boundary, this level of generality does not really complicate things.
We also do not assume that our surfaces are orientable, because the techniques that we use work
very similarly for orientable surfaces and for non-orientable ones.

We first recall what we need from Richards’ classification of surfaces (§4.4.1), then we intro-
duce the tools that we need from the general theory of braids on surfaces (§4.4.2) and we review
presentations of braid groups on compact surfaces (§4.4.3). We then find ourselves ready to tackle
the study of LCS. We do this first for the whole braid group Bn(S): we show that the LCS stops
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if n ⩾ 3, and we completely compute the Lie ring in this case (§4.4.4). We then generalise these
results to partitioned surface braid groups Bλ(S) in §4.4.5, whose LCS stops if the blocks of the
partition have size at least 3, a stability hypothesis under which we can compute the associated Lie
ring. Finally, we study the unstable cases in §4.4.6. There, four cases stand out from the crowd:
the braid groups on the sphere S2, on the torus T2, on the Möbius strip M2 and on the projective
plane P2.

4.4.1 Surfaces

Recall that a surface is a (second countable) 2-manifold, which we will not suppose compact or
orientable in general. Such manifolds are well-understood: the classification of surfaces without
boundary has been achieved by Richards [Ric63], and the classification of surfaces with boundary,
which is more complicated, was completed more than fifteen years later by Brown and Messer
[BM79].

Remark 4.4.1. By a manifold, we mean a locally Euclidean, Hausdorff space. Moreover, all
our manifolds are assumed second countable. For connected manifolds, this is equivalent to ei-
ther metrisability or paracompactness, and it implies triangulability (see [Rad25] for the latter
implication).

For studying braids, we will in fact only need to consider Richards’ classification. Indeed,
let S be any connected surface (possibly with boundary). If we glue a copy of ∂S × [0,∞) to
S by identifying ∂S × 0 with ∂S, we obtain a surface S′ without boundary, and it is easy to
show that the canonical injection S ↪→ S′ is an isotopy equivalence. Moreover, one can show that
an isotopy equivalence induces homotopy equivalences between configuration spaces and, in turn,
isomorphisms between braid groups. In the sequel, we thus identify braids on S with braids on S′

(or on S−∂S). For instance, braids on the closed disc are identified with braids on the plane. This
holds in particular for braids on one strand, that is, for fundamental groups, whose computation
is recalled below in Proposition 4.4.4.

Let us briefly recall Richards’ construction of all surfaces, up to homeomorphism; for a detailed
account, the reader is referred to [Ric63], in particular to §5 and §6, especially Theorem 3, therein.

Proposition 4.4.2. Let S be a connected surface. Then S is homeomorphic to a surface con-
structed in the following way:
• Consider the Cantor set K embedded in the sphere S2 in the usual manner. Choose some

closed subset X of K, and remove it from S2.
• Choose a finite or countably infinite sequence of pairwise disjoint closed 2-discs in S2 −X,

which has no accumulation point outside of X.
• Along each of these discs, perform a connected sum operation with either T2 or P2.

Remark 4.4.3. At the second step, one can in fact choose an explicit sequence of discs depending
only on X together with the subset Xnp ⊆ X of accumulation points of the sequence of discs; see
[Ric63].

As a direct corollary of Richards’ classification, one can compute fundamental groups of sur-
faces:

Proposition 4.4.4. Let S be a connected surface without boundary. Then π1(S) is a free group,
except when S is closed. Moreover, it is of finite type if and only if S is obtained (up to homeo-
morphism) from a closed surface by removing a finite number of points.

Remark 4.4.5. We see that closed surfaces (that is, compact surfaces without boundary) are
singled out here, as will also be the case later in our study of braid groups; see for instance
Proposition 4.4.15 and Theorem 4.4.53.

Fundamental groups are in fact almost all homotopy groups of surfaces:
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Corollary 4.4.6. Let S be a connected surface without boundary. Then π>2(S) is trivial, except
when S is the sphere or the projective plane.

Proof. The universal covering S̃ of S is a simply connected surface without boundary. Propo-
sition 4.4.4 implies that such a surface must be of finite type, and the explicit computation of
fundamental groups of surfaces of finite type shows that S̃ must be homeomorphic either to the
sphere or to the plane. If S̃ ∼= S2, then S is compact, and the fibers in the covering must be finite,
so π1(S) is finite, and S is either the sphere itself, or the projective plane. In all the other cases,
π>2(S) ∼= π>2(S̃) ∼= π>2(R2) = 0.

Another immediate corollary of Richards’ classification is the following dichotomy:

Proposition 4.4.7. Let S be a connected surface without boundary. Then either S can be embed-
ded into the sphere S2, or it contains the 1-punctured torus or the Möbius strip as an embedded
subsurface.

In our study of braids, this appears as a trichotomy, between the following cases:
• S is planar, i.e. it embeds into the plane;
• S is the sphere S2;
• S contains an embedded 1-punctured torus (a handle) or an embedded Möbius strip (a

crosscap).
In this regard, see in particular Proposition 4.4.19.

Convention 4.4.8. In the usual way, an embedded Möbius strip on a surface will be indicated
in our figures by a crosscap, that is, a circle drawn on the surface, bounding a disc on which is
drawn a cross (see for instance Figure 4.3a). In order to obtain the surface that is meant from the
surface on which the crosscaps are drawn, one must, for each crosscap, remove the interior of the
corresponding disc, and then glue together opposite points of the remaining circle.

The reader not familiar with this classical representation should check, as a good exercise,
that a disc with one crosscap is a Möbius strip, that a sphere with one crosscap is a projective
plane (so that adding a crosscap on a surface is the same as taking the connected sum with a
projective plane), and that a sphere with two crosscaps is a Klein bottle. They should also keep
in mind Dyck’s theorem: three crosscaps on a surface is the same as a handle and a crosscap (see
for instance [FW99]).

4.4.2 Braids on surfaces: general theory

We gather here some fundamental results in the theory of braids on surfaces. The main tools
that we need are Goldberg’s theorem (§4.4.2), the Fadell-Neuwirth exact sequences (§4.4.2) and a
little calculation showing that the usual pure braid generators become commutators on non-planar
surfaces (§4.4.2). Goldberg’s theorem [Gol73, Th. 1] says that surface braid groups are generated
by braids on the disc, together with braids obtained from loops on the surface; we give a new
simple proof of this result, incidentally extending it to possibly non-compact surfaces. As for
the Fadell-Neuwirth exact sequences, which are traditionally stated for pure braid groups, since
they involve forgetting strands, we generalise them easily to partitioned braid groups on possibly
non-compact surfaces, where the projections forget blocks of strands.

Definitions, notations and conventions

Let S be a connected surface. Let us consider the configuration space

Fn(S) = {(x1, . . . , xn) ∈ Sn | ∀i ̸= j, xi ̸= xj} ⊂ Sn.

The braid group on the surface S on n strings is the fundamental group Bn(S) of the unordered
configuration space Cn(S) = Fn(S)/Sn. When S is the 2-disc D, this group is exactly Artin’s
braid group, that is Bn = Bn(D).
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Let us fix an embedded closed disc D ⊂ S, together with a base configuration c = (c1, . . . , cn) ∈
Fn(S) of points ci ∈ D. Since the assignment S 7→ Bn(S) is functorial with respect to embeddings
of surfaces, we have a (not necessarily injective) group morphism:

φ : Bn = Bn(D)→ Bn(S).

In the sequel, we omit most mentions of φ: if β ∈ Bn, we still denote by β its image in Bn(S)
(although we should denote it by φ(β)).

We can also construct surface braids from curves on the surface. Precisely, for any i ⩽ n, let
us define ιi : S − D ↪→ Fn(S) by sending x to the configuration (c1, . . . , ci−1, x, ci+1, . . . , cn). This
induces a morphism between fundamental groups:

ψi : π1(S − D)→ Pn(S).

Remark 4.4.9. The map ιi cannot preserve basepoints, since the basepoint of Fn(S) is not in
its image. However, the induced map between fundamental groups can easily be defined using a
chosen fixed path between ci and a point not in D. The choice of such a path (for each i) is implicit
in the sequel, and should be made as simply as possible. For instance, one can fix a segment from
ci to a point on ∂D, and extend it slightly outside D, such that these paths are disjoint for different
values of i.

The canonical projection π : Bn(S) ↠ Sn, corresponding to the covering of Fn(S)/Sn by
Fn(S), can be enhanced to a projection:

πS : Bn(S)↠ π1(S) ≀Sn

as follows. Given a braid β ∈ Bn(S), let us lift it to a path γ = (γ1, . . . , γn) in Fn(S) from (ci)i

to (cσ−1(i))i where σ = π(β). Then send β to ((γ1, . . . , γn), σ), where γi is the image of γi in
π1(S/D) ∼= π1(S). We note that πS is clearly surjective, since its image contains Sn (which is the
image of φ(Bn) by πS), and all the factors π1(S) (which are the images of the ψi(π1(S))).

The kernel of πS , which is contained in Pn(S), obviously contains the group Pn. We denote
it by P◦

n(S) and we call its elements geometrically pure braids.

Generators of surface braid groups

The following result generalises one of Goldberg [Gol73, Th. 1] to any connected surface.

Proposition 4.4.10. The following statements hold for any connected surface S and any integer
n ⩾ 1:
• For any i ⩽ n, the group Bn(S) is generated by the images of φ and ψi.
• Its subgroup Pn(S) is generated by (the image of) Pn and the images of ψ1, . . . , ψn.
• The subgroup P◦

n(S) of Pn(S) is the normal closure of Pn. Since P◦
n(S) is normal in Bn(S),

it is also the normal closure of Pn in Bn(S).

Proof. Let us first remark that the ψi are conjugate to each other by elements of the image of φ.
Hence, the second statement implies the first one.

We prove both the second and the third statement by induction on n. Both proofs use the
tools that we introduce now. Consider the following commutative diagram of spaces:

S −Qn Fn+1(S) Fn(S)

S Sn+1 Sn,

ι p

ι p
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where Qn = {c1, . . . , cn}, ι sends x to (c1, . . . , cn, x) and p send (x1, . . . , xn+1) to (x1, . . . , xn). It
induces a commutative diagram of morphisms between fundamental groups:

π1(S −Qn) Pn+1(S) Pn(S)

π1(S) π1(S)n+1 π1(S)n,

ι∗

u

p∗

v w (4.2)

whose bottom line is obviously exact. The map p is a (locally trivial) fibration by [FN62, Th. 3]
(see also [Bir74, Th. 1.2]), and the first line is part of its exact sequence in homotopy. Thus it is
exact (but ι∗ need not be injective in general).

Let us prove our second statement. For n = 1, ψ1 is the canonical isomorphism π1(S) ∼=
P1(S) = B1(S), and there is nothing to prove.

Let us now suppose that the conclusion holds for some n ⩾ 1. By applying the Seifert-van
Kampen theorem, we see that π1(S −Qn) ∼= Fn ∗Z π1(S − D), where Fn = π1(D−Qn) is free on
n generators. Then ι∗ : Fn ∗Z π1(S − D) → Pn(S) identifies with the map induced by Fn ↪→ Pn

(the kernel of Pn ↠ Pn−1) and ψn+1 : π1(S − D)→ Pn(S).
Now let G be the subgroup of Pn+1(S) generated by Pn+1 and the images of the ψi for

i ⩽ n + 1. It contains the image of ι∗, which is the kernel of p∗. Moreover, its image by p∗
contains the images of ψ1, . . . , ψn, and Pn, hence all of Pn(S), by the induction hypothesis. As a
consequence, G = Pn+1(S), which was the desired conclusion.

Let us prove our third statement. For n = 1, πS is the canonical isomorphism B1(S) =
P1(S) ∼= π1(S) (inverse to ψ1). Then P◦

n(S) and Pn are trivial, and there is nothing to prove.
Let us now suppose that the conclusion holds for some n ⩾ 1. Consider the induced maps

between kernels of the vertical morphisms in (4.2). By definition, the kernels of v and w are
respectively P◦

n+1(S) and P◦
n(S). Let us denote by K the kernel of u. We get induced maps:

K P◦
n+1(S) P◦

n(S)ι# p#

such that p# ◦ ι# = 1. An easy chase in the diagram (or an application of the Snake Lemma)
shows that we can lift any element in the kernel of p# to an element of K: the above sequence is
exact.

The morphism u identifies with the projection Fn ∗Z π1(S − D)↠ {1} ∗Z π1(S − D) ∼= π1(S)
killing the first factor, hence K identifies with the normal closure of Fn in Fn ∗Z π1(S). Moreover,
ι∗ sends Fn = π1(D −Qn) to a subgroup of Pn+1, so the image of K in Pn+1(S) is contained in
the normal closure of Pn+1.

Now, let N be the normal closure of Pn+1 in Pn+1(S). Since v(Pn+1) = {1}, we have
v(N) = {1}, which means that N ⊆ P◦

n+1(S). By the induction hypothesis, p#(N) = P◦
n(S).

Moreover, N contains the image of i#, which is the kernel of p#. Thus N = P◦
n+1(S), which was

the desired conclusion.

Remark 4.4.11. For a closed, oriented surface, the group K appearing in the proof is exactly the
group Fn+1 from [GP04, page 227], where they give a precise description of it in this particular case.
However, in their paper, they were using the very result that we are recovering and generalising
here, quoting [Bir74] for it [GP04, page 225].

The proof of Proposition 4.4.10 also works for manifolds in higher dimension, allowing us to
recover the classical [Bir69, Th. 1]:

Proposition 4.4.12. For any manifold M of dimension at least 3, the morphism πM : Bn(M)↠
π1(M) ≀Sn is an isomorphism.

Proof. One can directly check that the proof of Proposition 4.4.10 works if we replace the surface S
with a connected manifold M of any dimension d ⩾ 2 and the disc D with a d-disc Dd. Then Pn gets
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replaced with Pn(Dd), which is trivial whenever d ⩾ 3 (the configuration space Fn(Dd) ∼= Fn(Rd)
is obtained from Rnd by removing subspaces of codimension d ⩾ 3, so it is simply connected).
Thus, the normal closure P◦

n(M) of Pn(Dd) is trivial too, and the latter is exactly the kernel of
πM .

Remark 4.4.13. This means that braid groups on manifolds of dimension at least 3 are exactly
wreath products, whose LCS is studied in Appendix 4.5.4; see in particular Corollaries 4.5.27 and
4.5.29.

The Fadell-Neuwirth exact sequences

The locally trivial fibrations used in the proof of Proposition 4.4.10 are particular instances of the
Fadell-Neuwirth fibrations. These induce exact sequences between pure braid groups, that are in
fact exact sequences between partitioned braid groups. We now recall how these work, and when
these exact sequences split.

Definition 4.4.14. Let S be a surface, let n ⩾ 1 be an integer, and let λ = (n1, . . . , nl) be a
partition of n. The corresponding partitioned surface braid group is:

Bλ(S) := π−1(Sλ) = π−1 (Sn1 × · · · ×Snl
) ⊆ Bn(S).

There are canonical surjections between partitioned braid groups, obtained by forgetting
blocks. For most surfaces, these projections behave exactly as they do for the disc. However,
their behaviour for closed surfaces is somewhat trickier, especially when it comes to the sphere and
the projective plane. The latter are in fact the only ones whose braid groups admit non-trivial
torsion elements, a fact that can be seen as a consequence of their second homotopy group being
non-trivial.

Proposition 4.4.15 (Fadell-Neuwirth exact sequences). Let S be a connected surface, let µ be a
partition of an integer m ⩾ 1, ν be a partition of an integer n ⩾ 1, and let us denote by µν their
concatenation, which is a partition of m+ n. The following sequence of canonical maps is exact:

Bµ(S − {n pts}) −→ Bµν(S) −→ Bν(S) −→ 1.

Moreover, except when S = S2 and n = 1, 2 or S = P2 and n = 1, this is in fact a short exact
sequence:

1 −→ Bµ(S − {n pts}) −→ Bµν(S) −→ Bν(S) −→ 1.

Furthermore, if S is not closed, the surjection Bµν(S)↠ Bν(S) splits.

Remark 4.4.16. Recall that base configurations, hence also the n points removed from S, must
not be on the boundary of S, if S has a non-trivial boundary.

Proof of Proposition 4.4.15. Let us first recall that in considering braid groups, we consider sur-
faces up to isotopy equivalence, so we can remove the boundary of S if it is non-trivial, and assume
that ∂S = ∅. Recall that if λ is a partition of N , we denote by Cλ(S) the configuration space
FN (S)/Sλ. Forgetting the first n points induces a map of configuration spaces Cµν(S)→ Cν(S),
which is a locally trivial fibration with fibres homeomorphic to Cµ(S −{n pts}), by a slight adap-
tation of [FN62, Th. 3] (or [Bir74, Th. 1.2]), which works for any manifold (without boundary).
Since its fibres are path-connected, part of its long exact sequence of homotopy groups is:

π2(Cν(S))→ Bµ(S − {n pts}) −→ Bµν(S) −→ Bν(S) −→ 1.

The map Fn(S) ↠ Cν(S) is a covering, so that π2(Cν(S)) ∼= π2(Fn(S)), which is trivial except
when S = S2 and n = 1, 2 or S = P2 and n = 1. When S is not the sphere or the projective
plane, this follows from [Bir74, Prop. 1.3], using the fact that higher homotopy groups of surfaces
different from S2 and P2 are trivial (see Corollary 4.4.6). When S = S2 this is [FB62, Cor. p. 244]
and when S = P2 it is [Bus66, Cor. p. 82].
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If S is not closed, then there is an isotopy equivalence between S and a proper subsurface S′ of
S. Then one can choose a configuration of m points in S −S′ and add them to each configuration
of n points of S′, getting a map Fn(S′)→ Fm+n(S). The induced map π1(Cν(S)) ∼= π1(Cν(S′))→
π1(Cµν(S)) is the required section.

Remark 4.4.17. A weaker form of the asphericity statement for π2(Fn(S)) used in the above
proof may be found [FN62, Cor. 2.2]. They ask that the surface be compact, but this is only
in order to be able to use the classification of compact surfaces, which we easily replaced by the
classification of all surfaces in our proof.

Remark 4.4.18. When S is not closed, the construction of the splitting in the proof of Propo-
sition 4.4.15 can also be used to get a morphism ι from Bn(S) to Bn+1(S), corresponding to
adding an (n + 1)-st strand near a boundary or an end of S. The restriction of this morphism
to pure braid groups is a split injection (it is the section in the particular case µ = (1) and
ν = (1, . . . , 1) in the above proof). Since it also induces an injection from Bn(S)/Pn(S) ∼= Sn

into Bn+1(S)/Pn+1(S) ∼= Sn+1, the morphism ι itself is injective. Notice that, thanks to the
connectedness of S, ι depends on the choices made in its construction only up to conjugation. By
contrast, if S is closed, there is no obvious construction of such a map, and in fact it does not exist
in general [GG04a; GG10].

Pure braid generators and commutators.

Some of the results below will hold for all surfaces S. However, in order to get more precise results,
we need to get more specific and use the classification of surfaces recalled in §4.4.1. Recall that
all the generators σi of Bn are identified in Bab

n
∼= Z (see Example 4.2.3), hence also in Bn(S)ab.

The next proposition deals notably with the order of their common class σ. The trichotomy that
appears here, which comes from Proposition 4.4.7, will play an important role in all that follows.

Proposition 4.4.19. Let n ⩾ 2. Let us consider the generator Aij of Pn as an element of Bn(S).
• If S is planar, then the class Aij ∈ Bn(S)ab has infinite order.
• If S ∼= S2, then the class Aij ∈ Bn(S)ab has order n− 1. However, its class in Pn(S)ab has

infinite order.
• In all the other cases, Aij is the commutator of two elements of Pn(S).

Proof. If S is planar: then S can be embedded in a disc. Such an embedding induces a morphism
Bn(S) → Bn(D) = Bn, which in turn induces a morphism from Bn(S)ab to Bab

n . The latter is
infinite cyclic, generated by σ. Our element Aij is sent to σ2, hence it cannot be of finite order.

If S is the sphere: then from the usual presentation of Bn(S2) (see for instance Corollary 4.4.27
below), we get that Bn(S2)ab ∼= Z/(2(n − 1)), generated by σ. Again, Aij = σ2, whose order is
n− 1.

If S cannot be embedded in the sphere: then S contains a handle or a crosscap; see Proposi-
tion 4.4.7 and the remark following it. We can then use the explicit isotopies drawn in Figures 4.3a
and 4.3b to show that Aij is a bracket of two pure braids (which are respectively in the image of
ψj and in the image of ψi).

4.4.3 Presentations of surface braid groups

In order to prove some of the results below, in particular to determine completely the Lie rings of
partitioned braid groups in the stable case, we will need to use presentations of braids groups on
compact surfaces. The main tool for determining presentations of surface braid groups (including
braids on the disc, which are usual Artin braids) are the Fadell-Neuwirth exact sequences; see
Proposition 4.4.15. These were already used in the course of the proof of Proposition 4.4.10 to
obtain generators of these groups. Let us now briefly explain how they may be used in order to
determine defining relations on these generators. For S a non-closed surface, these exact sequences
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, = = = =
(a) Pure braid generator as a commutator on a surface with a crosscap.

= = = =,
(b) Pure braid generator as a commutator on a surface with a handle.

Figure 4.3 Explicit isotopies expressing a pure braid generator as a commutator. We use them in many
different guises throughout the chapter, each time with respect to a different embedding of the crosscap
or the handle in our surface, whose image contains exactly two points of the base configuration. For
instance, with the notations from Figure 4.4 below, for any choice of 1 ⩽ i < j ⩽ n and of 1 ⩽ r ⩽ g,
the first one gives Aij = [c(r)

j , (c(r)
i )−1] in Bn(Ng).

give a decomposition of B1,n−1(S) as a semi-direct product of Bn−1(S) with a free group F . Then
suppose that one has a set of relations satisfied in Bn(S), defining a group Gn and a well-defined
surjection π : Gn ↠ Bn(S). One can consider the subgroup G1,n−1 = π−1(B1,n−1(S)), use the
relations to show that it is of index at most n in Gn (which implies that the induced surjection of
Gn/G1,n−1 onto Bn(S)/B1,n−1(S) is a bijection – but of course not a group morphism, since these
quotients do not bear a group structure), and determine a presentation of G1,n−1 by using the
Reidemeister-Schreier method. Then one shows that G1,n−1 decomposes as a semi-direct product
of a quotient isomorphic to Gn−1 with a kernel K generated by a family of elements sent by π to a
basis of the free group F . The latter fact implies that this family must be a free basis of K, which
means that π : K → F is an isomorphism. By induction, π : Gn−1 → Bn−1(S) is an isomorphism.
Then π : G1,n−1 → B1,n−1(S) must be an isomorphism too. And since the induced surjection of
Gn/G1,n−1 onto Bn(S)/B1,n−1(S) is a bijection, π : Gn → Bn(S) is an isomorphism (the reader
can easily convince themselves that the latter implication works regardless of the existence of a
group structure on the quotients).

This method can be used to get presentations of the braid groups of every non-closed surface of
finite type; see [Bel04] for instance. It can also be adapted to the case of closed surfaces, replacing
semi-direct product decompositions by non-split extensions, with some care for the exceptional
cases where this is not even an extension. However, we prefer to deduce the case of closed surfaces
from the non-closed one: we give here a direct general argument presenting Bn(S) as the quotient
of Bn(S−pt) by one explicit relation, by applying the Seifert-van Kampen theorem to configuration
spaces; see Proposition 4.4.26.

Surfaces with one boundary component

Presentations of braid groups of compact surfaces with one boundary component can be found in
[HL02, §4] and in [Bel04, Th. 1.1 and A.2]. We re-write them with our own conventions, which we
now explain.

Let us denote by Σg,1 the orientable connected compact surface of genus g with one bound-
ary component, and by Ng,1 the non-orientable connected compact surface of genus g with one
boundary component. We draw Σg,1 as a rectangle with 2g handles attached to it, and Ng,1 as a
rectangle with g crosscaps (see Convention 4.4.8). Our notations for braid generators are detailed
in Figure 4.4. Our drawings of braids are to be thought of as seen from above, and the left-to-right
direction in products corresponds to the foreground-to-background direction in our drawings. For
instance, with the notations of Figure 4.4, we have that σ1a

(i)
k σ−1

1 = a
(i+1)
k . As an illustration of
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j n1 i+1 ki2

1 g

Ajk bg
(n)

a1
(1) b1

(2)

σi

(a) Generators of Bn(Σg,1).

j n1 k

1 g

Ajk

c1
(1)

i+1i

σi

cg
(n)

(b) Generators of Bn(Ng,1).

Figure 4.4 Generators of surface braid groups. For each generator (except for σi, where the points i
and i + 1 move), only one point of the configuration moves, and the others stay put. We often denote
x

(1)
k

by xk, for x = a, b, c.

=(   )2

= =
Figure 4.5 The classical pure braid generator Ai,i+1 = σ2

i .

these conventions, we draw different representations of the classical pure braid generator Ai,i+1 in
Figure 4.5.

Notation 4.4.20. For clarity, in group presentations, we write a ⇄ b for the relation saying that
a and b commute.

Proposition 4.4.21 ([Bel04, Th. 1.1]). Let g ⩾ 0. A presentation of the braid group on Σg,1,
generated by σ1, . . . , σn−1, a1, . . . , ag, b1, . . . , bg, is given by the braid relations for σ1, . . . , σn−1, to
which are added the following four families of relations (where x and y denote either a or b, and
1 ⩽ r, s ⩽ g): 

(BS1) σi ⇄ xr for all r and all i ⩾ 2 ;
(BS2) xr ⇄ σ1ysσ

−1
1 for r < s ;

(BS3) (σ1xr)2 = (xrσ1)2 for all r ;
(BS4) [σ1brσ

−1
1 , a−1

r ] = σ2
1 for all r.

(4.3)

Notice that it is easy to check that these relations hold in Bn(Σg,1) by drawing explicit
isotopies. See for instance Figure 4.3b for a drawing of (BS4) (which generalises to [b(j)

s , (a(j)
r )−1] =

Ar,s if r < s). The translation between Bellingeri’s conventions and ours is as follows:
• Our statement is the case p = 1 of [Bel04, Th. 1.1], whence the absence of the zk, and of the

relations involving them.
• Our σi is his σ−1

i , our ar is his b−1
r , and our br is his a−1

r .
• Our (BS1)− (BS4) are his (R1)− (R4), with 2 and 3 exchanged.

Remark 4.4.22. Although [Bel04, Th. 1.1] is stated for g ⩾ 1, the proof works equally well if
g = 0. In fact, the case g = 0 of our statement is just the usual presentation of braid groups on
the disc.

Proposition 4.4.23 ([Bel04, Th. A.2]). Let g ⩾ 1. A presentation of the braid group on Ng,1,
generated by σ1, . . . , σn−1, c1, . . . , cg is given by the braid relations for σ1, . . . , σn−1, to which are
added the following three families of relations (where 1 ⩽ r, s ⩽ g):

(BN1) σi ⇄ cr for all r and all i ⩾ 2 ;
(BN2) cr ⇄ σ1csσ

−1
1 for r < s ;

(BN3) [σ1crσ
−1
1 , c−1

r ] = σ2
1 for all r.

(4.4)

Here again, it is easy to check these relations explicitly. See for instance Figure 4.3a for a
drawing of (BN3) (which generalises to [c(j)

s , (c(j)
r )−1] = Ars if r < s). Also, it is the case p = 1 of
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Bellingeri’s statement so, again, the zk and the corresponding relations are irrelevant. Moreover,
our σi is his σ−1

i , our ci are his a−1
i , and the indexation of our relations is the same as his.

Remark 4.4.24. The statement of [Bel04, Th. A.2] is for g ⩾ 2, but the proof works equally well
if g = 1.

In the case of non-orientable surfaces, we will also need the case p > 1 of [Bel04, Th. A.2],
which will be used twice, in the proofs of Proposition 4.4.59 and Proposition 4.4.85. Let us denote
by Ng,n+1 the non-orientable connected compact surface of genus g with either n+ 1 punctures or
n + 1 boundary components (recall that, up to isotopy, removing a point and removing an open
disc are equivalent). The braid group Bm(Ng,n+1) may be seen as a subgroup of Bm+n(Ng,1); see
Proposition 4.4.15. Namely, this subgroup is generated by σ1, . . . , σn−1, c1, . . . , cg and zj := A1,m+j

for all 1 ⩽ j ⩽ n.

Proposition 4.4.25 ([Bel04, Th. A.2]). Let g ⩾ 0 and m ⩾ 1. A presentation of the braid
group Bm(Ng,n+1), generated by σ1, . . . , σm−1, c1, . . . , cg, z1, . . . , zn is given by the relations from
Proposition 4.4.23, together with the following four families of relations:

(BN4) zj ⇄ σi for all j ⩽ n and all i ∈ {2, . . . ,m− 1} ;
(BN5) cr ⇄ σ1zjσ

−1
1 for all j ⩽ n and all r ⩽ g ;

(BN6) zi ⇄ σ1zjσ
−1
1 for i > j ;

(BN7) (σ1zj)2 = (zjσ1)2 for all j ⩽ n.

Once more, these relations are easy to check explicitly. The translation between [Bel04,
Th. A.2] and our statement is the same as above, our zj being the same as Bellingeri’s.

Closed surfaces

When S is a closed surface, one needs to add a single relation to a presentation of Bn(S − pt)
to get a presentation of Bn(S). In fact, this is a very general fact, which does not require any
hypothesis on the surface.

Proposition 4.4.26. Let S be a connected surface and x ∈ S any point in its interior. The
inclusion of S − x into S induces a surjective homomorphism

Bn(S − x)↠ Bn(S)

whose kernel is normally generated by a single element β. Explicitly, β is a braid with n− 1 trivial
strands, whose remaining strand loops once around the puncture x.

Proof. Choose a subdisc D ⊂ S containing x in its interior, and a metric on D. Write Un(S, x) for
the subspace of Cn(S) = Fn(S)/Sn of (unordered) configurations that have a unique closest point
in D to x (which may be x itself). Together with Cn(S − x), this forms an open cover

{Un(S, x), Cn(S − x)}

of Cn(S), with intersection Un(S, x)∩Cn(S−x) = Un(S−x, x) the space of n-point configurations
in S − x that have a unique closest point in D − x to x. Note that these subspaces of Cn(S) are
all path-connected. Let us choose a basepoint for Cn(S) that lies in Un(S − x, x). The Seifert-van
Kampen theorem then gives us a pushout square of groups:

π1(Un(S − x, x)) Bn(S − x)

π1(Un(S, x)) Bn(S).

(4.5)

There is a well-defined projection Un(S, x)↠ D given by remembering just the unique closest
point in D to x, which restricts to a projection Un(S − x, x) ↠ D − x. These are both locally
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Figure 4.6 The boundary elements in Bn(Σg,1) and Bn(Ng,1).

trivial fibrations with fibres canonically homeomorphic to Cn−1(S − x). (Over a point p ∈ D, the
homeomorphism is induced by the evident homeomorphism between S−x and S−B̄d(p,x)(x), where
B̄r(x) denotes the closed ball of radius r in D centred at x and d(−,−) is the metric that we chose
on D.) The inclusion of the latter into the former is therefore a map of locally trivial fibrations
which is the identity on fibres. Considering the induced long exact sequences of homotopy groups,
we obtain a map of exact sequences:

1 Bn−1(S − x) π1(Un(S − x, x)) π1(D − x) ∼= Z 1

1 Bn−1(S − x) π1(Un(S, x)) π1(D) = 1.

∼=
r

∼=

(4.6)

The map r obtained from this diagram is a retraction for the upper short exact sequence,
whose existence implies that π1(Un(S − x, x)) is the direct product of π1(Un(S, x)) and Z. Then,
the left-hand vertical map in (4.5) identifies with the projection that forgets the Z factor. Together
with the fact that (4.5) is a pushout square, this implies that the right-hand vertical map in (4.5)
is the quotient of Bn(S − x) by (the subgroup normally generated by) the image of the Z factor
of π1(Un(S − x, x)) in Bn(S − x). We may choose for a generator of this Z factor any element of
π1(Un(S − x, x)) that projects to a generator of π1(D− x), for example the braid described in the
proposition.

Let us make this explicit:

Corollary 4.4.27. For all g ⩾ 0, the braid group Bn(Σg) is the quotient of Bn(Σg,1) by the
relation:

σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 =

g∏
r=1

[ar, b
−1
r ].

Similarly, the braid group Bn(Ng) is the quotient of Bn(Ng,1) by the relation:

σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 = c2

1 · · · c2
g.

We note that we recover as a particular case the usual presentations of the braid group on the
sphere (see [FB62] or [Bir74, Th. 1.11]) and of the projective plane (see [Bus66, §III, page 83]).
Not having to treat these as exceptional cases is one of the great advantages of the present method.

Proof of Corollary 4.4.27. This is a direct application of Proposition 4.4.26, using the fact that
the punctured surface Σg − pt (resp. Ng − pt) is isotopy equivalent to Σg,1 (resp. to Ng,1). We
note that σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1 = A12 · · ·A1n is the (pure) braid obtained by making the first

strand turn once around all the other ones; see Figure 4.6 for the relevant drawings.
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Partitioned braids on closed surfaces

The above proof of Proposition 4.4.26 generalises to partitioned braid groups without much diffi-
culty; see Remark 4.4.32. However, we prefer to deduce these generalisations directly from Proposi-
tion 4.4.26 itself. We begin with the case of pure braids by describing a direct equivalence between
Proposition 4.4.26 and the following statement:

Proposition 4.4.28. Let S be a connected surface and x ∈ S any point in its interior. The
inclusion of S − x into S induces a surjective homomorphism

Pn(S − x)↠ Pn(S)

whose kernel is normally generated by n elements β1, . . . , βn. Explicitly, βi is a braid whose i-th
strand loops once around the puncture x, the other strands being trivial.

Equivalence between Proposition 4.4.26 and Proposition 4.4.28. Let N be the subgroup of Bn(S−
x) normally generated by the braid β from Proposition 4.4.26. Note that β is a pure braid, hence
we have N ⊆ Pn(S − x). Now, let N ′ be the subgroup of Pn(S − x) normally generated by the
βi. We will show that N = N ′. This implies the equivalence of Propositions 4.4.26 and 4.4.28 by
considering the diagram

N ′ ker(πP) Pn(S − x) Pn(S)

N ker(πB) Bn(S − x) Bn(S)

Sn Sn

πP

πB

and noting that the two propositions are equivalent, respectively, to the statements N = ker(πB)
and N ′ = ker(πP).

