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Abstract

Motivated by the Lawrence-Krammer-Bigelow representations of the classical
braid groups, we study the homology of unordered configurations in an orientable
genus-g surface with one boundary component, over non-commutative local systems
defined from representations of the discrete Heisenberg group. For a general repre-
sentation we obtain a twisted action of the mapping class group. In the case of the
Schrödinger representation or its finite dimensional analogues, by composing with a
Stone-von Neumann isomorphism we are able to untwist and obtain a representation
to the projective unitary group which lifts to a unitary representation of the stably
universal central extension of the mapping class group.

2020 MSC: 57K20, 55R80, 55N25, 20C12, 19C09
Key words: Mapping class group, Torelli group, configuration spaces, non-abelian
homological representations, discrete Heisenberg group, Schrödinger representation,
metaplectic group, Morita’s crossed homomorphism.

Introduction

The braid groupBm was defined by Artin in terms of geometric braids in R3; equivalently,
it is the fundamental group of the configuration space Cm(R2) of m unordered points
in the plane. Another equivalent description is as the mapping class group M(Dm) =
Diff(Dm, S1)/Diff0(Dm, S1) of the closed 2-disc with m interior points removed. (The
mapping class group of a surface is the group of isotopy classes of self-diffeomorphisms
fixing the boundary pointwise.)

There is also a natural action of Diff(Dm, S1) on configuration spaces Cn(Dm); con-
sidering the induced action on the homology of these configuration spaces, Lawrence
[30] defined a representation of Bm for each n > 1. The n = 2 version is known as the
Lawrence-Krammer-Bigelow representation, and a celebrated result of Bigelow [12] and
Krammer [29] states that this representation of Bm is faithful, i.e. injective.
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On the other hand, for almost all other surfaces Σ, the question of whether the
mapping class group M(Σ) admits a faithful, finite-dimensional representation over a
field (whether it is linear) is open. The mapping class group of the torus is SL2(Z),
which is evidently linear, and the mapping class group of the closed orientable surface
of genus 2 was shown to be linear by Bigelow and Budney [13], as a corollary of the
linearity of B5. However, nothing is known in genus g > 3.

Our programme is to study the action of the positive-genus and connected-boundary
mapping class groups M(Σg,1) on the homology of the configuration spaces Cn(Σg,1),
equipped with local systems that are similar to the Lawrence-Krammer-Bigelow con-
struction. We first argue that abelian local systems would not be good enough. In
general, for any surface Σ and n > 2, the abelianisation of π1(Cn(Σ)) is canonically
isomorphic to H1(Σ)× C, where C is a cyclic group of order ∞ if Σ is planar, of order
2n−2 if Σ = S2 and of order 2 in all other cases (see for example [16, Proposition 6.11]).
In the case Σ = Dm, the abelianisation is Zm×Z, and the Lawrence representations are
defined using the local system given by the quotient π1(Cn(Dm)) � Zm × Z � Z × Z,
where the second map is addition of the first m factors. However, in the non-planar case
(in particular if Σ = Σg,1), we lose information by passing to the abelianisation, since
the cyclic factor C – which counts the self-winding or “writhe” of a loop of configurations
– has order 2 rather than order ∞.

To obtain a better analogue of the Lawrence representations in the setting Σ = Σg,1

for g > 0, we consider instead a larger, non-abelian quotient of π1(Cn(Σ)), the discrete
Heisenberg group H = H(Σ), which may be defined as the central extension of the first
homology H = H1(Σ,Z) associated to the intersection 2-cocycle. This is a 2-nilpotent
group that arises very naturally as a quotient of the surface braid group π1(Cn(Σ)) by
forcing a single element to be central. In the case n > 3 it is known by [4] to be the
2-nilpotentisation of the surface braid group (in fact it is the maximal nilpotent quotient
of the surface braid group), but for n = 2 it differs from the 2-nilpotentisation. A key
property of this nilpotent quotient is that it still detects the self-winding (or “writhe”)
of a loop of configurations without reducing modulo two. Any representation V of the
discrete Heisenberg group H(Σ) defines a local system on the configuration space Cn(Σ).

An and Ko studied in [1] extensions of the Lawrence-Krammer-Bigelow representa-
tions to homological representations of surface braid groups; see also [7]. Their purpose
was to extend the homological representation of the classical braid group to some ho-
mology of configurations in an n-punctured surface and produce representations of the
surface braid groups. In our case the surface has no puncture, and the goal is to repre-
sent the full mapping class group. Our Heisenberg local systems have a similar flavour
but are significantly simpler; moreover we obtain a strong improvement by specialising
to the Schrödinger representations.

Notation 1. Henceforth we will use the abbreviation Σ = Σg,1 for an integer g > 1.

General representation. Our first main result is a calculation of a Borel-Moore relative
homology group with coefficients twisted by any representation of the Heisenberg group,
together with a twisted action of the mapping class group. In the following, HBM

∗ will
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denote Borel-Moore homology and Cn(Σ, ∂−(Σ)) is the properly embedded subspace of
Cn(Σ) consisting of all configurations intersecting a given arc ∂−Σ ⊂ ∂Σ. The twisted
action will be formulated as a representation of an action groupoid. The key point is
that the mapping class group acts on the Heisenberg group which implies an action on
our local systems. We denote by fH ∈ Aut(H) the automorphism induced by f ∈M(Σ).
For a representation ρ : H → GL(V ) and τ ∈ Aut(H), the τ -twisted representation ρ ◦ τ
is denoted by τV .

Theorem A. Let n > 2, g > 1 and let V be a representation of the discrete Heisenberg
group H = H(Σ = Σg,1) over a ring R.
(a) The Borel-Moore homology module HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ));V ) is isomorphic to

the direct sum of

(
2g + n− 1

n

)
copies of V . Furthermore, it is the only non-vanishing

module in the graded module HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ).

(b) There is a natural twisted representation of the mapping class group M(Σ) on the
collection of R-modules

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
, τ ∈ Aut(H) ,

where the action of f ∈M(Σ) is

Cn(f)∗ : HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τ◦fHV

)
−→ HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
(1)

Remark 2. The case of the trivial representation is already something interesting;
indeed, connecting with Moriyama’s work [36], we will show that the Johnson filtration
is recovered.

Remark 3. The Heisenberg group H(Σ) can be realised as a group of (g + 2)× (g + 2)
matrices, which gives a tautological (g+ 2)-dimensional representation. We then obtain,
for each n > 2, a family of twisted representations with polynomially growing dimension

equal to (g + 2)

(
2g + n− 1

n

)
.

The Schrödinger representation. The famous Stone-von Neumann Theorem states that
the Schrödinger representation W ∼= L2(Rg) is, up to isomorphism, the unique unitary
representation of the real Heisenberg group HR(Σ) with given non-trivial action of its
centre determined by a non-zero real number ~ (the Planck constant). We also denote
by W this representation restricted to the discrete group H. For τ ∈ Aut(H) the twisted
representation τW is isomorphic to W as a unitary representation and the isomorphism
is defined up to a unit complex number. Using such isomorphisms we may identify the
twisted local system with the original one and obtain an untwisted representation of
the mapping class group to the projective unitary group of the homology with local
coefficients W . Our second main result is a linear lift of this projective action to the
stably universal central extension M̃(Σ).

3



Theorem B. For each n > 2 and g > 1 there is a complex unitary representation of
M̃(Σ = Σg,1) on the complex Hilbert space

Vn = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

)
(2)

that lifts the natural projective action M(Σ)→ PU(Vn).

The group M̃(Σ) on which we construct our linear representation is a central exten-
sion of the mapping class group M(Σ) of the form:

1→ Z −→ M̃(Σ) −→M(Σ)→ 1, (3)

and is the stably universal central extension of M(Σ) in the following sense. A group G
has a universal central extension (an initial object in the category of central extensions
of G) if and only if H1(G;Z) = 0. It is of the form 0 → H2(G;Z) → G̃ → G → 1
when it exists. For genus g > 4, we have H1(M(Σg,1);Z) = 0 and H2(M(Σg,1);Z) ∼= Z.
Moreover, there are natural inclusion maps

M(Σ1,1) −→M(Σ2,1) −→ · · · −→M(Σg,1) −→M(Σg+1,1) −→ · · · , (4)

which induce isomorphisms on H1(−;Z) and H2(−;Z) for g > 4 (by homological stability
for mapping class groups of surfaces, due originally to Harer [23]; see [44, Theorem 1.1]
for the optimal stability range). This implies that, for g > 4, the pullback along (4) of
the universal central extension of M(Σg+1,1) to M(Σg,1) is the universal central extension
of M(Σg,1). Hence we may define, for all g > 1, the stably universal central extension of
M(Σg,1) to be the pullback along (4) of the universal central extension of M(Σh,1) for
any h > max(g, 4).

When the Planck constant is 2π times a rational number, the discrete Heisenberg
group has finite-dimensional Schrödinger representations, which may be realised either
by theta functions, by induction or by an abelian TQFT. We will follow [20, 21, 22] which
connect nicely the different approaches when ~ = 2π

N for a positive even integer N . We
denote by WN = L2((Z/N)g) the Ng-dimensional representation that is the unique
irreducible representation of the finite quotient HN = H/IN by the normal subgroup

IN = {(2Nk,Nx) | k ∈ Z, x ∈ H} where each central element (k, 0) acts by e
iπk
N . The

analogue of the Stone-von Neumann Theorem in this context [21, Theorem 2.4] allows
us to construct an untwisted representation of the mapping class group to a projective
unitary group which also supports a linear lift to the stably universal central extension.

Theorem C. For each g > 1, n > 2 and N > 2 with N even, there is a complex unitary
representation of M̃(Σ = Σg,1) on the

(
2g+n−1

n

)
Ng-dimensional complex Hilbert space

VN,n = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));WN

)
(5)

that lifts the natural projective action M(Σ)→ PU(VN,n).
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Remark 4. For any complex vector space V , the adjoint action of GL(V ) on EndC(V )
induces a canonical embedding PGL(V ) ↪→ GL(EndC(V )). Applying this to the natural
projective action M(Σ)→ PU(VN,n), we obtain an untwisted complex representation

M(Σ) −→ GL(EndC(VN,n)) (6)

of dimension
(

2g+n−1
n

)2
N2g. We observe that:

Observation 5. Injectivity of (6) is equivalent to the statement that

the pre-image of C∗ along (5) : M̃(Σ)→ U(VN,n) is equal to Z, (7)

where C∗ means the scalar operators in U(VN,n) and Z refers to the kernel of (3). Thus
a proof of (7) for any pair (N,n) with N,n > 2 would imply that the mapping class
group M(Σ) is linear.

Subgroups of the mapping class group. We will identify the kernel of the mapping class
group action on the Heisenberg group as the Chillingworth subgroup Chill(Σ). This
subgroup, included in the Torelli group T(Σ), may be defined as the subgroup of mapping
classes acting trivially on homotopy classes of non-singular vector fields. For a general
representation of the Heisenberg group H(Σ), the twisted action on homologies induces
a representation of Chill(Σ). We also show that a mapping class f belongs to the Torelli
subgroup if and only if the automorphism fH is inner, in which case the conjugating
element is defined up to centre. It follows that, for f ∈ T(Σ) and any representation
V of H, we may identify the fH-twisted local system with the original one and obtain
an untwisted projective representation of the Torelli group on the homology with local
coefficients V . Our third main result normalises this action on the Torelli group itself,
meaning that a cocycle associated with the projective action is null-homologous.

Theorem D. For each n > 2, g > 1 and each representation V of the discrete Heisenberg
group H = H(Σ) over a ring R, there exists a lift of the projective action on homology
which defines a representation of the Torelli group T(Σ = Σg,1) on the R-module

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
. (8)

The stably universal central extension M̃(Σ) of the mapping class group trivialises
on the Torelli group (Lemma 47), so Theorems B and C above already provide repre-
sentations of the Torelli group without passing to a central extension. The advantage of
Theorem D is that it applies to any representation V of the discrete Heisenberg group,
not just the Schrödinger representations W and WN .

Returning now to the Schrödinger representation, we identify another large subgroup
of the mapping class group M(Σ) on which we may construct linear representations with-
out passing to a central extension. In [33], Morita introduced a crossed homomorphism
M(Σ) → H1(Σ), f 7→ df representing a generator for H1(M(Σ), H1(Σ)) ∼= Z. We will
recover this crossed homomorphism from the action f 7→ fH on the Heisenberg group.
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We define the Morita subgroup Mor(Σ) of the mapping class group M(Σ) to be the
kernel of Morita’s crossed homomorphism. Note that this subgroup depends on the
parametrisation of Σ.

The unitary group U(Vn) of the Hilbert space Vn = (2) is a central extension of
the projective unitary group PU(Vn) by the circle group. Hence the natural projective
representation M(Σ)→ PU(Vn) lifts to a linear representation of some central extension
M(Σ) of the mapping class group by the circle. Another natural central extension of the

mapping class group is the metaplectic extension M̂(Σ), which is a central extension by
Z/2. We show that the restriction Mor(Σ) of the central extension M(Σ) to the Morita

subgroup contains the restriction M̂or(Σ) of the metaplectic extension M̂(Σ), and also

that the extension M̂or(Σ)→ Mor(Σ) is trivial. This implies:

Theorem E. For each n > 2 and g > 1 the projective action on Borel-Moore homology
lifts to a unitary representation of the subgroup Mor(Σ) ⊆M(Σ = Σg,1) on the complex
Hilbert space

Vn = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W )

)
. (9)

Remark 6. The representations of Theorem E and of Theorem D (taking V equal to
the Schrödinger representation in the latter) agree on the intersection Mor(Σ) ∩ T(Σ),
which is the Chillingworth subgroup Chill(Σ) of the mapping class group.