Our definitions of β and the βi are up to some choices, but all these choices give elements
conjugate to each other (in Bn(S−x) or in Pn(S−x), respectively) or each other’s inverses, which
does not affect the definition of N and N ′. We can make these choices so that:
• the only moving strand of β is the first one,
• β commutes with every element of the subgroup B1,n−1 = ⟨σ2, . . . , σn−1⟩ of Bn(S−x) (which

consists of braids in a fixed disc D ⊂ S − x involving only the strands 2 to n),
• for each i, βi = (σ1 · · ·σi−1)−1β(σ1 · · ·σi−1).

See Figure 4.7 for an example of such choices. The latter relations imply N ′ ⊆ N .
We now show that N ′ contains all the conjugates of β by elements of Bn(S − x), which

implies N ′ ⊇ N . In order to do this, we need only show that it contains t−1βt for t in a set of
representatives of classes modulo Pn(S − x): then every element of Bn(S − x) is of the form tα
for some such t and some α ∈ Pn(S − x), and (tα)−1β(tα) = α−1(t−1βt)α must be in N ′.

Every element τ ∈ Sn
∼= Bn(S − x)/Pn(S − x) is the product of an element τ ′ fixing 1 with

some cycle τ1 · · · τi−1 (precisely, i = τ(1)). Since β commutes with every element of the subgroup
⟨σ2, . . . , σn−1⟩ ⊂ Bn(S − x), and since this subgroup surjects onto permutations fixing 1, we can
choose a lift t′ of τ ′ commuting with β, so that the lift t = t′σ1 · · ·σi−1 of τ to Bn(S− x) satisfies:

t−1βt = (σ1 · · ·σi−1)−1t′−1βt′(σ1 · · ·σi−1)
= (σ1 · · ·σi−1)−1β(σ1 · · ·σi−1) = βi ∈ N ′,

whence our result.

It is not difficult to generalise this to any partitioned braid group:
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Figure 4.7 Braids β and β1, . . . , βn from the proof of the equivalence of Propositions 4.4.26 and 4.4.28.

Corollary 4.4.29. Let S be a connected surface, x ∈ S any point in its interior and λ =
(n1, . . . , nl) be a partition of n of length l. The inclusion of S − x into S induces a surjective
homomorphism

Bλ(S − x)↠ Bλ(S)
whose kernel is normally generated by l elements β1, . . . , βl. Explicitly, βi is a braid with n − 1
trivial strands, except one block in the i-th block which loops once around the puncture x.

Proof. We have Pn(S−x) ⊂ Bλ(S−x) ⊂ Bn(S−x). As a consequence, if N is a normal subgroup
of Pn(S−x) which is normal in Bn(S−x), we have Pn(S−x)/N ⊂ Bλ(S−x)/N ⊂ Bn(S−x)/N .
Moreover, normal generators for N in Pn(S − x) are also normal generators for N in Bλ(S − x)
and, in fact, fewer generators are needed to normally generate N in Bλ(S− x). Namely, using the
notations from the previous proof, we have βα+1 = σ−1

α βασα, so that βα+1 and βα are conjugate
in Bλ(S − x) whenever σα ∈ Bλ(S − x), which happens when α and α + 1 are in the same block
of λ. As a consequence, we need to pick only one index α in each block of λ in order for the βα to
normally generate N in Bλ(S − x).

Remark 4.4.30. This boils down to considering representatives modulo Bλ(S − x) instead of
modulo Pn(S − x) (that is, elements of Sn/Sλ instead of Sn) in the previous reasoning. In
fact, one can see that there are straightforward equivalences between all these statements for the
different partitions of n.

Let us make these statements explicit. We use the usual convention Aji = Aij and Aii = 1:
Corollary 4.4.31. For all g ⩾ 0 and any partition λ = (n1, . . . , nl), the braid group Bλ(Σg) is
the quotient of Bλ(Σg,1) by the relations:

Aα1 · · ·Aαn =
g∏

r=1
[a(α)

r , (b(α)
r )−1].

Similarly, the braid group Bλ(Ng) is the quotient of Bλ(Ng,1) by the relations:

Aα1 · · ·Aαn = (c(α)
1 )2 · · · (c(α)

g )2.

In both cases, α runs through any set of representatives of the blocks of λ.
Remark 4.4.32. Instead of the reasoning above, one could adapt the proof of Proposition 4.4.26 to
partitioned configuration spaces. Precisely, we get an open cover {Uλ(S, x), Cλ(S−x)} of Cλ(S) =
Fn(S)/Sλ by an obvious adaptation of the definition of Un(S, x). However, this time Uλ(S, x) is
disconnected, with one path-component for each block of the partition λ. As a consequence, one
needs to apply the Seifert-van Kampen theorem once for each path-component of Uλ(S, x), resulting
in taking the quotient of the fundamental group by one additional relation for each application of
the theorem. In doing so, one needs to be careful about basepoints, since one obviously cannot
choose a common basepoint in the different path-components of Uλ(S, x).
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4.4.4 The lower central series of the whole group

We now turn to the study of the LCS of Bn(S), which we completely determine for any n ⩾ 3 and
any surface S. We begin by computing the abelianisation of this group; see Proposition 4.4.33.
Then we study Bn(S)/Γ∞, and we show that when n ⩾ 3, it is nilpotent of class at most 2,
which means that the LCS of Bn(S) stops at most at Γ3; see Theorem 4.4.35 and Corollary 4.4.37.
Finally, we compute the Lie ring, generalising a result of [BGG08]; see Theorem 4.4.43.

The abelianisation

We first compute the abelianisation of Bn(S), for any n and any surface S. In order to do this,
recall that the group morphism φ : Bn → Bn(S) induces a map Bab

n → Bn(S)ab, and that, since
all the σi are identified in Bab

n
∼= Z, they are so also in Bn(S)ab. We denote by σ their common

image in Bn(S)ab.

Proposition 4.4.33. In general, for all n ⩾ 2, we have:

Bn(S)ab ∼= π1(S)ab × ⟨σ⟩.

Moreover, σ is:
• of infinite order if S is planar,
• of order 2(n− 1) if S ∼= S2,
• of order 2 in all the other cases.

Proof. Consider the short exact sequence P◦
n(S) ↪→ Bn(S)

πS

↠ π1(S) ≀ Sn. By Lemma 4.1.11, it
induces an exact sequence of abelian groups:

(P◦
n(S)ab)Bn(S) Bn(S)ab (π1(S) ≀Sn)ab 0.

On the one hand, the quotient (π1(S) ≀ Sn)ab is isomorphic to π1(S)ab × Z/2 (Lemma 4.5.24).
On the other hand, it follows from Proposition 4.4.10 that P◦

n(S) is generated by Pn under the
action of Bn(S). As a consequence, the map Pab

n → (P◦
n(S)ab)Bn(S) induced by φ is surjective.

Moreover, it factors through (Pab
n )Bn

= (Pab
n )Sn

∼= Z. Thus (P◦
n(S)ab)Bn(S) is cyclic, and its

image in Bn(S)ab is generated by σ2, which is the image of any pure braid generator.
All of this implies that Bn(S)ab/⟨σ⟩ ∼= π1(S)ab. Moreover, the corresponding projection map

Bn(S)ab ↠ π1(S)ab splits, a splitting being induced by any of the ψi. As a consequence, Bn(S)ab

identifies with π1(S)ab × ⟨σ⟩, and we can use Proposition 4.4.19 to get a complete calculation.

The lower central series

Let us now turn to the study of the LCS of Bn(S). Our main tool for studying it is a decomposition
theorem (Theorem 4.4.35 below), whose proof relies on the following:

Lemma 4.4.34. Let n ⩾ 3. The image of Bn in Bn(S)/Γ∞ is cyclic, and it is central. Namely,
it is generated by the common class σ of the usual generators σi of Bn.

Proof. The morphism φ sends Γ∞(Bn) to Γ∞(Bn(S)). We know that σiσ
−1
j ∈ Γ∞(Bn) for all

i, j < n, so σi ≡ σj (mod Γ∞(Bn(S))). Let us denote by σ ∈ Bn(S)/Γ∞ the common image of
the σi. Since the σi generate Bn, the image of Bn in Bn(S)/Γ∞ is the cyclic subgroup generated
by σ. In particular, its elements commute with σ. Moreover, for all γ ∈ π1(S − D), the braids σ2
and ψ1(γ) have disjoint support, hence σ also commutes with the image of ψ1. Since the images
of φ and ψ1 generate Bn(S) by Proposition 4.4.10, this means that σ is a central element of
Bn(S)/Γ∞.

We can now state our main decomposition theorem:
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Theorem 4.4.35. For all n ⩾ 3, there is a central extension:

⟨σ2⟩ Bn(S)/Γ∞ π1(S)ab × Z/2.

Proof. Since πS is surjective, it sends Γ∞(Bn(S)) onto a normal subgroup of π1(S) ≀ Sn. This
normal subgroup is contained in Γ∞(π1(S) ≀Sn) and contains the τiτ

−1
j , which are the images of

the σiσ
−1
j ∈ Γ∞(Bn(S)). By Lemma 4.5.26, it is equal to Γ2(π1(S) ≀Sn). Then, we can apply the

Nine Lemma to the diagram:

Γ∞(Bn(S)) ∩P◦
n(S) Γ∞(Bn(S)) Γ2(π1(S) ≀Sn).

P◦
n(S) Bn(S) π1(S) ≀Sn

P◦
n(S)/Γ∞(Bn(S)) ∩P◦

n(S) Bn(S)/Γ∞ (π1(S) ≀Sn)ab.

πS

πS

Then recall that (π1(S) ≀ Sn)ab ∼= π1(S)ab × Z/2. Thus, we are left with analysing the kernel
P◦

n(S)/Γ∞(Bn(S)) ∩ P◦
n(S) of πS , which is the image of P◦

n(S) in Bn(S)/Γ∞. Since P◦
n(S) is

the normal closure of Pn in Bn(S) by Proposition 4.4.10, its image in Bn(S)/Γ∞ is the normal
closure of the image of Pn. But Pn is sent to ⟨σ2⟩ which is central (and, in particular, normal) in
Bn(S)/Γ∞, whence the result.

Remark 4.4.36. We also have a central extension:

⟨σ⟩ Bn(S)/Γ∞ π1(S)ab.

This slightly different statement tells us slightly different things: it implies that σ is central,
whereas the statement of the theorem says that σ is not trivial in Bn(S)ab.

Corollary 4.4.37. For any n ⩾ 3, we have Γ3(Bn(S)) = Γ4(Bn(S)).

Proof. Proposition 4.4.35 implies that Bn(S)/Γ∞ is 2-nilpotent, which means exactly that its Γ3
is trivial. In other words, Γ3 ⊆ Γ∞ for Bn(S).

The remaining cases consist in the cases when n = 1 and when n = 2.

Proposition 4.4.38. For any connected surface S, either B1(S) = π1(S) is abelian, which occurs
precisely when S ∈ {D− pt,D,S2,T2,P2,M2} up to isotopy equivalence, or its LCS does not stop.

Proof. If S is closed and not in {S2,P2,T2} then the LCS of π1(S) does not stop. To see this, note
that it admits a presentation of the form ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1⟩ or ⟨c1, . . . , cg |
c2

1 · · · c2
g = 1⟩ for g ⩾ 2, and these both project onto Z/2 ∗ Z/2 = ⟨x, y | x2 = y2 = 1⟩ by sending

a1, b1, c1 to x and all other generators to y; the LCS of Z/2 ∗ Z/2 does not stop by Proposition
4.5.16. If S is not closed, its fundamental group is free by Proposition 4.4.4. If it is also not in
{D− pt,D,M2} then its fundamental group is moreover non-abelian free, and hence its LCS does
not stop by [Mag35] (see also [MKS04, Chap. 5]).

Remark 4.4.39. The fundamental group of a surface is known to always be residually nilpotent,
and almost always residually torsion-free nilpotent (the only exceptions to the latter being the
projective plane and the Klein bottle). This follows from [MKS04, Chap. 5] for non-closed surfaces,
whose fundamental group is free. For closed surfaces, it follows from [Bau10] if S contains a handle:
then the Seifert-van Kampen theorem applied to a decomposition S = T2#S′ gives a presentation
of the form of Theorem 1 therein. The remaining surfaces are the sphere, the projective plane and
the Klein bottle, whose LCS are easily computed explicitly (see Proposition 4.5.4 for the last one).

Proposition 4.4.40. When S is not D, S2 or P2, up to isotopy equivalence, the LCS of B2(S)
does not stop.
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Proof. The group B2(S) surjects onto π1(S) ≀S2. Since π1(S)ab surjects onto Z except in the three
excluded cases of the statement, we can apply Corollary 4.5.29 to see that the LCS of π1(S) ≀S2
does not stop. Then the one of Bn(S) does not either by Lemma 4.1.1.

Remark 4.4.41. For orientable surfaces, B2(S) is residually nilpotent [BB09b, Cor. 10]. This
result can in fact be extended to non-orientable surfaces, with the same method, using the results
quoted in Remark 4.4.39.

Remark 4.4.42. Clearly, the LCS of B2(D) ∼= Z and of B2(S2) ∼= Z/2 both stop at Γ2. The fact
that B2(S2) ∼= Z/2 is the case n = 2 and g = 0 of Corollary 4.4.27. On the other hand, the group
B2(P2) is the dicyclic group of order 16 (Corollary 4.4.83), which is 3-nilpotent, so its LCS stops
at Γ4.

The Lie ring

We can be more precise about our description of the LCS of surface braid groups. In particular,
Corollary 4.4.37 says that, for n ⩾ 3, the LCS stops at most at Γ3, but it does not say when it
stops at Γ2 (then the associated Lie ring consists only of the abelianisation, which has already been
computed in Proposition 4.4.33), or when it stops at Γ3 (in which case the Lie ring is 2-nilpotent
but not abelian). We now show that the latter holds only for non-planar orientable surfaces, and
we compute precisely L(Bn(S)), generalising results of [BGG08].

Theorem 4.4.43. Let n ⩾ 3 be an integer and S be a connected surface. The LCS of Bn(S):
• stops at Γ2 if S is either planar or non-orientable, or if S ∼= S2.
• stops at Γ3 in the other cases. Then L2(Bn(S)) is cyclic, generated by the common class σ2

of the pure braid generators Aij.
Moreover, in the second case, σ2 is of finite order if and only if S is closed, in which case its order
is n+ g − 1, where g is the genus of S.

Proof. Since the LCS of Bn(S) stops at most at Γ3, L2(Bn(S)) identifies with Γ2 (Bn(S)/Γ∞)
(the latter being Γ2/Γ∞(Bn(S)) = Γ2/Γ3(Bn(S))). Moreover, using the central extension of
Theorem 4.4.35, we see that in Bn(S)/Γ∞, the subgroup Γ2 must be contained in ⟨σ2⟩, which
implies that it is cyclic, generated by a power of σ2.

Planar surfaces: if S is planar, then the common class σ of the σi in Bn(S)ab = (Bn(S)/Γ∞)ab

is of infinite order by Proposition 4.4.33. Hence Γ2(Bn(S)/Γ∞) does not contain any power of
σ = σ1. But Γ2(Bn(S)/Γ∞) is contained in ⟨σ2⟩, so it must be trivial, which means that Γ2 = Γ∞
for Bn(S).

The sphere: if S = S2, then Bn(S2) is a quotient of Bn (see Corollary 4.4.27), which implies
that its LCS also stops at Γ2.

Non-orientable surfaces: the surface S is non-orientable if and only if it contains an embedded
Möbius band. Then σ2

1 = [σ1cσ
−1
1 , c−1] for some c ∈ Bn(S): precisely, c is a braid whose first

strand goes around the Möbius strip once, that is, through the crosscap; see Figure 4.3a. Since σ1
is sent to the central element σ of Bn(S)/Γ∞, this relation implies that σ2 = [c, c−1] = 1. Thus
⟨σ2⟩ is trivial, and so is its subgroup Γ2 (Bn(S)/Γ∞) ∼= L2(Bn(S)).

Non-planar orientable surfaces: if S has a handle, then σ2
1 = [a−1, σ1bσ

−1
1 ] for some a, b ∈

Bn(S). Precisely, a and b are braids whose first strands go around a handle; see Figure 4.3b.
Hence σ2 ∈ Γ2 (Bn(S)/Γ∞), which implies that L2(Bn(S)) is generated by σ2.

If S is a non-planar compact orientable surface with at least one boundary component, then
S can be embedded in some Σg,1 for an arbitrary large g, by attaching a disc to each boundary
component save one. The induced map L2(Bn(S))→ L2(Bn(Σg,1)) sends σ2 to σ2, and the latter
is of infinite order (Proposition 4.4.44).

If S is a non-compact non-planar orientable surface, let us suppose that σ2 is a torsion element
in Bn(S)/Γ∞ = Bn(S)/Γ3. Then for some integer k, σ2k

1 is equal to some product of commutators
of length at least 3 in Bn(S). Such a formula involves only a finite number of braids. Let us choose
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a representative of each of these isotopy classes. These involve a finite number of paths on the
surface. If moreover we choose an isotopy realising the aforementioned equality of braids (using
the concatenation of the chosen representatives as a representative of the right-hand side), the
image of this isotopy is contained in a compact subsurface S′ of S. Thus, our formula also holds in
Bn(S′): σ2k

1 is equal to some product of commutators of length at least 3 in there. Then σ2k = 1
in Bn(S′)/Γ3. However, this contradicts the previous case, since S′ cannot be closed (nor planar).
We conclude that σ2 cannot be a torsion element in Bn(S)/Γ∞; equivalently, L2(Bn(S)) ∼= Z.

If S is a closed orientable surface Σg of genus g ⩾ 1, then L2(Bn(Σg)) ∼= Z/(n+ g − 1). This
is [BGG08, Th. 1], which can be deduced from Proposition 4.4.44 below. We will do so in a more
general context later; see Proposition 4.4.57.

The proof of the following result is inspired from [BGG08]. In fact, it is equivalent to [BGG08,
Th. 1] in a quite straightforward way; see Remark 4.4.45.

Proposition 4.4.44. Let g ⩾ 1, and let Σg,1 denote the compact surface of genus g with one
boundary component. For every n ⩾ 1, L2(Bn(Σg,1)) ∼= Z, generated by the common class σ2 of
the pure braid generators.

Proof. We compute completely Bn(Σg,1)/Γ3. Let us consider the quotient of Bn(Σg,1) by the
relations σi = σi+1, that is, by the normal closure N of the σiσ

−1
i+1 for 1 ⩽ i ⩽ n− 1. We already

know that, modulo Γ3, the braid generators σi have a common class σ. In particular, N ⊆ Γ3,
and we will show that N = Γ3 by showing that G := Bn(Σg,1)/N is 2-nilpotent. Thanks to
Proposition 4.4.21, we can compute a presentation of this quotient. It is generated by σ, together
with ar and br for 1 ⩽ r ⩽ g. The braid relations on the σi become trivial there. (BS1) says that σ
is central. (BS2) says that the ar and the bs commute with one another, except ar and br (for each
r). Since σ is central, (BS3) becomes trivial. Finally, (BS4) can be written as brarb

−1
r = arσ

−2.
From this presentation, one can see that G ∼= (Z × Zg) ⋊ Zg, where the three factors are free
abelian on σ, the ar and the br respectively; the action of each br is trivial on σ and the as if
s ̸= r, and br · ar = ar − 2σ. Since this group is 2-nilpotent, we have N = Γ3(Bn(Σg,1)), as
announced. Moreover, the Lie ring of G, which is the Lie ring of Bn(Σg,1) by Corollary 4.4.37, is
easy to compute. Namely, L1(G) = Gab ∼= (Z/2)2 × Z2g, L2(G) = Γ2(G) ∼= Z is generated by σ2,
and the only non-trivial brackets of generators are [ar, br] = σ2.

Remark 4.4.45. Here we choose to recover [BGG08, Th. 1] from Proposition 4.4.44. However,
one can also deduce Proposition 4.4.44 from [BGG08, Th. 1]. Namely, one can embed Σg,1 into
Σg′ for any g′ ⩾ g, by attaching Σg′−g,1 along the boundary component. The induced map
L2(Bn(Σg,1)) → L2(Bn(Σg′)) sends σ2 to σ2, and the latter is of order n + g′ − 1 by [BGG08,
Th. 1]. Thus, by varying g′, we see that σ2 cannot be of finite order inside L2(Bn(Σg,1)).

Remark 4.4.46. The group (Z × Zg) ⋊ Zg appearing in the proof of Proposition 4.4.44, which
is then the maximal nilpotent quotient of Bn(Σg,1), has a nice interpretation as a matrix group
resembling the Heisenberg group of a symplectic vector space. Namely, it is the subgroup of
GLg+2(Q) given by: 

1 Z Z · · · Z 1
2Z

1 0 · · · 0 Z
. . . . . .

...
...

. . . 0 Z
1 Z

1


Remark 4.4.47 (About the Riemann-Hurwitz formula). The result [BGG08, Th. 1] quoted above
and recovered below (Proposition 4.4.57) says that when S is an orientable closed surface, the infor-
mation encoded in L2(Bn(S)) is essentially the genus of S, or its Euler characteristic. In fact, one
can recover the Riemann-Hurwitz formula for (unramified) coverings of closed orientable surfaces
from this computation. Indeed, let p : Σh ↠ Σg be a k-sheeted covering. It induces a continuous
map p∗ : Cn(Σg)→ Ckn(Σh) between unordered configuration spaces sending a configuration of n
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points to the configuration of the kn preimages of these points by p. The induced map between the
fundamental groups sends the pure braid generator A12 to the product of the Aj,j+1 for j ∈ p−1(1)
(if the correct conventions are chosen). Thus the induced map from L2(Bn(Σg)) to L2(Bkn(Σh))
sends σ2 to kσ2. Since σ2 is of order n + g − 1 in L2(Bn(Σg)), we obtain (n + g − 1)kσ2 = 0
in L2(Bkn(Σh)). However, σ2 is of order kn + h − 1 there, implying that kn + h − 1 divides
kn+ k(g − 1). This holds for all n. For n big enough, kn+ k(g − 1) < 2(kn+ h− 1), so the only
possibility is that kn+ k(g − 1) = kn+ h− 1, that is, k(g − 1) = h− 1, which is equivalent to the
Riemann-Hurwitz formula for p.

4.4.5 Partitioned braids on surfaces

Let us now study the LCS of partitioned surface braid groups Bλ(S), generalising the results from
§4.4.4, which can be seen as the case of the trivial partition λ = (n) of n. We follow the same steps:
we first compute the abelianisations of Bλ(S) in Proposition 4.4.48, before studying Bλ(S)/Γ∞
and showing that the LCS of Bλ(S) stops at most at Γ3 when the partition λ has only blocks of
size at least 3, in Theorem 4.4.51 and Corollary 4.4.52. Finally, under the latter hypothesis, we
compute the associated Lie rings in Theorem 4.4.53.

The abelianisation

Let λ = (n1, . . . , nl) be a partition of an integer n. A computation of Bλ(S)ab can be obtained by
a quite straightforward generalisation of the computation of Bn(S)ab from Proposition 4.4.33.

Let us first recall that the morphism φ from §4.4.2 induces a map Bab
λ → Bλ(S)ab. Then,

from Proposition 4.3.5, we get that:
• For each i ⩽ l such that ni ⩾ 2, all the σα with α and α + 1 in the i-th block of λ have a

common image in Bλ(S)ab, called si.
• For each i < j ⩽ l, all the Aαβ with α (resp. β) in the i-th (resp. the j-th) block of λ have a

common image in Bλ(S)ab, called aij (or aji).
Let us now consider the short exact sequence:

P◦
n(S) Bλ(S) π1(S) ≀Sλ.

πS

We can apply Lemma 4.1.11 to it, and we get an exact sequence of abelian groups:

(P◦
n(S)ab)Bλ(S) Bλ(S)ab (π1(S) ≀Sλ)ab 0.

On the one hand, the quotient (π1(S) ≀Sλ)ab is isomorphic to the product of the (π1(S) ≀Sni
)ab,

which is (π1(S)ab)l × (Z/2)l′ , where l′ is the number of indices i ⩽ l such that ni ⩾ 2 (see
Corollary 4.5.25). On the other hand, it follows from Proposition 4.4.10 that P◦

n(S) is generated
by Pn under the action of Pn(S), which is a subgroup of Bλ(S). As a consequence, the map
Pab

n → (P◦
n(S)ab)Bλ(S) induced by φ is surjective. Moreover, it factors through the quotient

(Pab
n )Bλ

= (Pab
n )Sλ

∼= Zl(l−1)/2 × Zl′ . Thus the image of (P◦
n(S)ab)Bλ(S) in Bλ(S)ab is generated

by the images of the pure braid generators, which are the elements 2si for i ⩽ l such that ni ⩾ 2,
and aij for i < j ⩽ l.

Now, let H be the subgroup of Bλ(S)ab generated by the si and the aij . From the above, we
get an isomorphism Bλ(S)ab/H ∼= (π1(S)ab)l. Moreover, the corresponding projection Bλ(S)ab ↠
(π1(S)ab)l splits: a splitting is defined by sending (gi)i to

∑
ψi(gi) where, for each i, ψi is induced

by ψα for any α in the i-th block of λ. As a consequence, Bλ(S)ab identifies with (π1(S)ab)l ×H,
and we can use Proposition 4.4.19 to get a complete calculation:

Proposition 4.4.48. Let n ⩾ 1 and λ = (n1, . . . , nl) be a partition of n. Then:

Bλ(S)ab ∼=
(
π1(S)ab)l ×

(
Bab

λ /R
)
,

where Bab
λ is free abelian on the si and the aij from Proposition 4.3.5, and R is:
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• trivial if S is planar,
• generated by the relations 2(ni − 1)si +

∑
j ̸=i njaij (i = 1, . . . , n) if S ∼= S2,

• generated by the 2si and the aij in all the other cases.
Explicitly, if l′ denotes the number of indices i ⩽ l such that ni ⩾ 2, we have, for S ≇ S2:

Bab
λ /R ∼=

{
Zl′ × Zl(l−1)/2 if S is planar,
(Z/2)l′ if S does not embed into the sphere.

Proof. If S ̸= S2, all the relations are direct consequences of Proposition 4.4.19, and it remains
to prove that they are the only ones. In the first case, we can directly use the result of Propo-
sition 4.3.5: an embedding of S into R2 ∼= S2 − pt induces a retraction Bλ(S)ab ↠ Bab

λ of the
morphism Bab

λ → Bλ(S)ab induced by φ, whence the result in this case. In the third one, the same
proof as the proof of Proposition 4.3.5 works: projections onto the factors are given by projections
onto the Sab

ni

∼= Z/2 for ni ⩾ 2.
If S = S2, Corollary 4.4.31 describes Bλ(S2) as the quotient of Bλ by the collection of relations

Aα1Aα2 · · ·Aαn = 1 for all 1 ⩽ α ⩽ n. The abelianisation Bλ(S2)ab is then the quotient of Bab
λ

(described in Proposition 4.3.5) by the classes of the above relations. If α is in the i-th block of λ,
then the class of Aαβ is either 2si if β is also in the i-th block (which holds for ni− 1 values of β),
or aij if β is in the j-th block for some j ̸= i (which happens for nj values of β, for each j ̸= i).
Thus the classes of the Aα1Aα2 · · ·Aαn are indeed the relations of the statement.

Remark 4.4.49. The relation 2(ni − 1)si +
∑

j ̸=i njaij makes sense even if ni = 1: in this case,
with our conventions, there is no generator si, but this does not matter since its coefficient is
2(ni − 1) = 0 (alternatively, one could add a generator si and ask that si = 0).

The lower central series

The work done above to show that the LCS of Bn(S) stops if n ⩾ 3 (see Corollary 4.4.37) generalises
to the partitioned braid group when all the blocks of the partition are of size at least 3. First, here
follows the generalisation of Lemma 4.4.34.

Lemma 4.4.50. Let λ = (n1, . . . , nl) be a partition of n, with ni ⩾ 3 for all i. The image of Bλ

in Bλ(S)/Γ∞ is central. In particular, it is a quotient of Bab
λ .

Proof. It follows from Theorem 4.3.6 that Γ∞(Bλ) = Γ2(Bλ). As a consequence, the morphism
φ : Bλ → Bλ(S)/Γ∞ factors through Bλ/Γ2 = Bab

λ . Hence its image is abelian, generated by the
images of the si and the aij from Proposition 4.3.5.

In order to show that it is central, we need to show that these elements commute with gen-
erators of Bλ(S)/Γ∞. We deduce from Proposition 4.4.10 that Bλ(S) is generated by the images
of φ and of the ψα. In fact, we can restrict to taking one α in each block of λ, since ψα and ψβ

are conjugated by elements of Bλ if α and β are in the same block. The si and the aij already
commute with each other, so we only need to show that they commute with the images of the
selected ψα. Since the blocks of λ have size at least 3, we can find representatives of the si and
the aij having disjoint support with elements of all the chosen Im(ψα). Thus, the si and the aij

commute with a family of generators of Bλ(S)/Γ∞, which proves our claim.

We can now generalise our main decomposition theorem (Theorem 4.4.35) to partitioned
braids:

Theorem 4.4.51. Let λ = (n1, . . . , nl) be a partition of n, with ni ⩾ 3 for all i. There is a central
extension:

⟨s2
i , aij⟩i,j⩽l Bλ(S)/Γ∞ (π1(S)ab × Z/2)l.

Proof. The proof is essentially the same as the proof of Theorem 4.4.35, so we only stress what
changes. The element σασ

−1
β is in Γ∞(Bn(S)) only when α and β are in the same block of
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λ. However, their images τατ
−1
β in π1(S) ≀ Sλ still normally generate Γ2(π1(S) ≀ Sλ), because

π1(S) ≀Sλ is the product of the π1(S) ≀Sni , whose Γ2 is normally generated by the τατ
−1
β for α and

β in the i-th block of λ (Lemma 4.5.26). Thus, arguing exactly as in the proof of Theorem 4.4.35,
we get a short exact sequence:

P◦
n(S)/Γ∞(Bλ(S)) ∩P◦

n(S) Bλ(S)/Γ∞ (π1(S) ≀Sλ)ab.
πS

Recall that (π1(S) ≀Sλ)ab ∼= (π1(S)ab × Z/2)l. Moreover, the kernel is the normal closure of the
image of Pn, but this image is already normal, and even central by Lemma 4.4.50, generated by
the aij and the squares of the si.

Finally, Corollary 4.4.37 adapts readily to this context:

Corollary 4.4.52. If all the blocks of λ have size at least 3, then:

Γ3(Bλ(S)) = Γ4(Bλ(S)).

The Lie ring

Here again, in the stable case (that is, when all the blocks of the partition λ have size at least 3),
we can be more precise about the description of the LCS. Namely, our next goal is to show the
following generalisation of Theorem 4.4.43, whose proof occupies the rest of the present section.

Theorem 4.4.53. Let λ = (n1, . . . , nl) be a partition of an integer n with ni ⩾ 3 for all i, and let
S be a connected surface. The LCS of Bλ(S):
• stops at Γ2 if S is planar, if S ∼= S2 or if l = 1 and S is non-orientable.
• stops at Γ3 in the other cases.

Remark 4.4.54. In both cases, the Lie ring can be computed completely. Namely, L1(Bλ(S)) =
Bλ(S)ab has already been computed in Proposition 4.4.48. In the first case, no further computation
is required. In the second case, L2(Bλ(S)) is described completely in Proposition 4.4.56 and
Proposition 4.4.57 for orientable surfaces, and in Corollary 4.4.60 and Corollary 4.4.62 for non-
orientable ones. Moreover, one can easily describe the Lie bracket from the computations given
there. Precisely, the only non-trivial brackets come from the computations depicted in Figure 4.3.

The proof of Theorem 4.4.53 begins with the following observation, which will be of essence
in our study of the Lie ring of Bλ(S):

Fact 4.4.55. Let λ = (n1, . . . , nl) be a partition of n with all blocks of size at least 3. Then
L2(Bλ(S)) identifies with Γ2 (Bλ(S)/Γ∞), which is included in the subgroup ⟨s2

i , aij⟩i,j⩽l of Bλ(S)
from Theorem 4.4.51. Furthermore, if S has a handle or a crosscap, then L2(Bλ(S)) ∼= ⟨s2

i , aij⟩i,j⩽l.

Proof. We know that Γ3 = Γ∞ for Bλ(S) by Corollary 4.4.52. Then, since L2 = Γ2/Γ3, L2(Bλ(S))
identifies with Γ2 (Bλ(S)/Γ∞). Moreover, in Bλ(S)/Γ∞, the subgroup Γ2 must be contained in
the kernel ⟨s2

i , aij⟩i,j⩽l of the central extension of Theorem 4.4.51. Now, if S has a handle or a
crosscap, then the quotient (π1(S)ab × Z/2)l of Bλ(S)/Γ∞ identifies with its abelianisation (see
Proposition 4.4.48). As a consequence, the subgroup Γ2 (Bλ(S)/Γ∞) is the whole of ⟨s2

i , aij⟩i,j⩽l.

Non-planar orientable surfaces. Let us turn our attention to the case where the surface is
not closed.

Proposition 4.4.56. If S is a non-planar orientable surface which is not closed, then L2(Bλ(S))
is free abelian on the aij and the s2

i .
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Proof. We already know that these elements generate L2(Bλ(S)) by Fact 4.4.55, so we need to
show that they are linearly independent. The argument from the proof of Proposition 4.3.5 works
here, using the maps from L2(Bλ(S)) to L2(Bni(S)) ∼= Z and L2(Bni+nj (S)) ∼= Z instead of
the maps from Bab

λ to Bab
ni

and Bab
ni+nj

. This uses the fact that L2(Bn(S)) ∼= Z if n ⩾ 3, from
Theorem 4.4.43.

The case of closed orientable surfaces is a bit trickier. In fact, we first need to generalise
[BGG08, Th. 1]:

Proposition 4.4.57. Let g ⩾ 1. Then L2(Bλ(Σg)) is the quotient of the free abelian group on the
aij and the s2

i by the relations:

(ni + g − 1)s2
i +

∑
j ̸=i

njaij = 0, for all 1 ⩽ i ⩽ n.

Proof. Let us consider the subsurface Σg,1 of Σg obtained by removing an open disc. The corre-
sponding embedding of Σg,1 into Σg induces the quotient map described in Corollary 4.4.31. In
particular, Bλ(Σg)/Γ3 is the quotient of Bλ(Σg,1)/Γ3 by the classes of the relations from Corol-
lary 4.4.31. Since the Aαβ are in Γ2(Bλ(Σg,1)), these relations are between elements of Γ2, that is,
elements of ⟨s2

i , aij⟩i,j⩽l. In order to write them as relations between the s2
i and the aij , we need

to recall that if α is in the i-th block of λ, for any r ⩽ g, we have, in L2(Bλ(S)):[
a

(α)
r , (b(α)

r )−1
]

= −
[
a

(α)
r , b

(α)
r

]
= −

[
σαb

(α)
r σ−1

α , (a(α)
r )−1

]
= −σ2

α = −s2
i ,

where the third equality comes from Figure 4.3b. Moreover, the class of Aαβ modulo Γ3(Bλ(S))
is either s2

i if α and β are both in the i-th block of λ, or aij if α is in the i-th block and β is in the
j-th block for some j ̸= i. Finally, using additive notations in the central subgroup ⟨s2

i , aij⟩, the
classes of the relations from Corollary 4.4.31 are:

(ni − 1)s2
i +

∑
j ̸=i

njaij = −gs2
i for all 1 ⩽ i ⩽ n.

Moreover, these relators are central in Bλ(Σg)/Γ∞, so their normal closure is only the subgroup
they generate, which implies that Γ2(Bλ(Σg)/Γ3) is the quotient of Γ2(Bλ(Σg,1)/Γ3) by these
relations. By Proposition 4.4.56, the latter is free on the s2

i and the aij . Whence our claim.

Remark 4.4.58. Let us point out that this computation of L2(Bλ(Σg)) is very similar to the
computation of L1(Bλ(S2)) in the proof of Proposition 4.4.48 (note that s2

i was equal to 2si there,
but here si and s2

i do not live in the same part of the Lie ring). The only difference lies in the
degree of our relations with respect to the LCS: if the surface has a handle, then the pure braid
generators Aαβ belong to the derived subgroup (see Figure 4.3b).

Non-orientable surfaces. For non-orientable surfaces, we already know that the s2
i vanish in

the quotient by Γ∞, as in the proof of Theorem 4.4.43. As a consequence, Γ2 (Bn(S)/Γ∞) is
generated by the aij . The following proposition is an analogue of [BGG17, Prop. 3.7] in the
non-orientable case:

Proposition 4.4.59. Let g ⩾ 0 and m,n ⩾ 3. We have:

Bm,n(Ng,1)/Γ∞ ∼= (Z/2)2 × (Z× Zg) ⋊ Zg,

where the factors are respectively generated by s1 and s2, a12, c′
r and cr. The action is given by

crc
′
rc

−1
r = c′

ra12 (for all r ⩽ g) and all the other pairs of generators commuting. In particular, this
group is 2-nilpotent, and L2(Bm,n(Ng,1)) is infinite cyclic, generated by a12.



120 Chapter 4. Lower central series of partitioned surface braid groups

Proof. Recall that we have a split extension (from Proposition 4.4.15):

Bm(Ng,1+n) ↪→ Bm,n(Ng,1)↠ Bn(Ng,1).

Thus, we can get a presentation of Bm,n(Ng,1) from the presentation of the quotient described in
Proposition 4.4.23 and the presentation of the kernel from Proposition 4.4.25, using the method
of Appendix 4.6. The generators of this presentation are the σi for i ̸= m, the cr := c

(1)
r , the

c′
r := c

(m+1)
r and the zj = A1,m+j (where our conventions are those from §4.4.3).

We use this to get a presentation of the quotient of Bm,n(Ng,1) by the normal closure N of
the σiσ

−1
i+1 for i < m + n and i /∈ {m − 1,m}, together with the zjz

−1
j+1 for j < n. This quotient

is generated by the common class s1 (resp. s2, resp. a12) of σ1, . . . , σm−1, the common class s2 of
σm+1, . . . , σm−1 and the common class a12 of z1, . . . , zn, together with the cr and the c′

r for r ⩽ g.
They are subject to the following relations:
• Relations coming from those of Bn(Ng,1): s2 commutes with the c′

r (BN1), the c′
r commute

with one another (BN2) and s2
2 = 1 (BN3).

• Relations coming from those of Bm(Ng,1+n): s1 commutes with the cr (BN1), the cr com-
mute with one another (BN2), s2

1 = 1 (BN3), a12 commutes with s1 (BN4), and with the
cr (BN5). (BN6) and (BN7) become trivial.
• Relations describing the action by conjugation of s2 and the c′

r on s1, a12 and the cr. This
action is easily seen to be trivial in most cases, since most of the pairs of elements involved
come from elements having disjoint support in Bm,n(Ng,1), hence they commute. Namely,
this holds for cs and c′

r when r < s: using the fact that a12 commutes with cs, we see
that cs is the class of z1c

(1)
r z−1

1 , whose support is disjoint from the support of c(m+1)
r (up to

isotopy). This is again true for a12 and the c′
r, since s2 commutes with the c′

r: c′
r is the class

of c(m+2)
r = σm+1c

(m+1)
r σ−1

m+1, whose support is disjoint from that of z1. Finally, the only
pair of generators under scrutiny for which this does not hold are cr and c′

r (for r ⩽ g). But
for them, the situation is the one from Figure 4.3a: [(c′

r)−1, cr] = A1,m+1 = a12.

These relations can be summed up as:
• All the generators commute pairwise, except cr and c′

r for r ⩽ g,
• s2

1 = s2
2 = 1,

• crc
′
rc

−1
r = c′

ra12 (for r = 1, . . . , g).
This is a presentation of the group described in the statement. Its commutator subgroup is the
factor Z of the decomposition, which is infinite cyclic, generated by a12. It is also central, hence
the group is 2-nilpotent. Since this group is Bm,n(Ng,1)/N , N contains Γ3(Bm,n(Ng,1)). But the
elements normally generating N are in Γ∞(Bm,n(Ng,1)); see Lemma 4.4.50 and its proof. Thus
N = Γ∞(Bm,n(Ng,1)), and the Lie ring of the quotient Bm,n(Ng,1)/N identifies with the Lie ring
of Bm,n(Ng,1). In particular, since its Γ3 is trivial, its L2 coincides with its Γ2, which is infinite
cyclic, generated by a12.

Corollary 4.4.60. Let S be a non-orientable surface that is not closed. Let λ = (n1, . . . , nl) be
a partition whose blocks are of size at least 3. Then L2(Bλ(S)) is free abelian on the aij for
1 ⩽ i < j ⩽ l.

Proof. We first show that if m,n ⩾ 3, L2(Bm,n(S)) is infinite cyclic, generated by a12. This is
true for S = Ng,1 by Proposition 4.4.59. Then we can follow the same method as in the proof
of Theorem 4.4.43, to which the reader is referred for more details. Namely, we already know
that L2(Bm,n(S)) is generated by a12, and we need to show that it has infinite order. If S is
compact, we can embed S into some Ng,1, and the image of a12 by the corresponding morphism
from L2(Bm,n(S)) to L2(Bm,n(Ng,1)) has infinite order, whence our claim in this case. Then, if S
is not compact, a relation saying that a12 has finite order in Bm,n(S)/Γ3 would hold in a compact
subsurface, which is impossible by the previous case.

From this, we can deduce the result for λ having more than two blocks, reasoning as in the
proofs of Propositions 4.3.5 and 4.4.56. Indeed, each canonical map L2(Bλ(S))→ L2(Bni,nj

(S)) ∼=
Z kills all the akl, except aij , which is sent to a generator of the target. Thus the aij must be
linearly independent.
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Proposition 4.4.61. Let g ⩾ 0 and m,n ⩾ 3. Then L2(Bm,n(Ng)) is cyclic of order 2, generated
by a12.

Proof. Let us consider G := Bm,n(Ng)/Γ3. This group is the quotient of Bm,n(Ng,1)/Γ3 =
Bm,n(Ng)/Γ∞ ∼= (Z/2)2 × (Z × Zg) ⋊ Zg described in Proposition 4.4.59 by the images of the
boundary relations from Corollary 4.4.31. Before considering these relations, we can already re-
mark that the commutator subgroup of Bm,n(Ng,1)/Γ3 is cyclic generated by a12, so the same
holds for G. Since Γ2(G) identifies with L2(Bm,n(Ng)), we only need to show that a12 has order
2 in G to prove our statement.

Recall that Aαβ is sent to s2
1 = s2

2 = 1 if α and β are in the same block of the partition (m,n),
and to a12 if they are not. As a consequence, these relations are:

c2
1 · · · c2

g = am
12 and (c′

1)2 · · · (c′
g)2 = an

12.

Since c1 commutes with all the other generators except c′
1, and [c1, c

′
1] = a12, by applying the

commutator with c1 to the second relation, we get a2
12 = 1. We can thus consider the intermediate

quotient by the central element a2
12, and see G as a quotient of (Z/2)2× ((Z/2)×Zg)⋊Zg. Modulo

a2
12, the above relations (hence the structure of G = Bm,n(Ng)/Γ3) depend only on the parity of
m and n. Moreover, we now know that a2

12 = 1 in G, so we are left with showing that a12 is not
trivial in G.

Suppose first thatm and n are both even. Then the relations become c2
1 · · · c2

g = (c′
1)2 · · · (c′

g)2 =
1. Notice that after the quotient by a2

12, all the c2
r and the (c′

r)2 have become central, so both
c2

1 · · · c2
g and (c′

1)2 · · · (c′
g)2 are central in (Z/2)2× ((Z/2)×Zg)⋊Zg. Thus, if A denotes the abelian

group Zg/(2, 2, . . . , 2) (which is also π1(Ng)ab), we see that G ∼= (Z/2)2 × ((Z/2)×A) ⋊A, whose
commutator subgroup is cyclic of order 2, generated by a12.

If m and n have different parities, we can assume (by symmetry) that m is even and n is odd.
Then the relations become c2

1 · · · c2
g = 1 and (c′

1)2 · · · (c′
g)2 = a12. In (Z/2)2×((Z/2)×Zg)⋊Zg, both

c2
1 · · · c2

g and (c′
1)2 · · · (c′

g)2a−1
12 are central, so they general cyclic normal subgroups. Thus, if we

denote by Ã the quotient Zg/(4, 4, . . . , 4) of (Z/2)×Zg by (1, 2, . . . , 2), we have G ∼= (Z/2)2×Ã⋊A,
whose commutator subgroup is cyclic of order 2, generated by a12 (the latter identifies with the
class of (2, 2, . . . , 2) in Ã).

If m and n are both odd, then the relations become c2
1 · · · c2

g = (c′
1)2 · · · (c′

g)2 = a12. In this
case, there is no obvious semi-direct product decomposition of G where a12 is clearly non-trivial,
so we need another argument to show that a12 ̸= 1. If g = 1, one can see that G ∼= (Z/2)2 ×Q8,
where c1 is sent to i, c′

1 is sent to j, and a12 identifies with the central element −1 of the quaternion
group Q8. Indeed, one can easily check that the above correspondence defines a morphism from G
to (Z/2)2 ×Q8, and use the presentation Q8 = ⟨i, j | i2 = i2 = (ij)2⟩ to construct its inverse. For
g ⩾ 1, we can find a similar quotient of G, by considering the quotient (Q8)g/H, where H is the
hyperplane of Z((Q8)g) ∼= (Z/2)g defined by the vanishing of the sum of the coordinates. Since H
is central in (Q8)g, it is normal. Moreover, (Q8)g decomposes as a central extension of (Z/2)2g by
(Z/2)g, which induces a central extension:

(Z/2)g/H ∼= Z/2 (Q8)g/H (Z/2)2g.

Using the presentation of G, we can see that there is a well-defined projection from G onto (Q8)g/H
sending cr to (1, . . . , 1, i, 1, . . . , 1), c′

r to (1, . . . , 1, j, 1, . . . , 1) (where the non-trivial coordinate is
the r-th one in both cases), and s1 and s2 to 1. This projection sends a12 = [c1, c

′
1] to the generator

of the centre (Z/2)g/H ∼= Z/2. Thus a12 is again not trivial in G, whence our claim.

Corollary 4.4.62. Let g ⩾ 0 and let λ = (n1, . . . , nl) be a partition whose blocks are of size at
least 3. Then L2(Bλ(Ng)) ∼= (Z/2)l(l−1)/2 is the free elementary abelian 2-group on the aij for
1 ⩽ i < j ⩽ l.

Proof. The proof is again the same as the proofs of Propositions 4.3.5 and 4.4.56, using the canon-
ical maps L2(Bλ(Ng))→ L2(Bni,nj

(Ng)) ∼= Z/2, where the latter is generated by the image of aij ,
by Proposition 4.4.61.
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We can now finish the proof of the main result of this section.

Proof of Theorem 4.4.53. Under our hypotheses, L2(Bλ(S)) identifies with Γ2 (Bλ(S)/Γ∞), which
is a subgroup of ⟨s2

i , aij⟩i,j⩽l (see Fact 4.4.55).
Planar surfaces: if S is planar, then the canonical projection from Bλ(S)/Γ∞ to Bλ(S)ab sends

the si and the aij to their counterparts in Bλ(S)ab. The latter is a linearly independent family by
Proposition 4.4.48, so the restriction ⟨s2

i , aij⟩i,j⩽l → Bλ(S)ab must be injective. But its kernel is
Γ2(Bλ(S)/Γ∞) = L2(Bλ(S)), which must then be trivial.

The sphere: if S = S2, then Bλ(S2) is a quotient of Bλ (see Corollary 4.4.31), which implies
that its LCS also stops at Γ2.

Non-planar orientable surfaces: Proposition 4.4.56 deals with most of them; the remaining
ones are closed orientable surfaces, for which Proposition 4.4.57 is the relevant statement.

Non-orientable surfaces: these are dealt with in Corollary 4.4.60, except for the closed ones,
whose Lie ring is studied separately, in Corollary 4.4.62.

4.4.6 Partitions with small blocks

Now that we have a complete description of the LCS of Bλ(S) in the stable case, that is, when
the blocks of the partition λ have size at least 3 (§4.4.5), we turn our attention to the cases where
λ does have blocks of size 1 or 2. Then we ask ourselves: under this assumption, when does the
LCS of Bλ(S) stop? For most surfaces, it does not; see Proposition 4.4.63. In fact, there are only
six surfaces to which this result does not apply. One of them is the disc, for which an answer has
already been given in Chapter 4.3. Another one is the cylinder, whose case can easily be deduced
from the case of the disc. Four surfaces remain: the torus T2 (§4.4.6), the Möbius strip M2 (§4.4.6),
the sphere S2 (§4.4.6) and the projective plane P2 (§4.4.6).

The generic cases

As a direct corollary of Propositions 4.4.38 and 4.4.40, we get the following result:

Proposition 4.4.63. Let λ = (n1, . . . , nl) be a partition of an integer n ⩾ 1.
• If λ has at least one block of size 1 and π1(S) is not abelian (that is, if we suppose that
S /∈ {D − pt,D,S2,T2,P2,M2} up to isotopy equivalence), then the LCS of Bλ(S) does not
stop.

• If λ has at least one block of size 2 and π1(S)ab is not finite (that is, if we suppose that
S /∈ {D,S2,P2} up to isotopy equivalence), then the LCS of Bλ(S) does not stop.

Proof. In the first case, there is a surjection Bλ(S) ↠ B1(S) ∼= π1(S), and in the second one, a
surjection Bλ(S) ↠ B2(S). Propositions 4.4.38 and 4.4.40 say that, under our hypotheses, the
LCS of the quotient does not stop in either case. The result then follows from Lemma 4.1.1.

Thus the question of whether the LCS of Bλ(S) stops has been answered for every partition,
except for the six surfaces D − pt, D, S2, T2, P2 and M2. In fact, Bλ(D) = Bλ has already been
considered in Chapter 4.3; see Theorem 4.3.6. Also, since B1(D) = {1}, we have an isomorphism
Bλ(D− pt) ∼= B1,λ(D) for every partition λ by Proposition 4.4.15, so we can deduce the remaining
answer for D−pt from the answer for the disc. Namely, Lemma 4.3.8 and Proposition 4.3.11 imply:

Lemma 4.4.64. If λ has at least two blocks of size 1, then the LCS of Bλ(D− pt) does not stop.
If λ = (1, n2, . . . , nl) where every ni ⩾ 3, then its LCS stops at Γ2.

Therefore, we are left with four remaining cases: the torus, the Möbius strip, the sphere and
the projective plane.
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Partitioned braids on the torus

We know that the LCS of Bλ(T2) stops if λ has only blocks of size at least 3, and that it does
not if there is at least one block of size 2. The remaining cases are dealt with using the following
generalisation of [BGG08, Lem. 17]:

Proposition 4.4.65. There is an isomorphism B1,µ(T2) ∼= Bµ(T2− pt)×Z2, for any partition µ.

Proof. Proposition 4.4.15 gives a short exact sequence:

Bµ(T2 − pt) B1,µ(T2) π1(T2) ∼= Z2.

Let n ⩾ 2 such that µ is a partition of n−1. The centre of Bn(T2) is generated by two braids α and
β corresponding to rotating all the punctures along each factor of S1×S1 [PR00, Prop. 4.2]. These
are pure braids, so they are in the subgroup B1,µ(T2) of Bn(S). The above projection (forgetting all
strands but one) maps these two elements to a basis of π1(T2) ∼= Z2. As a consequence, it restricts
to an isomorphism ⟨α, β⟩ ∼= Z2. Thus the above short exact sequence splits, and the corresponding
action of Z2 is trivial (α and β being central), hence it is in fact a direct product.

It is then an easy task to finish proving the following summary of our results for partitioned
torus braids:

Theorem 4.4.66. Let λ be a partition of an integer n ⩾ 1. The LCS of Bλ(T2):
• does not stop if λ has at least two blocks of size 1 or one block of size 2.
• stops at Γ3 in all the other cases, except for B1(T2) ∼= Z2.

Proof. If λ has at least two blocks of size 1, then Bλ(T2) surjects onto B1,1(T2), which is isomorphic
to B1(T2 − pt)× Z2 ∼= F2 × Z2 by Proposition 4.4.65. The LCS of F2 does not stop, whence the
result in this case, by Lemma 4.1.1.

If λ has exactly one block of size 1 and no block of size 2, then Proposition 4.4.65 gives
an isomorphism Bλ(T2) ∼= Bµ(T2 − pt) × Z2 where µ has only blocks of size at least 3. Then
Corollary 4.4.52 implies that the LCS stops at most at Γ3 in this case. In fact, if µ is non-trivial,
then the LCS of Bµ(T2 − pt) stops exactly at Γ3; see Theorem 4.4.53.

The other cases have already been treated as part of Corollary 4.4.52, Theorem 4.4.53 and
Proposition 4.4.63.

Partitioned braids on the Möbius strip

As in the case of the torus, we know that the LCS of Bλ(M2) stops if λ has only blocks of size
at least 3, and that it does not if there is at least one block of size 2. The only remaining cases
are the ones when λ has some blocks of size 1, the other ones being of size at least 3. We begin
by showing that the LCS does not stop when there are at least two blocks of size 1. In this case,
Bλ(M2) surjects onto B1,1(M2) = P2(M2) so, by Lemma 4.1.1, this case follows from the following
study of P2(M2):

Lemma 4.4.67. A presentation of the pure braid group P2(M2) is given by generators γ1, γ2 and
A subject to the relations {

γ1Aγ
−1
1 = γ−1

2 A−1γ2

γ1γ2γ
−1
1 = γ−1

2 A−1γ2
2 .

Recall that M2 is the surface N1,1 from §4.4.3. Here, we have changed the notations from
§4.4.3 to lighter ones, more suited to the case with only one crosscap (γi := c

(i)
1 ) and only two

strands (A := A12).
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= = =
Figure 4.8 Relation in P2(M2): γ1Aγ−1

1 = γ−1
2 A−1γ2.

Proof. Proposition 4.4.15 gives a decomposition P2(M2) ∼= π1(M2− pt)⋊π1(M2) ∼= F2 ⋊Z, where
the projection onto π1(M2) ∼= Z is given by forgetting one strand (say, the first one). Then the
factor Z is generated by γ1, and a free basis of the factor F2 is given by γ2 and A (with the
notations introduced just before the proof). Moreover, the action of γ1 by conjugation on ⟨A, γ2⟩
is not difficult to compute. Namely, we have γ1Aγ

−1
1 = γ−1

2 A−1γ2; see Figure 4.8. Then, from
Figure 4.3a, we get that [γ2, γ

−1
1 ] = A, which is equivalent to γ1γ2γ

−1
1 = γ1Aγ

−1
1 γ2. Using the

previous relation, the latter equals γ−1
2 A−1γ2

2 . These relations determine P2(M2), since the group
G that they define decomposes as ⟨A, γ2⟩⋊⟨γ1⟩, and the obvious projection of G onto P2(M2) must
be an isomorphism on both the kernel and the quotient, hence it must be an isomorphism.

Corollary 4.4.68. The LCS of P2(M2) does not stop.

Proof. Let us consider the quotient of P2(M2) = F2⋊Z by Γ2(F2). It is Z2⋊Z, where the generator
γ1 of Z acts via the involution τ sending A to −A and γ2 to γ2−A. Then V := Im(τ − 1) is Z ·A.
By Proposition 4.5.10, for i ⩾ 2, we have Γi(Z2 ⋊Z) = 2i−2V , so the LCS of Z2 ⋊Z does not stop.
Thus the LCS of P2(M2) does not either.

The answer for the remaining cases are consequences of the following result:

Proposition 4.4.69. For every m ⩾ 3, the LCS of B1,m(M2) does not stop.

Proof. We can use Proposition 4.4.15 to get a decomposition:

B1,m(M2) ∼= Bm(M2 − pt) ⋊ π1(M2),

where π1(M2) ∼= Z is identified with the subgroup of B1,m(M2) generated by γ1 (as above, we
denote c(i)

1 by γi). We know that Γ∞(B1,m(M2)) contains Γ∞(Bm(M2 − pt)). The latter is fully
invariant in Bm(M2 − pt), hence normal in B1,m(M2), and we can consider the quotient

G := B1,m(M2)/Γ∞(Bm(M2 − pt)) ∼= (Bm(M2 − pt)/Γ∞) ⋊ Z.

Moreover, Lemma 4.4.34 and Remark 4.4.36 give a central extension:

⟨σ⟩ Bm(M2 − pt)/Γ∞ π1(M2 − pt)ab.

The element σ is the common class of the usual generators σα of Bm. Since these commute with
γ1 in B1,m(M2), σ is central not only in Bm(M2 − pt)/Γ∞, but in fact in G. In particular, ⟨σ⟩ is
normal in G, and the quotient decomposes as:

G/σ ∼=
[
(Bµ(M2 − pt)/Γ∞)/σ

]
⋊ π1(M2) ∼= π1(M2 − pt)ab ⋊ π1(M2) ∼= Z2 ⋊ Z.

A basis of the Z2 factor is given by γ2 and A = A12. Consider the morphism P2(M2)→ B1,m(M2)
corresponding to adding m− 1 trivial strands to the second block (constructed as in the proof of
Proposition 4.4.15). Composing with the projection, we get a morphism from P2(M2) = F2 ⋊ Z
to G/σ = Z2 ⋊Z. From the explicit description of both of these groups, one easily sees that it has
to induce an isomorphism P2(M2)/Γ2(F2) ∼= G/σ. But the LCS of P2(M2)/Γ2(F2) does not stop
(see the proof of Corollary 4.4.68), so we have found a quotient of B1,m(M2) whose LCS does not
stop, whence the result.

Let us sum up our results about the LCS of Bλ(M2):
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Theorem 4.4.70. Let λ = (n1, . . . , nl) be a partition of an integer n ⩾ 1. The LCS of Bλ(M2):
• does not stop if λ has at least one block of size 1 or 2, with the exception of B1(M2) ∼= Z.
• stops in all the other cases, at Γ3 if l ⩾ 2 and at Γ2 if l = 1.

Proof. The first statement follows from Proposition 4.4.63 (for blocks of size 2) and from Corollary
4.4.68 and Proposition 4.4.69 (for blocks of size 1). The second one is part of the general results
of Corollary 4.4.52 and Theorem 4.4.53.

Partitioned braids on the sphere

For a partition λ = (n1, . . . , nl), the inclusion of the disc into the sphere induces a surjection
Bλ ↠ Bλ(S2) by Corollary 4.4.31. We can thus apply Lemma 4.1.1 to deduce that the LCS of
Bλ(S2) stops whenever the one of Bλ does. Namely, by Theorem 4.3.6, it stops at Γ2 if ni ⩾ 3
for all i, save at most two indices for which ni = 1. Since the abelianisation of Bλ(S2) has already
been computed in Proposition 4.4.48, we have a complete description of the LCS in these cases.

The above argument can be extended somewhat if we remark that, because of Proposi-
tion 4.4.15, B1(S2) = π1(S2) = {1} is the cokernel of the canonical morphism Bµ(D) → B1,µ(S2)
(for any partition µ), which is thus surjective. As a consequence, the LCS of Bλ(S2) also stops at
Γ2 when λ has three blocks of size 1, the other ones being of size at least 3. This proves the first half
of the following theorem. The second half is proven in the remainder of this subsection in several
different cases, which are synthesised into a proof of the theorem at the end of the subsection.

Theorem 4.4.71. Let n ⩾ 1 be an integer, let λ = (n1, . . . , nl) be a partition of n. The LCS of
Bλ(S2):
• stops at Γ2 if ni ⩾ 3 for all i, save at most three indices for which ni = 1.
• does not stop in all the other cases, except for B2(S2) ∼= Z/2, B2,1(S2) ∼= Z/4 and the

B2,m(S2) with m ⩾ 3, whose LCS stop either at Γv2(m)+1 or at Γv2(m)+2 when m is even,
where v2 is the 2-adic valuation, and either at Γ2 or at Γ3 when m is odd.

In the case of B2,m(S2) with m ⩾ 3, where the answer given above is ambiguous between two
consecutive possibilities, we conjecture that its LCS stops at Γv2(m)+2 for all m ⩾ 3; see Remark
4.4.75.

Blocks of size 1. We need to consider the case of the pure braid group on four strands:

Lemma 4.4.72. The LCS of P4(S2) does not stop.

Proof. We sketch a proof of the decomposition of P4(S2) from [GG04c, Th. 4]. Recall that we
have a short exact sequence by Proposition 4.4.15:

P1(S2 − {3 pts}) ↪→ P4(S2)↠ P3(S2).

It is known that P3(S2) ∼= Z/2. In fact, an isomorphism between π1(SO3(R)) and P3(S2) is
induced by φ 7→ (φ(e1), φ(e2), φ(e3)) from SO3(R) to F3(S2). Moreover, a splitting of the above
short exact sequence is given by sending the generator of P3(S2) to the full twist. Since the latter is
central, P4(S2) is the direct product of Z/2 with π1(S2−{3 pts}) ∼= F2. Thus P4(S2) is residually
nilpotent (but not nilpotent), whence the result.

Blocks of size 2. Let us begin with the case where the partition has at least three blocks:

Proposition 4.4.73. Let λ be a partition of n with at least three blocks, and at least one block of
size 2. Then the LCS of Bλ(S2) does not stop.
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Proof. Let µ be any partition. Let us consider the quotient of B2,µ(S2) by Γ2(B1,1,µ(S2)), which
is (clearly) an extension:

B1,1,µ(S2)ab G = B2,µ(S2)/Γ2(B1,1,µ(S2)) S2. (4.7)

Let us fix (n1, . . . , nl) := (1, 1, µ). From a presentation of the kernel (from Proposition 4.4.33)
and a presentation of the quotient, using the method from Appendix 4.6, we can write down a
presentation of G. Precisely, G admits the presentation with generators s, si (for 1 ⩽ i ⩽ l), and
aij (for 1 ⩽ i < j ⩽ l), subject to the following relations:

(1) s2 = a12,

(2) si = 1 if ni = 1,
(3) [si, sj ] = [si, apq] = [apq, auv] = 1 ∀i, j, p, q, u, v,
(4) [s, si] = 1 ∀i ⩾ 1,
(5) [s, aij ] = 1 ∀j > i ⩾ 3,
(6) sa1js

−1 = a2j and sa2js
−1 = a1j ∀j ⩾ 3,

(7) 2(ni − 1)si +
∑
j ̸=i

njaij = 0 ∀i ⩾ 1,

where the last relation uses additive notation in the abelian subgroup generated by the si and the
aij .

Consider the subgroup H of G generated by s2 together with the si and the aij for i, j ⩾ 3.
One can easily see that it is central in G. Moreover, we can deduce from the presentation of
G a presentation of G/H, which turns out to be very simple. Indeed, it is generated by s, the
a1i and the a2i for i ⩾ 3. Moreover, since n1 = n2 = 1, for i ⩾ 3 the last relation becomes
a1i + a2i = 0, which means that a1i and a2i are inverse to each other. For i ∈ {1, 2}, we find the
relations

∑
nja1j = 0 and

∑
nja2j = 0, which are equivalent to each other modulo the previous

relations. Thus, if we denote by ai the element a1i = a−1
2i of G/H, we get that G/H is generated

by a3, a4, . . . , al and s, subject to the relations:
(1) s2 = 1
(3) [ai, aj ] = 1 ∀i, j,
(6) sajs

−1 = a−1
j ∀j ⩾ 3,

(7)
∑
njaj = 0.

Finally, G/H ∼= A ⋊ (Z/2), where A is the quotient of the free abelian group on a3, a4, . . . , al by
the single relation

∑
njaj = 0, and Z/2 acts on A via −id. We can use Corollary 4.5.8 to compute

the LCS of G/H. Namely, since A ∼= Zl−3 × Z/ gcd(ni), it does not stop whenever l > 3. Thus,
we have found a quotient of B2,µ(S2) having a non-stopping LCS whenever µ has at least two
blocks.

If λ has only two blocks, we first assume that the other block is large enough:

Proposition 4.4.74. Let m ⩾ 3 be an integer. The LCS of B2,m(S2) stops at Γv2(m)+1 or at
Γv2(m)+2 when m is even, where v2 is the 2-adic valuation, and at Γ2 or at Γ3 when m is odd.

Proof. We have seen above that the LCS of B1,1,m(S2) (which is a quotient of B1,1,m) stops
at Γ2 if m ⩾ 3. Then, as in the proof of Proposition 4.3.12, we have that Γ∞(B2,m(S2)) con-
tains Γ∞(B1,1,m(S2)) = Γ2(B1,1,m(S2)). Thus it is enough to understand when the LCS of
G := B2,m(S2)/Γ2(B1,1,m(S2)) stops. In order to do this, we use the calculations already done in
the course of the proof of Proposition 4.4.73: the group G is a central extension of (Z/m)⋊ (Z/2),
where Z/2 acts via −id. Thanks to Corollary 4.5.8, we know that the LCS of the latter is given
by Γi = 2i−1Z/m for i ⩾ 2. Hence it stops at Γ2 if m is odd and at Γv2(m)+1 if m is even. Thus,
the result will follow from Corollary 4.1.6, if we show that the kernel H of the central extension
H ↪→ G↠ (Z/m)⋊ (Z/2) injects into Gab. We can compute Gab using the presentation of G from
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the proof of Proposition 4.4.73, or using Proposition 4.4.48 and the fact that Gab ∼= B2,m(S2)ab

(by definition of G). Either way, we find that it is generated by three elements s (= s1), s3 and a
(the latter being the common image of a13 and a23 = sa13s

−1 in Gab), subject to the relations:{
2s+ma = 0;
2(m− 1)s3 + 2a = 0.

In other words, Gab = Z3/R where, if (s, s3, a) denotes a basis of Z3, R is generated by 2s+ma and
2(m−1)s3+2a. The image Q of H in Gab is generated by 2s and s3. An easy calculation shows that,
in Z3, ⟨2s, s3⟩∩R is generated by rm := 2s+m(m−1)s3 if m is even, and rm := 4s+2m(m−1)s3
if m is odd. This means that, as an abelian group, Q is presented as the quotient of the free abelian
group Z2 over 2s and s3 by the relation rm = 0. But this relation already holds in H. Indeed, in
B1,1,m(S2)ab ⊂ G, we have s2 = a12−ma13 = −ma23 (see the proof of Proposition 4.4.73), so if we
multiply the relation 2(m− 1)s3 + a13 + a23 = 0 by m/2 if m is even (resp. by m if m is odd), we
obtain m(m−1)s3 = s2 (resp. 2m(m−1)s3 = 2s2), hence rm = 0 in H ⊂ G. Finally, the projection
H ↠ Q must be an isomorphism (one can construct an inverse to it using the presentation of Q),
whence our conclusion.

Remark 4.4.75. It seems difficult to decide theoretically between the two possibilities, although
our experimental calculations [DPS22a] using GAP [GAP] and the package NQ [Nic96] suggest
that the LCS of G (and hence also the one of B2,m(S2)) always stops at Γv2(m)+2 (for both even
and odd m); we conjecture that this is the case.

Finally, let us show that the LCS of B2,2(S2) does not stop, using Lemma 4.1.1. Namely, we
are looking for a quotient of B2,2(S2) whose LCS does not stop. As a manageable non-abelian
quotient, one can think of B2,2(S2)/Γ2(P4(S2)), which is an extension of S2×S2 by P4(S2)ab. In
fact, in order to make it even more manageable, we take a further quotient, turning it into a split
extension to which the methods of Appendix 4.5 apply.

Proposition 4.4.76. The LCS of B2,2(S2) does not stop.

Proof. Recall that Γ2(P4(S2)) is fully invariant in P4(S2), hence normal in B2,2(S2), so the quotient
G = B2,2(S2)/Γ2(P4(S2)) is a well-defined extension of S2 ×S2 by P4(S2)ab. The latter it is the
abelian group generated by aij for 1 ⩽ i < j ⩽ 4, subject to the four relations

∑
j ̸=i aij = 0 (for

each i ⩽ 4); this classical computation is part of Proposition 4.4.33.
The action of B2,2(S2) on P4(S2)ab induced by conjugation factors through B2,2(S2)/P4(S2) ∼=

S2 × S2. This action is by permutation of the indices of the generators aij of P4(S2)ab. In
particular, it fixes a12 and a34, which then generate a central subgroup H of G. Let us consider
the quotient by this central subgroup, that is, the quotient of B2,2(S2) by its subgroup H̃ =
⟨A12, A34, Γ2(P4(S2))⟩. This quotient is an extension:

P4(S2)ab/H G/H S2 ×S2.

By definition of H̃, we have σ2
1 = σ2

3 = 1 in B2,2(S2)/H̃ = G/H, so this short exact sequence
splits. Moreover, P4(S2)ab/H is the quotient of P4(S2)ab by the relations a12 = a34 = 0, modulo
which the relations defining P4(S2)ab become a13 = −a14 = a13 = −a23. Thus P4(S2)ab/H ∼= Z,
and G/H ∼= Z ⋊ (S2)2, where both transpositions act via a sign. This action factors through the
signature ε : S2×S2 ↠ Z/2, so that ΓS2×S2

∗ (Z) = Γ
Z/2
∗ (Z); see §4.5.1 for the definition of relative

LCS. From Lemma 4.5.4 (whose proof could alternatively be repeated in this situation), we get
that Γi(Z ⋊ (S2)2) = 2i−1Z for i ⩾ 2, so the LCS of B2,2/H̃ = G/H does not stop.