See Figure 1 for a visual summary of the three subgroups of the mapping class group
that we consider. The homomorphism s is the action of the mapping class group on its
first homology H = H1(Σ;Z) and d is Morita’s crossed homomorphism (see §3). The
pair (s, d) thus defines a homomorphism to the semi-direct product Sp(H)nH lifting s.

T(Σ) H

Chill(Σ) M(Σ) Sp(H) nH

Mor(Σ) Sp(H)

(s,d)

s

d

Figure 1: The Torelli group T(Σ) = ker(s), the Morita subgroup Mor(Σ) = ker(d) and
their intersection, the Chillingworth subgroup Chill(Σ) = ker((s, d)).

Kernels. To describe an upper bound on the kernels of our representations, we first
recall the Johnson filtration of the mapping class group.

The mapping class group M(Σ) acts naturally on the fundamental group π1(Σ)
of the surface. Each term of the lower central series of a group is fully invariant, so
there is a well-defined induced action of M(Σ) on the quotient π1(Σ)/Γi+1, which is
the largest (i+ 1)-step nilpotent quotient of π1(Σ). The Johnson filtration J(∗) is then
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defined by setting J(i) to be the kernel of this induced action. Thus J(0) is the whole
mapping class group and J(1) is the Torelli group. The intersection of all terms in the
filtration is trivial, i.e., it is an exhaustive filtration of the mapping class group [27]. The
Chillingworth subgroup sits between J(1) and J(2):

M(Σ) = J(0) ⊇ T(Σ) = J(1) ⊇ Chill(Σ) ⊇ J(2) ⊇ J(3) ⊇ · · ·

One may also consider the induced action of the mapping class group M(Σ) on the
universal metabelian quotient π1(Σ)/π1(Σ)(2) of the fundamental group of the surface
(the quotient by its second derived subgroup); its kernel is the Magnus kernel of M(Σ),
which we denote by Mag(Σ) ⊆M(Σ). In §7 (Proposition 72) we prove:

Proposition F. For each n > 2, g > 1 and representation V of the discrete Heisenberg
group H = H(Σ), the kernels of the representations constructed in Theorems A–E are
contained in J(n) ∩Mag(Σ).

Computability. We emphasise that our representations are explicit and computable.
First, the underlying R-modules in Theorems A–E are direct sums of finitely many copies
of the R-module V that underlies the chosen representation of the discrete Heisenberg
group H(Σ). This is Theorem A(a); an explicit basis is described in Theorem 11.

Moreover, the actions of elements of the mapping class group on the canonical basis
provided by Theorem 11 may be explicitly computed. To demonstrate this, we calculate
in §8 explicit matrices for our representations in the case when n = 2 and V = Z[H] is the
regular representation of H = H(Σ). For example, when g = 1, the Dehn twist around
the boundary of Σ1,1 acts by the 3× 3 matrix over Z[H] = Z[u±1]〈a±1, b±1〉/(ab = u2ba)
depicted in Figure 9 (page 57).

Outline. In §1 we define and study the quotient H of the surface braid group. In §2
we study the Borel-Moore homology (with local coefficients) of configuration spaces on
Σ, showing that, with coefficients in V = Z[H], it is a free module with an explicit free
generating set. Next, in §3, we show that the action of the mapping class group on the
surface braid group descends to H. Then we study this induced action on H in detail,
and in particular determine its kernel, as well as the subgroup of the mapping class
group that acts by inner automorphisms under this action. The latter group turns out
to be the Torelli group, whereas the kernel turns out to be the Chillingworth subgroup.
In §4 we then describe a general trick for untwisting twisted representations of groups
by passing to a central extension.

Section 5 puts all of this together and constructs the twisted representations of The-
orem A and the untwisted representations of Theorem D. In particular, §5.1 explains the
notion of a twisted representation of a group and §5.2 constructs twisted representations
of the full mapping class group. In §6 we then prove Theorems B, C and E: untwisted
representations of the stably universal central extension of the mapping class group and
untwisted representations of the Morita subgroup (without passing to a central exten-
sion), with coefficients in the Schrödinger representation of H or its finite-dimensional

7



analogues. The untwisting in these cases uses the Segal-Shale-Weil projective represen-
tation of the symplectic group.

In §7 we discuss relations with the Moriyama and Magnus representations of mapping
class groups, and deduce that the kernels of our representations of M(Σ) are contained in
J(n)∩Mag(Σ), where J(∗) is the Johnson filtration and Mag(Σ) is the Magnus kernel. In
§8 we explain how to compute explicit matrices for our representations with respect to the
free basis coming from §2. We carry out this computation in the case of configurations
of n = 2 points and where V = Z[H] is the regular representation of H; this special
case of our construction is the most direct analogue of the Lawrence-Krammer-Bigelow
representations of the braid groups.
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matical Sciences. The second author is grateful to Arthur Soulié for several enlightening
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1 A non-commutative local system on configuration spaces of surfaces

Let Σ = Σg,1 be a compact, connected, orientable surface of genus g > 1 with one
boundary component. For n > 2, the n-point unordered configuration space of Σ is

Cn(Σ) = {{c1, c2, ..., cn} ⊂ Σ | ci 6= cj for i 6= j},

topologised as a quotient of a subspace of Σn. The surface braid group Bn(Σ) is then
defined as Bn(Σ) = π1(Cn(Σ)). We will use the presentation of this group given by
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Bellingeri and Godelle in [5], which in turn follows from Bellingeri’s presentation [3]. It
has generators σ1, . . . , σn−1, α1, . . . , αg, β1, . . . , βg and relations:

(BR1) [σi, σj ] = 1 for |i− j| > 2,

(BR2) σiσjσi = σjσiσj for |i− j| = 1,

(CR1) [αr, σi] = [βr, σi] = 1 for i > 1 and all r,

(CR2) [αr, σ1αrσ1] = [βr, σ1βrσ1] = 1 for all r,

(CR3) [αr, σ
−1
1 αsσ1] = [αr, σ

−1
1 βsσ1] =

= [βr, σ
−1
1 αsσ1] = [βr, σ

−1
1 βsσ1] = 1 for all r < s,

(SCR) σ1βrσ1αrσ1 = αrσ1βr for all r.

We note that composition of loops is written from right to left. Our relation (CR3) is a
slight modification of the relation (CR3) of [5], but it is equivalent to it via the relation
(CR2).

The first homology group H1(Σ) = H1(Σ;Z) is equipped with a symplectic intersec-
tion form

ω : H1(Σ)×H1(Σ) −→ Z

and the Heisenberg group H = H(Σ) is defined to be the central extension of H1(Σ)
determined by the 2-cocycle ω. Concretely, it is the set-theoretic product Z × H1(Σ)
with the operation

(k, x)(l, y) = (k + l + ω(x, y), x+ y). (10)

Denote by ψ : H � H1(Σ) the projection onto the second factor and by i : Z ↪→ H the
inclusion of the first factor; the central extension may then be written as:

0 Z H H1(Σ) 0i ψ

There is a general recipe for computing a presentation of an extension of two groups,
given presentations of these two groups (see for example [16, §A.3]). In particular, for
a central extension 1 → H → G → K → 1 with H = 〈X|R〉 and K = 〈Y |S〉, we have
G = 〈X t Y |R t S̃ t T 〉, where S̃ is any collection of relations that are true in G and
that project to the relations S in K and where T is a collection of relations saying that
the generators X are central in G.

Applying this to our setting, we obtain the following presentation of H, where we
write u = (1, 0) and where a1, . . . , ag, b1, . . . , bg is a symplectic basis of H1(Σ).

Proposition 7. The Heisenberg group H = H(Σ) admits a presentation with generators
u, ãi = (0, ai), b̃i = (0, bi) for 1 6 i 6 g and relations:{

all pairs of generators commute, except:

ãib̃i = u2b̃iãi for each i.
(11)

9



Proof. We apply the above procedure to the presentations Z = 〈X|R〉 and H1(Σ) =
〈Y |S〉 where X = {u}, Y = {ã1, . . . , ãg, b̃1, . . . , b̃g}, the relations R are empty and the
relations S say that all pairs of elements of Y commute. The relations T say that u com-
mutes with each of {ã1, . . . , ãg, b̃1, . . . , b̃g}, so to show that (11) is a correct presentation
of H it will suffice to show that the relations ãib̃i = u2b̃iãi and ãib̃j = b̃j ãi for i 6= j are

true in H, because we may then take S̃ to be this collection of relations, since it projects
to S. To verify these, we compute that

ãib̃j = (0, ai + bj) = (0, bj + ai) = b̃iãj

since ω(ai, bj) = 0 when i 6= j, and

ãib̃i = (1, ai + bi) = (1, bi + ai) = (2, 0)(−1, bi + ai) = u2b̃iãi,

since ω(ai, bi) = 1 and ω(bi, ai) = −1.

It follows immediately from this presentation that:

Corollary 8. For each g > 1 and n > 2, there is a natural surjective homomorphism

φ : Bn(Σ) −� H(Σ)

sending each σi to u and sending αi 7→ ãi, βi 7→ b̃i.

In the case n > 3, this quotient of the surface braid group has previously been
considered in [4, 6, 7], which also consider the more general setting where Σ is closed or
has several boundary components. The alternative approach in these articles allows one
to identify the kernel of φ as a characteristic subgroup. We include below a description
of the kernel valid for all n > 2.

Proposition 9. (a) For n > 2, the kernel of φ is the normal subgroup generated by the
commutators [σ1, x] for x ∈ Bn(Σ).
(b) For n > 3, the kernel of φ is the subgroup of 3-commutators Γ3(Bn(Σ)).

For a proof of statement (b), we refer to [4, Theorem 2]. More precisely, statement
(10) on page 1416 of [4] is the analogous fact for the closed surface Σg: that there is a
surjective homomorphism Bn(Σg)� Hg/〈u2(n+g−1)〉 whose kernel is exactly Γ3(Bn(Σg)).
The proof given there works also in our case where the surface has one boundary com-
ponent and we do not quotient by 〈u2(n+g−1)〉. In this paper we will use statement (a)
and focus on the case n = 2 in our explicit computations.
Proof. Let Kn ⊆ Bn(Σ) be the normal subgroup generated by the commutators [σ1, x]
for x ∈ Bn(Σ). The image φ(σ1) being central, we have Kn ⊆ ker(φ), hence we see that
φ may be factored through a surjective homomorphism φ : Bn(Σ)/Kn → H. If we add
centrality of σ1 to the defining relations for Bn(Σ), we may:

• replace (BR2) by σi = σ1 for all i,
• remove (BR1), (CR1) and (CR2),
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• replace (CR3) by commutators of all pairs of generators except for (αr, βr),
• replace (SCR) with αrβr = σ2

1βrαr.
Finally the presentations of Bn(Σ)/Kn and H coincide and φ is an isomorphism, which
proves (a).

In contrast to the case of n > 3, the kernel ker(φ) when n = 2 lies strictly between
the terms Γ2 and Γ3 of the lower central series of B2(Σ).

Proposition 10. There are proper inclusions

Γ3(B2(Σ)) ↪→ ker(φ) ↪→ Γ2(B2(Σ)).

Proof. By the above proposition, ker(φ) is normally generated by commutators, so it
must lie inside Γ2(B2(Σ)). On the other hand, the Heisenberg group H = Hg is a central
extension of an abelian group, hence 2-nilpotent. The kernel of any homomorphism
G → H with target a 2-nilpotent group contains Γ3(G), so ker(φ) contains Γ3(B2(Σ)).
To see that ker(φ) is not equal to Γ2, it suffices to note that the Heisenberg group is not
abelian. To see that ker(φ) is not equal to Γ3, we will construct a quotient

ψ : B2(Σ) −→ Q

where Q is 2-nilpotent and [σ1, a1] 6∈ ker(ψ). Given this for the moment, suppose for a
contradiction that ker(φ) = Γ3. Then we have [σ1, a1] ∈ ker(φ) = Γ3 ⊆ ker(ψ), due to
the fact that Q is 2-nilpotent, which is a contradiction.

It therefore remains to show that there exists a quotient Q with the claimed prop-
erties. In fact we will take Q = D4, the dihedral group with 8 elements presented by
D4 = 〈g, τ | g2 = τ2 = (gτ)4 = 1〉. Let us set ψ(ai) = ψ(bi) = g and ψ(σ1) = τ . It
is easy to verify from the presentations that this is a well-defined surjective homomor-
phism. The dihedral group D4 is 2-nilpotent (its centre is generated by (gτ)2 and the
quotient by this element is isomorphic to the abelian group (Z/2)2), and we compute
that ψ([σ1, a1]) = (τg)2 6= 1, which completes the proof.

2 Heisenberg homology

Using the homomorphism φ, any representation V of the Heisenberg group H becomes
a module over R = Z[Bn(Σ)]. Following for example [24, Ch. 3.H] or [17, Ch. 5] we
then have homology groups with local coefficients H∗(Cn(Σ);V ). When V is the regular
representation Z[H], we simply write H∗(Cn(Σ);H). Let C̃n(Σ) be the regular covering of
Cn(Σ) associated with the kernel of φ. Then H∗(Cn(Σ);H) is the homology of the singular
chain complex S∗(C̃n(Σ)) considered as a right Z[H]-module by deck transformations.
Given a left representation V of H, then H∗(Cn(Σ);V ) is the homology of the complex
S∗(C̃n(Σ))⊗Z[H] V .