Proof of Theorem 4.4.71. The first point of the theorem was proven just before its statement. We
explain how to deduce the second point from the results above.

If λ has at least four blocks of size 1, then Bλ(S2) surjects onto the pure braid group P4(S2) (by
forgetting the other blocks). Using Lemma 4.1.1, the result in this case follows from Lemma 4.4.72.
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The remaining cases are the ones where there is at least one block of size 2. If the partition
has at least three blocks, the result follows from Proposition 4.4.73. If the partition has exactly two
blocks, and if the size of the other block is at least 2, then we can apply either Proposition 4.4.74
or Proposition 4.4.76.

Finally, let us compute B2,1(S2) and B2(S2). As recalled in the proof of Lemma 4.4.72,
P3(S2) ∼= π1(SO3(R)) ∼= Z/2, so that B2,1(S2) is an extension of S2 ∼= Z/2 by Z/2. Thus, it
must be isomorphic to (Z/2)2 or to Z/4. In order to decide between the two, one can use the
computation of Bab

2,1 from Proposition 4.4.33, and find that B2,1(S2) ∼= Z/4. As for B2(S2), we use
Proposition 4.4.15 to get an exact sequence π1(S2 − {pt})→ P2(S2)→ π1(S2), which implies that
P2(S2) = 1, whence B2(S2) ∼= S2.

Partitioned braids on the projective plane

As in §4.4.3, we see the projective plane P2 = N1 as a sphere with one crosscap, which is the
quotient of the Möbius strip M2 = N1,1 by its boundary. This allows us to use the conventions of
Figure 4.4b (with g = 1) to describe braids on the projective plane. We only modify slightly our
notation, as we did before for braids on the Möbius strip:

Notation 4.4.77. We use the notation of §4.4.3 for braids on non-orientable surfaces, but since
there is only one crosscap, we denote c(α)

1 by γα.

We now prove the following theorem, which describes when the LCS of Bλ(P2) stops, except
for B2,m(P2) with m ⩾ 3 (for this case, see Conjecture 4.4.95):

Theorem 4.4.78. Let n ⩾ 1 be an integer, let λ = (n1, . . . , nl) be a partition of n. The LCS of
Bλ(P2):
• stops at Γ2 if l = 1, except for B2(P2), which is (strictly) 3-nilpotent.
• stops at Γ3 if l ⩾ 2 and ni ⩾ 3 for all i.
• does not stop in all the other cases where l ⩾ 3.

Moreover, the LCS of B2,2(P2) and of B1,2(P2) do not stop, the LCS of B1,1(P2) stops at Γ3 and,
for m ⩾ 3, the LCS of B1,m(P2) stops at Γv2(m)+2 or at Γv2(m)+3 when m is even, where v2 is the
2-adic valuation, and at Γ3 or Γ4 when m is odd.

In the case of B1,m(P2) with m ⩾ 3, where the answer given above is ambiguous between two
consecutive possibilities, we conjecture that its LCS stops at Γv2(m)+3 for all m ⩾ 3; see Remark
4.4.82.

The proof splits into many different cases, which we consider individually below; they are
synthesised into a proof of Theorem 4.4.78 immediately after Remark 4.4.94.

Blocks of size 1. In order to study partitioned braids with blocks of size 1 on the projective
plane, we need to know what the Fadell-Neuwirth exact sequence becomes in the exceptional case
n = 1 of Proposition 4.4.15.

Proposition 4.4.79. For any partition µ of an integer m, we have a short exact sequence:

Bµ(M2)/ξ2 B1,µ(P2) π1(P2) ∼= Z/2,

where ξ is the central element of Bµ(M2) given by all the strands going once along ∂M2.

Sketch of proof. One needs to show that ξ2 is the image of a generator of π2(P2) by the connecting
morphism in the long exact sequence of the proof of Proposition 4.4.15. A generator of π2(P2) is
given by the canonical projection S2 ↠ P2, which can be lifted to a map from the disc D to Fm+1(P2)
as follows. Let π denote the projection of D onto S2 = D/∂D sending ∂D to the south pole P = −N .
Let ρ : D → SO3(R) be the unique continuous function sending each x ∈ Int(D) to the rotation
of axis N × π(x) and angle (N, π(x)) (so that ρ(x)(N) = π(x)). Let ev : SO3(R) → Fm+1(P2)
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be evaluation at a base configuration whose first element is ±N . Then ev ◦ ρ is the required lift.
Moreover, when x goes once around ∂D, then ρ(x) goes twice around the circle of rotations of angle
π with axis orthogonal to N . Since P2 is to be thought of as the quotient of the Möbius strip by
its boundary (which goes to ±N), this circle of rotations evaluates to the element ξ described in
the statement.

Proposition 4.4.80. Let µ be a partition having at least two blocks. Then the LCS of B1,µ(P2)
does not stop.

Proof. We use the extension from Proposition 4.4.79:

Bµ(M2)/ξ2 B1,µ(P2) π1(P2) ∼= Z/2.

We denote the partition λ := (1, µ) of the integer n by (n1, . . . , nl), and we denote by l′ the number
of indices i such that ni ⩾ 2. Using notations from the §4.4.3 (changed to γi := c

(i)
1 ), we have that

the quotient in the previous extension is generated by the class of γ1, and we can write ξ as the
following product of commuting braids:

ξ =
n∏

i=2
γ2

i (Ai,i+1 · · ·Ai,n)−1.

Let us consider the quotient G of B1,µ(P2) by Γ2(Bµ(M2)/ξ2). It is an extension of Z/2 by
Bµ(M2)ab/2ξ. Recall from Proposition 4.4.48 that:

Bµ(M2)ab ∼= Zl−1 × (Z/2)l′
.

A basis of the first factor is given by c2, . . . , cl, where each ci is the common class of the γα with
α in the i-th block of λ. A (Z/2)-basis of the second factor is given by the elements si described
in Proposition 4.3.5. The images of the si in G commute with the class c1 of γ1, since they have
lifts with disjoint support. As a consequence, they are central not only in Bµ(M2)ab/2ξ, but in G.
Let them generate the subgroup A of G, and consider G/A. There is an extension:

Zl−1/2ξ G/A Z/2,

where ξ = 2
∑

i⩾2 nici. This extension is not split, but we can quotient further to get a split
extension of abelian groups. Namely, we need to kill the element c2

1 of G. In order to understand
it, we use the relations from Corollary 4.4.31: γ2

α = Aα1 · · ·Aαn in B1,µ(P2). In G/A, where the
Aαβ are killed if α, β ⩾ 2, these relations give A1α = γα

2 if α ⩾ 2 and

c2
1 = γ1

2 = A12 · · ·A1n = γ2
2 · · · γn

2 = 2
∑
i⩾2

nici = ξ.

In particular, ξ commutes with c1, which implies that it is central in G/A. The quotient H of G/A
by ξ is thus a semi-direct product:

H ∼= (Zl−1/ξ) ⋊ Z/2.

Finally, we need to compute the action of c1 by conjugation on the other ci. Recall that [γα, γ
−1
1 ] =

A1,α in B1,µ(P2) (see Figure 4.3a), and A1,α = γα
2 in H, so that [ci, c

−1
1 ] = c2

i in H, whence
c−1

1 c−1
i c1 = ci, which implies that c1 acts via −id on ⟨c2, . . . , cl⟩ = Zl−1/ξ ∼= Zl−2 × (Z/2).

Since we have assumed that l ⩾ 3, the LCS of H = (Zl−2 × (Z/2)) ⋊ (Z/2) does not stop; see
Corollary 4.5.6.

Proposition 4.4.81. For m ⩾ 3, the LCS of B1,m(P2) stops either at Γv2(m)+2 or at Γv2(m)+3
when m is even, where v2 is the 2-adic valuation, and either at Γ3 or at Γ4 when m is odd.
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Proof. Again, we use the extension from Proposition 4.4.79:

Bm(M2)/ξ2 B1,m(P2) π1(P2) ∼= Z/2.

Recall that, since m ⩾ 3, the LCS of Bm(M2) stops at Γ2; see Theorem 4.4.43. Moreover,
Bm(M2)/Γ∞ = Bm(M2)ab ∼= Z × Z/2, where the first factor is generated by the common class γ
of γ2, . . . , γm+1 and the second factor is generated by the common class σ of the σi; see Proposi-
tion 4.4.33. The image of the central element ξ of Bm(M2)ab is then:

ξ =
m+1∑
i=2

γ2
i (Ai,i+1 · · ·Ai,m+1)−1 = 2mγ − 2 · m(m+ 1)

2 σ = 2mγ,

so that Bm(M2)/(ξ2Γ2) ∼= Z/4m× Z/2. Let us consider the quotient G of B1,m(P2) by the image
of Γ2(Bm(M2)). The image of Γ2(Bm(M2)) = Γ∞(Bm(M2)) is inside Γ∞(B1,m(P2)), so that G
and B1,m(P2) have the same associated Lie ring. Now, G is an extension:

Z/4m× Z/2 G Z/2.

We can already see that G is finite, and deduce that its LCS stops, so that Γ∗(B1,m(P2)) stops
too. In order to be more precise, let us recall that G = ⟨γ, σ, γ1⟩, where the class of γ1 generates
the quotient in the previous extension. Notice that γ2

1 is in the kernel, so it commutes with γ and
σ. Since it obviously commutes with γ1, it is central in G. Moreover, as in the previous proof, the
boundary relations in B1,m(P2) give:

γ = γ2
i = Ai,1 · · ·Ai,m+1 = Ai,1 for i ⩾ 2 and γ2

1 = A1,2 · · ·A1,m+1 = γ2m = ξ.

Thus, the quotient of G by its central subgroup A = ⟨γ2m⟩ is an extension of Z/2 by (Z/2m)×Z/2.
Since γ2

1 = 1 in G/A, this extension splits as a semi-direct product:

G/A ∼= ((Z/2m)× Z/2) ⋊ Z/2.

The element γ1 of G/A commutes with σ, and, using once again the isotopy from Figure 4.3a:

[γ, γ−1
1 ] = [γ2, γ

−1
1 ] = A12 = γ2,

which implies that γ−1
1 γ−1γ1 = γ. This means that Z/2 acts trivially on the Z/2 factor and via

−id on the Z/2m factor. This explicit description allows us to compute completely the LCS of
G/A ∼= Z/2 × (Z/2m ⋊ Z/2) using Corollary 4.5.8. Precisely, Γi(G/A) = 2i−1Z/(2m) for i ⩾ 2.
Hence it stops at Γ3 if m is odd and at Γv2(m)+2 if m is even. Finally, since A is cyclic of order
2, we can apply Lemma 4.1.2 (with l = 1) to conclude that the LCS of G (whence the one of
B1,m(P2)) stops at Γv2(m)+2 or at Γv2(m)+3 when m is even and at Γ3 or Γ4 when m is odd.

Remark 4.4.82. Similarly to the situation of B2,m(S2) (see Remark 4.4.75), it seems difficult
to decide theoretically between the two possibilities in Proposition 4.4.81. However, based on
experimental calculations [DPS22a] using GAP [GAP] and the package NQ [Nic96], we conjecture
that the LCS of B1,m(P2) always stops at Γv2(m)+3 (for both even and odd m).

We are left with two cases to consider where there is a block of size 1, namely B1,1(P2)
and B1,2(P2). The group B1,1(P2) = P2(P2) is isomorphic to the quaternion group Q8 (see
Corollary 4.4.83 below), which is 2-nilpotent, so its LCS stops at Γ3. Notice that this means that the
conclusion of Proposition 4.4.81 is correct also for m = 1, since that proposition would assert that
the LCS of B1,1(P2) stops at Γ3 or Γ4. This fact is also compatible with our conjecture in Remark
4.4.82. In contrast, we will show that the LCS of B1,2(P2) does not stop (Proposition 4.4.89).
The study of this latter case is postponed, and will be part of our study of B2,m(P2), of which a
presentation will be computed in Proposition 4.4.85 for every m ⩾ 1.
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Blocks of size 2. We now study the case where there is at least one block with exactly two
strands.

Proposition 4.4.79 can be used to recover the following classical calculations from [Bus66,
p. 87]:

Corollary 4.4.83. The pure braid group P2(P2) is isomorphic to the quaternion group Q8 (which
is 2-nilpotent), and B2(P2) to the dicyclic group of order 16 (which is 3-nilpotent). Precisely, a
presentation of the latter is:

B2(P2) =
〈
σ1, γ1

∣∣ γ2
1 = [σ1γ1σ

−1
1 , γ−1

1 ] = σ2
1
〉
,

where σ1 and γ1 are the elements of B2(P2) defined above (Notation 4.4.77).

Proof. Recall that the dicyclic group of order 16 can be defined by the presentation:

Dic16 =
〈
s, x, y

∣∣ sx = ys, x2 = y2 = (xy)2 = s2〉 ,
and that it contains the subgroup Q8 of quaternions as the index-2 subgroup generated by x and
y. Notice that, modulo the other relations, (xy)2 = s2 is equivalent to s2x−1yxs2 = s2, which is
equivalent to [y, x−1] = s2 by passing to the inverses. We can also use the first relation to eliminate
y = sxs−1. As a consequence, we also have:

Dic16 =
〈
s, x

∣∣ x2 = [sxs−1, x−1] = s2〉 .
It is easy to check that the elements σ1, γ1 and γ2 of B2(P2) satisfy the above relations, so that
s 7→ σ1 and x 7→ γ1 define a morphism φ from Dic16 to B2(P2). Indeed, the relation γ2

1 = σ2
1

is one of the boundary relations from Corollary 4.4.27, and an isotopy witnessing the last one is
drawn in Figure 4.3a. Note that φ sends the element y = sxs−1 to σ1γ1σ

−1
1 = γ2.

By taking m = n = 1, the short exact sequence of Proposition 4.4.79 specialises to:

π1(M2)/ξ2 ∼= Z/4 P2(P2) π1(P2) ∼= Z/2.

Indeed, B1(M2) = π1(M2) is isomorphic to Z, and the element ξ, which is a loop parallel to the
boundary of the Möbius strip, is the square of a generator. From this, we deduce that P2(P2)
has eight elements, and that it is generated by γ1 (the image of a generator of π1(M2)) and γ2
(a lift of the generator of π1(P2)). As a consequence, φ must induce an isomorphism between
Q8 = ⟨x, y⟩ ⊂ Dic16 and P2(P2). Then, we can use the usual extension

P2(P2) B2(P2) S2

to deduce that σ1, γ1 and γ2 generate B2(P2), and that B2(P2) has sixteen elements. Hence φ is
an isomorphism.

We first deal with the case where there are at least three blocks:

Proposition 4.4.84. Let µ be a partition having at least two blocks. Then the LCS of B2,µ(P2)
does not stop.

Proof. We are looking for a quotient whose LCS can be computed, and does not stop. Let us
consider the Fadell-Neuwirth extension from Proposition 4.4.15:

Bµ(M2 − {pt}) B2,µ(P2) B2(P2).

We use notations similar to the ones from the proof of Proposition 4.4.80: we denote the partition
λ := (1, 1, µ) of the integer n by (n1, . . . , nl), and we denote by l′ the number of indices i such that
ni ⩾ 2. We also use Notation 4.4.77 for braids on the projective plane.
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In order to get a more manageable extension, we first take the quotient G of B2,µ(P2) by
Γ2(Bµ(M2 − {pt})), getting an extension:

Bµ(M2 − {pt})ab G B2(P2).

The kernel Bµ(M2 − {pt})ab is computed in Proposition 4.4.48: it is the product (π1(M2 −
{pt})ab)l−2 × (Z/2)l′ , where the first factor is generated by the classes ci of γα, a1i of A1α and a2i

of A2α (for α in the i-th block, with i ⩾ 3), subject to the relations a1i + a2i = 2ci (for each i, we
get a copy of π1(M2 − {pt})ab ∼= Z2), and the second one is generated by the classes si of the σα

(for α and α+ 1 in the i-th block of λ, which is possible only if ni ⩾ 2). The group G is generated
by these elements, together with the classes of σ1 and γ1 (whose images generate B2(P2)).

The elements si commute with the other elements of Bµ(M2−{pt})ab (which is abelian), but
also with σ1 and γ1 (for reasons of support). Hence they are central elements of G. Let us denote
by A ∼= (Z/2)l′ the central subgroup they generate, and let us consider the extension:

Z2(l−2) G/A B2(P2).

Corollary 4.4.83 gives a presentation of the quotient, namely:

B2(P2) =
〈
σ1, γ1

∣∣ γ2
1 = [σ1γ1σ

−1
1 , γ−1

1 ] = σ2
1
〉
.

We now compute a presentation of G/A, using the method from Appendix 4.6. Generators are ci,
a1i and a2i (for 3 ⩽ i ⩽ l), together with σ1 and γ1. Relations defining the kernel are the ones
saying that the ci, the a1i and the a2i commute with each other, together with a1i + a2i = 2ci (for
each i ⩾ 3). The latter could be used to eliminate a2i = 2ci − a1i. However, we will choose not to
do so here, and to give a redundant, but more tractable presentation of G/A. Relations lifting the
above presentation of the quotient are:{

γ2
1 = σ2

1 · a
n3
13 · · · a

nl

1l ,

[σ1γ1σ
−1
1 , γ−1

1 ] = σ2
1 .

Indeed, these hold in B2,µ(P2) ⊂ Bn(P2): the first one is one of the boundary relations from
Corollary 4.4.27 and the second one is the one pictured in Figure 4.3a. Moreover, these are clearly
lifts of the relations defining B2(P2).

We are left with understanding how σ1 and γ1 (whence also γ2 = σ1γ1σ
−1
1 ) act by conjugation

on the ci, the a1i and the a2i. We claim that the following relations hold in G/A:{
σ1a1i = a2iσ1, σ1a2i = a1iσ1 and σ1 ⇄ ci

γ1akiγ
−1
1 = (−1)δ1kaki and γ1ciγ

−1
1 = ci − a1i,

where we use additive notations in the (abelian) subgroup generated by the ci, the a1i and the a2i.
These are images of relations holding in B2,µ(P2), which can be proved by drawing explicit isotopies.
Precisely, the first one comes from σ1A1iσ

−1
1 = A2i, the second one from σ1A2iσ

−1
1 = A−1

2i A1iA2i

and the third one from the commutation of σ1 with all the γα if α ⩾ 3. The other relation comes
from γ1 commuting with A2i, and from [γi, γ

−1
1 ] = A1i (Figure 4.3a), that is, γ−1

1 γiγ1 = A−1
1i γi.

Notice that the relation involving γ1a1iγ
−1
1 can be deduced from the other two, using a1i = 2ci−a2i.

We now have a presentation of G/A. In order to get a simpler quotient, we quotient further
by σ2

1 and γ2
1 . That is, we add the relations σ2

1 = γ2
1 = 1 to the previous presentation. The result

is a split extension:

Z2(l−2)/

(
l∑

i=3
nia1i =

l∑
i=3

nia2i = 0
)

⋊W2.

If we quotient further by
∑
nici (which is central in the above semi-direct product, since it is fixed

by the action of W2), we obtain a semi-direct product M ⋊W2, where M has an explicit workable
description. In fact, as a W2-representation, M ∼= Λ⊗B, where Λ is the canonical representation



4.4. Braids on surfaces 133

of W2 defined in §4.5.2 and B is the quotient of Zl−2 by the vector (n3, . . . , nl), seen as a trivial
W2-representation. Precisely, if ei (i = 3, . . . , l) is the generating family of B obtained from the
canonical basis of Z2, an isomorphism Λ⊗B ∼= M is given, with the notations from Remark 4.5.15,
by a⊗ ei 7→ a2i, b⊗ ei 7→ a1i and c⊗ ei 7→ ci (with notations from Remark 4.5.15).

We finally use our hypothesis: since l ⩾ 4, the rank of B is not 0, so it surjects onto Z. Thus,
M surjects onto Λ ⊗ Z = Λ (as a W2-representation), and M ⋊W2 surjects onto Λ ⋊W2, whose
LCS (computed in Proposition 4.5.12) does not stop.

Now, we are left with the case where there are precisely two blocks, one of which has exactly
two strands. First of all, we give an explicit presentation of the associated group:

Proposition 4.4.85. Let m ⩾ 1 be an integer. The group B2,m(P2) admits the presentation with
generators σ1, σ3, σ4, . . . , σm+1, γ1, γ3 and A23, subject to the following relations:

(PR1) σ4, . . . , σm+1 ⇄ γ3, A23;
(PR2) A23 ⇄ σ3γ3σ

−1
3 ;

(PR3) (σ3A23)2 = (A23σ3)2;
(PR4) [σiγiσ

−1
i , γ−1

i ] = σ2
i for i ∈ {1, 3};

(PR5) γ2
1 = σ1

(
m+1∏
k=2

(σk · · ·σ3)A23(σk · · ·σ3)−1
)
σ1;

(PR6) σ1 ⇄ σ3, σ4, . . . , σm+1, γ3;
(PR7) γ1 ⇄ σ3, σ4, . . . , σm+1, A23;

(PR8) γ2
3 = (σ−1

1 A23σ1)A23 ·
m+1∏
k=3

(σk · · ·σ4)σ2
3(σk · · ·σ4)−1;

(PR9) [γ3, γ
−1
1 ] = σ−1

1 A23σ1.

As above, the choice of names for the generators is coherent with their geometric interpretation
(see Notation 4.4.77 and Figure 4.4b).

Remark 4.4.86. This set of generators is not minimal, although it is close to being minimal.
Indeed, we can eliminate A23 using (PR9). The set of generators thus obtained is then minimal,
at least for m = 1, 2, since the classes of the generators are a Z/2-basis of the abelianisation in this
case. However, this elimination would render the relations much less tractable; the above seems a
better compromise between the number of generators and readability of the relations.

Proof of Proposition 4.4.85. Let us begin by checking that these relations hold for the usual
elements σ1, σ3, σ4, . . . , σm+1, γ1, γ3 and A23 of B2,m(P2). Let us first remark that we can
express other usual elements in terms of these elements. Namely, A13 = σ−1

1 A23σ1 and, if
k ∈ {3, . . . ,m + 2}, γk (resp. A2k, A1k) is obtained from γ3 (resp. A23, A13) by conjugation
by σk · · ·σ4 on the left (by convention, this product equals 1 if k = 3). Then one can see that
(PR5) and (PR8) are the boundary relations from Corollary 4.4.27, corresponding to the strands
1 and 3 (recall that A12 = σ2

1 and that σ1 commutes with σ3, . . . , σm+1). All the other relations
can be checked by drawing explicit isotopies. Precisely, the relations (PR1), (PR2), (PR6) and
(PR7) are commutation relations between elements having disjoint support; (PR4) and (PR9) are
instances of the relation drawn in Figure 4.3a; (PR3) can either be proved by drawing an explicit
isotopy, or it can be deduced from the similar relation in B1,2 (see Lemma 4.3.16), by considering
the morphism from B1,2 to B2,m(P2) induced by a well-chosen embedding of D into P2.

In order to show that these relations describe the group, we now apply the methods of Ap-
pendix 4.6 to the Fadell-Neuwirth extension from Proposition 4.4.15:

Bm(P2 − {2 pts}) B2,m(P2) B2(P2).

Since P2−{2 pts} = N1,2, a presentation of the kernel is given by Proposition 4.4.25, for n = 1. In
order for it to identify with the right subgroup of B2,m(P2) (corresponding to braids on the strands
3, . . . ,m+ 2), indices are shifted by 2 (so that, for instance, c1 becomes γ3), and we take z1 = A23;
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this last choice changes the presentation a little bit, but one can easily figure out the necessary
modifications. Thus, (BN1) and (BN4) give (PR1); (BN2) and (BN6) are empty; (BN3) is the
case i = 3 of (PR4); (BN5) is (PR2); finally, (BN7) is the case i = 3 of (PR3).

A presentation of the quotient is given by Corollary 4.4.83 and its proof:

B2(P2) =
〈
σ1, γ1, γ2

∣∣ γ2
1 = [σ1γ1σ

−1
1 , γ−1

1 ] = σ2
1
〉
.

The elements γ1, σ1 ∈ B2,m(P2) are lifts of the elements γ1, σ1 ∈ B2(P2). The second relation
holds without change for these lifts, giving the case i = 1 of (PR4). The relation γ2

1 = σ2
1 lifts to

the boundary relation associated with the first strand, which is (PR5).
We are left with finding relations describing the action of σ1 and γ1 (or of σ−1

1 and γ−1
1

– see Remark 4.6.4) by conjugation on the other generators. The commutation relations (PR6)
and (PR7) describe most of this action. Only two elements still need to be expressed in terms
of the generators σ3, . . . , σm+1, γ3 and A23 of the kernel, namely σ−1

1 A23σ1 and γ−1
1 γ3γ1. The

boundary relation (PR8) deals with σ−1
1 A23σ1. Finally, (PR9) deals with γ−1

1 γ3γ1: it says that
γ−1

1 γ3γ1 = γ3σ
−1
1 A23σ1, and the right-hand side can be expressed in terms of the generators of the

kernel using the previous relation (PR8). This finishes the proof that the above relations are the
ones obtained using the method of Appendix 4.6, whence the result.

Let us now consider the case m = 1. In this case, there is no σi for i ⩾ 3, so the presentation
is much simpler; in fact, in the extension of the proof, the kernel is just π1(P2 − {2 pts}), which is
free on γ3 and A23. Thus, (PR1), (PR2) and (PR3) are empty in this case, and there is no case
i = 3 in (PR4). The other relations reduce to:

Corollary 4.4.87. The group B2,1(P2) has a presentation with 4 generators σ1, γ1, γ3 and A23
and 6 relations (indexed as above):

(4) [σ1γ1σ
−1
1 , γ−1

1 ] = σ2
1 ;

(5) γ2
1 = σ1A23σ1;

(6) σ1 ⇄ γ3;


(7) γ1 ⇄ A23;
(8) γ2

3 = σ−1
1 A23σ1A23;

(9) [γ3, γ
−1
1 ] = σ−1

1 A23σ1.

Remark 4.4.88. This presentation is smaller than van Buskirk’s presentation [Bus66, Lem. p. 84],
which has 6 generators and 13 relations. Note that in our language, his generators are as follows,
where the right-hand side of each equation uses our notation and the left-hand side uses his:

σ2 = σ1,

a2 = σ−1
1 A23σ1,

a3 = A23,


ρ1 = γ3,

ρ2 = γ1σ
−1
1 A−1

23 σ1,

ρ3 = σ−1
1 γ1σ1.

Proposition 4.4.89. The LCS of B2,1(P2) does not stop.

Proof. Let G be the quotient of B2,1(P2) by the single relation σ1γ1σ
−1
1 = γ−1

1 . Let us consider
the presentation of G given by the presentation of Corollary 4.4.87, to which this relation is added.
Then relation (4) becomes σ2

1 = 1, that is, σ−1
1 = σ1. Relation (5) becomes A23 = σ1γ

2
1σ1 = γ−2

1 ,
hence (7) becomes redundant. Relation (8) is then equivalent to γ2

3 = 1. Relation (9) becomes
γ3γ

−1
1 γ−1

3 = γ1. If we add to this relation (6), which says that σ1 commutes with γ3, we get a
presentation of Z ⋊ (Z/2)2 (where both elements of a basis of (Z/2)2 act via −id). Thus, G ∼=
Z⋊ (Z/2)2, whose LCS does not stop (one can either compute it with the method of Appendix 4.5,
or quotient further by σ1 = γ3 to get Z ⋊ (Z/2) as a quotient and apply Corollary 4.5.8).

Remark 4.4.90. Even if the imposed relation looks very much like a relation defining the infinite
dihedral group Z ⋊ (Z/2), it is not at all clear a priori why adding this one relation should work.
Much experimentation has been needed before ending up here.

Next, let us consider the case m = 2. In this case, there is no σi for i ⩾ 4. Thus, (PR1) is
empty, and the boundary relations (PR5) and (PR8) become much simpler. Let us spell out the
result in this case:
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Corollary 4.4.91. The group B2,2(P2) has a presentation with 5 generators σ1, γ1, γ3 and A23
and 8 relations (indexed as above):

(2) A23 ⇄ σ3γ3σ
−1
3 ;

(3) (σ3A23)2 = (A23σ3)2;
(4) [σiγiσ

−1
i , γ−1

i ] = σ2
i for i ∈ {1, 3};

(5) γ2
1 = σ1A23σ3A23σ

−1
3 σ1;


(6) σ1 ⇄ σ3, γ3;
(7) γ1 ⇄ σ3, A23;
(8) γ2

3 = σ−1
1 A23σ1A23σ

2
3 ;

(9) [γ3, γ
−1
1 ] = σ−1

1 A23σ1.

Proposition 4.4.92. The LCS of B2,2(P2) does not stop.

Proof. Let us consider, as above, the projection p : B2,2(P2)↠ B2(P2) ∼= Dic16 induced by forget-
ting the last two strands. Recall that Corollary 4.4.83 gives a presentation of this quotient:

B2(P2) =
〈
σ1, γ1

∣∣ γ2
1 = [σ1γ1σ

−1
1 , γ−1

1 ] = σ2
1
〉
.

Since the second relation is already true in B2,2(P2) (it is the case i = 1 of relation (4) in Corol-
lary 4.4.91), the projection p becomes split if we impose the relation σ2

1 = γ2
1 . We will in fact

consider the quotient G of B2,2(P2) by the two relations:{
(Q1) σ2

1 = γ2
1 ;

(Q2) σ3γ3σ
−1
3 = γ−1

3 .

Since the second relator also sits in the kernel of p, we get an induced split projection p : G ↠
B2(P2).

Let us consider the presentation of G given by the presentation of Corollary 4.4.91, together
with the two relations (Q1) and (Q2). Modulo (Q1), relation (5) becomes σ3A23σ

−1
3 = A−1

23 .
Modulo (Q2), relation (2) says that A23 commutes with γ3, and the case i = 3 of relation (4)
gives σ2

3 = 1. At this point, let us remark that the relations obtained so far say that the subgroup
⟨γ3, A23, σ3⟩ is a quotient of Z2 ⋊ (Z/2), where the action of Z/2 is by −id.

Continuing our investigation, we remark that relation (3) is a consequence of the previous
relation (both sides of it are killed modulo these). Relation (8) becomes σ−1

1 A23σ1 = γ2
3A

−1
23 and

(remembering that σ2
3 = 1) relation (9) becomes γ−1

1 γ3γ1 = A23γ
−1
3 . If we add relations (6) and

(7) without change, we get a presentation of G, which will allow us to describe it in an explicit
way.

Let us first consider the subgroup A := ⟨γ3, A23⟩ (which is abelian by relation (2)). Relations
(Q2) and (2) imply that it is stable under conjugation by σ3 (which equals σ−1, by (4)). Relations
(6) and (8) imply that it is stable under conjugation by σ−1

i , and also by σi (as one sees by
conjugating (8) by σi, taking (6) into account). In the same way, relations (7) and (9) imply that
it is stable under conjugation by γ±1

1 . Finally, all this implies that it is normal in G. Moreover, the
presentation of G/A that we get from the one of G clearly gives G/A ∼= Dic16× (Z/2) and, in fact,
the relations defining G/A were already true in G for the generators σ1, γ1 and σ3, so G ↠ G/A
splits, and finally:

G ∼= A⋊ (Dic16 × (Z/2)).
We are left with understanding A (which is a quotient of Z2) and the action of K := Dic16× (Z/2)
on it. In order to do this, let us consider the relations describing the action of K on A, namely:

(Q2) σ3γ3σ
−1
3 = γ−1

3 ;
(5) σ3A23σ

−1
3 = A−1

23 ;
(6) σ1γ3σ

−1
1 = γ3;

(8) σ1A23σ
−1
1 = A−1

23 γ
2
3 ;

(9) γ1γ3γ
−1
1 = γ−1

3 A23;
(7) γ1A23γ

−1
1 = A23.

We remark that these already define an action of K on Z2, which is exactly the action on Z2 = Γ
considered at the end of §4.5.2. Precisely, with the identifications σ1 7→ σ, γ1 7→ γ and σ3 7→ τ
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for generators of K, we get an equivariant map Γ ↠ A sending a to A23 and c to γ3 (with the
notations of Remark 4.5.15). This induces a surjective morphism from Γ ⋊K onto A ⋊K = G.
It is then easy to check that all the relations defining G are in fact already true in Γ ⋊K, which
allows us to define a converse isomorphism G ∼= Z2 ⋊K.

Finally, Proposition 4.5.12, together with the equality ΓK
∗ (Λ) = ΓW2

∗ (Λ) from the end of
§4.5.2, gives us a complete description of the LCS of G which, in particular, does not stop.

Remark 4.4.93. The projection onto Dic16 × (Z/2) in the proof can be seen as coming from the
geometry. Precisely, it is the factorisation through G of the projection

q : B2,2(P2)↠ B2(P2)×S2 ∼= Dic16 × (Z/2)

whose first factor forgets the last two strands and whose second factor forgets the first two strands
and then applies the usual projection π : B2(P2)↠ S2.

Remark 4.4.94. This quotient looks very much like the one from the proof of Proposition 4.4.89,
and the same remark applies (see Remark 4.4.90). Namely, (Q1) is a natural relation to impose
(making the extension split), whereas it is much less clear why quotienting by (Q2) (which is the
same relation as in the aforementioned proof, up to re-indexing the strands) should work.

We may now complete the proof of Theorem 4.4.78.

Proof of Theorem 4.4.78. The first two statements are part of the general results of Corollary 4.4.52
and Theorem 4.4.53, except for B1(P2) ∼= Z/2 and B2(P2), which is the dicyclic group of order 16
(Corollary 4.4.83). The third statement combines Propositions 4.4.80 (if λ has blocks of size 1)
and 4.4.84 (if λ has blocks of size 2). The fourth statement combines Propositions 4.4.81, 4.4.89
and 4.4.92, together with the fact that B1,1(P2) = P2(P2) is the quaternion group Q8 (Corollary
4.4.83).