Relative homology with local coefficients is defined in the usual way. We also use the
Borel-Moore homology, defined by

HBM
n (Cn(Σ);V ) = lim←−

T

Hn(Cn(Σ), Cn(Σ) \ T ;V ),
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where the inverse limit is taken over all compact subsets T ⊂ Cn(Σ). In general, writing
K(X) for the poset of compact subsets of a space X, the Borel-Moore homology module
HBM
n (X,A;V ) is the limit of the functor Hn(X,A ∪ (X \ −);V ) : K(X)op → ModR for

any local system V on X and any subspace A ⊆ X. Under mild conditions, which are
satisfied in our setting, the Borel-Moore homology is isomorphic to the homology of the
chain complex of locally finite singular chains.

Borel-Moore homology is functorial with respect to proper maps. If f : X → Y is a
proper map taking A ⊆ X into B ⊆ Y , then there is an induced functor f−1 : K(Y ) →
K(X) by taking pre-images, and a natural transformation Hn(X,A ∪ (X \ −); f∗(V )) ◦
f−1 ⇒ Hn(Y,B ∪ (Y \ −);V ) arising from the naturality of singular homology. Taking
limits, we obtain

HBM
n (X,A; f∗(V )) = limHn(X,A ∪ (X \ −); f∗(V ))

−→ lim
(
Hn(X,A ∪ (X \ −); f∗(V )) ◦ f−1

)
−→ limHn(Y,B ∪ (Y \ −);V ) = HBM

n (Y,B;V ).

In particular, homeomorphisms are proper maps, so self-homeomorphisms of a space act
on its Borel-Moore homology.

We will adapt a method used by Bigelow in the genus-0 case [11] (see also [1, 32, 2])
for computing the relative Borel-Moore homology

HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ) = lim←−

T

(Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) \ T );V ),

where Cn(Σ, ∂−(Σ)) is the closed subspace of configurations containing at least one point
in an interval ∂−(Σ) ⊂ ∂Σ. In general for a pair (X,Y ) the notation Cn(X,Y ) will be
used for configurations of n points in X containing at least one point in Y .

The surface Σ can be represented as a thickened interval [0, 1] × I with 2g han-
dles, attached as depicted below along {1} ×W , where W contains in this order the
points w1, w2, w

′
1, w

′
2, . . . , w2g−1, w2g, w

′
2g−1, w

′
2g. We view Σ as a relative cobordism

from ∂−(Σ) = {0} × I (in blue below) to ∂+(Σ) (in green below), where ∂+(Σ) is the
closure of the complement of ∂−(Σ) in ∂(Σ). For 1 6 i 6 2g, γi denotes the union of
the core of the i-th handle with [0, 1] × {wi, w′i}, oriented from wi to w′i, and Γ = qiγi
(in red below).

...

Let K be the set of sequences k = (k1, k2, ..., k2g) such that ki is a non-negative
integer and

∑
i ki = n. We will associate to each k ∈ K an element of the Borel-Moore

relative homology HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));H), as follows.
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For k ∈ K we consider the submanifold Ek ⊂ Cn(Σ) consisting of all configurations
having ki points on γi. This manifold inherits an orientation from the orientations of
the arcs γi together with the ordering (up to even permutations) of the points on Γ by
declaring that x < y for x ∈ γi, y ∈ γj if either i < j or i = j and x comes before y
according to the orientation of γi. Moreover, it is a properly embedded Euclidean half-
space Rn+ in Cn(Σ) with boundary in Cn(Σ, ∂−(Σ)). After choosing a path connecting it to
the base point in Cn(Σ), Ek represents a homology class in HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ));H)
which we also denote by Ek.

Theorem 11 (Theorem A(a)). Let V be any representation of the discrete Heisenberg
group H. Then, for n > 2, there is an isomorphism of modules

HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));V ) ∼=

⊕
k∈K

V.

Furthermore, this is the only non-vanishing module in HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ).

In particular, when V = Z[H], the graded Z[H]-module HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H) is

concentrated in degree n and free of dimension

(
2g + n− 1

n

)
with basis {Ek}k∈K.

Remark 12. Theorem 11 is true (with the same proof) more generally for Borel-Moore
homology with coefficients in any representation V of the surface braid group Bn(Σ) =
π1(Cn(Σ)), not necessarily factoring through the quotient Bn(Σ)� H. However, we will
only need Theorem 11 for representations of the Heisenberg group.

Recall that a deformation retraction h : [0, 1]×Σ→ Σ from Σ to Y ⊂ Σ is a continuous
map (t, x) 7→ h(t, x) = ht(x) such that h0 = IdΣ, h1(Σ) ⊂ Y , and (ht)|Y = IdY . We will
prove the following lemma in Appendix A.

Lemma 13. There exists a metric d on Σ inducing the standard topology and a defor-
mation retraction h from Σ to Γ ∪ ∂−(Σ), such that for all 0 6 t < 1, the map ht is a
1-Lipschitz embedding.

Proof of Theorem 11. We use a metric d and a deformation retraction h from
Lemma 13. For ε > 0 and Y ⊂ Σ we denote by Cεn(Y ) the subspace of configurations
x = {x1, x2, ..., xn} ⊂ Y such that d(xi, xj) < ε for some i 6= j. If Y is closed, then
Cεn(Y ) is a cofinal family of co-compact subsets of Cn(Y ), which implies that for a pair
(Y, Z) of closed subspaces of Σ, we have

HBM
∗ (Cn(Y ), Cn(Y, Z);V ) ∼= lim

0←ε
H∗(Cn(Y ), Cn(Y, Z) ∪ Cεn(Y );V ) (12)

For 0 6 t 6 1, let Σt = ht(Σ). For t < 1 we have an inclusion

(Cn(Σt), Cn(Σt, ∂
−(Σ)) ∪ Cεn(Σt) ⊂ (Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ Cεn(Σ))

which is a homotopy equivalence with homotopy inverse Cn(ht), which is a map of pairs
because ht is 1-Lipschitz. So we have an inclusion isomorphism

H∗(Cn(Σt), Cn(Σt, ∂
−(Σ)) ∪ Cεn(Σt);V ) ∼= H∗(Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ Cεn(Σ);V ) (13)
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The compactness of Σ ensures that h1 is the uniform limit of ht as t → 1, which
implies that for ε > 0 we may choose t = tε < 1 such that for all p ∈ Σ we have
d(ht(p), h1(p)) < ε

2 . For such t, let At ⊂ Cn(Σt) be the subset of configurations x =
{x1, . . . , xn} ⊂ Σt such that h1(h−1

t (xi)) = h1(h−1
t (xj)) for some i 6= j. We have that At

is closed and (by our definition of t = tε) contained in the open set Cεn(Σt). We therefore
get an excision isomorphism

H∗(Cn(Σt)\At, (Cn(Σt, ∂
−(Σ))∪Cεn(Σt))\At;V ) ∼= H∗(Cn(Σt), Cn(Σt, ∂

−(Σ))∪Cεn(Σt);V )
(14)

By applying h1 ◦ (ht)
−1 on configurations, we obtain a well-defined map of pairs

(Cn(Σt) \At, (Cn(Σt, ∂
−(Σ)) ∪ Cεn(Σt)) \At) −→ (Cn(Σ1), Cn(Σ1, ∂

−(Σ)) ∪ Cεn(Σ1)) ,

which is a homotopy inverse to the inclusion. Here Σ1 = h1(Σ) is equal to Γ ∪ ∂−(Σ).
By composing inclusions and excision maps, we obtain the inclusion isomorphism:

H∗(Cn(Σ1), Cn(Σ1, ∂
−(Σ)) ∪ Cεn(Σ1);V ) ∼= H∗(Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ Cεn(Σ);V ). (15)

Let W− = {0} ×W ⊂ ∂−(Σ) and Uε ⊂ ∂−(Σ) be defined by the condition x ∈ Uε ⇔
d(x,W−) < ε

2 , and Γε = Γ∪Uε. In the left-hand side group above, we may apply excision
with the closed subset Cn(Σ1, ∂

−(Σ) \ Uε), which gives

H∗(Cn(Γε), Cn(Γε, Uε) ∪ Cεn(Γε);V ) ∼= H∗(Cn(Σ1), Cn(Σ1, ∂
−(Σ)) ∪ Cεn(Σ1);V ). (16)

We finish with one more excision removing configurations which contain 2 points in the
same component of Uε followed by a deformation retraction to configurations in Γ and
finally obtain:

H∗(Cn(Γ), Cn(Γ,W−)) ∪ Cεn(Γ);V ) ∼= H∗(Cn(Γε), Cn(Γε, Uε) ∪ Cεn(Γε);V ). (17)

Taking the limit 0← ε in the composition of the isomorphisms from equations eqs. (15)
to (17), we obtain:

HBM
∗ (Cn(Γ), Cn(Γ,W−));V ) ∼= HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ). (18)

Now we observe that the pair (Cn(Γ), Cn(Γ,W−) is the disjoint union of the relative
cells (Ek, ∂(Ek)) for k ∈ K. It follows that the Borel-Moore homology (18) is trivial
when ∗ 6= n and that each Borel-Moore homology class Ek generates a direct summand
isomorphic to the coefficients V in degree ∗ = n. In particular, when V = Z[H], these
classes form a basis over Z[H] for the degree-n Borel-Moore homology.

3 Action of mapping classes

The mapping class group of Σ, denoted by M(Σ), is the group of orientation preserving
diffeomorphisms of Σ fixing the boundary pointwise, modulo isotopies relative to the
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boundary. The isotopy class of a diffeomorphism f is denoted by [f ]. An oriented self-
diffeomorphism fixing the boundary pointwise f : Σ → Σ gives us a homeomorphism
Cn(f) : Cn(Σ) → Cn(Σ), defined by {x1, x2, . . . , xn} 7→ {f(x1), f(x2), . . . , f(xn)}. If we
ensure that the basepoint configuration of Cn(Σ) is contained in ∂Σ, then it is fixed by
Cn(f) and this in turn induces a homomorphism fBn(Σ) = π1(Cn(f)) : Bn(Σ) → Bn(Σ),
which depends only on the isotopy class [f ] of f .

3.1 Action on the Heisenberg group

We first study the induced action on the Heisenberg group quotient.

Proposition 14. There exists a unique homomorphism fH : H → H such that the fol-
lowing square commutes:

Bn(Σ) Bn(Σ)

H H

φ

fBn(Σ)

φ

fH

(19)

Thus, there is an action of M(Σ) on the Heisenberg group H given by

Ψ: f 7→ fH : M(Σ) −→ Aut(H). (20)

Proof. Since φ is surjective, the homomorphism fH will be uniquely determined by the
formula fH(φ(γ)) = φ(fBn(Σ)(γ)) if it exists. To show that it exists, we need to show
that the composition φ ◦ fBn(Σ) factorises through φ, which is equivalent to saying that
fBn(Σ) sends ker(φ) into itself.

The braid σ1 is supported in a sub-disc D ⊂ Σ containing the base configuration.
Let T ⊂ Σ be a tubular neighbourhood of ∂Σ containing D. Since f fixes ∂Σ pointwise,
we may isotope f so that it is the identity on T , in particular on D, which implies that
fBn(Σ) fixes σ1. We then deduce from part (a) of Proposition 9 that fBn(Σ) sends ker(φ)
to itself, which completes the proof.

3.2 Structure of automorphisms of the Heisenberg group.

Recall that the centre of the Heisenberg group H is infinite cyclic, generated by the
element u. Any automorphism of H must therefore send u to u±1.

Definition 15. We denote the index-2 subgroup of those automorphisms of H that fix
u by Aut+(H), and call these orientation-preserving.

From the proof of Proposition 14, we observe that, for any f ∈M(Σ), the automor-
phism fH is orientation-preserving in the sense of Definition 15. We may therefore refine
the action Ψ as follows:

Ψ: f 7→ fH : M(Σ) −→ Aut+(H). (21)
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The quotient of H by its centre may be canonically identified with H = H1(Σ), so
every automorphism of H induces an automorphism of H. Moreover, if it is orientation-
preserving, the induced automorphism of H preserves the symplectic structure, so we
have a homomorphism Aut+(H) → Sp(H) denoted ϕ 7→ ϕ. In addition, there is a
function Aut+(H)→ H∗ = Hom(H,Z) defined by sending ϕ to ϕ� = pr1(ϕ(0,−)), where
we are using the description H = Z × H. The fact that ϕ� is really a homomorphism
H → Z uses the fact that the automorphism of H induced by ϕ preserves the symplectic
structure.

Lemma 16. The homomorphism Aut+(H)→ Sp(H) and the function Aut+(H)→ H∗

induce an isomorphism

Aut+(H) ∼= Sp(H) nH∗, ϕ 7→ (ϕ,ϕ�), (22)

where the semi-direct product structure on the right-hand side is induced by the natural
action of Sp(H) on H∗.

Proof. This is proven in Appendix B.

Remark 17. Fixing a symplectic basis of H, the right-hand side of (22) is a subgroup
of GL2g(Z)nZ2g, which may be embedded into GL2g+1(Z). In this way, any orientation-
preserving action of a group G on H may be viewed as a linear representation of G over
Z of rank 2g + 1.

Lemma 16 asserts that the general form of an oriented automorphism ϕ is

ϕ(k, x) = (k + ϕ�(x), ϕ(x)) ,

where ϕ� ∈ H∗ and ϕ ∈ Sp(H) is the induced symplectic automorphism. From the
proof of Proposition 14 we observe that, for any f ∈ M(Σ), the automorphism fH is
orientation-preserving in the sense of Definition 15. Hence for a mapping class f ∈M(Σ),
the map fH is represented as follows:

fH : (k, x) 7→ (k + δf (x), f∗(x)), (23)

where δf = f�H ∈ H∗ = H1(Σ).

3.3 Recovering Morita’s crossed homomorphism.

We recall briefly the notion of a crossed homomorphism. Let G be a group acting on an
abelian group K.

Definition 18. A crossed homomorphism θ : G → K is a function with the property
that θ(g2g1) = θ(g1) + g1θ(g2) for all g1, g2 ∈ G. A principal crossed homomorphism
is one of the form g 7→ gh − h for a fixed element h ∈ K. Notice that every principal
crossed homomorphism restricts to zero on the kernel of the action of G on K.
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Remark 19. Crossed homomorphisms G → K are in one-to-one correspondence with
lifts

G Aut(K) nK

Aut(K),

where the diagonal arrow is the given action of G on K. Often, we will have K = H∗

for a free abelian group H, with the G-action on K induced from one on H. In this case
there is a natural (anti-)isomorphism Aut(H) ∼= Aut(K), and under this identification
crossed homomorphismsG→ H∗ are in one-to-one correspondence with homomorphisms
G→ Aut(H) nH∗ lifting the action G→ Aut(H) of G on H.

Notation 20. The crossed homomorphism G→ H∗ corresponding to a homomorphism
Θ: G→ Aut(H) nH∗ will be denoted by Θ�.

Remark 21. Crossed homomorphisms form an abelian group under pointwise addition,
and principal crossed homomorphisms form a subgroup. The quotient may be identified
with the first cohomology group H1(G;K).

We will need the following lemma later on.

Lemma 22. Let G be a group acting on an abelian group K, and denote by N ⊆ G the
kernel of this action. Let S ⊆ N be a subset such that

T = {gsg−1 | s ∈ S, g ∈ G} ⊆ N

generates N . If two crossed homomorphisms θ1, θ2 : G→ K agree on S, then they agree
on N .

Note that we do not assume that S normally generates N ; we assume only that N
is generated by S together with all of its conjugates by elements of the larger group G.
Proof. Since T generates N , it will suffice to show that θ1 and θ2 agree on T . Let
s ∈ S and g ∈ G. We know by hypothesis that θ1(s) = θ2(s), and we need to show that
θ1(g−1sg) = θ2(g−1sg). First, observe that, for i = 1, 2, we have

θi(g) + g.θi(g
−1) = θi(g

−1g) = θi(1) = 0.

Using this, and the fact that s ∈ N , so it acts trivially on K, we deduce that

θi(g
−1sg) = θi(g) + g.θi(s) + gs.θi(g

−1)

= θi(g) + g.θi(s) + g.θi(g
−1)

= g.θi(s).

Thus θ1(g−1sg) = g.θ1(s) = g.θ2(s) = θ2(g−1sg), as required.

In [33], Morita introduced a crossed homomorphism M(Σ) → H1(Σ), f 7→ df rep-
resenting a generator for H1(M(Σ), H1(Σ)) ∼= Z. (cf. Proposition 30). We will recover
this crossed homomorphism from the action f 7→ fH on the Heisenberg group.
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Proposition 23. The map δ : M(Σ) → H1(Σ), f 7→ δf , is a crossed homomorphism
equal to Morita’s d.

Proof. We first show that δ is a crossed homomorphism. Let f, g be mapping classes;
then we have, for (k, x) ∈ H,

(g ◦ f)H(k, x) = gH(k + δf (x), f∗(x)) = (k + δf (x) + δg(f∗(x)), (g ◦ f)∗(x)) ,

and so we do get δg◦f (x) = δf (x) + f∗(δg)(x).
We will use as generators the loops given by the first strand in the generators αi, βi

of the braid group Bn(Σ), and keep the same notation. For γ ∈ π1(Σ), let us denote by
γi the element in the free group generated by αi, βi that is the image of γ under the
homomorphism that maps the other generators to 1. Then we have a decomposition

γi = αν1
i β

µ1
i . . . ανmi βµmi ,

where νj and µj are 0, −1 or 1. The integer di(γ) is then defined1 by

di(γ) =
m∑
j=1

νj

m∑
k=j

µk −
m∑
j=1

µj

m∑
k=j+1

νk

=

m∑
j=1

m∑
k=1

ιjkνjµk,

where ιjk = +1 when j 6 k and ιjk = −1 when j > k. The definition for the Morita
crossed homomorphism is as follows:

df ([γ]) =

g∑
i=1

di(f](γ))− di(γ) . (24)

If γ ∈ π1(Σ) is the first strand of a pure braid also denoted γ, then the above decompo-
sition of γ used for the definition of di is also a decomposition in the generators of the
braid group, and from the definition of the product in H we have that

φ(γ) =

(
g∑
i=1

di(γ), [γ]

)
∈ H .

This can be checked by recursion on the length of γ. It can also be deduced from [33,
Lemma 6.1]. The equality df = δf follows.

Consider the inclusion of surfaces Σg,1 ↪→ Σh,1 given by boundary connected sum
with Σh−g,1. This induces an inclusion of mapping class groups

M(Σg,1) ↪−→M(Σh,1) (25)

by extending diffeomorphisms by the identity on Σh−g,1. Recall from the introduction
that we define the Morita subgroup Mor(Σg,1) to be the kernel of d : M(Σg,1)→ H1(Σg,1).
The following lemma and corollary will be used in §5 and §6.

1There is a small misprint in [33].
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Lemma 24. The diagram

M(Σg,1) M(Σh,1)

H1(Σg,1) H1(Σh,1)

d d (26)

commutes, where the bottom arrow is the map induced by the inclusion Σg,1 ↪→ Σh,1 on
H1(−), conjugated by Poincaré duality.

Corollary 25. The homomorphism (25) restricts to Mor(Σg,1) ↪→ Mor(Σh,1).

Proof of Lemma 24. Just as in the definition of the Morita crossed homomorphism
above, we identifyH1(Σg,1) with Hom(π1(Σg,1),Z). Under this identification, the bottom
arrow in (26) is pre-composition with pr : π1(Σh,1) = π1(Σg,1) ∗ π1(Σh−g,1)� π1(Σg,1).

Let f ∈M(Σg,1) and write f̂ ∈M(Σh,1) for its image under (25). Let γ ∈ π1(Σh,1)
and write γ = γ1 ∗ γ2 under the decomposition π1(Σh,1) = π1(Σg,1) ∗ π1(Σh−g,1). By
construction, we have

di(γ) = di(γ1) and di(f̂](γ)) = di(f](γ1))

for 1 6 i 6 g. Moreover, since f̂ acts by the identity on Σh−g,1, we also have

di(f̂](γ)) = di(γ)

for g + 1 6 i 6 h. From the defining formula (24) we deduce that

df̂ ([γ]) =
h∑
i=1

di(f̂](γ))− di(γ) =

g∑
i=1

di(f](γ1))− di(γ1) = df ([γ1]) = (df ◦ pr)([γ]),

and so (26) commutes.

3.4 Action of the Torelli subgroup.

Recall that the Torelli subgroup T(Σ) ⊆M(Σ) consists of those elements of the mapping
class group whose natural action on H1(Σ) is trivial. The restriction of the crossed
homomorphism δ : f 7→ δf to the Torelli group is a homomorphism. We will first describe
this homomorphism in relation with the action of the Torelli group on homotopy classes
of vector fields. Recall that the set Ξ(Σ) of homotopy classes of non-vanishing vector
fields supports a natural simply transitive action of H1(Σ) (affine structure), and the
action of M(Σ) is compatible with this action. It follows that the Torelli group acts by
translation on Ξ(Σ), which defines a homomorphism e : T(Σ) → H1(Σ). A formula for
e(f)([γ]), where γ is a regular curve, is given by the variation of the winding number.
For convenience we recall some details about the winding number below.

Fix a Riemannian metric. A non-vanishing vector field X gives a trivialisation of the
unit tangent bundle T1(Σ) ∼= Σ× S1. The winding number ωX(γ) of a regular oriented
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Figure 2: The sign of a point on γ that is tangent to X.

curve γ is the degree of the second component of the unit tangent vector. It can be
computed as follows. Assuming that γ is transverse to X except at a finite set γ t X of
points, where it looks locally as in Figure 2, then

ωX(γ) =
∑

p∈γtX
sgn(p),

where sgn(p) is defined in Figure 2.
The Chillingwoth homomorphism e, studied in [15, 26], is defined by

eX(f)([γ]) = ωX(f ◦ γ)− ωX(γ) .

Its kernel is the Chillingworth subgroup. Note that e does not depend on X, but extends
to a crossed homomorphism eX : M(Σ)→ H1(Σ) which does.

The following lemma is Proposition 3.7 of [14]. The proof there uses [35]. We give
an independent proof below.

Lemma 26. The homomorphisms δ and e coincide on the Torelli group and have image
δ(T(Σ)) = 2H1(Σ).

From the formula (23) we get that the kernel of the action Ψ is included in the Torelli
group so that we get this kernel as a corollary of Lemma 26.

Proposition 27. For any genus g > 1, we have ker(Ψ) = Chill(Σ).

Proof. As ker(Ψ) ⊆ T(Σ), we may restrict to the Torelli group, at which point we see
from formula (23) and Lemma 26 that ker(Ψ) = ker(δ) = ker(e) = Chill(Σ).

Denote by Inn(H) the group of inner automorphisms of the Heisenberg group H.
From Lemma 26, we also deduce the following.

Proposition 28. For any genus g > 1, we have Ψ−1(Inn(H)) = T(Σ).
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Proof. Conjugation in the Heisenberg group H is given by the formula

(l, x)(k, y)(−l,−x) = (l, y)(k, x)(−l,−x) = (k + 2ω(x, y), y) (27)

First, if fH acts by inner automorphisms, then its induced action on H must be
trivial. This means that f lies in the Torelli group. Conversely, if f ∈ T(Σ), we have
from Lemma 26 that δf is in 2H1(Σ). Using Poincaré duality, we obtain x ∈ H such
that δ(y) = 2ω(x, y) for every y. With the formula (27) we get that fH is inner.

Proof of Lemma 26. The Torelli group is generated by genus one bounding pairs [25,
Theorem 2], and this generating set is a single conjugacy class in the full mapping class
group. By Lemma 22 and the fact that both δ and e are crossed homomorphisms defined
on the full mapping class group, it will suffice to show that they agree on one particular
genus one bounding pair, and take values in 2H1(Σ) on this element. Specifically, we
will take this element to be

f = BP (γ, δ) = Tγ .T
−1
δ ,

the genus one bounding pair diffeomorphism depicted in Figure 3, and we will show that
both elements e(f) and δf of H1(Σ) ∼= Hom(H1(Σ),Z) are equal to the homomorphism
H1(Σ)→ Z given by

a1 7→ 2 , ai 7→ 0 for i > 2 and bi 7→ 0 for i > 1. (28)

...

Figure 3: The surface Σ is obtained by identifying the 2g interior boundary components
(4 depicted above) in g pairs by reflections. The bounding pair map from the proof of
Lemma 26 is BP (γ, δ) = Tγ .T

−1
δ , for the blue curves γ and δ. The red and green arcs

form a symplectic basis for the first homology of Σ relative to the bottom edge ∂−Σ.

We first calculate δf from the automorphism fH. We may directly read off from
Figure 3 the effect of f on the elements ai and bi of H. It clearly acts trivially except
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possibly on the three elements ã2 = (0, a2), b̃2 = (0, b2) and ã1 = (0, a1), since the others
may be realised disjointly from γ ∪ δ, and:

ã1 7→ [ã2, b̃2].ã1 = u2ã1 = (2, a1)

ã2 7→ [ã2, b̃2].ã1b̃1ã
−1
1 .ã2.ã1b̃

−1
1 ã−1

1 .[ã2, b̃2]−1 = ã2

b̃2 7→ [ã2, b̃2].ã1b̃1ã
−1
1 .b̃2.ã1b̃

−1
1 ã−1

1 .[ã2, b̃2]−1 = b̃2.

This gives (28) for δf .

...

Figure 4: An alternative model for the surface Σ, the bounding pair (γ, δ) and the
symplectic basis for the first homology of Σ relative to the bottom edge ∂−Σ.

To calculate e(f), we use the alternative model for the surface Σ, the bounding pair
(γ, δ) and the symplectic basis ai, bi for H depicted in Figure 4. This model for Σ has
the advantage of having an obvious unit vector field X, which simply points upwards
according to the standard framing of the page.

Using this vector field X and comparing to Figure 2, we observe that the winding
numbers of the symplectic generators ai and bi (more precisely, their smooth, closed
representatives pictured in Figure 4) are given by

ωX(ai) = −1 and ωX(bi) = +1.

We recall that, by definition, eX(f)(c) = ωX(f ◦ c̄)−ωX(c̄) ∈ Z for any c = [c̄] ∈ H. We
clearly have f ◦ c̄ = c̄ for c̄ = ai or bi with i > 3 or for c̄ = b1, since these curves may be
represented disjointly from γ ∪ δ. Hence ex(f)([c̄]) = 0 for these c̄. The curve f ◦ a1 is
depicted in Figure 5.

There are precisely three points on this curve where its tangent vector is equal to
the vector field X, i.e., where its tangent vector is pointing vertically upwards: two are
positive and one is negative (compare the local models in Figure 2), hence

eX(f)(a1) = ωX(f ◦ a1)− ωX(a1)

= (2− 1)− (−1)

= 2.
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...

Figure 5: The curve f ◦ a1 for f = Tγ .T
−1
δ . The three points where its tangent vector

points vertically upwards are marked with dark red points: the left-most one is negative
according to Figure 2, and the other two are positive.
[At first sight it may look like there are two more, but these are not allowed since they do not fit

either of the local models of Figure 2. We therefore perturb the curve slightly to get rid of these

two tangencies with the vector field X. Alternatively, we may perturb it differently, to turn each

of these disallowed tangencies into a pair of two allowed tangencies with opposite signs, which

will therefore cancel in the expression for ωX(f ◦ a1).]