The remaining cases to consider are B2,m(P2) for m ⩾ 3. These are the only examples of
partitioned surface braid groups for which we have not been able to answer the question of whether
their LCS stop. We can still say something about these LCS, using the proof of Proposition 4.4.84.
Recall that in this proof, the hypothesis on the number of blocks of µ was not used until the end.
Moreover, in the case µ = (m) and m ⩾ 3, Proposition 4.4.43 applies, implying that the first
quotient G is the quotient by Γ∞(Bm(M2−{pt})). The latter must be contained in Γ∞(B2,m(P2))
so, in order to understand the LCS of B2,m(P2), we only need to understand the LCS of G. Then,
since the central subgroup A = ⟨s3⟩ (where s3 is the class of σ3) is cyclic of order 2, we can apply
Lemma 4.1.2 to see that the LCS of G stops if and only if the one of G/A does (with possibly one
more step). We have the same presentation of G/A as in the proof of Proposition 4.4.84, from its
decomposition as an extension of B2(P2) = Dic16 by Z2. Note that the action of Dic16 on the
(abelian) kernel in this extension is exactly the one on Λ from §4.5.2, which is through the quotient
Dic16 ↠ W2. Precisely, as in the previous proof, a = a23 and c = c3 identify with the basis of Λ
from Remark 4.5.15. However, this extension is not split, so computing its LCS seems tricky. We
can try to make it split, by considering the quotient by the relation σ2

1 = γ2
1 (which is equivalent

to am = 1), but then we also kill c2m, getting the finite quotient:

(G/A)/σ2
1γ

−2
1
∼= (Λ/⟨ma, 2mc⟩) ⋊Dic16 ∼= (Z/m× Z/2m) ⋊Dic16.

In fact, using the notation of Proposition 4.5.12, we have ⟨ma, 2mc⟩ = mV ⊂ Λ. Thus we can
deduce from Proposition 4.5.12 a computation of

ΓDic16
∗ (Z/m× Z/2m) = ΓW2

∗ (Λ/mV ).

Namely, if m = 2νm′, with m′ odd, we have that 2νV contains mV , and that 2ν+1V equals 2νV
modulo mV , so ΓW2

∗ (Λ/mV ) stops at ΓW2
2ν+2(Λ/mV ) = 2νV/mV . Finally, the LCS of the above

quotient stops at Γk, where k = 2v2(m) + 2 if m is even and k = 4 is m is odd (in the latter case,
note that the relative LCS stops at the second step, but Dic16 is 3-nilpotent).
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This gives a lower bound for the step at which the LCS of B2,m(P2) stops: it cannot stop before
Γk for k = max{4, 2v2(m) + 2}. However, this lower bound is far from optimal: our experimental
calculations [DPS22a] using GAP [GAP] and the package NQ [Nic96] show that, for all m ⩽ 1024,
the LCS of G/A, and hence those of G and of B2,m(P2), do not stop before Γ100 (we also verified
this for all m = 2ν with ν ⩽ 23). We thus conjecture:

Conjecture 4.4.95. If m ⩾ 3, the LCS of B2,m(P2) does not stop.

4.5 Appendix: Some calculations of lower central series

This appendix is devoted to computing the LCS of some combinatorially-defined groups. These
include notably the Klein group Z⋊Z, the free products Z/2∗Z/2 and Z∗Z/2, the Artin group of
type B2 and wreath products. Our main tool here is the decomposition of the LCS of a semi-direct
product into a semi-direct product of filtrations, which we recall first.

4.5.1 Relative lower central series

In order to obtain actual computations, we need to recall some material from [Dar21, §3] about
the LCS of a semi-direct product.

Definition 4.5.1. Let G be a group, of which H is a normal subgroup. We define the relative
lower central series ΓG

∗ (H) by: {
ΓG

1 (H) := H,

ΓG
k+1(H) := [G,ΓG

k (H)].

If G is the semi-direct product of H with a group K, we write ΓK
∗ (H) for ΓH⋊K

∗ (H) (which
does not cause any confusion: if H is a normal subgroup of a group G, then ΓG

∗ (H) = ΓH⋊G
∗ (H),

for the semi-direct product associated to the conjugation action of G on H). It was shown in
[Dar21] that in this case:

Γ∗(H ⋊K) = ΓK
∗ (H) ⋊ Γ∗(K).

Moreover, the filtration ΓK
∗ (H) = H ∩Γ∗(H⋊K) does have the property that [ΓK

i (H), ΓK
j (H)] ⊆

ΓK
i+j(H) (for all i, j ⩾ 1), which allows one to define an associated graded Lie ring LK(H) (with

brackets induced by commutators, as in §4.1.2). Then, the Lie ring of H ⋊K decomposes into a
semi-direct product of Lie rings:

L(H ⋊K) = LK(H) ⋊ L(K).

This is in fact a generalisation of Lemma 4.1.12, which is the degree-one part (one can check that
LK

1 (H) = (Hab)K).
We can devise an analogue of Lemma 4.2.6 in this context, which gives a criterion for the

relative LCS to stop:

Lemma 4.5.2. Let a group K act on a group H. Let the set SK generate Kab and let the set SH

generate (Hab)K . Suppose that, for each pair (s, t) ∈ S2
H (resp. each pair (s, t) ∈ SH × SK), we

can find representatives s̃, t̃ ∈ H (resp. s̃ ∈ H and t̃ ∈ K) of s and t such that s̃ and t̃ commute in
H (resp. in H ⋊K). Then ΓK

2 (H) = ΓK
3 (H), which means that ΓK

∗ (H) stops at ΓK
2 (H), and:

L(H ⋊K) ∼= (Hab)K × L(K),

where the first factor is concentrated in degree one.

Proof. On the one hand, by definition of the relative LCS, an element of LK
2 (H) is a sum of

brackets in L(G ⋊ K), either of two elements of LK
1 (H), or of an element of L1(K) with an

element of LK
1 (H). On the other hand, the relation [s̃, t̃] = 1 in H ⋊ K readily implies that
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[s, t] = 0 in L(H ⋊ K) ∼= LK(H) ⋊ L(K). Since SH linearly generates LK
1 (H) = (Hab)K and

SK linearly generates L1(K) = Kab, we infer that under our hypothesis, all elements of LK
2 (H)

are trivial, which means that ΓK
2 (H) = ΓK

3 (H). Moreover, from the definition of ΓK
∗ (H), this

obviously implies that ΓK
i (H) = ΓK

i+1(H) for all i ⩾ 2. The statement about Lie rings is then
just a reformulation of the decomposition L(H ⋊K) ∼= LK(H) ⋊ L(K) taking into account these
conclusions.

4.5.2 Semi-direct products of abelian groups

Let a group G act on an abelian group A. Then the LCS of A⋊G can be computed using linear
algebra. Indeed, we have:

ΓG
k+1(A) :=

[
A⋊G, ΓG

k (A)
]

=
[
G, ΓG

k (A)
]
.

These are commutators in A⋊G, given, for g ∈ G and a ∈ A, by:

[g, a] = g · a− a = (g − id)(a).

As a consequence, ΓG
k+1(A) is the subgroup of A generated by the (g − id)(ΓG

k (A)) (for g ∈ G),
which can be computed by studying the endomorphisms g − id of A.

We now study several instances of this situation. We begin by computing the LCS of the
Klein group Z ⋊ Z (which is the fundamental group of the Klein bottle). We then generalise
this calculation to any semi-direct product of an abelian group by Z acting by −id. This can be
generalised again, to the case of an action of Z by an involution. Finally, we compute the LCS of
Λ ⋊W2, where W2 ∼= (Z/2) ≀S2 is the Coxeter group of type B2 (or C2), acting on the lattice Λ
generated by its root system.

The Klein group

There are two distinct automorphisms of Z (that is, ±id), whence only one non-trivial action of Z
on Z. Thus the following definition makes sense:

Definition 4.5.3. The Klein group is the semi-direct product K = Z ⋊ Z.

Let us denote by x (resp. by t) the element (1, 0) (resp. (0, 1)) of Z⋊ Z. A presentation of K
is given by

K = ⟨x, t | txt−1 = x−1⟩.

The LCS of K decomposes as Γ∗(K) = ΓZ
∗ (Z) ⋊ Γ∗(Z). Thus, in order to understand it, we need

to understand the filtration ΓZ
∗ (Z).

Proposition 4.5.4. The LCS of the Klein group is Γi(Z⋊Z) = (2i−1Z)⋊ {1} for i ⩾ 2. In other
words, ΓZ

i (Z) = 2i−1Z. In particular, Z ⋊ Z is residually nilpotent.

Proof. This follows from the formula [x2j

, t] = x2j (tx−2j

t−1) = x2j+1 , by induction on i.

Corollary 4.5.5. The (graded) Lie ring of the Klein group identifies with (Z/2)[X]⋊Z, where the
polynomial ring (Z/2)[X] is seen as a graded abelian Lie ring (where Xi is of degree i), and the
generator T of Z (of degree 1) acts via [Xi, T ] = Xi+1.

Proof. From Proposition 4.5.4, we get a decomposition L(K) = L(2∗−1Z) ⋊ L(Z). Since Z is
abelian, the two factors are abelian Lie rings. The result follows, by calling Xi the class of x2i−1

and T the class of t. The formula for brackets comes from [x2j

, t] = x2j+1 .
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Generalised Klein groups

Let A be any abelian group and let Z act on A via the powers of −idA. The corresponding semi-
direct product KA = A⋊Z is a generalisation of the Klein group K = KZ. We can generalise the
above results to this context:

Proposition 4.5.6. The LCS of KA is given by Γi(A ⋊ Z) = (2i−1A) ⋊ {1} for i ⩾ 2. In other
words, for all i ⩾ 2, ΓZ

i (A) = 2i−1A. In particular, for any free abelian group A, KA is residually
nilpotent.

Proof. Let t denote the generator of Z. For all a in A, we have [a, t] = a − t · a = 2a in A ⋊ Z.
Hence [2jA, t] = 2j+1A, from which the calculation of the LCS follows. Then KA is residually
nilpotent if and only if the intersection of the 2jA is trivial, which is true for instance when A is
finitely generated or when A is free abelian.

Corollary 4.5.7. Let us consider the graded abelian Lie ring L(2∗−1A) =
⊕

2i−1A/2iA (where
the sum is taken over i ⩾ 1). The (graded) Lie ring of KA identifies with L(2∗A) ⋊ Z, where the
generator T of Z acts via the degree-one map induced by a 7→ 2a.

Proof. From Proposition 4.5.6, we get a decomposition L(K) = L(2∗−1A) ⋊ L(Z). Since Z and A
are abelian, the two factors are abelian Lie rings. The result follows, since brackets with T come
from commutators with t, given by [a, t] = 2a in A⋊ Z.

Since t2 acts trivially on A, it is a central element of KA (in fact, one easily sees that it
generates the centre of KA if A is not trivial). Thus we can consider A ⋊ (Z/2) (where Z/2 acts
on A via −idA) as a quotient of KA, which behaves in much the same way:

Corollary 4.5.8. Consider the group A⋊ (Z/2), where Z/2 acts on the abelian group A via −idA.
We have Γi(A ⋊ (Z/2)) = (2i−1A) ⋊ {1} for all i ⩾ 2. In particular, for any finitely generated
abelian group A, A ⋊ (Z/2) is residually nilpotent. Moreover, the (graded) Lie ring of this group
identifies with L(2∗−1A)⋊(Z/2), where the generator T of Z/2 acts via the degree-one map induced
by a 7→ 2a.

Finally, let us spell out the particular case where A ∼= Zn is free abelian on some basis
x1, . . . , xn. We then denote KA by Kn, for short.

Corollary 4.5.9. The (graded) Lie ring of Kn identifies with (Z/2)n[X]⋊Z, where the polynomial
ring (Z/2)n[X] is seen as an abelian Lie ring (where Xi is of degree i), and the generator T of Z
(of degree 1) acts via [v ·Xi, T ] = v ·Xi+1, for v ∈ (Z/2)n.

Proof. This is just a matter of identifying L(2∗−1Zn) with (Z/2)n[X], by calling v ·Xi the class
of the sum of the 2i−1xk such that vk = 1.

A further generalisation

Let A be an abelian group and let Z act on A via the powers of some involution τ (for instance,
τ could exchange two isomorphic direct factors of A). Let us denote by Kτ the corresponding
semi-direct product A⋊ Z. We have:

((τ − 1) + 2)(τ − 1) = τ2 − 1 = 0,

which means that τ − 1 acts via multiplication by −2 on V := Im(τ − 1).

Proposition 4.5.10. The LCS of Kτ is given by Γi(A⋊ Z) = (2i−2V ) ⋊ {1} for i ⩾ 2. In other
words, for all i ⩾ 2, ΓZ

i (A) = 2i−2V . In particular, for any free abelian group A, Kτ is residually
nilpotent.
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Proof. For all a ∈ A, we have [a, t] = a−τ(a) = (1−τ)(a). This implies that ΓZ
2 (A) = Im(τ−1) =

V . Then for all v in V , we have [v, t] = v− τ(v) = 2v in A⋊Z, and the rest of the proof is similar
to that of Proposition 4.5.6.

Corollary 4.5.7 generalises immediately to this context:

Corollary 4.5.11. The (graded) Lie ring of Kτ identifies with (A/V ⊕V/2V ⊕ 2V/4V ⊕· · · )⋊Z,
where A/V and Z are in degree 1, 2i−2V/2i−1V is in degree i and the generator T of Z acts via
the degree-one map induced by 1− τ (which coincides with v 7→ 2v on V ).

The reader can also easily write a generalisation of Corollary 4.5.8 to this context, by factoring
the action of Z through Z/2.

More actions on abelian groups

Let us consider the group defined by the presentation ⟨σ, γ | σ2 = γ2 = (σγ)4 = 1⟩, which is
the Coxeter group of type B2, also denoted by W2 = (Z/2) ≀ S2 in the rest of the chapter. It
acts on R2 in the usual way: γ acts by

(
−1 0
0 1

)
and σ by

(
0 1
1 0

)
. This action preserves the lattice

Λ := Z · (0, 1)⊕Z · ( 1
2 ,

1
2 ) (which is generated by roots). It also preserves the lattice V = Z2, which

is of index 2 in Λ.

Proposition 4.5.12. The filtration ΓW2
∗ (Λ) on Λ is given by:

Λ ⊃ V ⊃ 2Λ ⊃ 2V ⊃ 4Λ ⊃ · · · .

In particular, Λ ⋊W2 is residually nilpotent, but not nilpotent.

Proof. One can easily write down explicitly the eight matrices for the actions of elements of W2
(which are the invertible monomial matrices in GL2(Z)). Recall that, for every g ∈ W2, g − id is
the commutator by g in Λ ⋊W2. It is then easy to check that the g − id send Λ to V (resp. V to
2Λ) and that the (g − id)(Λ) (resp. the (g − id)(V )) generate V (resp. 2Λ), whence the result.

Remark 4.5.13. One can look at the proof in a geometric way, by seeing each element g · v − v
as the difference between two vertices of a square centred at 0.

Remark 4.5.14. One can compute completely the associated Lie ring, which is a semi-direct
product of the abelian Lie ring (Z/2)[X] by the mod 2 Heisenberg Lie ring L(W2) ∼= n3(Z/2).

Remark 4.5.15. Let us use the notations a := (0, 1), b := (1, 0) and c := ( 1
2 ,

1
2 ). Then Λ can be

described abstractly as the abelian group generated by a, b and c, modulo the relation a+ b = 2c.
Moreover, the action of σ fixes c and exchanges a and b, and the action of γ is via a 7→ a, b 7→ −b
and c 7→ c− b. In particular, since b = 2c− a and c− b = a− c, in the basis (a, c) of Λ, σ acts by(
−1 0
2 1

)
and γ by

(
1 1
0 −1

)
. Notice that, in this basis, V is just the subgroup of elements whose second

coordinate is even.

In the course of the proof of Proposition 4.4.92, we encounter a slight variation on the above
action of W2 on Λ ∼= Z2. Namely, we can construct an action of the group K = Dic16 × (Z/2)
(where Dic16 is the dicyclic group of order 16, cf. Corollary 4.4.83, which is an index-2 central
extension of W2) on Λ by making Dic16 = ⟨σ, γ⟩ act through its quotient W2 (which is the quotient
by σ2) and making Z/2 = ⟨τ⟩ act by −id. Notice that there is already an element in W2 acting
by −id, namely the central element (σγ)2 of W2, so this action is in fact through the quotient
K ↠ W2 sending respectively σ, γ and τ to σ, γ and (σγ)2. In particular, this implies that we
have:

ΓK
∗ (Λ) = ΓW2

∗ (Λ).
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4.5.3 Free products

Two examples

Consider the simplest free product of two groups, which is the infinite dihedral group Z/2 ∗Z/2 =
⟨x, y | x2 = y2 = 1⟩. We can determine its LCS from its description as a semi-direct product:

Proposition 4.5.16. There is an isomorphism:

Z/2 ∗ Z/2 ∼= Z ⋊ (Z/2).

As a consequence, this group is residually nilpotent, and its Lie ring is (Z/2)[X] ⋊ (Z/2), where
both factors are abelian Lie rings, and the generator T of Z/2 acts by [Xi, T ] = Xi+1.

Proof. We know a presentation of each of these groups, namely Z/2 ∗ Z/2 = ⟨x, y | x2 = y2 = 1⟩
and Z⋊ (Z/2) = ⟨a, t | tat−1 = a−1, t2 = 1⟩. It is then easy to check that the assignments x 7→ t,
y 7→ ta and t 7→ x, a 7→ xy define morphisms inverse to each other. The rest is an application of
Corollary 4.5.8 with A = Z.

Consider now the free product Z ∗ (Z/2) = ⟨x, y | y2 = 1⟩. We have a similar decomposition
into a semi-direct product:

Proposition 4.5.17. There is an isomorphism:

Z ∗ (Z/2) ∼= F2 ⋊ (Z/2),

where the action of the generator t of Z/2 is given by exchanging the two elements a and b of a
basis of the free group F2.

Proof. Again, we know a presentation of each these groups, namely Z∗ (Z/2) = ⟨x, y | y2 = 1⟩ and
F2 ⋊ (Z/2) = ⟨a, b, t | tat−1 = b, tbt−1 = a, t2 = 1⟩. It is then easy to check that the assignments
x 7→ tb, y 7→ t and t 7→ y, a 7→ xy, b 7→ yx define morphisms inverse to each other. One may
alternatively observe that the Tietze transformation removing the generator a turns the second
presentation into the first.

Remark 4.5.18. The group Z ∗ (Z/2) is isomorphic to wB2 (or vB2) and the above isomorphism
can be identified with wB2 ∼= wP2 ⋊S2, together with wP2 ∼= F2 (with basis (χ12, χ21)).

The LCS of Z ∗ (Z/2) is much more difficult to compute than the one of Z/2 ∗ Z/2 above.
The reader can find a presentation of the associated Lie ring in [Lab77], where the methods used
are somewhat different from ours. Our methods could be adapted to recover this result, together
with the residual nilpotence of the group, but we will not do so here. We only give a proof of the
following:

Proposition 4.5.19. The group Z ∗ (Z/2) is residually nilpotent, but not nilpotent. Its Lie ring
has only 2-torsion elements, except in degree one.

Proof. Note that the group Z ∗ (Z/2) surjects onto Z/2 ∗ Z/2, whose LCS does not stop, by
Proposition 4.5.16. Notice also that the statement about torsion has already been proven in
Example 4.2.9. As a consequence, we only need to prove that Z ∗ (Z/2) is residually nilpotent,
which is the difficult part of the statement. We can prove it using a kind of Magnus expansion.
Namely, let us consider the associative algebra of non-commutative formal power series A :=
F2⟪X,Y ⟫/(Y 2 = 1). We get a morphism Φ from Z ∗ (Z/2) to the group A× of units of A by
sending x to 1 +X and y to 1 + Y . It is injective, by the usual argument: if xa1yϵ1 · · ·xalyϵlxal+1

is a non-trivial reduced expression of some non-trivial element g ∈ Z∗ (Z/2) (with ϵi = ±1, ai ∈ Z,
and a1 and al+1 possibly trivial), then, by writing ai = 2bi(2ci + 1), using (1 + X)2k = 1 + X2k

and (1 +T )α = 1 +αT + · · · , we see that the coefficient of the monomial X2b1
Y X2b2

Y · · ·Y X2bl+1

in Φ(g) is not trivial, hence Φ(g) ̸= 1.
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Now let us denote by (X,Y ) the ideal generated by X and Y in A, and by A×
k the subgroup

1 + (X,Y )k of A× (for k ⩾ 1). It is easy to see that [A×
1 , A

×
k ] ⊂ A×

k+1 for all k ⩾ 1. As a
consequence, for all k ⩾ 1, we have Γk(A×

1 ) ⊆ A×
k . Since the intersection of the 1 + (X,Y )k is

obviously trivial, A×
1 is residually nilpotent, whence also Z ∗ (Z/2), which is isomorphic to one of

its subgroups.

Remark 4.5.20. As mentioned at the beginning of the proof above, if one wishes only to see that
the LCS of Z ∗ (Z/2) does not stop, one need only apply Lemma 4.1.1 to the obvious projection
Z ∗ (Z/2) ↠ (Z/2) ∗ (Z/2) and one can then deduce the required result from the much simpler
explicit computation of the LCS of the infinite dihedral group (Z/2) ∗ (Z/2) ∼= Z ⋊ (Z/2) done in
Proposition 4.5.16.

An Artin group

Consider the Artin group of type B2 (which is also B1,2 – see Lemma 4.3.16), that is:

G := ⟨σ, x | (σx)2 = (xσ)2⟩.

Let δ := σx. Then (σx)2 = (xσ)2 is equivalent to δ2 = σ−1δ2σ, so that:

G = ⟨σ, δ | δ2σ = σδ2⟩.

The element δ2 commutes with the generators δ and σ, hence it is central in G. Since Gab is free
on the classes of δ and σ (as is obvious from the presentation), δ2 is of infinite order. Moreover,
the above relation clearly becomes trivial when δ2 is killed, so that:

G/δ2 = ⟨σ, δ | δ2 = 1⟩ ∼= Z ∗ (Z/2).

We thus have a central extension:

Z G Z ∗ (Z/2).

Proposition 4.5.21. The group G = ⟨σ, x | (σx)2 = (xσ)2⟩ is residually nilpotent (but not nilpo-
tent).

Proof. We have observed above that the central subgroup ⟨δ2⟩ injects into Gab, i.e., we have
⟨δ2⟩ ∩ Γ2(G) = {1}. Thus, we can deduce the (strict) residual nilpotence of G from the fact that
Z∗(Z/2) is (strictly) residually nilpotent (see Proposition 4.5.19) by applying Proposition 4.1.5.

Remark 4.5.22. The weaker fact that the LCS of G does not stop can also be deduced more
directly from the reasoning of Remark 4.5.20.

The decomposition of G into a central extension can also be used to describe its Lie ring.
Namely, it can be obtained from the Lie ring of Z ∗ (Z/2) described in [Lab77]; see §4.5.3.

Proposition 4.5.23. The Lie ring of G = ⟨σ, x | (σx)2 = (xσ)2⟩ is a central extension of L(Z ∗
(Z/2)) by Z, concentrated in degree one. Precisely, 2σx is central in L(G), and L(G)/(2σx) ∼=
L(Z ∗ (Z/2)).

Proof. We have seen that ⟨δ2⟩ injects into Gab, which means that ⟨δ2⟩ ∩ Γ2(G) = {1}. As a
consequence, the projections π : Γk(G)↠ Γk(G/δ2) have trivial kernels for k ⩾ 2, which means that
they are isomorphisms. Thus, the canonical morphism from L(G) to L(G/δ2) is an isomorphism
in degree at least 2. In degree one, it identifies with the projection of Gab ∼= Z2 onto (G/δ2)ab ∼=
Z × (Z/2), whose kernel is generated by δ2 = 2δ. Moreover, since δ2 is central in G, its class in
L(G) must be central, whence our result.
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4.5.4 Wreath products

This section is devoted to the study of the LCS of G ≀ Sλ = Gn ⋊ Sλ, where G is any group,
λ = (n1, . . . , nl) is a partition of the integer n and Sλ ⊆ Sn acts on Gn by permuting the factors.
By Proposition 4.4.12, wreath products of this form are precisely the (partitioned) braid groups
on manifolds of dimensions at least 3. We first compute the abelianisation (Corollary 4.5.25), then
we show that the LCS stops under some stability condition (Corollary 4.5.27). Finally, we look at
the unstable cases, whose LCS we compute if G is abelian (§4.5.4).

Let us remark that, in order to understand the LCS of G ≀Sλ, we only need to study the LCS
of G ≀Sn. Indeed:

G ≀Sλ
∼=

l∏
i=1

G ≀Sni
.

Abelianisations

Lemma 4.1.12 allows us to compute abelianisations of wreath products:

Lemma 4.5.24. For any integer n ⩾ 2, we have (G ≀Sn)ab ∼= Gab × (Z/2).

Proof. It is a direct consequence of Lemma 4.1.12, applied to G ≀ Sλ = Gn ⋊ Sλ: (G ≀ Sn)ab =
((Gn)ab)Sn

×Sab
n = ((Gab)n)Sn

× (Z/2) = Gab × (Z/2).

Corollary 4.5.25. For any partition λ = (n1, . . . , nl) of n, if l′ denotes the number of indices
i ⩽ l such that ni ⩾ 2, we have (G ≀Sλ)ab ∼= (Gab)l × (Z/2)l′ .

Proof. G ≀Sλ decomposes as the direct product of the G ≀Sni , and (G ≀Sni)ab identifies with Gab

when ni = 1, and with Gab × (Z/2) if ni ⩾ 2.

The stable case

We now use a disjoint support argument to show that there is a stable behaviour for the LCS of
G ≀Sλ, occurring as soon as ni ⩾ 3 for every i ⩽ l.

Recall that the usual generators τi of Sn are conjugate to each other, hence Sab
n
∼= Z/2 is

generated by their common class τ , and Γ2 = Γ∞ for Sn.

Proposition 4.5.26. Let G be a group. If n ⩾ 3, the τiτ
−1
j normally generate Γ2(G ≀ Sn), and

(G ≀Sn)ab ∼= Gab × Z/2. Moreover, the LCS of G ≀Sn stops at Γ2.

Proof. Let N be the subgroup of G ≀Sn normally generated by the τiτ
−1
j . These are in Γ2(Sn),

whence also in Γ2(G ≀Sn), hence the latter contains N . In order to show the converse inclusion,
we need to show that (G ≀ Sn)/N is abelian. For any g ∈ G, let us denote by g the class of
(g, 1, . . . , 1) ∈ Gn modulo N . We now show that the g, together with τ , generate (G ≀Sn)/N , and
we use a disjoint support argument to show that they commute with one another.

First, let us remark that g commutes with τ . This comes from the fact that τ2 acts trivially
on (g, 1, . . . , 1), thus commutes with it in G ≀Sn. From this, we deduce that g is also the class of
σ(g, 1, . . . , 1)σ−1 = (1, . . . , 1, g, 1, . . . , 1) for any σ ∈ Sn (whose class modulo N is a power of τ).
In particular, for all g, h ∈ G, (g, 1, . . . , 1) commutes with (1, h, . . . , 1), hence g commutes with h.

Now, every (g1, . . . , gn) ∈ Gn is the product of the (1, . . . , 1, gi, 1, . . . , 1), so that all the
elements (1, . . . , 1, g, 1, . . . , 1) (for all g ∈ G and any choice of position), together with the τi,
generate G ≀ Sn. This implies that their classes g, together with τ , generate (G ≀ Sn)/N . Since
these generators commute with one another, this ends the proof that N = Γ2(G ≀Sn).

The rest of the statement is a direct application of Lemmas 4.5.24 and 4.5.2.
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Corollary 4.5.27. Let G be a group, n ⩾ 3 be an integer and λ = (n1, . . . , nl) be a partition of
n with ni ⩾ 3 for all i. Then the τατ

−1
β for α and β in the same block of λ normally generate

Γ2(G ≀Sλ), and (G ≀Sλ)ab ∼= (Gab × Z/2)l. Moreover, the LCS of G ≀Sλ stops at Γ2.

Proof. Apply Proposition 4.5.26 to each factor of G ≀Sλ
∼=

l∏
i=1

G ≀Sni .

Unstable cases

Since G ≀S1 = G, the only case left in our study of G ≀Sλ is the case of G ≀S2, which can be quite
complicated. We treat the case where G is an abelian group, which we denote by A.

Proposition 4.5.28. Let us denote by δA the subgroup {(a,−a) | a ∈ A} of A2. For all i ⩾ 2, we
have Γi(A ≀S2) = 2i−2(δA). Moreover, the Lie algebra decomposes as:

L(A ≀S2) ∼= (A⊕A/2A⊕ 2A/4A⊕ · · · ) ⋊ (Z/2),

where A and Z/2 are in degree 1 and each factor of the form 2i−2A/2i−1A is in degree i. The Lie
ring A⊕A/2A⊕ · · · is abelian and the generator T of Z/2 acts on it via the degree-one map:{

a 7→ a in degree 1,
a 7→ 2a in degree at least 2.

Proof. This is a straightforward application of Proposition 4.5.10 and Corollary 4.5.11 (adapted
to an action of S2 ∼= Z/2 instead of Z). Namely, V = δA is the subspace of A2 on which S2 acts
by −id. Moreover, A2/V ∼= A (via (a, 0) ← [ a) and the map induced by 1 − τ identifies with the
one described in our statement.

Corollary 4.5.29. Let G be a group and λ be a partition with at least one block of size 2. Suppose
that the filtration 2∗Gab of Gab does not stop. Then the LCS of G ≀Sλ does not stop.

Proof. The group Gab ≀Sλ is a quotient of G ≀Sλ, whose LCS does not stop by Proposition 4.5.28.
Thus, our statement follows from Lemma 4.1.1.

Remark 4.5.30. If Gab is finitely generated, the condition in Corollary 4.5.29 holds if and only
if it is infinite. In general, the condition is equivalent to 2iA ̸= {0} for all i ⩾ 1, where A is the
quotient of Gab by its maximal 2-divisible subgroup.

4.6 Appendix: Presentation of an extension

Here we recall the classical construction of a presentation of a group extension from a presentation
of the quotient and a presentation of the kernel, together with some knowledge of the structure of
the extension (see also [HEO05, §2.4.3]). We then apply this construction to show that 2-nilpotent
groups whose abelianisation is free are determined by their Lie ring.

Let G be a group, which is an extension of a quotient K by a normal subgroup H. Suppose
that presentations of H and K are known, namely H = ⟨X|R⟩ and K = ⟨Y |S⟩, where R is a subset
of the free group F [X] (resp. S ⊂ F [Y ]). For each y in Y , let us fix a lift ỹ of the corresponding
generator of K to an element of G. Then a presentation of G is given by

G = ⟨X ⊔ Y |R ∪ S̃ ∪ T ⟩,

where S̃ and T are obtained as follows:
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• Each s ∈ S is a word in the elements of Y and their inverses. If we replace each y in s by
its chosen lift ỹ, we get an element s̃ of G, which is in fact in H, since its projection to K
is trivial by construction. Each element of H is represented by a word on the elements of X
and their inverses, so we can choose some ws ∈ F [X] representing s̃. Then S̃ is the following
set of relations:

S̃ := {sw−1
s | s ∈ S} ⊂ F [X ⊔ Y ].

• For each y ∈ Y and each x ∈ X, the element ỹxỹ−1 is an element of H, which can be
represented by a word wx,y ∈ F [X]. Then we define:

T := {yxy−1w−1
x,y | x ∈ X, y ∈ Y } ⊂ F [X ⊔ Y ].

Remark 4.6.1. If the presentations of H and K are finite, this construction gives a finite presen-
tation of G.

Remark 4.6.2 (Split extensions). When the extension splits (that is, when G is a semi-direct
product of K by H), one usually chooses the lifts of generators of K to be their images under a
fixed section. Then the presentation obtained is somewhat simpler, since the relations in S hold
in G (that is, S̃ = S).

Proposition 4.6.3. The above presentation is indeed a presentation of the extension G.

Proof. Let G0 be the group defined by the above presentation. By construction, the assignments
x 7→ x ∈ H ⊂ G and y 7→ ỹ induce a well-defined morphism π from G0 to G. Let H0 be the
subgroup of G0 generated by X. The morphism π restricts to a morphism πH : H0 → H. Since
the relations R are satisfied in H0, we can construct an inverse to πH : it is an isomorphism.

The relations T ensure that H0 is stable under left conjugation by the y ∈ G0. Moreover, for
all h ∈ H, πH(yhy−1) = π(y)π(h)π(y)−1 = ỹπH(h)ỹ−1. Since H is normal in G, left conjugation
by ỹ is an automorphism of H. Since πH is an isomorphism, left conjugation by y ∈ G0 must be
an automorphism of H0, which implies that H0 is stable under left conjugation by y−1. Finally,
H0 is stable under left conjugation by y±1, and also (clearly) by x±1, so it is normal in G0.

As a consequence, π induces a morphism of extensions:

H0 G0 G0/H0

H G K.

πH π π

The relations R and T become trivial in G0/H0, and S̃ reduces to S there, so this quotient admits
the presentation ⟨Y |S⟩. This implies that π is an isomorphism. Since we already know that πH is
an isomorphism, the Five Lemma allows us to conclude that π is an isomorphism.

Remark 4.6.4. We can replace some of the generators y by their inverses before doing this
construction, so we can choose T to encode either left conjugation by y, or right conjugation by y,
for each y.

Corollary 4.6.5. If G is a 2-nilpotent group whose abelianisation is free abelian, then G is deter-
mined (up to isomorphism) by its associated Lie ring.

Proof. We construct a presentation of G which depends only on the structure of L(G) (and on
some choices not involving elements of G). The group G is an extension of Gab = L1(G) by
Γ2(G) = L2(G), to which we can apply the previous construction. Since Gab is free abelian on
some set Y , a presentation of this group is given by generators Y and relations {[y, z] | y, z ∈ Y }.
Let ⟨X|R⟩ be a presentation of the group L2(G). Then G admits the presentation with generators
X ⊔ Y and relations R ∪ S̃ ∪ T , constructed as above. We need to show that S and T can be
recovered from calculations in L(G) alone.
• Let s ∈ S, that is, s = [y, z] for some y, z ∈ Y . Then, by definition of L(G), s̃ = [ỹ, z̃] is the

element of Γ2(G) = L2(G) given by the bracket of y, z ∈ L1(G).
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• Since [G,Γ2(G)] = {1}, the set T consists of the relations [y, x], for x ∈ R and y ∈ S.
Thus the above presentation of G can be obtained from the data of L(G), as claimed.

Remark 4.6.6. Corollary 4.6.5 is not true in general if the abelianisation of G is not free. For
example, the dihedral group D8 of order 8 and the quaternion group Q8 are not isomorphic,
but they are 2-nilpotent groups whose Lie rings are isomorphic. Indeed, in both cases, we have
L1G = (Z/2)2 and L2G = Z/2 and the Lie structure is fully determined by saying that whenever
a and b are two distinct non-trivial elements of L1G, then [a, b] is non-trivial in L2G.



Chapter 5

The Burau representations of loop
braid groups

The results of this chapter have been published as [PS22a] in joint work with Arthur Soulié.