Now let c̄ be either a2 or b2. In this case the effect of f is simply to conjugate c̄ by γ, so
we have that

ωX(f ◦ c̄) = ωX(γ) + ωX(c̄)− ωX(γ)

= ωX(c̄),

since positive/negative tangencies with X for γ are negative/positive tangencies with X
for γ−1 respectively, and so eX(f)([c̄]) = ωX(f ◦ c̄) − ωX(c̄) = 0. Thus we have shown
that the homomorphism e(f) : H → Z is given by (28).

3.5 The Trapp representation.

We next recall the Trapp representation [43], and show that our representation of M(Σ)
on H may be identified with it (up to “coboundaries”) when the genus of Σ is at least
2. This recovers Proposition 27, since the kernel of the Trapp representation is precisely
the Chillingworth subgroup Chill(Σ) under this condition [43, Corollary 2.7].

Definition 29. The representation of Trapp [43] is defined as a homomorphism

ΦX : M(Σ) −→ Sp(H) nH∗ ⊂ GL2g+1(Z) (29)

(cf. Remark 17), lifting the symplectic action M(Σ) → Sp(H). Viewed as a homomor-
phism into Aut(H)nH∗, it therefore corresponds by Remark 19 to a crossed homomor-
phism M(Σ)→ H∗. This crossed homomorphism is the variation of the winding number
with respect to a fixed non singular vector field X on Σ.
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We now wish to compare the two homomorphisms

ΦX = (29) and Ψ = (22) ◦ (21) : M(Σ) −→ Aut(H) nH∗

corresponding, respectively, to the crossed homomorphisms

Φ�X = eX and Ψ� = δ : M(Σ) −→ H∗.

Proposition 30. For g > 2, the crossed homomorphisms eX and δ represent the same
cohomology class in H1(M(Σ);H∗) ∼= Z. In other words, they are equal modulo principal
crossed homomorphisms.

Proof. We will use the homomorphism

H1(M(Σ);H∗) −→ Hom(T(Σ), H∗) (30)

given by restricting a crossed homomorphism M(Σ) → H∗ to the Torelli group. This
is well-defined since, as mentioned before, principal crossed homomorphisms are trivial
on the Torelli group. The right-hand side of (30) is rather large: in fact, by a theo-
rem of Johnson [28], the abelianisation of T(Σ) is isomorphic to ∧3H ⊕ (torsion), so
Hom(T(Σ), H∗) ∼= Hom(∧3H,H∗), which is free abelian of rank 2g

(
2g
3

)
. However, it has

the advantage that it is easier to detect when elements are equal, since it is just a group
of homomorphisms (rather than crossed homomorphisms modulo principal ones). On
the other hand, the left-hand side of (30) is much smaller. Indeed, Morita proved in [33,
Proposition 6.4] that the group H1(M(Σ);H∗) is infinite cyclic. (In fact, it is generated
by [d], which we know by Proposition 23 is equal to [δ], but we will not need this.) In
Lemma 26 we have proven that δ and eX coincide (and are non-trivial) on the Torelli
subgroup. Since Hom(T(Σ), H∗) is torsion-free, the homomorphism (30) is injective and
the result follows.

Remark 31. In summary, we have considered three crossed homomorphisms

δ, d, eX : M(Σ) −→ H1(Σ),

where δ is the crossed homomorphism corresponding to the natural action Ψ of the
mapping class group on the Heisenberg group, d is Morita’s combinatorially-defined
crossed homomorphism and eX is the Chillingworth crossed homomorphism (depending
on a choice of non-vanishing vector field X on Σ). We have shown (Proposition 23) that
δ = d on M(Σ) and (Lemma 26) that δ = eX when restricted to T(Σ). In Proposition 30,
we used the latter fact to deduce the stronger statement that δ = eX on M(Σ) modulo
principal crossed homomorphisms. However, we note that only the weaker statement of
Lemma 26 was needed to deduce (Proposition 27) that ker(Ψ) = Chill(Σ).

4 Twisted actions and central extensions

4.1 Untwisting.

In order to apply the construction of the previous section to define a representation of (a
central extension of) the Torelli group of Σ (rather than just the smaller Chillingworth
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subgroup), we will need a certain “untwisting” trick. This may either be done explicitly
at the level of chain complexes, or it may be done already at the level of spaces equipped
with local systems, before passing to chains. In this section, we explain the latter point
of view. We first describe a general algebraic trick for “untwisting” representations of
groups, and then augment it to a fibrewise version, which may be applied to local systems
on spaces.

Let G, K be groups and let M be a right Z[K]-module. Suppose that G has a twisted
left action on M , in the sense that there are actions

α : G −→ AutZ(M)

β : G −→ Aut(K)

such that α(g)(m.h) = α(g)(m).β(g)(h) for all g ∈ G, h ∈ K and m ∈ M . Moreover,
suppose that the action β of G on K is by inner automorphisms, and define a central
extension of G by the following pullback (the symbol y denotes a pullback square):

1 1

Z(K) Z(K)

G̃ K

G Inn(K)

1 1

⊆ Aut(K)

π

id

θ

β

y
(31)

Lemma 32. There is a well-defined untwisted left action of G̃ on M by Z[K]-module
automorphisms

γ : G̃ −→ AutZ[K](M)

given by the formula γ(g̃)(m) = α(π(g̃))(m).θ(g̃).

Proof. It is clear that, for fixed g̃ ∈ G̃, the formula α(π(g̃))(−).θ(g̃) defines a Z-module
automorphism of M . We therefore just have to check two things:

• The automorphism α(π(g̃))(−).θ(g̃) of M commutes with the right action of K.
• The function g̃ 7→ α(π(g̃))(−).θ(g̃) is a group homomorphism.

For the first point, let g̃ ∈ G̃, m ∈M and h ∈ K. We have

α(π(g̃))(m.h).θ(g̃) = α(π(g̃))(m).β(π(g̃))(h).θ(g̃)

= α(π(g̃))(m).θ(g̃).h.θ(g̃)−1.θ(g̃)

= α(π(g̃))(m).θ(g̃).h,
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where the first equality holds by our compatibility assumption between the actions α
and β, and the second one holds by commutativity of (31). This says precisely that
α(π(g̃))(−).θ(g̃) commutes with the right action of K.

For the second point, let g̃1, g̃2 ∈ G̃ and m ∈M . We have

α(π(g̃2))
(
α(π(g̃1))(m).θ(g̃1)

)
.θ(g̃2) = α(π(g̃2))

(
α(π(g̃1))(m)

)
.β(π(g̃2))(θ(g̃1)).θ(g̃2)

= α(π(g̃2))
(
α(π(g̃1))(m)

)
.θ(g̃2).θ(g̃1).θ(g̃2)−1.θ(g̃2)

= α(π(g̃2g̃1))(m).θ(g̃2g̃1),

where, again, the first equality holds by our compatibility assumption between the ac-
tions α and β, the second one holds by commutativity of (31) and the third one holds
since α, π and θ are homomorphisms. This says precisely that g̃ 7→ α(π(g̃))(−).θ(g̃) is a
group homomorphism.

4.2 Untwisting in bundles.

We will need a natural fibrewise version of Lemma 32, whose proof is identical (one
just has to think of bundles of modules instead of modules). Let X be a space and let
ξ : M→ X be a bundle of Z[K]-modules. Suppose that G has a twisted left action on
M. Precisely, this means a pair of homomorphisms

α : G −→ Homeo(M)

β : G −→ Aut(K)

such that, for each g ∈ G, x ∈ X, m ∈ ξ−1(x) and h ∈ K, we have:
• α(g) preserves the fibres of ξ,
• the restriction of α(g) to each fibre is a Z-linear automorphism,
• α(g)(m.h) = α(g)(m).β(g)(h).

(By definition, such an action is an untwisted left action by automorphisms of bundles
of Z[K]-modules exactly when β is the trivial action.)

As before, assume that the action β of G on K is by inner automorphisms and define
the central extension G̃ of G as in (31).

Lemma 33. There is a well-defined untwisted left action of G̃ on ξ : M → X by
automorphisms of bundles of Z[K]-modules

γ : G̃ −→ AutZ[K](ξ : M→ X)

given by the formula γ(g̃)(m) = α(π(g̃))(m).θ(g̃).

4.3 Rescaling.

Once we have obtained an untwisted representation of G̃, the following “rescaling” lemma
gives (under conditions) a trick to ensure that it descends to an (untwisted) representa-
tion of G. It is abstracted from §2 of [13].
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Suppose that we have a central extension

1→ Z ι−→ G̃
π−→ G→ 1

together with a representation ρ of G̃ on an R-module V . Suppose also that there exists
a quotient q : G̃� Z such that q(ι(1)) = k 6= 0 and that ρ(ι(1)) = idV .λ, for an element
λ ∈ R∗ that admits a k-th root, in other words there exists µ ∈ R∗ with µk = λ. Then
the following lemma is immediate.

Lemma 34. Under the above conditions, the representation of G̃ on the R-module V
given by the formula

g̃ 7−→ ρ(g̃).µ−q(g̃)

descends to a representation of G.

5 Constructing the representations

We now put everything together to prove Theorems A and D: in §5.2 we construct the
twisted representations of M(Σ) from Theorem A; their untwisted restrictions to the
Chillingworth subgroup are described in §5.3. Then in §5.4 we construct the untwisted
representations of the Torelli group from Theorem D. The representations of Theorems
B, C and E will be constructed in §6. Before all of this, we discuss some general notions
of twisted representations in §5.1.

5.1 Twisted representations of groups.

When a group acts (up to homotopy) on a space, it has a well-defined induced represen-
tation on the homology of that space. However, this is not true for twisted homology,
unless the group action preserves the chosen local system on the space. Instead, there is
an induced twisted representation of the group. There is more than one way to formu-
late this (see Remark 40); we will take the viewpoint that a twisted representation of G
consists of:

• an action of G on a set X, which defines a groupoid Ac(Gy X) [Definition 35];
• a functor Ac(Gy X)→ ModR [Definition 38].

In the setting above, X will be a set of local systems on the underlying space, on which
G acts by pullback. In a sense, the group has been “spread out” over several objects
according to this action. We will see the details of a concrete example of this in §5.2.

Definition 35. Let G be a group equipped with a left action a : G → Sym(X). The
action groupoid Ac(G y X) is the groupoid whose objects are im(a), in other words
those symmetries of X that are induced by some element of G, and whose morphisms
σ → τ are the elements a−1(τ−1σ) ⊆ G. Composition is given by multiplication in the
group.

Remark 36. It is sometimes convenient to consider slightly different but isomorphic
action groupoids: for signs ε, δ ∈ {±1}, we may define Acεδ(G y X) to have objects
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im(a) and set of morphisms σ → τ equal to a−1((τ−εσε)δ). There are then isomorphisms
Ac(Gy X) ∼= Acεδ(Gy X) given by τ 7→ τ ε on objects and g 7→ gδ on morphisms.

Remark 37. The automorphism group of each object is equal to ker(a) ⊆ G. Moreover,
the set of all morphisms with fixed target is naturally identified with the whole group
G. When X = G acting on itself by left-multiplication, this is sometimes known as the
translation groupoid of G.

Definition 38. A twisted representation of a group G over a ring R is a left G-set X and
a functor Ac(G y X) → ModR, where ModR is the category of R-modules. Similarly
for any other flavour of representations given by a category C, such as the category
of Hilbert spaces (unitary representations), or the category of bundles of R-modules
(fibrewise representations over R): a twisted representation of G of this flavour is a left
G-set X and a functor Ac(Gy X)→ C.

Remark 39. In the previous section, we considered a notion of twisted action of a group
G. This determines a twisted representation as follows. Recall that a twisted left action
of G on a right Z[K]-module M is a Z-linear left action α of G on M together with a
left action β of G on K, such that α(g)(m.h) = α(g)(m).β(g)(h). We obtain from this a
twisted representation of G over Z[K] by taking X = K with G-action given by β, and
we define the functor

Ac(Gy K) −→ ModZ[K]

to send the object σ ∈ im(β) ⊆ Aut(K) to the Z[K]-module Mσ−1 . Here we set Mσ = M
as Z-modules, but the right K-action on Mσ is given by m ·σh = m.σ(h), where . denotes
the right K-action on M . Morphisms of Ac(Gy K) are elements of G, and the functor
is defined on them by α. The compatibility condition between α and β assumed above is
exactly what is needed to imply that this gives a well-defined functor into the category
of Z[K]-modules (not just Z-modules).

Remark 40. To formulate the notion of a twisted representation of a group, one may
either break apart the group into a groupoid (as above) or one may enlarge the target
category from ModR to a larger category that also contains twisted R-linear homomor-
phisms (similarly to the viewpoint of §4). These two viewpoints are related, as explained
in Remark 39. The former viewpoint is most convenient for our purposes, whereas the
latter viewpoint is more convenient if one wishes to construct twisted representations of
categories (rather than just groups); see [38, §2]. In particular, the twisted representa-
tions (39) of mapping class groups that we construct below also appear in [38, §5.4.1]
when n > 3, using this alternative categorical viewpoint.

5.2 A twisted representation of the mapping class group.

Recall from §3 (Propositions 14, 27 and 28) that we have a representation

Ψ: M(Σ) −→ Aut(H)

such that ker(Ψ) = Chill(Σ) and Ψ−1(Inn(H)) = T(Σ) for g > 1.
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The quotient homomorphism φ : Bn(Σ) � H (§1) corresponds to a regular covering
C̃n(Σ)→ Cn(Σ). Let f ∈M(Σ), fH be its action on the Heisenberg group and Cn(f) be
the action (up to isotopy) on the configuration space Cn(Σ). From Proposition 14 we
know that Cn(f)] = fBn(Σ) preserves ker(φ) which implies that there exists a unique lift
of Cn(f) fixing the base point

C̃n(f) : C̃n(Σ) −→ C̃n(Σ) . (32)

The action of C̃n(f) on the fibre over the base point identified with H coincides with fH,
and for the deck action of h ∈ H on x ∈ C̃n(Σ) we have the twisting formula

C̃n(f)(x · h) = C̃n(f) · fH(h) .