Introduction

Loop braid groups appear in many guises in topology and group theory. They may be seen geo-
metrically as fundamental groups of trivial links in R3, diagrammatically as equivalence classes of
welded braids (closely related to virtual braids and virtual knot theory), algebraically as subgroups
of automorphism groups of free groups or combinatorially via explicit group presentations.

Loop braid groups have been studied, from the topological viewpoint of motions of trivial links
in R3, by Dahm [Dah62], Goldsmith [Gol81], Brownstein and Lee [BL93] and Jensen, McCammond
and Meier [JMM06]. In parallel, the symmetric automorphism groups and the braid-permutation
groups (subgroups of Aut(Fn), which may also be interpreted in terms of welded braids) were
studied by McCool [McC86], Collins [Col89] and Fenn, Rimányi and Rourke [FRR97]. In particular,
Fenn, Rimányi and Rourke found a finite presentation of the braid-permutation groups. Later,
Baez, Wise and Crans [BWC07, Theorem 2.2] showed that their presentation is also a presentation
of the group of motions of a trivial link, thus bringing together the two different points of view.
Loop braid groups, as well as related groups of “wickets”, have also been studied more recently
by Brendle and Hatcher [BH13]. For a detailed survey of the many different facets of loop braid
groups, see Damiani’s survey [Dam17].

The definition that we shall use is the following.

Definition 5.0.1. Let D3 denote the closed unit ball in R3 and choose a trivial n-component
link Un in its interior. Let Emb(Un,D3) denote the set of all smooth embeddings of Un into
the interior of D3, equipped with the smooth Whitney topology, and write Embu(Un,D3) for the
path-component containing the inclusion (the superscript u stands for “unknotted and unlinked”).
There is a natural action of the diffeomorphism group Diff(Un) ∼= Diff(S1) ≀Sn on this space, and
we define

E(Un,D3) := Embu(Un,D3)/Diff(Un).

The n-th extended loop braid group is the fundamental group LB′
n := π1(E(Un,D3)). Similarly, we

define
E+(Un,D3) := Embu(Un,D3)/Diff+(Un),

where Diff+ denotes orientation-preserving diffeomorphisms, and the n-th (non-extended) loop
braid group is the fundamental group LBn := π1(E+(Un,D3)).

147
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Figure 5.1 The loop braid group LBn is generated by the loops of loops τ1, . . . , τn−1 and σ1, . . . , σn−1.
Together with ρ1, . . . , ρn, these generate the extended loop braid group LB′

n.

Thus elements of LB′
n are thought of as loops of n-component unlinks in R3, and elements

of LBn are thought of as loops of oriented n-component unlinks in R3. Since Diff+(Un) is an
index-2n subgroup of Diff(Un), the natural quotient map

E+(Un,D3) −↠ E(Un,D3)

is a 2n-sheeted covering map, and thus induces an injection

LBn ↪−→ LB′
n (5.1)

of fundamental groups. Thus we view the (non-extended) loop braid group LBn as a subgroup (of
index 2n) of the extended loop braid group LB′

n.

Generators. We fix a basepoint for E+(Un,D3) where the n circles are arranged on the xy-plane
in a row from left to right, as pictured in Figure 5.4. With respect to this basepoint, the loop braid
group LBn is generated by the elements τ1, . . . , τn−1 and σ1, . . . , σn−1 illustrated in Figure 5.1.
The elements τi and σi involve only the i-th and (i+ 1)-st loops, which are exchanged; for τi, no
loop passes through the other; for σi, the i-th loop passes through the (i+1)-st loop. The extended
loop braid group LB′

n is generated by these elements together with the elements ρ1, . . . , ρn, also
illustrated in Figure 5.1. For finite presentations of LBn and LB′

n using these generators, see
Fenn, Rimanyi and Rourke [FRR97, §1] and Brendle and Hatcher [BH13, Propositions 3.3 and
3.7]. We note that there are many conflicting conventions for the names of these generators in the
literature; in particular, our notation is consistent with [FRR97] but inconsistent with [BH13].

Burau representations of classical braid groups. The classical braid groups Bn are the
fundamental groups of the configuration spaces Cn(R2) of points in the plane. One of the oldest
interesting representations of Bn is the Burau representation [Bur35]

Bn −→ GLn(Z[t±1]), (5.2)

which was defined originally by assigning explicit matrices to the standard generators of Bn, but
which is most naturally understood as a homological representation, as follows. The braid group
Bn is naturally isomorphic to the mapping class group MCG(D2

n) = π0(Diff∂(D2, Qn)), the group
of isotopy classes of diffeomorphisms of the 2-disc that act by the identity on its boundary and
that preserve a subset Qn of n points in its interior. In this way, Bn acts (up to homotopy)
on the complement D2

n = D2 ∖ Qn. There is a projection π1(D2
n) ↠ Z sending a loop to the

sum of its winding numbers around each of the points Qn, and it turns out that the Bn action
on D2

n lifts to the corresponding regular covering space π : D̃2
n ↠ D2

n and commutes with the
deck transformations. The induced Bn action on the first homology H1(D̃2

n) therefore respects its
structure as a module over the group-ring of the deck transformation group, Z[Z] ∼= Z[t±1], so we
obtain a representation

Bn −→ AutZ[t±1]
(
H1
(
D̃2

n

))
.

The homology group H1(D̃2
n) is in fact a free Z[t±1]-module of rank n− 1, so choosing a free basis

we may rewrite this as
Bn −→ GLn−1(Z[t±1]). (5.3)

This is the reduced Burau representation. To obtain the unreduced Burau representation (5.2), we
consider instead the induced Bn action on the relative first homology H1(D̃2

n, π
−1(∗)), where ∗ is
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Figure 5.2 Given a configuration of (blue) points in the right-hand xz-plane, we rotate about the
z-axis as shown to produce a configuration of unlinked circles in R3.

a basepoint in the boundary of the disc. This is now a free Z[t±1]-module of rank n, so choosing
a free basis we obtain (5.2). The canonical map H1(D̃2

n) → H1(D̃2
n, π

−1(∗)) is injective, so the
reduced Burau representation (5.3) is a subrepresentation of the Burau representation (5.2).

Choosing appropriate ordered free generating sets for H1(D̃2
n) and H1(D̃2

n, π
−1(∗)) over Z[t±1],

the representations (5.2) and (5.3) may be written explicitly as

σi 7−→ Ii−1 ⊕
[

1− t 1
t 0

]
⊕ In−i−1 and σi 7−→ Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−2 (5.4)

respectively. We note that the Burau representation is sometimes defined using the transposes of
these matrices, such as in [KT08], but this is not an essential difference, since the Burau represen-
tation is equivalent to its transpose. For more details of these representations, see [KT08].

From classical braids to loop braids. There is an obvious map

t : Cn(R2) −→ E+(Un,D3) (5.5)

given by replacing each point in the given configuration with a small circle, oriented positively
in R2, and then including this unlinked configuration of circles into R3. On fundamental groups,
this induces a homomorphism Bn → LBn sending the standard generators of Bn to the elements
τ1, . . . , τn−1 of LBn. In particular, this map factors through the projection Bn → Sn onto the
symmetric group on n letters. There is also a more interesting map

s : Cn(R2) −→ E+(Un,D3) (5.6)

defined as follows. Let us identify R2 with the right-hand xz-plane (the half where the x-coordinate
is positive) and the interior of D3 with R3. Given a configuration of n points in the right-hand xz-
plane, we produce an n-component unlink by rotating the configuration about the z-axis, tracing
out n circles while doing so, which all lie in planes parallel to the xy-plane; see Figure 5.2. We
orient these circles positively with respect to the parallel copy of the xy-plane in which they lie.

To see that the induced homomorphism on fundamental groups is injective, let us take a
basepoint in Cn(R2) where the configuration points are arranged in a line along the x-axis; this
corresponds to a basepoint of E+(Un,D3) with n concentric circles in the xy-plane, centred at the
origin. The standard generators of Bn are sent to loops of the form illustrated on the left-hand side
of Figure 5.3. Changing the basepoint of E+(Un,D3) to the one chosen earlier, with non-concentric
circles on the xy-plane, this corresponds to the loop on the right-hand side of Figure 5.3, which
is the generator σi of LBn. By [BH13, Proposition 4.3], the group homomorphism Bn → LBn

sending the standard generators of Bn to the elements σ1, . . . , σn−1 ∈ LBn is injective. As we
have just seen, the map (5.6) realises this homomorphism at the space level, and so:

Proposition 5.0.2. The map (5.6) induces an injection on π1.
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Figure 5.3 The image of the i-th standard generator of Bn under the map s∗ (left) corresponds, by
a change of basepoint, to the element σi of LBn (right).

Remark 5.0.3. The map (5.6) has also been described in §6 of [BB16], where its image is called
the configuration space of linear necklaces. In particular, [BB16, Theorem 6.1] is equivalent to
Proposition 5.0.2 under this interpretation. A small difference is that the map of [BB16] has the
space URn as target (see [BH13] for this notation), whereas (5.6) has E+(Un,D3) as target. But
(5.6) factors as

Cn(R2) −→ URn −→ R+
n −→ E+(Un,D3),

where the left-hand arrow is the map of [BB16]. The middle map is a π1-isomorphism by [BH13,
Proposition 2.3] and the right-hand map is a homotopy equivalence by [BH13, Theorem 1].

Burau representations of loop braid groups. A natural question is whether, and how, one
may extend the Burau representations (5.2) and (5.3) along the inclusions

Bn LBn LB′
n.

(5.6)∗ (5.1)
(5.7)

The unreduced Burau representation (5.2) has been extended to LBn by Vershinin [Ver01], using a
presentation of LBn and by assigning explicit matrices to generators. (More precisely, Vershinin’s
representation of LBn restricts to the transpose of the unreduced Burau representation of Bn,
according to our conventions.)

Our approach will instead be topological, analogous to the description above of the classical
Burau representations of Bn, via the homology of covering spaces. In each case, we will find a
natural generating set of the relevant homology group, and calculate the matrix that each standard
generator of the loop braid group is sent to.

Notation 5.0.4. We write R = Z[Z] = Z[t±1] and S = Z[Z/2] = Z[t±1]/(t2 − 1).

In this notation, the unreduced and reduced Burau representations are R-linear actions Bn ↷
R⊕n and Bn ↷ R⊕n−1 respectively. The case of the non-extended loop braid groups is straight-
forward:

Theorem 5.A. These R-linear actions extend to R-linear actions LBn ↷ R⊕n and LBn ↷
R⊕n−1. Explicit matrices are given in equations (5.15) and (5.17) respectively.

To extend further to the extended loop braid groups is a little more subtle. We must first
reduce modulo t2 − 1, in other words tensor − ⊗R S to obtain S-linear actions LBn ↷ S⊕n and
LBn ↷ S⊕n−1. The unreduced Burau representation then extends directly:

Theorem 5.B. The S-linear action LBn ↷ S⊕n extends to an S-linear action LB′
n ↷ S⊕n.

Explicit matrices are given in equations (5.15) and (5.21).

The reduced Burau representation does not extend directly; instead:

Theorem 5.C. The S-linear action LBn ↷ S⊕n−1 is a subrepresentation of an S-linear action
LBn ↷ S⊕n−1 ⊕ S/(t − 1), and this extends to an S-linear action LB′

n ↷ S⊕n−1 ⊕ S/(t − 1).
Explicit matrices are given in Table 5.1 on page 158.

We emphasise that these extensions of the Burau representations to LBn and LB′
n are precisely

those that arise naturally via actions on first homology groups of covering spaces, mirroring the
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topological construction of the classical Burau representations. As a partial summary, we have

x1, . . . , xn−1 x1, . . . , xn−1 x1, . . . , xn−1, y a1, . . . , an

R⊕n−1 S⊕n−1 S⊕n−1 ⊕ S/(t− 1) S⊕n

H1(D̃3
n;Z) H1(D̃3

n;Z)⊗R S H1(D̂3
n;Z) H1(D̂3

n, {v, tv};Z),

= = = = (5.8)

where from left to right we have (1) the reduced Burau representation of LBn over R = Z[t±1]
(Theorem 5.A), (2) its reduction modulo t2−1 over S = Z[t±1]/(t2−1), (3) the inclusion of (2) into
the reduced Burau representation of LB′

n over S (Theorem 5.C) and (4) its further inclusion into
the unreduced Burau representation of LB′

n (Theorem 5.B). In each case, an ordered generating
set corresponding to the direct sum decomposition is given in blue.

Remark 5.0.5. The matrices of the representations in Theorems 5.A and 5.B are the “obvious”
matrices that one may guess by analogy with the matrices for the classical (reduced and unre-
duced) Burau representations. However, the matrices for the reduced Burau representation of the
extended loop braid groups, from Theorem 5.C, do not seem combinatorially or algebraically ob-
vious. However, they arise very naturally topologically. Two additional subtleties in this case are
the appearance of torsion in the S/(t − 1) summand and the non-locality of the matrices for the
ρi generators.

Remark 5.0.6. It is stated in Theorem 5.C that the LBn-representation S⊕n−1 is a subrepre-
sentation of an LBn-representation S⊕n−1 ⊕ S/(t− 1). We remark that it is however not a direct
summand of the LBn-representation S⊕n−1 ⊕ S/(t− 1).

See §5.4 for further remarks on reducibility, kernel and other properties of these representa-
tions.

Remark 5.0.7. The Burau representations of the classical braid groups Bn form the first of an
infinite family of Lawrence-Bigelow representations [Law90; Big04], and the Burau representations
of the loop braid groups LBn (or extended loop braid groups LB′

n) may be extended, in more
than one way, to an analogous infinite family of representations; see [PS19].

These representations are particularly interesting as the representation theory of the loop braid
groups is in the early stages: so far, few other results are known on extensions of representations of
the braid groups to loop braid groups and some of their particular subgroups; see Kádár, Martin,
Rowell and Wang [Kád+17] and Bellingeri and the second author [BS20]. Furthermore, Damiani,
Martin and Rowell [DMR23] have recently studied a finite dimensional quotient LHn of the group
algebra of LBn, mimicking the braid group/Iwahori-Hecke algebra paradigm. In particular, the
unreduced Burau representation of LBn (Theorem 5.A) factors through this quotient algebra LHn;
see [DMR23, §3.2].

5.1 Action on the homology of covering spaces

Let φ be a diffeomorphism of the 3-ball D3 that restricts to the identity near the boundary. We
may restrict φ to our chosen unlink Un in the interior of D3 to obtain a new embedding Un ↪→ D3.
Since φ is isotopic to a diffeomorphism that acts by the identity on Un (it may be isotoped to
act by the identity on a larger and larger collar neighbourhood of the boundary, until this collar
neighbourhood contains Un), this new embedding is isotopic to the inclusion, hence an element of
Embu(Un,D3). We therefore have a restriction map

Diff∂(D3) −→ Embu(Un,D3), (5.9)

where Diff∂(D3) denotes the topological group of diffeomorphisms that are the identity on a neigh-
bourhood of the boundary, equipped with the smooth Whitney topology. The map (5.9) is a locally
trivial fibration [Pal60; Cer61; Lim63] and the quotient map

Embu(Un,D3) −↠ Embu(Un,D3)/Diff(Un) = E(Un,D3) (5.10)
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Figure 5.4 The unlink-complement D3
n with free generators a1, . . . , an for π1(D3

n) ∼= Fn.

is also a locally trivial fibration [BF81] (see also [Pal21, §4] for both of these). Putting together
(5.9) and (5.10), we have a locally trivial fibration

Diff∂(D3) −→ E(Un,D3). (5.11)

If we modify (5.10) to quotient only by Diff+(Un), it remains a locally trivial fibration, and together
with (5.9) we obtain a locally trivial fibration

Diff∂(D3) −→ E+(Un,D3). (5.12)

Together with Hatcher’s proof [Hat83] of the Smale conjecture, this implies the following, where
Diff∂(D3, Un) ⩽ Diff∂(D3) is the subgroup of diffeomorphisms that preserve Un (setwise) and
Diff∂(D3, U+

n ) ⩽ Diff∂(D3) is the subgroup of diffeomorphisms that preserve Un and its orientation.

Lemma 5.1.1. There are isomorphisms

LB′
n = π1(E(Un,D3)) ∼= π0(Diff∂(D3, Un))

LBn = π1(E+(Un,D3)) ∼= π0(Diff∂(D3, U+
n )).

Proof. The topological group Diff∂(D3) is contractible, in particular simply-connected, by [Hat83],
and these isomorphisms then follow from the long exact sequences associated to (5.11) and (5.12).

Notation 5.1.2. We will abbreviate D3
n = D3 ∖ Un, where Un is the n-component unlink in the

interior of D3 chosen previously. See Figure 5.4 for an illustration of a particular choice.

By the mapping class group interpretation of loop braid groups (Lemma 5.1.1), the group
LB′

n (and hence also its subgroup LBn) acts, up to homotopy, on the unlink-complement D3
n by

diffeomorphisms (in particular, homeomorphisms).

Remark 5.1.3. We will speak of actions of mapping class groups up to homotopy, which induce
(strict) actions on homology. An alternative, equivalent viewpoint would be that the corresponding
diffeomorphism group acts (strictly) at the level of spaces, and then observing that its induced
action on homology factors through the mapping class group, since homology groups are discrete.

Note that the fundamental group of D3
n is the free group Fn on n generators. This is easy to

see: the unlink-complement D3
n ⊆ D3 deformation retracts onto a wedge of n circles and n copies

of the 2-sphere. The n circles a1, . . . , an are shown in Figure 5.4. Now let

ϕ : π1(D3
n) −→ Z

be the surjective homomorphism defined by ϕ(ai) = 1 for all i = 1, . . . , n and let

ϕ′ : π1(D3
n) −→ Z/2Z

be the composition of ϕ with the unique surjection Z→ Z/2Z.
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Definition 5.1.4. We denote by D̃3
n the regular covering space corresponding to ker(ϕ) and by

D̂3
n the regular covering space corresponding to ker(ϕ′). We therefore have regular coverings

η : D̃3
n −→ D3

n and η′ : D̂3
n −→ D3

n

whose deck transformations groups are Z and Z/2Z respectively.

In general, if a group G acts (up to homotopy) on a based space X and we choose a surjection
ψ : π1(X)↠ Q that is invariant under the induced action of G on π1(X), then the G-action on X
lifts uniquely to the regular covering space corresponding to ψ and commutes with the action of
Q by deck transformations.

Let us first take G = LBn and X = D3
n with basepoint ∗ ∈ ∂D3 = ∂D3

n. We note that the
quotient ϕ is invariant under the action of LBn: for this it suffices to check that each generator
τi, σi of LBn sends each generator aj of π1(D3

n) to an element in ϕ−1(1), and this follows since, up
to conjugation, τi and σi simply permute the generators aj . We therefore have an induced action
(up to homotopy) of LBn on D̃3

n commuting with the deck transformation action of Z. Thus the
first integral homology groups

H1
(
D̃3

n;Z
)

and H1
(
D̃3

n, η
−1(∗);Z

)
(5.13)

are Z[Z]-modules via the deck transformation action, and are LBn-representations over Z[Z] via
the lifted LBn-action on D̃3

n.

Definition 5.1.5. The LBn-representations (5.13) are the reduced and the unreduced Burau rep-
resentations of loop braid groups over Z[Z] = R.

Let us now take G = LB′
n and again X = D3

n with basepoint ∗ ∈ ∂D3 = ∂D3
n. This time

ϕ is not invariant under the induced action of LB′
n, since, for example, the generator ρi sends

ai ∈ ϕ−1(1) to a−1
i ∈ ϕ−1(−1). However, the deeper quotient ϕ′ (namely ϕ reduced mod 2) is

clearly invariant under the action of LB′
n. We therefore have an induced action (up to homotopy)

of LB′
n on D̂3

n commuting with the deck transformation action of Z/2Z. Thus the first integral
homology groups

H1
(
D̂3

n;Z
)

and H1
(
D̂3

n, (η′)−1(∗);Z
)

(5.14)

are Z[Z/2Z]-modules via the deck transformation action, and are LB′
n-representations over Z[Z/2Z]

via the lifted LB′
n-action on D̂3

n.

Definition 5.1.6. The LB′
n-representations (5.14) are the reduced and the unreduced Burau rep-

resentations of extended loop braid groups over Z[Z/2Z] = S.

Let us make these covering spaces more concrete by building explicit models for each of them.
We embed n pairwise disjoint closed 3-discs into the interior of the unit 3-disc D3 as pictured in
Figure 5.5, so that each little 3-disc looks like a “lens shape” and the union of their equators is
precisely the n-component unlink that we fixed earlier. Let D̊3

n denote D3
n minus the interiors of

these n little 3-discs, equivalently, D3 minus the interiors and equators of the n little 3-discs. Also,
write Ni for the open northern hemisphere of the boundary of the i-th little 3-disc, and write Si

for the open southern hemisphere of the boundary of the i-th little 3-disc. Now consider

Z× D̊3
n

and glue {j}×Ni to {j− 1}×Si via the homeomorphism Ni
∼= Si given by reflection in the plane

passing through the equator. This is an explicit model for D̃3
n. Similarly, we may consider

Z/2Z× D̊3
n

and glue as before, where j is now considered mod 2. This is an explicit model for D̂3
n.
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Figure 5.5 The complement D̊3
n of the interiors and equators of n closed little 3-discs (“lens shapes”)

in the interior of the closed unit 3-disc D3. The boundary of D̊3
n decomposes as the disjoint union of

2n + 1 components: ∂D̊3
n = ∂D3 ⊔ N1 ⊔ . . . ⊔ Nn ⊔ S1 ⊔ . . . ⊔ Sn.

...

...

...... ...

... ... ... ...

Figure 5.6 The deformation retract X of the Z-covering D̃3
n.

5.2 Matrices for non-extended loop braid groups

We first consider the LBn-representations (5.13). The calculations of these representations are
unsurprising, but they are a useful warm-up to the slightly more subtle ones in the next section,
for the LB′

n-representations (5.14).

The modules. As noted above, the unlink-complement D3
n deformation retracts onto a wedge of

n circles and n copies of the 2-sphere. This deformation retraction lifts to a deformation retraction
of the covering space D̃3

n onto the space pictured in Figure 5.6. This is an infinite 2-dimensional
cell complex X with vertices indexed by Z, with exactly n edges between consecutive vertices (and
none between non-consecutive vertices) and with exactly n copies of the 2-sphere wedged onto each
vertex. Its fundamental group is freely generated by tk.(a2ā1), . . . . . . , tk.(anān−1) for all k ∈ Z,
where ā denotes the reverse of a path a. Abelianising and writing Z[Z] = Z[t±1], we see that its
first homology is freely generated, as a Z[t±1]-module, by x1 := a2ā1, . . . . . . , xn−1 := anān−1.

The relative homology group H1(D̃3
n, η

−1(∗);Z) is isomorphic to the first homology of X
relative to its set of vertices (since these vertices are fixed by the deformation retraction described
above), which is freely generated, as a Z[t±1]-module, by a1, . . . , an. Summarising, we have natural
isomorphisms

H1
(
D̃3

n, η
−1(∗);Z

) ∼= Z[t±1]{a1, . . . , an}

H1
(
D̃3

n;Z
) ∼= Z[t±1]{x1, . . . , xn−1},

and the canonical homomorphism H1(D̃3
n;Z)→ H1(D̃3

n, η
−1(∗);Z) is given under these identifica-

tions by xi 7→ ai+1 − ai.
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Figure 5.7 The action of σi ∈ LBn on the homological generator ai. The right-hand loop may be
decomposed (writing from the left to right) as ai · tai+1 · tāi.

The unreduced representation. It is easy to calculate visually how the LBn generators τi

and σi act on the homological generators aj . Clearly τi simply interchanges ai and ai+1. On the
other hand, σi acts by

σi(ai) = (1− t).ai + t.ai+1 σi(ai+1) = ai σi(aj) = aj (for j ̸∈ {i, i+ 1}),

where the first formula comes from the fact that, at the fundamental group level, σi sends the loop
ai to the loop ai · tai+1 · tāi, which may be read off from Figure 5.7. Thus we see that the matrices
for the unreduced Burau representation LBn → GLn(Z[t±1]) are given by

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t 1
t 0

]
⊕ In−i−1. (5.15)

Remark 5.2.1. These are precisely the transposes of the matrices used in [Ver01]. Related to
this, we note that, as observed in [Ibr21, Theorem 3.2], one may extend the (transpose of the)
unreduced Burau representation to the virtual braid group VBn → GLn(Z[t±1, u±1]) by

τi 7−→ Ii−1 ⊕
[

0 u−1

u 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t t

1 0

]
⊕ In−i−1. (5.16)

This factors through the projection VBn ↠ LBn if one sets u = 1, but in general it does not. It
would be interesting to find a topological construction of this representation, in the sense of the
present chapter, although it is unclear how this could be done, as we are unaware of a topological
interpretation of the virtual braid group as a motion group, analogous to the realisation of the
loop braid group as the group of motions of an oriented trivial link in R3.

The reduced representation. Using this computation of the unreduced representation, and
the explicit formula (xi 7→ ai+1 − ai) for the inclusion of the reduced representation into the
unreduced one, it is an easy exercise to read off the following explicit formulas for the reduced
Burau representation LBn → GLn−1(Z[t±1]):

τi 7−→ Ii−2 ⊕

 1 0 0
1 −1 1
0 0 1

⊕ In−i−2 and σi 7−→ Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−2. (5.17)

If i = 1 or i = n− 1, one should ignore the “I−1” on the left or right, and instead remove the left
column and top row, respectively the right column and bottom row, from the displayed matrix.

Observe that, when restricted to the σi generators, the formulas (5.15) and (5.17) are precisely
the matrices (5.4) defining the unreduced and reduced Burau representations of the classical braid
groups. This concludes the proof of Theorem 5.A.

Action on the second homology. The other non-trivial homology group of the covering space
D̃3

n ≃ X is in degree two, where we have H2(D̃3
n;Z) ∼= Z[t±1]{b1, . . . , bn}, where bi are illustrated in

blue in Figure 5.6. The generator τi ∈ LBn clearly acts by swapping the homological generators bi

and bi+1. The generator σi ∈ LBn acts as illustrated in Figures 5.8 and 5.9. It sends bi, considered
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Figure 5.8 The action of σi ∈ LBn on the element bi ∈ π2(D̃3
n). The right-hand side is homotopic to

ai · bi+1, where · denotes the action of π1 on π2.

Figure 5.9 The action of σi ∈ LBn on the element bi+1 ∈ π2(D̃3
n). The right-hand side is homotopic

to bi + bi+1 − ai · bi+1, where · denotes the action of π1 on π2.

as an element of π2(D̃3
n), to ai · bi+1, where · denotes the canonical action of π1(D̃3

n) on π2(D̃3
n).

Inspecting Figure 5.6, we see that, viewed as an element of H2(D̃3
n;Z), this is tbi+1. Similarly, σi

sends bi+1, considered as an element of π2(D̃3
n), to bi + bi+1 − ai · bi+1, which is bi + (1− t).bi+1 as

an element of H2(D̃3
n;Z). Thus, with respect to the ordered basis (b1, . . . , bn) of H2(D̃3

n;Z), this
representation LBn → GLn(Z[t±1]) is given by

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
0 1
t 1− t

]
⊕ In−i−1. (5.18)

Reversing the ordering, i.e. using instead the ordered basis (bn, . . . , b1), we obtain

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t t

1 0

]
⊕ In−i−1, (5.19)

which is the transpose of the unreduced Burau representation (5.15) of LBn, and agrees with the
matrices used in [Ver01].

5.3 Matrices for extended loop braid groups

The modules. As in §5.2, the deformation retraction of the unlink-complement D3
n onto a wedge

of circles and 2-spheres lifts to a deformation retraction of its covering D̂3
n onto the space pictured

in Figure 5.10. This is a finite 2-dimensional cell complex with two vertices {v, tv}, 2n edges
between them and with n copies of the 2-sphere wedged onto each vertex. Its fundamental group
is freely generated by the 2n− 1 loops

x1 = a2ā1, . . . . . . , xn−1 = anān−1

tx1 = ta2 tā1, . . . . . . , txn−1 = tan tān−1

y := an tan.

Hence its first homology H1(D̂3
n;Z) is generated, as an abelian group, by the same 2n − 1 loops,

viewed as homology classes. The first 2n− 2 of these classes generate a free module of rank n− 1
over S = Z[Z/2] = Z[t±1]/(t2 − 1), whereas the last element y generates a summand isomorphic
to Z viewed as a trivial Z[Z/2Z]-module, in other words S/(t− 1).

The relative homology group H1(D̂3
n, (η′)−1(∗);Z) is isomorphic to the first homology of

this complex relative to its vertices {t, tv}. This is much simpler: it is a free module over



5.3. Matrices for extended loop braid groups 157

...

...

...

...

Figure 5.10 The deformation retract of the double covering D̂3
n corresponding to quotienting Figure

5.6 by the action of t2.

Figure 5.11 The action of ρi ∈ LB′
n on the homological generator ai. The right-hand loop is tāi.

Note that it is not simply āi, since this is a path from tv to v, whereas ρi(ai) is a path from v = t2v
to tv.

S = Z[t±1]/(t2−1) of rank n, generated by a1, . . . , an. Summarising, we have natural isomorphisms

H1
(
D̂3

n, (η′)−1(∗);Z
) ∼= S{a1, . . . , an}

H1
(
D̃3

n;Z
) ∼= S{x1, . . . , xn−1} ⊕ S/(t− 1){y}.

The canonical homomorphism H1(D̂3
n;Z) → H1(D̂3

n, (η′)−1(∗);Z) is given under these identifica-
tions by xi 7→ ai+1 − ai and y 7→ (1 + t)an. As a matrix, this is:

−1 0 0
1 −1 0
0 1 −1 . . .

−1 0
1 1 + t

 . (5.20)

Note that this matrix describes an injective homomorphism. (Viewed as an endomorphism of S⊕n,
it is of course not injective, since 1 + t is a zero-divisor. But its kernel is precisely the submodule
0⊕n−1⊕ (t−1) of S⊕n so once we replace the domain with S⊕n−1⊕S/(t−1) it becomes injective.)

The unreduced representation. The action of the LB′
n generators τi and σi on the homolog-

ical generators aj is exactly as in §5.2, and given by the matrices (5.15), considered now over the
ring S = Z[t±1]/(t2− 1) instead of R = Z[t±1]. The LB′

n generator ρi acts trivially on aj for j ̸= i
and sends ai to −tai. This last formula comes from the fact that, at the fundamental group level,
ρi sends the loop ai to the loop tāi, which may be read off from Figure 5.11. Thus we see that the
matrices for the unreduced Burau representation LB′

n → GLn(S) are given by

(5.15) and ρi 7−→ Ii−1 ⊕
[
−t

]
⊕ In−i. (5.21)

In particular, the restriction of this representation of LB′
n to the generators τi and σi (i.e. to LBn)

is the reduction modulo t2 of the representation (5.15) of Theorem 5.A. This concludes the proof
of Theorem 5.B.



158 Chapter 5. The Burau representations of loop braid groups

The reduced representation. It is now a purely algebraic exercise, using the formulas (5.15)
and (5.21) for the unreduced Burau representation, together with the explicit description (5.20) of
the inclusion, to deduce explicit formulas for the reduced Burau representation

LB′
n −→ AutS(S⊕n−1 ⊕ S/(t− 1)).

These are given in Table 5.1, where we abbreviate δ := 1 + t. Note that the matrices for the
extended generators ρi are, in a sense, “non-local”.

Remark 5.3.1. Since these matrices describe automorphisms of S⊕n−1 ⊕ S/(t − 1), each entry
above the bottom row should be considered as an element of S, whereas each element of the bottom
row should be considered as an element of S/(t − 1) ∼= Z. In other words, we set t = 1 on the
bottom row.

More precisely, the entries in the bottom row lie in HomS(S, S/(t − 1)) ∼= S/(t − 1), except
the bottom-right entry, which lies in HomS(S/(t − 1), S/(t − 1)) ∼= S/(t − 1). The entries in the
right-hand column (except the bottom-right entry) lie in HomS(S/(t−1), S) ∼= (1 + t)S = δS ⊂ S.
(The S-modules S/(t− 1) and δS are abstractly isomorphic, but they are related differently to S.)

In particular, the restriction of this representation of LB′
n to the group generators τi and

σi and to the homological generators x1, . . . , xn−1 is equal to the reduction modulo t2 of the
representation (5.17) of Theorem 5.A. This concludes the proof of Theorem 5.C.

Remark 5.3.2. It is an amusing exercise to verify explicitly that the matrices in Table 5.1 indeed
satisfy all of the relations of the extended loop braid group LB′

n, as described for example in
[BH13, §3] or [Dam17, §3]. (Warning: the papers [BH13], [Dam17] and the present chapter pairwise
disagree on notation for the three families of generators of LB′

n.) One should bear in mind that
braid words are written from left to right in [BH13] and [Dam17] (as is usual for composition of
loops), whereas matrix multiplication goes from right to left (as is usual for function composition),
so in fact the matrices in Table 5.1 satisfy the opposite of the relations of LB′

n described in [BH13;
Dam17]. (Technically, this means that we have constructed a representation of the opposite group
(LB′

n)op, but, except for computations, we ignore this subtlety, since this is abstractly isomorphic
to LB′

n.) For an explicit verification, using Sage, that the matrices in Table 5.1 satisfy the 40
relations of the extended loop braid group LB′

n in the case n = 4, see the supplementary materials
[PS22c].

i = 1 2 ⩽ i ⩽ n− 2 i = n− 1

τi

[
−1 1
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
1 −1 1
0 0 1

⊕ In−i−1 In−3 ⊕

 1 0 0
1 −1 −δ
0 0 1


σi

[
−t 1
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−1 In−3 ⊕

 1 0 0
t −t −δ
0 0 1


i = 1 2 ⩽ i ⩽ n− 1 i = n

ρi


−t 0 · · · 0
−δ

In−1
...
−δ
1

 Ii−2 ⊕



1 0 0 · · · 0
δ −t 0 · · · 0
δ −δ

In−i

...
...

δ −δ
−1 1


In−2 ⊕

[
1 0
−1 −1

]

Table 5.1 Explicit matrices for the reduced Burau representation of the extended loop braid group
LB′

n. Notation: δ = 1 + t. All entries lie in S = Z[t±1]/(t2 − 1), except for the bottom row, where
they lie in S/(t − 1) ∼= Z, in other words we set t = 1 on the bottom row.
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5.4 Properties

Irreducibility. The unreduced Burau representations (5.15) of LBn and (5.21) of LB′
n are

clearly reducible, since they contain the reduced Burau representations (5.17) and (Table 5.1)
respectively. The reduced Burau representation (5.17) of LBn becomes irreducible when we pass
to the field of fractions Q(t) of Z[t±1]. This follows because its restriction to the symmetric group
Sn ⊂ LBn is the standard (n− 1)-dimensional representation of Sn, which is irreducible over any
field.

On the other hand, for the reduced Burau representation (Table 5.1) of LB′
n, we cannot

directly pass to a field of fractions, since its ground ring S = Z[t±1]/(t2 − 1) is not an integral
domain. Instead, we may tensor over S with Q, setting either t = −1 or t = 1. In the first case,
the additional S/(t − 1) summand is killed and we obtain an (n − 1)-dimensional representation
of LB′

n over Q, which is irreducible, again because its restriction to Sn ⊂ LB′
n is the standard

representation of Sn. In the second case, we obtain an n-dimensional representation:

LB′
n −→ GLn(Q). (5.22)

Lemma 5.4.1. The representation (5.22) of LB′
n is irreducible.

Proof. Suppose that V ⊆ Qn is a non-trivial subrepresentation; we will show that V = Qn. Write
v = α1x1 + · · ·+ αn−1xn−1 + βy.

Step 1. It suffices to find v ∈ V with v ̸= 0 and β = 0.
First note that spanQ{x1, . . . , xn−1} is an irreducible subrepresentation (it is irreducible since its
restriction to Sn is the standard representation of Sn). Thus V must contain spanQ{x1, . . . , xn−1}.
But then it must also contain xn−1 − ρn(xn−1) = y, and so V = Qn.

Step 2. It suffices to find v ∈ V with v ̸= 0 and αn−2 − 2αn−1 − 2β ̸= 0.
For such a v, we have τn−1(v)− v = (αn−2 − 2αn−1 − 2β)xn−1, and we are done by Step 1.

Step 3. It suffices to find v ∈ V with v ̸= 0 and αn−1 + 2β ̸= 0.
For such a v, we have ρn(v)− v = −(αn−1 + 2β)y, and we are done by Step 2.

Step 4. Let v ∈ V be a non-zero vector. By the previous steps, we may assume that its
coefficients satisfy αn−2 = αn−1 = −2β and β ̸= 0. We then have τn−2(v)− v = (αn−3 + 2β)xn−2,
so we are done by Step 1 unless αn−3 = −2β. On the other hand, if αn−3 = −2β, we have
τn−3(v) − v = (αn−4 + 2β)xn−3, so again we are done by Step 1 unless αn−4 = −2β. Repeating
this a further n − 5 times, we see that we are done unless α1 = α2 = · · · = αn−1 = −2β. But in
this case we have τ1(v)− v = 2βx1, and we are done by Step 1.

Remark 5.4.2. The restriction of the representation (5.22) to Sn ⊂ LB′
n is isomorphic to the

regular representation of Sn. To see this, note that spanQ{x1, . . . , xn−1} is a subrepresentation
isomorphic to the standard representation of Sn, and the quotient is a trivial 1-dimensional rep-
resentation. Thus, by Maschke’s theorem, (5.22)|Sn

is isomorphic to the sum of the standard
representation and a trivial 1-dimensional representation, which is isomorphic to the regular rep-
resentation of Sn.

Kernel. The classical (unreduced) Burau representation Bn → GLn(Z[t±1]) is known to be
faithful for n ⩽ 3 and unfaithful for n ⩾ 5 [Moo91; LP93; Big99]. By contrast, the unreduced Burau
representation (5.15) : LBn → GLn(Z[t±1]) is unfaithful for all n ⩾ 2, by [Bar05, Lemmas 4 and 5].
The unreduced Burau representations for LBn and LB′

n fit together in the commutative square

LBn GLn(R)

LB′
n GLn(S),

(5.15)

incl. −⊗RS

(5.21)

(5.23)
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(recall that R = Z[t±1] and S = R/(t2−1)) so the unreduced Burau representation (5.21) : LB′
n →

GLn(S) is also unfaithful for all n ⩾ 2. In fact, the kernel of the composition LBn → GLn(S)
across the diagonal of (5.23) is larger than the kernel of (5.15) : LBn → GLn(R) since, for example,
(τ1σ1)2 is sent to

[
t2 0
0 1
]
⊕ In−2.

The transpose of the Burau representation. As mentioned in the introduction, the (unre-
duced) Burau representation of the classical braid group Bn is equivalent to its transpose. Explic-
itly, conjugation by the diagonal matrix Diag(1, t, . . . , tn−1) passes between the Burau representa-
tion and its transpose. On the other hand:

Lemma 5.4.3. The unreduced Burau representation (5.15) of the loop braid group LBn is not
equivalent to its transpose.

Proof. Let (5.15) = Bur. The aim is to show that there is no invertible matrix M ∈ GLn(Z[t±1])
such that Bur(g)M = MBur(g)t for all g ∈ LBn, where (−)t denotes the transpose of a matrix.
For n = 2, the equations Bur(σ1)M = MBur(σ1)t and Bur(τ1)M = MBur(τ1)t imply that M is of
the form

[
a −a

−a a

]
, which is not invertible. For n ⩾ 3, we will prove by induction on n the statement

that the only matrix M satisfying Bur(g)M = MBur(g)t for all g ∈ LBn is the zero matrix. We
begin with the base case n = 3. Applying the argument for n = 2 to the top-left and bottom-right
2 × 2 blocks of M , we deduce that M must be of the form

[
a −a b

−a a −a
c −a a

]
. Given this, the equation

Bur(τ1)M = MBur(τ1)t then implies that b = c = −a, and the equation Bur(σ1)M = MBur(σ1)t

implies that a = at, thus a = 0 and M is the zero matrix. For the inductive step, we may apply
the inductive hypothesis to the top-left and bottom right (n− 1)× (n− 1) blocks of M to see that
the entries of M are all zero except possibly the top-right and bottom-left entries. But then the
equation Bur(τ1)M = MBur(τ1)t implies that these are zero too.

Thus the representations (5.15) and (5.15)tr are non-equivalent representations of LBn. How-
ever, we have constructed both of these topologically: (5.15) is the action of LBn on the first
homology group H1(D̃3

n, η
−1(∗);Z) and (5.15)tr is the action of LBn on the second homology

group H2(D̃3
n;Z), as shown at the end of §5.2.



Chapter 6

Actions of subgroups of MCGs on
Heisenberg homology

The results of this chapter are accepted for publication as [BPS23] in joint work with Christian
Blanchet and Awais Shaukat.

Introduction

In recent work [BPS21], we constructed a twisted action of the mapping class group of any compact,
connected, oriented surface Σ with one boundary component on the homology of configuration
spaces with local coefficients determined by a representation V of the discrete Heisenberg group
H = H(Σ). The details of this construction are recalled briefly in §6.1. For specific representations
V ofH we were able to untwist and obtain genuine, untwisted linear representations of the mapping
class group (for the linearisation H ⊕ Z of the affine translation action of H on itself) or linear
representations of central extensions of the mapping class group (for the Schrödinger representation
of H).

Our goal here is to complete the study of this action on Heisenberg homology. In §6.2 we
identify the kernel of the action of the mapping class group on the Heisenberg group as the Chill-
ingworth subgroup (Proposition 6.2.6); hence we obtain a linear representation of this subgroup for
any representation V of H (Theorem 6.2.12). We also identify the projective kernel of this action
(i.e. the subgroup of elements that act by inner automorphisms) with the Torelli group (Proposi-
tion 6.2.7) and use this fact in §6.3 to obtain untwisted linear representations of the Torelli group
for any V (Theorem 6.3.3). In the special case where V is the Schrödinger representation – where
in [BPS21] we obtained an action of the stably universal central extension of the mapping class
group – we show in §6.4 that, restricting to a so-called Earle-Morita subgroup defined in Definition
6.2.1, we obtain linear representations without passing to any extension (Theorem 6.4.14).

Using the local system given by the Schrödinger representation at an odd root of 1, De Renzi
and Martel [DM22] produced a homological model for TQFT representations derived from quantum
sl(2). Our results shed light on a few points in their paper. First, Proposition 6.2.6 identifies a
certain subgroup of the mapping class group denoted by MH

g in [DM22, Proposition 2.21] with the
Chillingworth subgroup. Second, the construction of [DM22, §6.2] depends on the identification
(Proposition 6.2.7) of the projective kernel of the action of the mapping class group on H with the
Torelli group.

161



162 Chapter 6. Actions of subgroups of MCGs on Heisenberg homology

Figure 6.1 Model for Σ.

6.1 Twisted representations of the mapping class group

6.1.1 A review of Heisenberg homology

Let Σ = Σg,1, for g ⩾ 1, be a compact, connected, oriented surface of genus g with one boundary
component. For n ⩾ 2, the unordered configuration space of n points in Σg,1 is

Cn(Σg,1) = {{c1, . . . , cn} ⊂ Σg,1 | ci ̸= cj for i ̸= j}.

The surface braid group is then defined as Bn(Σ) = π1(Cn(Σ), ∗). A presentation for this group
was first obtained by G. P. Scott [Sco70] and subsequently revisited by González-Meneses [Gon01]
and Bellingeri [Bel04]. We fix a collection of based loops, α1, . . . , αg, β1, . . . , βg, as depicted in
Figure 6.1. The base point ∗1 belongs to the base configuration ∗. We will use the same notation
αr, βs for the corresponding braids where only the first point is moving.

The braid group Bn(Σ) has generators α1, . . . , αg, β1, . . . , βg, together with the classical gen-
erators σ1, . . . , σn−1, and relations:

(BR1) [σi, σj ] = 1 for |i− j| ⩾ 2,
(BR2) σiσjσi = σjσiσj for |i− j| = 1,
(CR1) [ζ, σi] = 1 for i > 1 and all ζ among the αr, βs,

(CR2) [ζ, σ1ζσ1] = 1 for all ζ among the αr, βs,

(CR3) [ζ, σ−1
1 ησ1] = 1 for all ζ ̸= η among the αr, βs, with

{ζ, η} ≠ {αr, βr},
(SCR) σ1βrσ1αrσ1 = αrσ1βr for all r.

(6.1)

Composition of loops is written from right to left.
We will use the notation x.y for the standard intersection form on H1(Σ;Z). The Heisenberg

group H(Σ) is the central extension of the homology group H1(Σ;Z) defined using the 2-cocycle
(x, y) 7→ x.y. As a set, it is equal to Z×H1(Σ;Z), and the operation is given by

(k, x)(l, y) = (k + l + x.y, x+ y). (6.2)

We will often denote the Heisenberg group simply by H = H(Σ) when the surface Σ under
consideration is clear. We will use the notation ar, bs, for the homology classes of αr, βs. From
the presentation (6.1) we deduced the following in [BPS21, §1].

Proposition 6.1.1. For each g ⩾ 1 and n ⩾ 2, the quotient of the braid group Bn(Σ) by the
subgroup [σ1,Bn(Σ)]N normally generated by the commutators [σ1, x], x ∈ Bn(Σ), is isomorphic to
the Heisenberg group H(Σ). An isomorphism

Bn(Σ)/[σ1,Bn(Σ)]N ∼= H(Σ) (6.3)
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is represented by the surjective homomorphism

ϕ : Bn(Σ) −→ H(Σ)

sending each σi to u = (1, 0), αr to ãr = (0, ar) and βs to b̃s = (0, bs).

From the homomorphism ϕ we obtain a regular covering C̃n(Σ) of the configuration space
Cn(Σ). The homology of this covering space is the homology of Cn(Σ) with local coefficients
defined by ϕ, which we call Heisenberg homology and denote by H∗(Cn(Σ),Z[H]). It is equipped
with a right Z[H]-module structure defined by deck transformations.

Let us denote by S∗(C̃n(Σ)) the singular chain complex of the Heisenberg covering C̃n(Σ); this is
a complex of right Z[H]-modules. Given a (left) representation ρ : H → GL(V ), the corresponding
twisted homology is that of the complex

S∗(Cn(Σ);V ) := S∗(C̃n(Σ))⊗Z[H] V (6.4)

This will be called the Heisenberg homology of surface configurations with coefficients in V .
We also consider the Borel-Moore homology

HBM
∗ (Cn(Σ);V ) = lim←−

T

H∗(Cn(Σ), Cn(Σ) \ T ;V ), (6.5)

where the inverse limit is taken over all compact subsets T ⊂ Cn(Σ). We denote by Cn(Σ, ∂−(Σ))
the closed subspace of configurations containing at least one point in a fixed closed interval ∂−(Σ) ⊂
∂Σ. The relative Borel-Moore homology is defined similarly as

HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V )

= lim←−
T

H∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) \ T );V

)
. (6.6)

The following theorem computes the relative Borel-Moore homology as a module.

Theorem 6.1.2 ([BPS21, §2]). Let V be any representation of the discrete Heisenberg group H(Σ).
Then, for n ⩾ 2, there is an isomorphism of modules

HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));V ) ∼=

⊕
k∈K

V.

Furthermore, this is the only non-vanishing module in HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ).

There is also an explicit geometric description of the indexing set K of the direct sum decom-
position of Theorem 6.1.2, which is explained in [BPS21, §2]; however, it will not be essential for
the present chapter.

6.1.2 An action of the mapping class group on the Heisenberg group

The mapping class group of Σ, denoted by M(Σ), is the group of orientation-preserving diffeo-
morphisms of Σ fixing the boundary pointwise, modulo isotopies relative to the boundary. The
isotopy class of a diffeomorphism f is denoted by [f ]. An orientation-preserving self-diffeomorphism
f : Σ → Σ fixing the boundary pointwise gives a homeomorphism Cn(f) : Cn(Σ) → Cn(Σ), defined
by {x1, x2, . . . , xn} 7→ {f(x1), f(x2), . . . , f(xn)}. If we ensure that the basepoint configuration of
Cn(Σ) is contained in ∂Σ, then it is fixed by Cn(f) and this in turn induces an automorphism
fBn(Σ) = π1(Cn(f)) : Bn(Σ)→ Bn(Σ), which depends only on the isotopy class [f ] of f . In [BPS21,
§3] we proved:

Proposition 6.1.3. There exists a unique automorphism fH : H → H such that the following
square commutes:

Bn(Σ) Bn(Σ)

H H

ϕ

fBn(Σ)

ϕ

fH

(6.7)
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Thus, there is an action of M(Σ) on the Heisenberg group H given by

Ψ: f 7→ fH : M(Σ) −→ Aut(H). (6.8)

6.1.3 Twisted representations of the mapping class group

In [BPS21] we explained how to use the action (6.8) to obtain twisted representations of M(Σ) for
each representation V of H over a ring R and each integer n ⩾ 2. We recall this briefly here.

For a (left) representation ρ : H → AutR(V ) and an automorphism τ ∈ Aut(H), the τ -twisted
representation ρ ◦ τ is denoted by τV . Also, for any representation V of H, we denote the induced
local system

Z[C̃n(Σ)]⊗Z[H] V

on the configuration space Cn(Σ) simply by V , by abuse of notation. We then write

Vn(V ) = HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));V ) (6.9)

for the relative Borel-Moore homology with coefficients in this local system. In this notation,
[BPS21, §4.1] explains that each mapping class f ∈ M(Σ) induces an automorphism of Cn(Σ)
covered by an isomorphism

τ◦fHV −→ τV

of local systems for each τ ∈ Aut(H). Taking relative Borel-Moore homology, we therefore obtain
isomorphisms

Vn

(
τ◦fHV

)
−→ Vn

(
τV
)

(6.10)

of R-modules. This may be described succinctly as a representation of the action groupoid associ-
ated to the action (6.8) of M(Σ) on H.

Definition 6.1.4. For a group G with a left action a : G → Sym(X) on a set X, the action
groupoid Ac(G↷ X) is the groupoid whose set of objects is a(G), whose set of morphisms σ → τ
is the subset a−1(τ−1σ) ⊆ G and whose composition is given by multiplication in G.

Theorem 6.1.5 ([BPS21, Theorem A(b)]). Associated to any representation V of H over R and
any integer n ⩾ 2, there is a functor

Ac(M(Σ) ↷ H) −→ ModR (6.11)

sending each object τ : H → H to the R-module Vn(τV ) and sending each morphism f : τ ◦ fH → τ
to the R-linear isomorphism (6.10).

Remark 6.1.6. The basic strategy to upgrade this to an untwisted representation is to try to
construct coefficient isomorphisms V ∼= fHV for each f . Given this, one may then pre-compose
(6.10) with the induced isomorphism of twisted homology groups to obtain automorphisms of
Vn(V ). We explained how to do this in [BPS21, §4.2] when V is the linearisation L = H ⊕ Z of
the (affine) translation action of H on itself. We also explained in [BPS21, §5] how to do this –
after passing to a certain central extension of M(Σ) – when V is the Schrödinger representation of
H (this is recalled briefly in §6.4.1). The goal of the present chapter is to explain how to untwist
on the Torelli group T(Σ) ⊂ M(Σ) for any representation V of H, as well as how to untwist on
Earle-Morita subgroups of M(Σ) when V is the Schrödinger representation of H (without passing
to any central extension).

6.2 Action on the Heisenberg group

The goal of this section is to study the action (6.8) of the mapping class group M(Σ) on the
Heisenberg group H = H(Σ), as well as the crossed homomorphism naturally associated to this
action.
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6.2.1 Automorphisms of the Heisenberg group

As a first step, we recall a semi-direct product decomposition of an index-2 subgroup of the
automorphism group Aut(H).

Since the element u = (1, 0) of H generates its centre, which is infinite cyclic, any automor-
phism of H must send it either to itself or its inverse. We denote the group of automorphisms
of H that fix u by Aut+(H). The structure of this group was studied in [BPS21, §3]. There is a
natural homomorphism L : Aut+(H) → Sp(H), where we write H = H1(Σ;Z), and a split short
exact sequence

1 H1(Σ;Z) Aut+(H) Sp(H) 1j L (6.12)

where j(c) = [(k, x) 7→ (k + c(x), x)]. The splitting gives a decomposition Aut+(H) ∼= Sp(H) ⋉
H1(Σ;Z), where the semi-direct product structure on the right-hand side is induced by the natural
action of Sp(H) on Hom(H,Z) ∼= H1(Σ;Z). The projection onto the right-hand factor of this
decomposition is a function (−)⋄ : Aut+(H) → H1(Σ;Z) ∼= Hom(H,Z) (which is not a group
homomorphism) given by the assignment φ 7→ φ⋄ = pr1(φ(0,−)).

For a mapping class f ∈M(Σ), the map fH of (6.7) is represented as follows:

fH : (k, x) 7→ (k + δf (x), f∗(x)), (6.13)

where δf = (fH)⋄ ∈ H1(Σ;Z) ∼= Hom(H,Z). We proved in [BPS21, §3] that the map δ : M(Σ)→
H1(Σ;Z) given by f 7→ δf is a crossed homomorphism, meaning that

δg◦f (x) = δf (x) + f∗(δg)(x) .

We also identified this crossed homomorphism explicitly, by showing that it coincides with the
combinatorially-defined crossed homomorphism d constructed by Morita [Mor89a], who proved
that it represents a generator of H1(M(Σ);H1(Σ;Z)), which is infinite cyclic. In fact, a different
crossed homomorphism ψ had been constructed somewhat earlier by Earle [Ear78], and turned out,
in light of [Mor89a], also to represent a generator of H1(M(Σ);H1(Σ;Z)). The precise relationship
between the crossed homomorphisms d and ψ was elucidated in [Kun09]. In §6.2.3 below, we
discuss the relationship of d = δ to the Trapp representation [Tra92] (see Proposition 6.2.10).

Definition 6.2.1. The Earle-Morita subgroup Mor(Σ) ⊆M(Σ) is defined to be the kernel of d.

Remark 6.2.2. The Earle-Morita subgroup is not a normal subgroup of M(Σ), despite being a
kernel; this is because it is a kernel of a crossed homomorphism. We remark also that there are
many Earle-Morita subgroups, since the definition of d (or, equivalently, the definition of δ) depends
on a choice. The definition of δ above uses the splitting of the short exact sequence (6.12). Note
that it depends on the choice of isomorphism (6.3) in Proposition 6.1.1, identifying the relevant
quotient of the surface braid group with (an explicit model for) the Heisenberg group.

6.2.2 The Chillingworth subgroup

Recall that the Torelli subgroup T(Σ) ⊆ M(Σ) consists of those elements of the mapping class
group whose natural action on H1(Σ;Z) is trivial. The restriction of the crossed homomorphism
δ : f 7→ δf to the Torelli group is a homomorphism. We will first describe this homomorphism in
relation with the action of the Torelli group on homotopy classes of vector fields. Recall that the set
Ξ(Σ) of homotopy classes of non-vanishing vector fields on Σ supports a natural simply transitive
action of H1(Σ;Z) (in other words, an affine structure over Z with associated Z-module H1(Σ;Z)),
and the action of M(Σ) is compatible with this action. It follows that the Torelli group acts by
translation on Ξ(Σ), which defines a homomorphism e : T(Σ)→ H1(Σ;Z). A formula for e(f)([γ]),
where γ is a regular curve, is given by the variation of the winding number. For convenience we
recall some details about the winding number below.

Fix a Riemannian metric on Σ. A non-vanishing vector field X gives a trivialisation of the
unit tangent bundle T1(Σ) ∼= Σ × S1. The winding number ωX(γ) of a regular oriented curve γ
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Figure 6.2 The sign of a point on γ that is tangent to X.

is the degree of the second component of the unit tangent vector. It can be computed as follows.
Assuming that γ is transverse to X except at a finite set γ ⋔ X of points, where it looks locally as
in Figure 6.2, then

ωX(γ) =
∑

p∈γ⋔X

sgn(p),

where sgn(p) is defined in Figure 6.2. Notice that only the points p where the tangent vector of γ
is parallel to X count towards this sum; those that point in the opposite direction to X do not.

Definition 6.2.3. The Chillingworth homomorphism e : T(Σ) → H1(Σ;Z), studied in [Chi72;
Joh80], is defined by

e(f)([γ]) = ωX(f ◦ γ)− ωX(γ) . (6.14)

Its kernel is the Chillingworth subgroup Chill(Σ). We note that e does not depend on the choice
of non-vanishing vector field X, but extends to a crossed homomorphism eX : M(Σ) → H1(Σ;Z)
that does, as we shall discuss in §6.2.3 (see Definition 6.2.9).

Remark 6.2.4. Since we have δ = d (as recalled in §6.2.1 above) and e = δ on the Torelli group
(Lemma 6.2.5 below), we have:

Chill(Σ) = ker(e) = T(Σ) ∩ ker(d) = T(Σ) ∩Mor(Σ).

Equivalently, we may say that Chill(Σ) is the intersection of the kernels of s and d, in other words
it is the kernel of (s, d) : M(Σ)→ Sp(H)⋉H. Notice in particular that, although the Earle-Morita
subgroup Mor(Σ) depends on a non-canonical choice (see Remark 6.2.2), its intersection with the
Torelli group does not.

The following lemma is Proposition 3.7 of [Bre02]. The proof there uses a result of [Mor93].
We give an independent proof below.

Lemma 6.2.5. The homomorphisms δ and e coincide on the Torelli group and have image given
by δ(T(Σ)) = 2.H1(Σ;Z).

From formula (6.13) it follows that the kernel of the action Ψ: M(Σ)→ Aut+(H) is contained
in the Torelli group; we may therefore identify this kernel as a corollary of Lemma 6.2.5.

Proposition 6.2.6. For any genus g ⩾ 1, we have ker(Ψ) = Chill(Σ).

Proof. From formula (6.13) we see that ker(Ψ) = T(Σ) ∩ ker(δ); by Lemma 6.2.5 this is equal to
ker(e) = Chill(Σ).

Denote by Inn(H) the group of inner automorphisms of the Heisenberg groupH. From Lemma
6.2.5, we may also identify the projective kernel of the action Ψ, namely the subgroup Ψ−1(Inn(H))
that acts by inner automorphisms.
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Proposition 6.2.7. For any genus g ⩾ 1, we have Ψ−1(Inn(H)) = T(Σ).

Proof. Conjugation in the Heisenberg group H is given by the formula

(l, x)(k, y)(−l,−x) = (l, y)(k, x)(−l,−x) = (k + 2x.y, y) (6.15)

First, if Ψ(f) = fH is an inner automorphism, then its induced action on H must be trivial.
This means that f lies in the Torelli group. Conversely, if f ∈ T(Σ), we have from Lemma 6.2.5
that δf is in 2.H1(Σ;Z). Using Poincaré duality, we obtain x ∈ H such that δf (y) = 2x.y for every
y ∈ H. Comparing formulas (6.13) and (6.15), we deduce that fH is inner.

We will use the following basic lemma about crossed homomorphisms in the proof of Lemma
6.2.5.

Lemma 6.2.8. Let G be a group acting on an abelian group K and denote by N ⊆ G the kernel
of this action. Suppose that S ⊆ N normally generates N in G. If two crossed homomorphisms
θ1, θ2 : G→ K agree on S, then they agree on N .

Proof. The assumption that S normally generates N in G means that

T = {gsg−1 | s ∈ S, g ∈ G} ⊆ N

generates N . It will therefore suffice to show that θ1 and θ2 agree on T . Let s ∈ S and g ∈ G. We
know by hypothesis that θ1(s) = θ2(s), and we need to show that θ1(g−1sg) = θ2(g−1sg). First,
observe that, for i = 1, 2, we have

θi(g) + g.θi(g−1) = θi(g−1g) = θi(1) = 0.

Using this, and the fact that s ∈ N , so it acts trivially on K, we deduce that

θi(g−1sg) = θi(g) + g.θi(s) + gs.θi(g−1)
= θi(g) + g.θi(s) + g.θi(g−1)
= g.θi(s).

Thus θ1(g−1sg) = g.θ1(s) = g.θ2(s) = θ2(g−1sg), as required.

Proof of Lemma 6.2.5. The Torelli group is generated by genus-one bounding pair diffeomorphisms
[Joh79, Theorem 2], and this generating set is a single conjugacy class in the full mapping class
group. It follows that the Torelli group is normally generated by a(ny) single genus-one bounding
pair diffeomorphism f . We may therefore apply Lemma 6.2.8 to the setting where G = M(Σ),
K = H1(Σ;Z), N = T(Σ) and S = {f}. Both δ and e extend to crossed homomorphisms defined
on the full mapping class group (for e such an extension is given by the Trapp representation, as
recalled in §6.2.3 below). To prove that δ and e coincide on T(Σ), it is therefore sufficient to show
that δ and e agree on the single element f . Moreover, to show that δ(T(Σ)) ⊆ 2.H1(Σ;Z) it is
enough to show that this common value δf = e(f) lies in 2.H1(Σ;Z). Specifically, we will take this
element to be

f = BP (γ, δ) = Tγ .T
−1
δ ,

the genus one bounding pair diffeomorphism depicted in Figure 6.3, and we will show that the
elements e(f) and δf of H1(Σ;Z) ∼= Hom(H,Z) are both equal to the homomorphism H =
H1(Σ;Z)→ Z given by

a1 7→ 2 , ai 7→ 0 for i ⩾ 2 and bi 7→ 0 for i ⩾ 1. (6.16)

As explained just above, this calculation will show that δ = e on T(Σ) and that δ(T(Σ)) ⊆
2.H1(Σ;Z). The opposite inclusion will also follow, since δf = (6.16) is a free generator of
2.H1(Σ;Z) and the other 2g−1 elements of the evident free generating set may be realised similarly
as δf ′ for analogous elements f ′.
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...

Figure 6.3 The surface Σ is obtained by identifying the 2g interior boundary components (four of
which are depicted above) in g pairs by reflections. The bounding pair map from the proof of Lemma
6.2.5 is BP (γ, δ) = Tγ .T −1

δ
, for the blue curves γ and δ. The red and green arcs form a symplectic

basis for the first homology of Σ relative to the bottom edge ∂−(Σ).

...

Figure 6.4 An alternative model for the surface Σ, the bounding pair (γ, δ) and the symplectic basis
for the first homology of Σ relative to the bottom edge ∂−(Σ).

It therefore remains to calculate that δf = e(f) = (6.16).
We first calculate δf from the automorphism fH. We may directly read off from Figure 6.3

the effect of fH on the elements ãi and b̃i of H. It clearly acts trivially except possibly on the three
elements ã2 = (0, a2), b̃2 = (0, b2) and ã1 = (0, a1), since the others may be realised disjointly from
γ ∪ δ, and:

ã1 7→ [ã2, b̃2].ã1 = u2ã1 = (2, a1)
ã2 7→ [ã2, b̃2].ã1b̃1ã

−1
1 .ã2.ã1b̃

−1
1 ã−1

1 .[ã2, b̃2]−1 = ã2

b̃2 7→ [ã2, b̃2].ã1b̃1ã
−1
1 .b̃2.ã1b̃

−1
1 ã−1

1 .[ã2, b̃2]−1 = b̃2.

This gives the calculation δf = (6.16).
To calculate e(f), we use the alternative model for the surface Σ, the bounding pair (γ, δ)

and the symplectic basis ai, bi for H depicted in Figure 6.4. This model for Σ has the advantage
of having an obvious non-vanishing vector field X, which simply points upwards according to the
standard framing of the page.

Using this vector field X and comparing to Figure 6.2, we observe that the winding numbers of
the symplectic generators ai and bi (more precisely, their smooth, closed representatives pictured
in Figure 6.4) are given by

ωX(ai) = −1 and ωX(bi) = +1.

We recall that, by definition, e(f)(c) = ωX(f ◦ c̄)−ωX(c̄) ∈ Z for any c = [c̄] ∈ H. We clearly have
f ◦ c̄ = c̄ for c̄ = ai or bi with i ⩾ 3 or for c̄ = b1, since these curves may be represented disjointly
from γ ∪ δ. Hence e(f)([c̄]) = 0 for these c̄.

The curve f ◦ a1 is depicted in Figure 6.5.
There are precisely three points on this curve where its tangent vector is equal to the vector

field X, i.e., where its tangent vector is pointing vertically upwards: two are positive and one is
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...

Figure 6.5 The curve f ◦a1 for f = Tγ .T −1
δ

. The three points where its tangent vector points vertically
upwards are marked with dark red points: the left-most one is negative according to Figure 6.2, and
the other two are positive. [At first sight it may look like there are two more, but these are not allowed
since they do not fit either of the local models of Figure 6.2. We therefore perturb the curve slightly
to get rid of these two tangencies with the vector field X. Alternatively, we may perturb it differently,
to turn each of these disallowed tangencies into a pair of two allowed tangencies with opposite signs,
which will therefore cancel in the expression for ωX(f ◦ a1).]

negative (compare the local models in Figure 6.2), hence

e(f)(a1) = ωX(f ◦ a1)− ωX(a1)
= (2− 1)− (−1)
= 2.

Now let c̄ be either a2 or b2. In this case the effect of f is simply to conjugate c̄ by γ, so we have
that

ωX(f ◦ c̄) = ωX(γ) + ωX(c̄)− ωX(γ)
= ωX(c̄),

since positive/negative tangencies with X for γ are negative/positive tangencies with X for γ−1

respectively, and so e(f)([c̄]) = ωX(f ◦ c̄)− ωX(c̄) = 0. Thus we have shown that e(f) : H → Z is
also given by (6.16).

6.2.3 The Trapp representation

We next recall the Trapp representation [Tra92], and show that our representation (6.8) of M(Σ)
on H may be identified with it, up to “coboundaries”, when the genus g of Σ is at least 2. This
provides an alternative proof of Proposition 6.2.6 (except when g = 1), since the kernel of the Trapp
representation is equal to the Chillingworth subgroup Chill(Σ) when g ⩾ 2 [Tra92, Corollary 2.7].

Definition 6.2.9. Write H = H1(Σ;Z) and H∗ = Hom(H,Z) ∼= H1(Σ;Z). The representation of
Trapp [Tra92] is defined as a homomorphism

ΦX : M(Σ) −→ Sp(H) ⋉H∗ ⊂ GL2g+1(Z) (6.17)

lifting the standard symplectic action s : M(Σ) → Sp(H). Having fixed this choice of symplectic
action, the homomorphism (6.17) corresponds to a choice of crossed homomorphism

eX : M(Σ) −→ H∗. (6.18)

This crossed homomorphism is given by the variation of the winding number with respect to a
fixed non-vanishing vector field X on Σ, as already discussed in §6.2.2; see the formula (6.14).

We therefore have two homomorphisms

Ψ = (6.8) and ΦX = (6.17) : M(Σ) −→ Sp(H) ⋉H∗
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corresponding to crossed homomorphisms δ and eX : M(Σ)→ H∗. We have proven above (Lemma
6.2.5) that these crossed homomorphisms are equal when restricted to the Torelli group. We now
strengthen this to show that δ and eX agree, modulo coboundaries, on the whole mapping class
group.

Proposition 6.2.10. For g ⩾ 2, the crossed homomorphisms δ and eX represent the same co-
homology class in H1(M(Σ);H∗) ∼= Z. In other words, they are equal modulo principal crossed
homomorphisms, i.e. coboundaries.

Proof. We will use the homomorphism

H1(M(Σ);H∗) −→ Hom(T(Σ), H∗) (6.19)

given by restricting a crossed homomorphism M(Σ)→ H∗ to the Torelli group. This is well-defined
since principal crossed homomorphisms (coboundaries) are trivial on the Torelli group. The right-
hand side of (6.19) is rather large: by a theorem of Johnson [Joh85], the abelianisation of T(Σ) is
isomorphic to ∧3H ⊕ (torsion), so Hom(T(Σ), H∗) ∼= Hom(∧3H,H∗), which is free abelian of rank
2g
(2g

3
)
. However, it has the advantage that it is easy to detect when its elements are equal, since

it is just a group of homomorphisms (rather than crossed homomorphisms modulo principal ones).
On the other hand, the left-hand side of (6.19) is much smaller. Indeed, Morita proved in [Mor89a,
Proposition 6.4] that the group H1(M(Σ);H∗) is infinite cyclic. (In fact, it is generated by [d],
which we showed in [BPS21] is equal to [δ], but we will not need this.) In Lemma 6.2.5 we have
proven that δ and eX coincide, and are non-trivial, on the Torelli subgroup. Since Hom(T(Σ), H∗)
is torsion-free, the homomorphism (6.19) is injective and the result follows.

Remark 6.2.11. In summary, we have considered three crossed homomorphisms

δ, d, eX : M(Σ) −→ H∗ ∼= H1(Σ;Z),

where δ is the crossed homomorphism corresponding to the action (6.8) of the mapping class
group on the Heisenberg group, d is Morita’s crossed homomorphism (whose precise relationship
to Earle’s crossed homomorphism ψ is described in [Kun09]) and eX is Chillingworth’s crossed
homomorphism, depending on a choice of non-vanishing vector field X on Σ. We showed in [BPS21]
that δ = d on M(Σ). In this section, we have shown (Lemma 6.2.5) that δ = eX when restricted to
T(Σ) and, moreover, that δ = eX on M(Σ) modulo coboundaries (Proposition 6.2.10). We note,
however, that only the weaker statement of Lemma 6.2.5 was needed to deduce (Propositions 6.2.6
and 6.2.7) that the kernel of Ψ is Chill(Σ) and the projective kernel of Ψ is T(Σ).