The induced action on the singular complex S∗(C̃n(Σ)) is twisted Z[H]-linear, which can
be formulated as a Z[H]-linear isomorphism (up to chain homotopy)

S∗(C̃n(f)) : S∗(C̃n(Σ))f−1
H
−→ S∗(C̃n(Σ)) .

Here the subscript on the domain means that the right action of H is twisted with f−1
H ,

just as in Remark 39. The result for Z[H]-local homology is a Z[H]-linear isomorphism

Cn(f)∗ : HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)f−1

H
−→ HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H) . (33)

More generally, if V is a left representation of the Heisenberg group over a ring R, then
we obtain an R-linear isomorphism

Cn(f)∗ : HBM
∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)); fHV

)
−→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
, (34)

where the left-hand homology group is obtained from the chain complex

S∗
(
C̃n(Σ)

)
f−1
H
⊗

Z[H]
V ∼= S∗

(
C̃n(Σ)

)
⊗

Z[H]
fHV .

(Here, “obtained from” means in more detail that we consider the quotients of this chain
complex given by the relative singular complexes for all subspaces of C̃n(Σ) of the form
π−1(Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) r T )) for compact subsets T ⊂ Cn(Σ), where π denotes the
covering map C̃n(Σ) → Cn(Σ), take the homology of each of these quotients and then
take the inverse limit of this diagram.)

An equivalent way to see that we obtain (33) and (34) is as follows. For a quotient
homomorphism q : π1(Cn(Σ)) � Q let us write C̃n(Σ)q for the corresponding regular
Q-covering of Cn(Σ), considered as a space with a right Q-action. In this notation, the
lifted action (32) is of the form

C̃n(Σ)fH◦φ −→ C̃n(Σ)φ (35)

and commutes with the right H-action on the source and target. Note that the right
H-action on the left-hand space is twisted by f−1

H compared with its right action on the
right-hand space. This is because the action of

π1(Cn(Σ)) H H 3 hφ fH
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is given by sending h backwards along fH and then applying the untwisted action.
Thus, applying relative Borel-Moore homology to (35), we obtain (33) with Z[H]-local
coefficients and (34) with V -local coefficients.

Slightly more generally, for τ ∈ Aut(H), the action Cn(f) : Cn(Σ)→ Cn(Σ) lifts to

C̃n(Σ)τ◦fH◦φ −→ C̃n(Σ)τ◦φ (36)

and, applying relative Borel-Moore homology, we obtain

HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)f−1

H ◦τ−1 −→ HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)τ−1 (37)

with Z[H]-local coefficients and

HBM
∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)); τ◦fHV

)
−→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
(38)

with V -local coefficients.
Summarising this discussion, we have shown:

Theorem 41 (Theorem A(b)). Associated to any representation V of H over R, there
is a well-defined twisted representation

Ac(M(Σ) y H) −→ ModR (39)

in the sense of Definition 38, where each object τ : H → H is sent to the R-module

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
and the morphism f : τ ◦ fH → τ is sent to the R-linear isomorphism (38).

Remark 42. The functor (39) factors through the category of pairs of spaces equipped
with local systems over Z[H], which we denote by Top2

Z[H]. To see this, we send the object

τ of Ac(M(Σ) y H) to the bundle of Z[H]-modules obtained by applying the free abelian
group functor fibrewise to C̃n(Σ)τ◦φ, together with the subspace Cn(Σ, ∂−(Σ)) ⊂ Cn(Σ).
(We recall that, under mild conditions that are satisfied here, local systems over Z[H]
may be thought of as bundles of Z[H]-modules.) We send the morphism f : τ ◦ fH → τ
to the result of applying the free abelian group functor fibrewise to (36). This defines a
functor

Ac(M(Σ) y H) −→ Top2
Z[H] (40)

and the remainder of the construction then consists in composing (40) with the fibrewise
tensor product functor −⊗Z[H] V : Top2

Z[H] → Top2
R and relative Borel-Moore homology

functor HBM
n : Top2

R → ModR.
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5.3 Restricting to the Chillingworth subgroup.

As mentioned in Remark 37, the automorphism groups of the groupoid Ac(M(Σ) y H)
are all isomorphic to the kernel of the action Ψ: M(Σ) y H, which is the Chillingworth
subgroup Chill(Σ), by Proposition 27. Restricting (39) to the automorphism group of
the object id : H → H of Ac(M(Σ) y H) therefore gives us an untwisted representation

Chill(Σ) −→ ModR

of the Chillingworth group. Concretely, the underlying R-module of this representation
is the relative V -local Borel-Moore homology module

HBM
∗
(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
,

and each f ∈ Chill(Σ) is sent to (38) with τ = fH = id. Thus we have shown:

Theorem 43. Associated to any representation V of H over R, there is a well-defined
representation

Chill(Σ) −→ AutR
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
, (41)

which is a restriction of (39) to a single object.

Remark 44. Recall from §2 that the R-module HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
is natu-

rally isomorphic to a direct sum of

(
2g + n− 1

n

)
copies of V . In particular, if V is a

free R-module of rank N , the right-hand side of (41) may be written as GLN(2g+n−1
n )(R).

5.4 The Torelli group.

We now restrict to the Torelli group T(Σ) ⊆M(Σ). In this case we have Ψ−1(Inn(H)) =
T(Σ) by Proposition 28. We may therefore pull back the Z-central extension

1→ Z ∼= Z(H) −→ H −→ Inn(H)→ 1

along the homomorphism Ψ: T(Σ)→ Inn(H) to obtain a Z-central extension

1→ Z −→ T̃(Σ) −→ T(Σ)→ 1

and a homomorphism
Ψ̃: T̃(Σ) −→ H

lifting Ψ. We will use this to “untwist” the representation (39) on the Torelli group.

Warning 45. Although we are using the tilde notation ˜ for this central extension of
the Torelli group, we are not (yet) claiming that it is the same as the restriction of the

stably universal central extension M̃(Σ) of the mapping class group. However, we will
see shortly (Lemma 47 and its proof) that both T̃(Σ) → T(Σ) and the restriction of

M̃(Σ)→M(Σ) to the Torelli group are trivial extensions; in particular they coincide.
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For an element h ∈ H, denote by ch = h−h−1 the corresponding inner automorphism
ch ∈ Inn(H). One may check that the isomorphism

− · h : S∗(C̃n(Σ))ch −→ S∗(C̃n(Σ)) (42)

of singular chain complexes given by the right-action of h is Z[H]-linear. The construction
of §5.2, shifted by fH, sends each f ∈ T(Σ) to a Z[H]-linear isomorphism

S∗(C̃n(f)) : S∗(C̃n(Σ)) −→ S∗(C̃n(Σ))fH , (43)

where fH = Ψ(f). For f̃ ∈ T̃(Σ) we therefore obtain a Z[H]-linear automorphism

S∗(C̃n(Σ)) S∗(C̃n(Σ))fH S∗(C̃n(Σ)) ,
(43) (42)

(44)

where we take h = Ψ̃(f̃) in (42). This defines an untwisted action of the central exten-
sion T̃(Σ) of the Torelli group on the singular chain complex S∗(C̃n(Σ)), and thus also on
S∗(C̃n(Σ)) ⊗Z[H] V for any left H-representation V . Moreover, we may repeat this con-
struction for the relative singular chain complex with respect to any subspace of Cn(Σ),
and this is compatible with taking inverse limits, and so we obtain an untwisted action
of the central extension T̃(Σ) of the Torelli group on the relative V -local Borel-Moore
homology

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
for any left H-representation V . Thus we have shown that there is a well-defined repre-
sentation

T̃(Σ) −→ AutR
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
, (45)

where T̃(Σ) is a central extension by Z of the Torelli group T(Σ).

Remark 46. We have described the untwisting at the level of the singular chain complex,
but it may in fact be done already at the level of spaces equipped with local systems over
Z[H], as explain in §4; see especially Lemma 33. The verification that the composition
(44) really gives a well-defined action of T̃(Σ) is essentially equivalent to the proof of
Lemma 32. In particular, the central extension T̃(Σ) of the Torelli group is the pullback
in diagram (31) in the special case where K = H and G = T(Σ).

To complete the construction, we show that:

Lemma 47. The central extension T̃(Σ) of T(Σ) is trivial, i.e. it is isomorphic to the
product T(Σ)× Z.

Proof. We begin by showing that it suffices to prove the statement for all sufficiently
large g; we will then be able to assume g > 3 in the rest of the proof. For g < h, recall
the inclusion (25), which restricts to an inclusion of Torelli groups

ι : T(Σg,1) ↪−→ T(Σh,1). (46)
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We claim that the pullback of the central extension T̃(Σh,1) along (46) is T̃(Σg,1). Indeed,

the pullback of T̃(Σh,1) is represented by the cocycle (f, g) 7→ d(ι(f))·d(ι(g)) and T̃(Σg,1)
is represented by the cocycle (f, g) 7→ d(f) ·d(g). These cocycles are equal, by Lemma 24
and the fact that H1(Σg,1) → H1(Σh,1) preserves the intersection form. Thus triviality

of T̃(Σh,1) will imply triviality of T̃(Σg,1) for any g < h.
By [8, Lemma A.1(xiii)] and homological stability [44, Theorem 1.2], the canonical

surjection M(Σ)� Sp(H) induces an isomorphism on H2(−;Z) when g > 3. It follows
that the inclusion T(Σ) ↪→M(Σ) induces the trivial map on H2(−;Z). This means that
every Z-central extension of M(Σ) becomes trivial when restricted to T(Σ). We will
prove the lemma by showing that T̃(Σ) is the restriction of a Z-central extension defined
on the whole mapping class group M(Σ).

There is a 2-cocycle c on M(Σ), defined by Morita [34], given by the formula c(f, g) =
d(f−1) · d(g), where d : M(Σ)→ H is Morita’s crossed homomorphism (see §3.3) and · is
the intersection form on H. By general properties of crossed homomorphisms, we have
d(f−1) = −f−1

∗ (d(f)), and so we may rewrite this as

c(f, g) = −f−1
∗ (d(f)) · d(g) = −d(f) · f∗(d(g)). (47)

Recall from §3, especially equation (23), that the restriction of Ψ: M(Σ)→ Aut+(H) ∼=
Sp(H)nH to Ψ|T(Σ) : T(Σ)→ Inn(H) ∼= 2H is equal to Morita’s crossed homomorphism

d (restricted to the Torelli group). The central extension T̃(Σ) is therefore represented
by the 2-cocycle c′ on T(Σ) given by c′(f, g) = Ψ(f) · Ψ(g) = d(f) · d(g). Restricted to
the Torelli group, Morita’s cocycle (47) may be written as c(f, g) = −d(f) · d(g), since
we have f∗ = id for f ∈ T(Σ). Thus we have c′ = −c on T(Σ). In particular, since c is
the restriction of a 2-cocycle defined on the whole mapping class group, so is c′.

Theorem 48 (Theorem D). Associated to any representation V of H over R, there is
a well-defined representation of the Torelli group

T(Σ) −→ AutR
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

))
(48)

that lifts the natural projective action of T(Σ) on this homology module.

Proof. Let us abbreviate Vn(V ) = HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));V ). The homomorphism

(45) must send the subgroup Z ⊂ T̃(Σ) (the kernel of the central extension) to the centre
of AutR(Vn(V )), so it descends to

T(Σ) −→ PAutR(Vn(V )), (49)

where the projective automorphism group PAutR(A) of an R-module A is the quotient of
AutR(A) by its centre. Note that the centre of AutR(A) is equal to {− · λ | λ ∈ Z(R×)}
when A is a free R-module, but may be larger when A is not free. This is the natural
projective action of the Torelli group. To lift it to a linear action, we may compose (45)
with any section of the central extension T̃(Σ)→ T(Σ), which exists by Lemma 47.

Remark 44 applies also in this setting; in particular, HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));V

)
is a free R-module whenever V is a free R-module.
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Remark 49. In [26], Johnson defined a homomorphism t : T(Σ) → H = H1(Σ), which
was implicit in [15] and called it the Chillingworth homomorphism. Its value on a genus
k bounding pair generator τγτ

−1
δ is equal to 2kc where c is the class of γ with orientation

given by the surface representing the homology between γ and δ. Its image is 2H and so
we obtain a 2-cocycle Ω on T(Σ) with values in Z by the formula Ω(f, g) = 1

4ω(tf , tg),
where ω is the symplectic 2-cocycle on H. Under the identifications H ∼= H/Z(H) ∼=
Inn(H), this is precisely the action Ψ: M(Σ) → Aut(H) restricted to the Torelli group
(which acts onH by inner automorphisms by Proposition 28). Thus the central extension
T̃(Σ), which was defined abstractly by pulling back the central extension

1→ Z ∼= Z(H) ↪→ H� H/Z(H) ∼= Inn(H)→ 1

along the inner action Ψ|T(Σ) : T(Σ)→ Inn(H), see diagram (31), may be described more
explicitly as the central extension of the Torelli group associated to Ω. In other words,
we have T̃(Σ) = Z×T(Σ) as a set, and (k, f)(l, g) = (k+ l+ Ω(f, g), fg). Moreover, we
have a lift of the Chillingworth homomorphism

t̃ : T̃(Σ) −→ H

given by the pullback construction (31), which may be described by the formula t̃(k, f) =
(4k, tf ). This is the homomorphism denoted by Ψ̃ above.