6.2.4 Restricting to the Chillingworth subgroup

Using Proposition 6.2.6, we deduce that the twisted representations of M(Σ) constructed in The-
orem 6.1.5 are in fact untwisted when restricted to Chill(Σ) ⊂M(Σ).

Theorem 6.2.12. Associated to any representation V of H over R and any integer n ⩾ 2, there
is a representation

Chill(Σ) −→ AutR

(
HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
, (6.20)

which is a restriction of (6.11) to a single object of the action groupoid.

Proof. This follows from the construction described in §6.1.3, with each element f ∈ Chill(Σ)
acting by the automorphism (6.10) (setting τ = id), since we know from Proposition 6.2.6 that
fH = Ψ(f) = id for each f ∈ Chill(Σ).
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6.3 Representations of the Torelli group

We now restrict to the Torelli group T(Σ) ⊆ M(Σ). By Proposition 6.2.7, the Torelli group acts
by inner automorphisms under Ψ, so we have a homomorphism

Ψ: T(Σ) −→ Inn(H) ⊂ Aut(H). (6.21)

We may therefore pull back the Z-central extension

1→ Z ∼= Z(H) −→ H −→ Inn(H)→ 1 (6.22)

along (6.21) to obtain a Z-central extension

1→ Z −→ T̃(Σ) −→ T(Σ)→ 1 (6.23)

and a homomorphism
Ψ̃ : T̃(Σ) −→ H (6.24)

lifting (6.21).

Remark 6.3.1. The inner automorphism group Inn(H) naturally identifies with the first homol-
ogy group H = H1(Σ;Z). Under this identification, (6.21) becomes the crossed homomorphism
δ : T(Σ) → H∗ (which is a homomorphism on the Torelli group) composed with the Poincaré du-
ality isomorphism H∗ ∼= H. A 2-cocycle representing the extension (6.22) is the intersection form
. on H. A 2-cocycle representing (6.23) is therefore given by (f, f ′) 7→ δ(f)♯.δ(f ′)♯, where ( )♯

denotes Poincaré duality. As mentioned above, we showed in [BPS21] that δ = d, so this 2-cocycle
may also be written as (f, f ′) 7→ d(f)♯.d(f ′)♯.

Recall from §6.1.1 that, for any choice of representation V of H, the Heisenberg homology
module HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
is obtained from the singular chain complex S∗(C̃n(Σ)) of

the Heisenberg covering C̃n(Σ) by:
• tensoring over Z[H] with V (6.4);
• for each compact T ⊂ Cn(Σ), taking the quotient of this complex by the subcomplex corre-

sponding to the subspace Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) \ T );
• passing to homology and then taking the inverse limit over T (6.6).

The isomorphism (6.10) (for τ = (fH)−1) is induced by the natural twisted action of f ∈M(Σ) on
S∗(C̃n(Σ)), which is of the form

S∗(C̃n(Σ)) −→ S∗(C̃n(Σ))fH . (6.25)

Now, for an element h ∈ H, let us denote by ch = h−h−1 the corresponding inner automor-
phism ch ∈ Inn(H). One may verify that the isomorphism

− · h : S∗(C̃n(Σ))ch
−→ S∗(C̃n(Σ)) (6.26)

of singular chain complexes given by the right-action of h is Z[H]-linear. For each f̃ ∈ T̃(Σ), we
may then take the composition

S∗(C̃n(Σ)) S∗(C̃n(Σ))fH S∗(C̃n(Σ)) ,(6.25) (6.26) (6.27)

where f denotes the projection of f̃ to T(Σ) and we set h = Ψ̃(f̃) ∈ H. The fact that fH = ch

follows from the fact that (6.24) is a lift of (6.21). This defines an untwisted, Z[H]-linear action
of T̃(Σ) on the singular chain complex S∗(C̃n(Σ)). By the construction recalled above, this in turn
induces an untwisted, R-linear action of T̃(Σ) on Heisenberg homology:

T̃(Σ) −→ AutR

(
HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
. (6.28)

To complete the construction, we show that:
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Lemma 6.3.2. The central extension T̃(Σ) of T(Σ) is trivial, i.e. it is isomorphic to the product
T(Σ)× Z.

Theorem 6.3.3. Associated to any representation V of H over R and any integer n ⩾ 2, there is
a well-defined representation of the Torelli group

T(Σ) −→ AutR

(
HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
(6.29)

that lifts a projective action of T(Σ) on this homology module.

Proof. Let us abbreviate Vn(V ) = HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));V ). The group homomorphism

(6.28) must send the subgroup Z ⊂ T̃(Σ) (the kernel of the central extension of T(Σ)) to the centre
of AutR(Vn(V )), so it descends to

T(Σ) −→ PAutR(Vn(V )), (6.30)

where the projective automorphism group PAutR(A) of an R-module A is the quotient of AutR(A)
by its centre. Note that the centre of AutR(A) is equal to {− · λ | λ ∈ Z(R×)} when A is a
free R-module, but may be larger when A is not free. This is a projective action of the Torelli
group. To lift it to a linear action, we compose (6.28) with any section of the central extension
T̃(Σ)→ T(Σ), which exists by Lemma 6.3.2.

To prove Lemma 6.3.2, we will need a lemma describing the behaviour of the crossed homo-
morphism d with respect to increasing genus. Consider the inclusion of surfaces Σg,1 ⊆ Σh,1 given
by boundary connected sum with Σh−g,1. This induces an inclusion of mapping class groups

M(Σg,1) ↪−→M(Σh,1) (6.31)

by extending diffeomorphisms by the identity on Σh−g,1.

Lemma 6.3.4 ([BPS21, §5.2]). The diagram

M(Σg,1) M(Σh,1)

H1(Σg,1;Z) H1(Σh,1;Z)

(6.31)

d d (6.32)

commutes, where the bottom arrow is the map induced by the inclusion Σg,1 ↪→ Σh,1 on H1(−;Z),
conjugated by Poincaré duality.

Proof of Lemma 6.3.2. We begin by showing that it suffices to prove the statement for all suffi-
ciently large g; we will then be able to assume g ⩾ 3 in the rest of the proof. For g < h, consider
the inclusion of Torelli groups

ι : T(Σg,1) ↪−→ T(Σh,1). (6.33)

We claim that the pullback of the central extension T̃(Σh,1) along (6.33) is T̃(Σg,1). To see this,
recall from Remark 6.3.1 that the central extension T̃(Σg,1) of T(Σg,1) is represented by the 2-
cocycle (f, f ′) 7→ d(f)♯.d(f ′)♯. Similarly, the pullback of the central extension T̃(Σh,1) of T(Σh,1)
along the inclusion (6.33) is represented by the 2-cocycle (f, f ′) 7→ d(ι(f))♯.d(ι(f ′))♯. Lemma 6.3.4,
together with the fact that the map H1(Σg,1;Z) → H1(Σh,1;Z) preserves the intersection form,
implies that these 2-cocycles are equal. Thus triviality of T̃(Σh,1) will imply triviality of T̃(Σg,1)
for any g < h. For the remainder of this proof, we assume that g ⩾ 3 and abbreviate Σg,1 to Σ, as
usual.

By [Ben+20, Lemma A.1(xiii)] and homological stability [Wah13, Theorem 1.2], the canonical
surjection M(Σ) ↠ Sp(H) induces an isomorphism on H2(−;Z) when g ⩾ 3. It follows that
the inclusion T(Σ) ↪→ M(Σ) induces the trivial map on H2(−;Z). This means that every Z-
central extension of M(Σ) becomes trivial when restricted to T(Σ). To prove the lemma, it will
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therefore suffice to show that T̃(Σ) is the restriction of a Z-central extension defined on the whole
mapping class group M(Σ). Recall from Remark 6.3.1 that the central extension T̃(Σ) of T(Σ) is
represented by the 2-cocycle c′ given by c′(f, f ′) = d(f)♯.d(f ′)♯. We therefore just have to show
that the 2-cocycle c′ extends to M(Σ).

Now, there is a 2-cocycle c on M(Σ), defined by Morita [Mor89b], given by the formula
c(f, f ′) = d(f−1)♯.d(f ′)♯. By general properties of crossed homomorphisms, we have d(f−1)♯ =
−f−1

∗ (d(f)♯), and so we may rewrite this as

c(f, f ′) = −f−1
∗ (d(f)♯).d(f ′)♯ = −d(f)♯.f∗(d(f ′)♯), (6.34)

where for the second equality we have used the fact that the automorphism f∗ of H preserves the
intersection form. Restricted to the Torelli group, we have f∗ = id, so c(f, f ′) = −d(f)♯.d(f ′)♯ =
−c′(f, f ′) for f, f ′ ∈ T(Σ). Thus the 2-cocycle c′ extends to the 2-cocycle −c on M(Σ).

6.4 Representations of Earle-Morita subgroups

We now identify another large subgroup of the mapping class group M(Σ) on which we may
construct linear representations without passing to a central extension. We will do this in the
setting where we take coefficients in the Schrödinger representation of H and the subgroup under
consideration is the Earle-Morita subgroup of M(Σ).

Recall from §6.2.1 that the Earle-Morita subgroup Mor(Σ) ⊆M(Σ) is the kernel of the crossed
homomorphism d : M(Σ) → H1(Σ;Z) defined by Morita [Mor89a], and that this crossed homo-
morphism coincides with the one associated to the action M(Σ)→ Aut+(H) ∼= Sp(H)⋉H1(Σ;Z)
from Proposition 6.1.3. We also recall, from Remark 6.2.2, that this crossed homomorphism, and
its kernel Mor(Σ), depend on the parametrisation of the surface Σ.

An important representation of the Heisenberg group is the Schrödinger representation, which
is parametrised by a non-zero real number ℏ (called the Planck constant). It is given by the right
action Πℏ of H on the Hilbert space W := L2(Rg) determined by the following formula:

[
Πℏ

(
k, x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = eiℏ k−p·q

2 eiℏp·sψ(s− q). (6.35)

In fact, this is an action of the continuous Heisenberg group HR, which is the central extension
of HR := H1(Σ;R) by R corresponding to the intersection form. There is a natural inclusion
H ⊂ HR. The Schrödinger representation is a unitary action on W = L2(Rg), so it may be written
as

Πℏ : HR −→ U(W ). (6.36)

We recall also that the group Aut+(HR) of automorphisms acting trivially on the centre of
HR decomposes as Aut+(HR) ∼= Sp(HR) ⋉H1(Σ;R), similarly to the decomposition of Aut+(H)
described in §6.2.1. From these decompositions we see that there is a natural inclusion Aut+(H) ⊂
Aut+(HR).

6.4.1 Untwisting on a central extension of the mapping class group

We first recall from [BPS21, §5] how to untwist the twisted representation (6.11) on the stably
universal central extension of M(Σ) when theH-representation V is the Schrödinger representation.
In §6.4.2–§6.4.4 we then explain how to untwist on the Earle-Morita subgroup without passing to
a central extension.

As recalled in [BPS21, §5.1], an immediate corollary of the Stone-von Neumann theorem (see
for example [LV80, p. 19]) is the following.
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Corollary 6.4.1 (of the Stone-von Neumann theorem). Fix a positive real number ℏ and let
ρ : HR → U(W ) be an irreducible unitary representation whose restriction to the centre R ⊂ HR is
given by ρ(t, 0) = eℏit/2.idW . Then there is an element u ∈ U(W ), unique up to rescaling by an
element of S1, such that ρ = u.Πℏ.u

−1.

In particular, we may apply this result to the representation ρ := Πℏ◦φ, for any automorphism
φ ∈ Aut(HR). Sending φ to the element u ∈ U(W )/S1 = PU(W ) provided by Corollary 6.4.1
defines a homomorphism

T : Aut(HR) −→ PU(W ), (6.37)
which is the Segal-Shale-Weil projective representation. Restricting this to the subgroup Aut+(H) ⊂
Aut+(HR) ⊂ Aut(HR), we may pre-compose it with the action Ψ: M(Σ)→ Aut+(H) from Propo-
sition 6.1.3 to obtain a projective representation

M(Σ) −→ PU(W ) (6.38)

of the mapping class group. This is the key ingredient for untwisting the twisted representations
of the mapping class group constructed in §6.1.3.

Definition 6.4.2. Let M(Σ) denote the central extension of M(Σ) by S1 pulled back from the
central extension U(W ) of PU(W ) along (6.38). By construction, the projective representation
(6.38) lifts to a linear representation

M(Σ) −→ U(W ) (6.39)

on this central extension.

Definition 6.4.3. For g ⩾ 4, the mapping class group M(Σ) is perfect and we have H2(M(Σ);Z) ∼=
Z, so it has a universal central extension with kernel Z. Let us denote this extension by M̃(Σ). For
h ⩾ g ⩾ 4, the pullback of M̃(Σh,1) along the inclusion (6.31) is M̃(Σg,1). Thus we may define,
for g ⩾ 1, the stably universal central extension M̃(Σg,1) of M(Σg,1) to be the pullback of the
universal central extension M̃(Σh,1) of M(Σh,1) along the inclusion (6.31), for any h ⩾ 4.

We note that there is a canonical morphism of central extensions

M̃(Σ) −→M(Σ). (6.40)

When g ⩾ 4 this morphism exists and is unique by universality of M̃(Σ). For g ⩽ 3 it may be
pulled back from the g ⩾ 4 case via the inclusion (6.31), as explained in [BPS21, §5.3].

Using these ingredients, we showed in [BPS21, §5.3] how to untwist the twisted representation
(6.11) of M(Σ) when taking coefficients in the Schrödinger representation W of H, after passing
to the stably universal central extension M̃(Σ). Let us recall briefly how this works, following the
philosophy of Remark 6.1.6. In the notation of §6.1.3, the construction of the twisted representation
(6.11) provides isomorphisms

Vn

(
fHV

)
−→ Vn(V ) (6.41)

for each f ∈M(Σ). (This is simply (6.10) with τ = idH.) For each f̄ ∈M(Σ) lifting f ∈M(Σ), its
image under (6.39) is a unitary automorphism of W that intertwines the left Schrödinger action
of H, as long as we twist the action on the codomain by fH. In other words, it is a (unitary)
isomorphism of left H-representations of the form W ∼= fHW . This is a direct consequence of
the defining property of the Segal-Shale-Weil projective representation from Corollary 6.4.1. This
isomorphism of coefficients induces an isomorphism Vn(W ) ∼= Vn(fHW ), which we may compose
with (6.41) (for V = W ) to obtain:

Theorem 6.4.4 ([BPS21, §5]). For any n ⩾ 2, there is a representation

M(Σ) −→ GL(Vn(W )) (6.42)

induced by the natural action of the mapping class group on (6.9) with coefficients in the Schrödinger
representation V = W . Via the morphism (6.40), we may view this as a representation of the stably
universal central extension of M(Σ).
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The purpose of this section is to show that, when we restrict to the Earle-Morita subgroup
Mor(Σ) ⊆M(Σ) and take coefficients in the Schrödinger representation V = W , we may obtain a
representation of Mor(Σ) itself, without passing to any central extension.

We shall do this as follows. We first recall the metaplectic extension M̂(Σ) of the mapping class
group, which is an extension by Z/2. Denoting by M̂or(Σ) and Mor(Σ) the restrictions of M̂(Σ)
and M(Σ) to the Earle-Morita subgroup, we show that Mor(Σ) contains M̂or(Σ) and that M̂or(Σ)
is a trivial extension. It will then follow that we may restrict (6.42) to M̂or(Σ) ⊂ Mor(Σ) ⊂M(Σ)
and pre-compose with a section of the trivial extension M̂or(Σ) to obtain a representation of the
Earle-Morita subgroup Mor(Σ).

6.4.2 Metaplectic extensions

We first consider two extensions of the symplectic group Sp(HR).

Definition 6.4.5. Recall that the fundamental group of Sp(HR) ∼= Sp2g(R) is infinite cyclic. It
therefore has a unique connected double covering group, which is called the metaplectic group,
denoted by Mp(HR).

Definition 6.4.6. Consider the restriction of the projective representation (6.37) to the subgroup
Sp(HR) ⊂ Sp(HR) ⋉H1(Σ;Z) ∼= Aut+(HR) ⊂ Aut(HR), which is a projective representation

Sp(HR) −→ PU(W ) (6.43)

of the symplectic group. It is in fact this restriction that is more usually referred to by the name
Segal-Shale-Weil projective representation. Denote by Sp(HR) the pullback of the central extension
U(W ) of PU(W ). This is a central extension of Sp(HR) by S1.

The main technical result of this subsection is the following:

Proposition 6.4.7. There is an inclusion Mp(HR) ⊂ Sp(HR) of central extensions, restricting to
the inclusion Z/2 ∼= {±1} ⊂ S1 on fibres.

Before proving this, we record its implications under pulling back to the mapping class group.
We first define the relevant extensions of the mapping class group and its subgroups.

Definition 6.4.8. Denote by s : M(Σ) → Sp(H) the standard symplectic action of the mapping
class group on H = H1(Σ;Z). The metaplectic extension M̂(Σ) of M(Σ) is defined to be its central
extension by Z/2 given by pulling back the Z/2-central extension Mp(HR)→ Sp(HR) along s and
the inclusion Sp(H) ⊂ Sp(HR).

Definition 6.4.9. For a subgroup G ⊆M(Σ), we denote the restrictions of the central extensions
M(Σ) and M̂(Σ) to G by G and Ĝ respectively.

Corollary 6.4.10. There is an inclusion M̂or(Σ) ⊂ Mor(Σ) of central extensions, restricting to
the inclusion Z/2 ∼= {±1} ⊂ S1 on fibres.

Proof. By definition, the central extension M(Σ) of M(Σ) is pulled back from the central extension
U(W ) of PU(W ) along the top row of the following diagram.

Aut+(H) Aut+(HR) PU(W )

M(Σ) Sp(H) ⋉H1(Σ;Z) Sp(HR) ⋉H1(Σ;R)

Mor(Σ) Sp(H) Sp(HR)

Ψ
T

(s, d)

s

∼ = ∼ =
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Since this diagram commutes (for the bottom-left square this is because d ≡ 0 on Mor(Σ)), it follows
that its restriction Mor(Σ) to the Earle-Morita subgroup is the pullback of the central extension
Sp(HR) of Sp(HR) along the bottom row of the diagram. On the other hand, the metaplectic
extension M̂or(Σ) is by definition the pullback of Mp(HR) along the bottom row of the diagram.
Thus the inclusion of central extensions Mp(HR) ⊂ Sp(HR) of Sp(HR) from Proposition 6.4.7 pulls
back to the desired inclusion M̂or(Σ) ⊂ Mor(Σ) of central extensions of Mor(Σ).

Remark 6.4.11. The argument above does not show that the metaplectic extension includes into
the S1-extension pulled back via the Segal-Shale-Weil representation on the full mapping class
group. This is because the inclusion of central extensions essentially arises at the level of the
symplectic group (Proposition 6.4.7), so we have to restrict to the kernel of d to ensure that the
S1-extension pulls back via the symplectic group.

Proof of Proposition 6.4.7. Let us first slightly rewrite the statement in notation that makes the
dependence on g explicit: our goal is to prove that, over the group Sp2g(R), there is an embedding
of central extensions Mp2g(R) ↪→ Sp2g(R) (which must necessarily restrict to the inclusion Z/2 ∼=
{±1} ⊂ S1 on fibres).

We first show that it suffices to prove this statement for all g sufficiently large; we will then
be able to assume for the rest of the proof that g ⩾ 4, which is the stable range for (co)homology
of degree at most 2 for Sp2g(R) and M(Σg,1). For any g < h there is an inclusion map Sp2g(R) ↪→
Sp2h(R) given by extending symplectic automorphisms of R2g by the identity on R2h−2g. We claim
that the pullbacks of Mp2h(R) and of Sp2h(R) under this inclusion are Mp2g(R) and Sp2g(R)
respectively. For the metaplectic central extensions this follows from the fact that the induced
map π1(Sp2g(R)) ∼= Z→ Z ∼= π1(Sp2h(R)) is an isomorphism and the metaplectic double covering
corresponds to the unique index-2 subgroup of π1. For Sp, note that the Segal-Shale-Weil projective
representations in genus g and h fit into a commutative square as follows:

Sp2g(R) PU(L2(Rg)) U(L2(Rg))

Sp2h(R) PU(L2(Rh)) U(L2(Rh))

(6.43)

(6.43)

(6.44)

The right-hand side square of this diagram arises as follows. We consider L2(Rg) as the closed sub-
space of L2(Rh) consisting of those L2-functions that factor through Rh = Rg ×Rh−g ↠ Rg. Any
closed subspace of a Hilbert space has an orthogonal complement, so we may extend unitary auto-
morphisms of L2(Rg) by the identity on this complement to obtain a homomorphism U(L2(Rg))→
U(L2(Rh)), which descends to the projective unitary groups, forming a pullback square. By defi-
nition, Sp2g(R) is the pullback along (6.43) of the extension U(L2(Rg)) of PU(L2(Rg)). Commu-
tativity of (6.44) then implies that the pullback of Sp2h(R) along the inclusion is Sp2g(R). Thus
the existence of an embedding Mp2h(R) ↪→ Sp2h(R) will imply the existence of an embedding
Mp2g(R) ↪→ Sp2g(R) for g < h. We henceforth assume that g ⩾ 4 in this proof (this is only needed
in the last paragraph).

First, we recall from [LV80, §1.7] that a particular choice of cocycle

ωSp : Sp2g(R)× Sp2g(R) −→ S1,

representing the central extension Sp2g(R), takes values in the finite cyclic subgroup Z/8 ⊆ S1,
so there is an embedding of central extensions Sp2g(R)(8) ↪→ Sp2g(R), for a certain Z/8-central
extension Sp2g(R)(8) of Sp2g(R). Moreover, this central extension is classified by the element
−[τ ].8Z ∈ H2(Sp2g(R);Z/8), the reduction modulo 8 of the element −[τ ] ∈ H2(Sp2g(R);Z) repre-
sented by the negative of the Maslov cocycle τ (see formula 1.7.7 on page 70 of [LV80]).

Second, we also recall from [LV80, §1.7] that there is a function

s : Sp2g(R) −→ Z/4 ⊆ S1
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such that ωSp(g, h)2 = s(g)−1s(h)−1s(gh) (formula 1.7.8 on page 70 of [LV80]). It follows that the
subset of Sp2g(R)(8) of those pairs (t, g) for which t2 = s(g) is a subgroup. The projection onto
Sp2g(R) restricted to this subgroup is a double covering, and so this subgroup must either be the
trivial covering Sp2g(R)× Z/2 or the metaplectic covering Mp2g(R).

To finish the proof, we just have to show that it cannot be the trivial covering. Suppose
for a contradiction that it is. Then Sp2g(R)(8) admits a section, so it is a trivial extension and
we must have [τ ].8Z = 0 ∈ H2(Sp2g(R);Z/8). However, the pullback of [τ ] along the projection
M(Σ)→ Sp2g(R), also denoted by [τ ], is precisely 4 times a generator of H2(M(Σ);Z) ∼= Z (here
we are using the assumption that g ⩾ 4). Thus [τ ].8Z ∈ H2(M(Σ);Z/8) ∼= Z/8 is non-zero. Hence
we must have [τ ].8Z ̸= 0 already in H2(Sp2g(R);Z/8). This completes the proof.

6.4.3 Triviality of an extension

The last ingredient that we will need is the following.

Proposition 6.4.12. The Z/2-central extension M̂or(Σ) of Mor(Σ) is trivial.

Proof. We first note that it suffices to prove this statement for all sufficiently large g. This is
because the inclusion of mapping class groups M(Σg,1) ↪→ M(Σh,1) restricts to an inclusion of
Earle-Morita subgroups Mor(Σg,1) ↪→ Mor(Σh,1) (as an immediate consequence of Lemma 6.3.4),
and the pullback of M̂or(Σh,1) along this inclusion is M̂or(Σg,1), for any g < h. This last statement
follows from the fact that the pullback of Mp2h(R) along Sp2g(R) ↪→ Sp2h(R) is Mp2g(R), which
was explained during the proof of Proposition 6.4.7. We now assume that g ⩾ 4 for the rest of the
proof.

Recall from the proof of Proposition 6.4.7 that there is an embedding of central extensions
Mp2g(R) ↪→ Sp2g(R)(8), where Sp2g(R)(8) is a certain central extension of Sp2g(R) by Z/8. Pulling
back along the symplectic action M(Σ) → Sp2g(R), we obtain an embedding of central exten-
sions M̂(Σ) ↪→ M(Σ)(8), where M(Σ)(8) is classified by −[τ ].8Z ∈ H2(M(Σ);Z/8) ∼= Z/8. Now,
H2(M(Σ);Z) is infinite cyclic, generated by the first Chern class c1, and we have [τ ] = 4c1. There
is also a cocycle c : M(Σ)×M(Σ)→ Z defined by Morita [Mor89b] given by the formula c(f, f ′) =
d(f−1)♯.d(f ′)♯ (see also the proof of Lemma 6.3.2) and we have [c] = 12c1 in H2(M(Σ);Z). Thus,
in particular, we have 3[τ ] = [c]. Since Mor(Σ) = ker(d), Morita’s cocycle c vanishes on Mor(Σ),
and so after restricting to the Earle-Morita subgroup we have 3[τ ] = [c] = 0 ∈ H2(Mor(Σ);Z).
Reducing modulo 8 we therefore have 3[τ ].8Z = 0 ∈ H2(Mor(Σ);Z/8). But this cohomology group
is a Z/8-module, and 3 is invertible modulo 8, so we may divide by 3 and deduce that [τ ].8Z = 0
in H2(Mor(Σ);Z/8). Hence the restriction Mor(Σ)(8) of M(Σ)(8) to the Earle-Morita subgroup
Mor(Σ) is a trivial extension. It therefore follows from the embedding M̂or(Σ) ↪→ Mor(Σ)(8) that
M̂or(Σ) is also a trivial extension.

Remark 6.4.13. In summary, we have considered, in this subsection and the previous one, three
nested central extensions Mp(HR) ⊂ Sp(HR)(8) ⊂ Sp(HR) of the symplectic group Sp(HR) with
fibres Z/2 ⊂ Z/8 ⊂ S1. Clearly they are either all trivial or all non-trivial. We have seen that
their pullbacks along the symplectic action M(Σ)→ Sp(HR) are non-trivial (and hence they must
also be non-trivial to begin with), but their further pullbacks (restrictions) to the Earle-Morita
subgroup Mor(Σ) ⊂M(Σ) are trivial.

6.4.4 Untwisted representations of Earle-Morita subgroups

We may now conclude with the main result of this section:

Theorem 6.4.14. For any n ⩾ 2, there is a representation

Mor(Σ) −→ GL(Vn(W )) (6.45)

induced by the natural action of the mapping class group on the twisted Borel-Moore homology
group (6.9) with coefficients in the Schrödinger representation V = W .
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Proof. By Theorem 6.4.4, such a representation is defined on the central extension M(Σ) of the
mapping class group by S1. By Corollary 6.4.10, the restriction of this extension to Mor(Σ) ⊂M(Σ)
contains the metaplectic extension M̂or(Σ), so we may further restrict to this subgroup. By
Proposition 6.4.12, the central extension M̂or(Σ) of Mor(Σ) is trivial, i.e., it admits a section.
Hence, composing with any such section, we obtain the desired representation (6.45).
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Future directions
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F.1 Stable homology of moduli spaces

There are several families of moduli spaces for which homological stability is known to hold, but
the stable homology is not at all understood.

Configurations of higher-dimensional submanifolds. For example, as recalled in §O.1.2,
homological stability for unordered configuration spaces Cn(M) in an ambient manifold M that
is connected and non-compact generalises to moduli spaces CnL(M) of higher-dimensional closed
submanifolds of M that are isotopic to the disjoint union of finitely many parallel copies of a given
L ⊂M (the case L = {∗} recovering the classical setting of point-configurations).

In contrast, the stable homology

colim
n→∞

(
H∗(CnL(M))

)
(F.1)

is known when L = {∗} (by Segal [Seg73] and McDuff [McD75]) but is almost completely unknown
whenever dim(L) > 0. The first stable homology group of CnS1(R3) (for the component of the
unlink) is known to be isomorphic to (Z/2)3 by Brendle and Hatcher [BH13], who in fact calculated
π1(CnS1(R3)) for all n, but otherwise the stable homology groups (F.1) are very mysterious.

In particular, the techniques of [Seg73; McD75] involving scanning maps cannot apply (at
least, not directly) for higher-dimensional L. For example, the naive generalisation of the scanning
argument gives the wrong answer in the setting of CnS1(R3), as one may check using the calcu-
lations of [BH13] mentioned above. More conceptually, scanning maps cannot capture all of the
information of a positive-dimensional configuration, since they only “see” infinitesimally-extended
objects and thus the global topology of the configuration is invisible to them as soon as it consists
of more than just points.

The following question is therefore still wide open:

Question F.1.1. What are the stable homology groups (F.1) when dim(L) > 0?

Moduli spaces of manifolds with conical singularities. As proven in Chapter 2 (see also
Theorem J in §O.1.2), homological stability for configuration spaces of higher-dimensional subman-
ifolds CnL(M) may be used to deduce homological stability for the moduli spaces BDiff∂T (L)(Mn·L)
of manifolds equipped with conical ∂T (L)-singularities, as the number of singularities goes to in-
finity. One may ask the same question about their stable homology:

Question F.1.2. What are the stable homology groups colim
n→∞

(
H∗(BDiff∂T (L)(Mn·L))

)
?

Recall that the manifold-with-singularities Mn·L is constructed by collapsing a tubular neigh-
bourhood of each copy of L to a point. This means that the global information about the diffeomor-
phism type (and isotopy class) of the embedded copies of L has been concentrated at the isolated
singularities of Mn·L. It may therefore be possible, in this setting, to successfully adapt the classical
scanning techniques to answer Question F.1.2. Using the relationship between BDiff∂T (L)(Mn·L)
and CnL(M) (in the opposite direction to the logic of the proof of homological stability), this may
in turn shed light on Question F.1.1.

F.2 Big mapping class groups

A number of open questions concerning big mapping class groups were asked in Chapter 3, some
of which we recall here.

Question F.2.1 (Question 3.7.1). Amongst infinite type surfaces S, is there a dichotomy between
those for which Hi(Map(S)) is finitely generated for all i and those for which Hi(Map(S)) is
uncountable for all i?
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Remark. This is compatible with all currently known calculations, in particular with those of
Theorems K and M of §O.1.3, although these only cover a few corners of the gamut of all possible
infinite type surfaces.

Question F.2.2 (cf. Questions 3.0.11 and 3.0.12). Is there an infinite type surface S for which
H∗(Map(S)) or H∗(PMap(S)) contains an uncountable torsion subgroup?

Remark. All currently known methods for constructing uncountable subgroups of H∗(Map(S))
(including [Dom22], [MT23], Chapter 3) produce subgroups isomorphic to

⊕
c Z or

⊕
c Q (where

c denotes the cardinality of the continuum). However, I expect that the answer to Question F.2.2
must surely be yes; its purpose is to highlight that such a basic question is still unknown.

The cohomology of big (pure) mapping class groups is expected to have even larger cardinality:

Question F.2.3 (Question 3.7.6). If S is an infinite type surface, does it follow that Hi(PMap(S))
has cardinality ⩾ 2c (where c = cardinality of the continuum) for each i ⩾ 2?

Remark. This is true if S has infinitely many non-planar ends, by Proposition 3.7.7. Note that
Proposition 3.7.7 also implies the existence of an uncountable torsion subgroup of H∗(PMap(S))
under this assumption. This does not help with Question F.2.2, however, since this uncountable
torsion subgroup arises, via the universal coefficient theorem, from the Ext-group ExtZ(ZN,Z) of
the two torsion-free groups ZN and Z.

Question F.2.4 (Question 3.7.2). Denote by Sg,1 the connected, compact, orientable surface of
genus g with one boundary component and consider a Cantor subspace C ⊂ Sg,1 of its interior. Is
the natural map Map(Sg,1 ∖ C)→ Map(Sg,1) a homology isomorphism?

Remark. As pointed out in Remark 3.7.3, this is known to be true in homological degree one (by
[CC22, Theorem 2.3]) and in all degrees for g = 0 (by Theorem K in §O.1.3.1).

Compactly-supported homology classes. For any infinite-type surface S, one may consider
the inclusion

colim
Σ⊂S

(Map(Σ)) = Mapc(S) ↪−→ Map(S) (F.2)

of the compactly-supported mapping class group (the colimit is taken over all compact subsurfaces
Σ ⊂ S) and its induced map on homology

colim
Σ⊂S

(H∗(Map(Σ))) = H∗(Mapc(S)) −→ H∗(Map(S)). (F.3)

For example, when S is the Loch Ness monster surface L = colimg→∞(Sg,1), the left-hand side of
(F.3) is the stable homology of (compact, oriented) mapping class groups, which is understood by
the Madsen-Weiss theorem [MW07], whereas the right-hand side is uncountable in every positive
degree by Proposition 3.4.3.

Question F.2.5. For which infinite type surfaces S is the map (F.3) non-trivial, i.e., when does
H∗(Map(S)) contain non-trivial compactly-supported classes?

Remark. Ongoing joint work with Xiaolei Wu gives a partial answer to this question, which seems
to be particularly subtle when S has genus zero.

F.3 Homological representations

The most famous — and extremely difficult — open question concerning (homological) representa-
tions is whether the mapping class groups Map(Σg,1) are linear, i.e. admit faithful representations
on finite-dimensional vector spaces (see [Mar19, §1]). This question is also open in general for the
surface braid groups Bn(S) (except when S has very low genus [Big01; Kra02; GG12]) and for the
loop braid groups wBn.
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These wide-open questions are one motivation for the construction of new, homological repre-
sentations of mapping class groups and motion groups. (Homological, since those representations
that have proven themselves useful in answering the linearity question in the positive have, so far,
all been homological in nature.) Other motivations are given by the following potential applications
(phrased as speculative questions):

Question F.3.1. Can one construct Chern-Simons theory for G = SU(2) purely in terms of the
twisted homology of configuration spaces on surfaces?

Question F.3.2. Can one use new families of representations of braid groups to construct novel
polynomial link invariants via Markov functions?

Question F.3.3. Can one use homological representations of the ribbon Thompson group (viewed
as an asymptotically rigid mapping class group) to produce new link invariants via Jones’ construc-
tion [Jon17; Jon19] of links from Thompson groups?
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