6 Untwisting on the full mapping class group via Schrödinger

The Heisenberg group H can be realised as a group of matrices, which gives a faithful
finite dimensional representation, defined as follows:(

k, x =

g∑
i=1

piai + qibi

)
7−→

 1 p k+p·q
2

0 Ig q
0 0 1

 ,

where p = (pi) is a row vector and q = (qi) is a column vector. This matrix form is often
given as the definition of the Heisenberg group so that we may call this representation
the tautological one.

Another well-known representation, which is infinite-dimensional and unitary, is the
Schrödinger representation, which is parametrised by the Planck constant, a non-zero
real number ~. The right action on the Hilbert space L2(Rg) is given by the following
formula: [

Π~

(
k, x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = ei~

k−p·q
2 ei~p·sψ(s− q). (50)

The Schrödinger representation occupies a special place in the representation theory
of the Heisenberg group, and in this section we explain how to leverage its properties
to construct an untwisted representation on the full mapping class group M(Σ), after
passing to a central extension. For comparison, recall that, in the previous section, we
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constructed an untwisted representation of the Torelli group T(Σ) ⊆ M(Σ) associated
to any representation V of the Heisenberg group. The difference in this section is that
we focus only on the special case where V is the Schrödinger representation, but as a
consequence we are able to untwist the representation on the full mapping class group.

In §6.1 we first discuss the Schrödinger representation in more detail, as well as the
Stone-von Neumann theorem and its consequences. In §6.2 we discuss the metaplectic
group and the universal central extension of the mapping class group. We then prove
Theorems B and E in §6.3, constructing untwisted representations of the universal central
extension of the mapping class group and of the Morita subgroup (without passing to
a central extension). Finally, in §6.4 we explain how to adapt our construction to the
finite-dimensional analogues of the Schrödinger representation to prove Theorem C.

6.1 The Schrödinger representation and the Stone-von Neumann theorem.

The continuous Heisenberg group is defined similarly to the discrete Heisenberg group.
As a set it is R×H1(Σ;R) with multiplication given by (s, x).(t, y) = (s+t+ω(x, y), x+y),
where ω is the intersection form on H1(Σ;R). We denote it by HR and note that the
discrete Heisenberg group H is naturally a subgroup of HR. As explained in Appendix
B, there is a natural inclusion

Aut+(H) ↪−→ Aut+(HR),

denoted by ϕ 7→ ϕR, such that ϕR is an extension of ϕ (see (90)).
As an alternative to the explicit formula (50), the Schrödinger representation may

also be defined more abstractly as follows. First note that HR may be written as a
semi-direct product

HR = R{(0, b1), . . . , (0, bg)}nR{(1, 0), (0, a1), . . . , (0, ag)},

where a1, . . . , ag, b1, . . . , bg form a symplectic basis for H1(Σ;R). Fix a real number
~ > 0. There is a one-dimensional complex unitary representation

R{(1, 0), (0, a1), . . . , (0, ag)} −→ S1 = U(1)

defined by (t, x) 7→ e~it/2. This may then be induced to a complex unitary representation
of the whole groupHR on the complex Hilbert space L2(R{(0, b1), . . . , (0, bg)}) = L2(Rg).
This is the Schrödinger representation of HR. From now on, let us denote this represen-
tation by

W = L2(Rg) and ρW : HR −→ U(W ). (51)

We will usually not make the dependence on ~ explicit in the notation; in particular we
write ρW instead of ρW,~. The key properties of ρW that we shall need are the following.

Theorem 50 (The Stone–von Neumann theorem; [31, page 19]).
(a) The representation (51) is irreducible.
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(b) If H ′ is a complex Hilbert space and

ρ : HR −→ U(H ′)

is a unitary representation such that ρ(t, 0) = e~it/2.idH′ for all t ∈ R, then there
is another Hilbert space H ′′ and an isomorphism κ : H ′ → W ⊗H ′′ such that, for
any (t, x) ∈ HR, the following diagram commutes:

H ′ W ⊗H ′′

H ′ W ⊗H ′′.

κ

ρ(t,x) ρW (t,x)⊗idH′′

κ

Corollary 51. If ρ : HR → U(W ) is an irreducible unitary representation such that
ρ(t, 0) = e~it/2.idW for all t ∈ R, then there is a commutative diagram

HR U(W )

U(W )

ρW

ρ u.−.u−1

for some element u ∈ U(W ), which is unique up to rescaling by an element of S1.

Proof. Apply Theorem 50 and note that dim(H ′′) = 1 since ρ is irreducible. The
unitary isomorphism κ together with any choice of unitary isomorphism W ⊗ R ∼= W
give an element u as claimed. To see uniqueness up to a scalar in S1, note that any two
such elements u differ by an automorphism of the irreducible representation ρW , which
must therefore be a scalar (in C∗) multiple of the identity, by Schur’s lemma. Moreover,
since ρW is unitary, this scalar must lie in S1 ⊂ C∗.

Definition 52. Denote by PU(W ) = U(W )/S1 the projective unitary group of the
Hilbert space W . Since scalar multiples of the identity are central, this fits into a central
extension

1 S1 U(W ) PU(W ) 1. (52)

We denote by ωPU : PU(W )× PU(W )→ S1 a choice of 2-cocycle corresponding to this
central extension; in other words we write U(W ) ∼= S1 × PU(W ) with multiplication
given by (s, g)(t, h) = (s.t.ωPU (g, h), gh).

Definition 53. For an automorphism ϕ ∈ Aut(HR), Corollary 51 applied to the repre-
sentation ρ = ρW ◦ϕ tells us that there is a unique element u = T (ϕ) ∈ PU(W ) such that
ρW ◦ ϕ = T (ϕ).ρW .T (ϕ)−1. The assignment ϕ 7→ T (ϕ) defines a group homomorphism

T : Aut(HR) −→ PU(W ). (53)
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As shown in Appendix B, the subgroup Aut+(HR) ⊆ Aut(HR) splits as the semi-direct
product Sp(HR)nHom(HR,R), where HR = H1(Σ;R). Restricting (53) to the subgroup
Sp(HR) = Sp2g(R), we obtain a projective representation

R = T |Sp2g(R) : Sp2g(R) −→ PU(W ). (54)

This is the Shale-Weil projective representation of the symplectic group. (It is sometimes
also called the Segal-Shale-Weil projective representation, see for example [31, page 53].)
Pulling back the central extension (52) along the homomorphism (54), we then obtain
a central extension

1 S1 Sp2g(R) Sp2g(R) 1 (55)

and a lifted representation
R : Sp2g(R) −→ U(W ). (56)

The group Sp2g(R) is sometimes known as the Mackey obstruction group of the projective

representation (54). Since (55) is pulled back from (52) along R, we may write Sp2g(R) ∼=
S1 × Sp2g(R) with multiplication given by (s, g)(t, h) = (s.t.ωSp(g, h), gh), where

ωSp = ωPU ◦ (R×R) : Sp2g(R)× Sp2g(R) −→ PU(W )× PU(W ) −→ S1.

6.2 Metaplectic and universal extensions.

Definition 54. The fundamental group of Sp2g(R) is infinite cyclic. It therefore has a
unique connected double covering group, called the metaplectic group, which we denote
by Mp2g(R).

For an explicit construction of Mp2g(R) as an extension of Sp2g(R), see [42, §2].

Proposition 55. There is an inclusion of central extensions Mp2g(R) ↪→ Sp2g(R).

Proof. We first show that it suffices to prove the statement for all g sufficiently large;
we will then be able to assume that g > 4 in the rest of the proof, which is the stable
range for (co)homology of degree at most 2 for Sp2g(R) and M(Σg,1). For g < h there is
an inclusion map Sp2g(R) ↪→ Sp2h(R) given by extending a symplectic automorphism of
R2g by the identity on R2h−2g. We claim that the pullbacks of Mp2h(R) and of Sp2h(R)
under this inclusion are Mp2g(R) and of Sp2g(R) respectively. For Mp this follows from
the fact that the induced map π1(Sp2g(R)) ∼= Z→ Z = π1(Sp2h(R)) is an isomorphism
and the metaplectic double covering corresponds to the unique index-2 subgroup of π1.
For Sp, note that the Shale-Weil projective representations in genus g and h fit into a
commutative square as follows:

Sp2g(R) PU(L2(Rg)) U(L2(Rg))

Sp2h(R) PU(L2(Rh)) U(L2(Rh))

R

R

(57)
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The right-hand side of this diagram arises as follows. We consider L2(Rg) as the (closed)
subspace of L2(Rh) of those L2-functions that factor through Rh = Rg × Rh−g � Rg.
Any closed subspace of a Hilbert space has an orthogonal complement, so we may extend
unitary automorphisms by the identity on this complement to obtain a homomorphism
U(L2(Rg)) → U(L2(Rh)), which descends to the projective unitary groups. The right-
hand squre of (57) is a pullback square (this is true for any closed subspace of a Hilbert
space). By definition, Sp2g(R) � Sp2g(R) is the pullback along the Shale-Weil projec-
tive representation of the extension U(L2(Rg))� PU(L2(Rg)). Commutativity of (57)
then implies that the pullback of Sp2h(R) along the inclusion is Sp2g(R). Thus the ex-

istence of an embedding Mp2h(R) ↪→ Sp2h(R) will imply the existence of an embedding
Mp2g(R) ↪→ Sp2g(R) for g < h. We henceforth assume that g > 4 in this proof (this is
only needed in the last paragraph).

First, it is proven in §1.7 of [31] that the cocycle ωSp takes values in the cyclic sub-
group Z/8 ⊆ S1, so there is an embedding of central extensions Sp2g(R)(8) ↪→ Sp2g(R),

for a certain Z/8-central extension Sp2g(R)(8) of Sp2g(R). Moreover, this central exten-
sion is classified by −[τ ].8Z ∈ H2(Sp2g(R);Z/8), the reduction modulo 8 of the element
−[τ ] ∈ H2(Sp2g(R);Z) represented by the negative of the Maslov cocycle τ (see formula
1.7.7 on page 70 of [31]).

Second, it is also proven in §1.7 of [31] that there is a function s : Sp2g(R)→ Z/4 ⊆ S1

such that ωSp(g, h)2 = s(g)−1s(h)−1s(gh) (formula 1.7.8 on page 70 of [31]). It follows
that the subset of Sp2g(R)(8) of those pairs (t, g) for which t2 = s(g) is a subgroup. The
projection onto Sp2g(R) restricted to this subgroup is a double covering, and so this
subgroup must be either Sp2g(R)× Z/2 or the metaplectic group Mp2g(R).

To finish the proof, we just have to show that it cannot be Sp2g(R)× Z/2. Suppose
for a contradiction that it is. Then Sp2g(R)(8) admits a section, so it is a trivial extension
and we must have [τ ].8Z = 0 ∈ H2(Sp2g(R);Z/8). However, the pullback of [τ ] along
the projection M(Σ) → Sp2g(R), also denoted by [τ ], is 4c1, where c1 is a generator of
H2(M(Σ);Z) ∼= Z. Thus [τ ].8Z ∈ H2(M(Σ);Z/8) ∼= Z/8 is non-zero. Hence we must
have [τ ].8Z 6= 0 already in H2(Sp2g(R);Z/8). This completes the proof.

Definition 56. Recall that, if G is a perfect group, i.e. if H1(G;Z) = 0, then we have
H2(G;H2(G;Z)) ∼= Hom(H2(G;Z), H2(G;Z)) by the universal coefficient theorem, and
the H2(G;Z)-central extension of G corresponding to the identity map is the universal
central extension of G. For G = M(Σ = Σg,1), we have that G is perfect when g > 3
and we have H2(G;Z) ∼= Z when g > 4. In particular, for g > 4, let us denote by

1→ Z −→ M̃(Σ) −→M(Σ)→ 1

the universal central extension of M(Σ).
As explained in the introduction, the inclusion map M(Σg,1) ↪→ M(Σh,1) induces

isomorphisms on first and second (co)homology for h > g > 4 (see [23] or [44]), so the

pullback of M̃(Σh,1) along this inclusion is M̃(Σg,1). For any g > 1, we may therefore

define the stably universal central extension M̃(Σg,1) of M(Σg,1) to be the pullback of

M̃(Σh,1) for any h > max(g, 4).
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Definition 57. The metaplectic mapping class group M̂(Σ) is the double covering group
of the mapping class group M(Σ) pulled back from the double covering Mp2g(R) →
Sp2g(R) of the symplectic group by the metaplectic group along the map

M(Σ) −� Sp2g(Z) ↪−→ Sp2g(R).

Lemma 58. The metaplectic mapping class group M̂(Σ) is isomorphic, as a Z/2-central
extension of M(Σ), to the reduction modulo two of the stably universal central extension
of M(Σ).

Proof. First, we note that it suffices to prove this statement for all sufficiently large g:
this is because, for g < h, the pullbacks of M̃(Σh,1) and of M̂(Σh,1) along the inclusion

M(Σg,1) ↪→M(Σh,1) are M̃(Σg,1) and of M̂(Σg,1) respectively. For M̃ this is explained in

Definition 56, whereas for M̂ it follows from the fact that the pullback of Mp2h(R) along
Sp2g(R) ↪→ Sp2h(R) is Mp2g(R), which was explained during the proof of Propostiion 55.
Thus we may assume that g > 4, so that we are in the stable range for the (co)homology
of M(Σ) and Sp2g(R) in degrees at most 2.

By [8, Lemma A.1 (i) and (xiv)] and homological stability [44, Theorem 1.2], the
canonical surjection M(Σ) → Sp2g(Z) induces an isomorphism on H2(−;Z/2), and
moreover we have H2(M(Σ);Z/2) ∼= H2(Sp2g(Z);Z/2) ∼= Z/2. The metaplectic exten-
sion Mp2g(Z) → Sp2g(Z) is a non-trivial central extension, so it represents the unique

non-trivial element of H2(Sp2g(Z);Z/2). So the metaplectic mapping class group M̂(Σ)

is the unique non-trivial Z/2-central extension of M(Σ). Let us denote by M̃(Σ)(2) the

reduction modulo two of the universal central extension M̃(Σ) of M(Σ). This is a Z/2-
central extension, and it will suffice to show that it is non-trivial (since it must then

be isomorphic to M̂(Σ)). Now, by universality of M̃(Σ), there is a morphism of central

extensions M̃(Σ)→ M̂(Σ), which must factor as

M̃(Σ) −→ M̃(Σ)(2) −→ M̂(Σ),

since the target is a Z/2-central extension. If M̃(Σ)(2) were a trivial extension, it would

admit a section, and therefore so would M̂(Σ), by composition with the right-hand map

above. But M̂(Σ) is a non-trivial extension, and hence so is M̃(Σ)(2).

6.3 Constructing the unitary representations.

We now put together everything from §6.1 and §6.2 to prove Theorems B and E. From
the previous two subsections, we have the following diagram:

M(Σ) Aut+(H) Aut+(HR) PU(W )

Sp(H) nH Sp(HR) nHR

Mor(Σ) Sp(H) Sp(HR),

Φ=(s,d) T

∼= ∼=

s

R
(58)
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where unmarked arrows denote inclusions. For g > 4, by universality of M̃(Σ), there is
a morphism of central extensions

M̃(Σ) U(W )

M(Σ) PU(W )

π (59)

where the bottom horizontal arrow is the composition along the top of (58). Moreover,
this extends to all g > 1 as follows. Consider the commutative diagram2

M(Σg,1) Sp2g(R) nR2g PU(W ) U(W )

M(Σh,1) Sp2h(R) nR2h PU(W ) U(W )

(s,d) T

(s,d) T

(60)

where the right-hand square arises as explained below diagram (57). Commutativity of
the left-hand square follows from Lemma 24 and commutativity of the middle square
follows from the defining property of T (Definition 53). Let us write M(Σg,1) for the
pullback of U(W )→ PU(W ) along T ◦ (s, d), and similarly for M(Σh,1). Then M(Σg,1)
is the pullback of M(Σh,1) along the inclusion of mapping class groups. From Definition

56, we also have that M̃(Σg,1) is the pullback of M̃(Σh,1) along the inclusion.

If we now take h > 4, then M̃(Σh,1) is by definition the universal central extension, so

there is a unique morphism of central extensions M̃(Σh,1)→M(Σh,1). Pulling back along

the inclusion, we obtain a canonical morphism of central extensions M̃(Σg,1)→M(Σg,1),

even though M̃(Σg,1) is not universal for g 6 3. This gives us the desired morphism of
central extensions (59).

By Proposition 55, there are morphisms of central extensions

M̂or(Σ) Mp(HR) Sp(HR) U(W )

Mor(Σ) Sp(HR) PU(W )

π̂

R

(61)

where the two quadrilaterals are pullbacks and the top middle horizontal map is the
inclusion of Proposition 55. The composition along the bottom of (61) is the composition

along the bottom of (58), and M̂or(Σ) denotes the restriction of the metaplectic central

extension M̂(Σ) of the mapping class group to the Morita subgroup Mor(Σ) ⊆M(Σ).

Notation 59. We denote by

S : M̃(Σ) −→ U(W )

2We freely pass between the different notations Sp2g(R) = Sp(HR) and R2g = HR, and similarly for
the integral versions, depending on whether or not we wish to emphasise the genus g.
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the top horizontal map of (59), and by

Ŝ : M̂or(Σ) −→ U(W )

the composition along the top of (61).

By commutativity of (58) and the fact (Lemma 58) that the metaplectic mapping
class group is the reduction modulo two of the stably universal central extension of the
mapping class group, these two maps are related by the following commutative diagram:

M̃or(Σ) M̃(Σ) U(W )

M̂or(Σ)

Mor(Σ) M(Σ) PU(W )

π

S

π̂

Ŝ
(62)

where the right-hand square is (59), the left-hand square is a pullback and the lower
quadrilateral is the outer rectangle of (61).

Notation 60. By abuse of notation, we write

ρW : H −→ U(W )

for the restriction of the Schrödinger representation (51) to the subgroup H ⊂ HR.

A consequence of Definition 53 and the above commutative diagrams is the following.

Lemma 61. For g ∈ M̃(Σ) and h ∈ H, we have the following equation in U(W ):

S(g).ρW (h).S(g)−1 = ρW (Φ(π(g))(h)). (63)

Similarly, for g ∈ M̂or(Σ) and h ∈ H, we have the following equation in U(W ):

Ŝ(g).ρW (h).Ŝ(g)−1 = ρW (Φ(π̂(g))(h)). (64)

We now use this to construct untwisted unitary representations of the universal cen-
tral extension M̃(Σ) of M(Σ) and the metaplectic double covering M̂or(Σ) of Mor(Σ) on
the homology of configuration spaces with coefficients in the Schrödinger representation.

Let C̃n(Σ) → Cn(Σ) denote the connected covering of Cn(Σ) corresponding to the
kernel of the surjective homomorphism π1(Cn(Σ)) � H. This is a principal H-bundle.
Taking free abelian groups fibrewise, we obtain

Z[C̃n(Σ)] −→ Cn(Σ), (65)

which is a bundle of right Z[H]-modules. Via the Schrödinger representation ρW , the
Hilbert space W becomes a left Z[H]-module, and we may take a fibrewise tensor product
to obtain

Z[C̃n(Σ)]⊗Z[H] W −→ Cn(Σ), (66)
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which is a bundle of Hilbert spaces. There is a natural action of the mapping class group
M(Σ) (up to homotopy) on the base space Cn(Σ), and the induced action on π1(Cn(Σ))
preserves the kernel of the surjection π1(Cn(Σ)) � H (Proposition 14), so that there is
a well-defined twisted action of M(Σ) on the bundle (65), in the following sense. There
are homomorphisms

α : M(Σ) −→ AutZ
(
Z[C̃n(Σ)] −→ Cn(Σ)

)
Φ: M(Σ) −→ Aut(H)

such that, for any g ∈M(Σ), h ∈ H and m ∈ Z[C̃n(Σ)], we have

α(g)(m.h) = α(g)(m).Φ(g)(h). (67)

In other words, Φ measures the failure of α to be an action by fibrewise Z[H]-module
automorphisms. In the above, the target of α is the group of Z-module automorphisms
of the bundle (65), in other words the group of self-homeomorphisms of the total space
Z[C̃n(Σ)] that preserve the fibres of the projection and that are Z-linear (but not neces-
sarily Z[H]-linear) on each fibre.

Theorem 62. The stably universal central extension M̃(Σ) of M(Σ) acts on (66) by
Hilbert space bundle automorphisms

γ : M̃(Σ) −→ U
(
Z[C̃n(Σ)]⊗Z[H] W −→ Cn(Σ)

)
via the formula

γ(g)(m⊗ v) = α(π(g))(m)⊗ S(g)(v) (68)

for all g ∈ M̃(Σ), m ∈ Z[C̃n(Σ)] and v ∈W .

Proof. This is similar in spirit to the proofs of Lemmas 32 and 33. The key property
that needs to be verified is the following. Since we are taking the (fibrewise) tensor
product over Z[H], we have that m.h⊗ v = ρW (h)(v) for any h ∈ H, m ∈ Z[C̃n(Σ)] and
v ∈ W . (Note that we denote the right H-action on the fibres of Z[C̃n(Σ)] simply by
juxtaposition, whereas the leftH-action on W is the Schrödinger representation, denoted
by ρW .) We therefore have to verify that, for each fixed g ∈ M̃(Σ), the formula (68)
gives the same answer when applied to m.h ⊗ v or to m ⊗ ρW (h)(v). To see this, we
calculate:

γ(g)(m.h⊗ v) = α(π(g))(m.h)⊗ S(g)(v) by definition

= α(π(g))(m).Φ(π(g))(h)⊗ S(g)(v) by eq. (67)

= α(π(g))(m)⊗ ρW (Φ(π(g))(h))(S(g)(v)) since ⊗ is over Z[H]

= α(π(g))(m)⊗ S(g) ◦ ρW (h) ◦ S(g)−1(S(g)(v)) by eq. (63) [Lemma 61]

= α(π(g))(m)⊗ S(g)(ρW (h)(v)) simplifying

= γ(g)(m⊗ ρW (h)(v)). by definition
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This tells us that the formula (68) gives a well-defined bundle automorphism of (66)

for each fixed g ∈ M̃(Σ). It is then routine to verify that this bundle automorphism is
R-linear and unitary on fibres – i.e. it is an automorphism of bundles of Hilbert spaces
– and that γ is a group homomorphism.

Theorem 63. The metaplectic double cover M̂or(Σ) of Mor(Σ) ⊆ M(Σ) acts on (66)
by Hilbert space bundle automorphisms

γ : M̂or(Σ) −→ U
(
Z[C̃n(Σ)]⊗Z[H] W −→ Cn(Σ)

)
via the formula

γ(g)(m⊗ v) = α(π̂(g))(m)⊗ Ŝ(g)(v) (69)

for all g ∈ M̂or(Σ), m ∈ Z[C̃n(Σ)] and v ∈W .

Proof. The proof is exactly the same as above, using formula (64) of Lemma 61 instead
of formula (63).

Theorem 64 (Theorem B). The action of the mapping class group on the Borel-Moore
homology of the configuration space Cn(Σ) with coefficients in the Schrödinger repre-
sentation induces a well-defined complex unitary representation of the stably universal
central extension M̃(Σ) of the mapping class group M(Σ):

M̃(Σ) −→ U
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

))
(70)

lifting a natural projective unitary representation of M(Σ) on the same space.

Proof. This is an immediate consequence of Theorem 62. In more detail, according
to that theorem, we have a well-defined functor from the group M̃(Σ) to the category
of spaces equipped with bundles of Hilbert spaces. Moreover, elements of the mapping
class group fix the boundary of Σ pointwise, so the action of the mapping class group
on Cn(Σ) preserves the subspace Cn(Σ, ∂−(Σ)). Thus we in fact have a functor from

M̃(Σ) to the category of pairs of spaces equipped with bundles of Hilbert spaces. On
the other hand, relative twisted Borel-Moore homology HBM

n (−) is a functor from the
category of pairs of spaces equipped with bundles of Hilbert spaces (and bundle maps
whose underlying map of spaces is proper) to the category of Hilbert spaces. Composing

these two functors, we obtain the desired unitary representation of M̃(Σ).
This automatically descends to a projective unitary representation on M(Σ) since it

sends the kernel of the central extension M̃(Σ) → M(Σ) into the centre of the unitary
group, which is the kernel of the projection onto the projective unitary group.

Theorem 65. Restricting to the Morita subgroup of the mapping class group, its action
on the Borel-Moore homology of the configuration space Cn(Σ) with coefficients in the
Schrödinger representation induces a well-defined complex unitary representation of its
metaplectic double cover:

M̂or(Σ) −→ U
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

))
. (71)
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Moreover, (71) is the reduction modulo two of the restriction of (70), in the sense that
the following diagram commutes:

M̃or(Σ) M̃(Σ) U
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

))

M̂or(Σ)

mod 2

(70)

(71)

(72)

Proof. The first part is an immediate consequence of Theorem 63. The relation between
(70) and (71) follows from the commutative diagram (62).

To complete the proof of Theorem E, we prove:

Lemma 66. The metaplectic Z/2-central extension M̂or(Σ)→ Mor(Σ) is trivial, i.e. it
is isomorphic to the product Mor(Σ)× Z/2.

Proof. We first note that it suffices to prove this statement for all sufficiently large g.
This is because the inclusion of mapping class groups M(Σg,1) ↪→M(Σh,1) restricts to an
inclusion of Morita subgroups Mor(Σg,1) ↪→ Mor(Σh,1) (Corollary 25), and the pullback

of M̂or(Σh,1) along this inclusion is M̂or(Σg,1), for any g < h. This last fact follows from
the fact that the pullback of Mp2h(R) along Sp2g(R) ↪→ Sp2h(R) is Mp2g(R), which was
explained during the proof of Propostiion 55. We now assume that g > 4 for the rest of
the proof.

Recall from the proof of Proposition 55 that there is an embedding of central exten-
sions Mp2g(R) ↪→ Sp2g(R)(8). Pulling back along the projection M(Σ) → Sp2g(R), we

get an embedding of central extensions M̂(Σ) ↪→ M(Σ)(8), where M(Σ)(8) is classified
by −[τ ].8Z ∈ H2(M(Σ);Z/8) ∼= Z/8. Now, H2(M(Σ);Z) ∼= Z, generated by the first
Chern class c1, and we have [τ ] = 4c1. The intersection cocycle c : M(Σ)×M(Σ)→ Z of
Morita [34] is given by c(f, g) = d(f−1) · d(g), where d : M(Σ) → H is Morita’s crossed
homomorphism, and we have [c] = 12c1 in H2(M(Σ);Z). Thus, in particular, we have
3[τ ] = [c]. Since Mor(Σ) = ker(d), Morita’s cocycle c vanishes on Mor(Σ), and so after
restricting to the Morita subgroup we have 3[τ ] = [c] = 0 ∈ H2(Mor(Σ);Z). Reducing
modulo 8 we therefore also have 3[τ ].8Z = 0 ∈ H2(Mor(Σ);Z/8). But this cohomology
group is a Z/8-module, and 3 is invertible modulo 8, so we may divide by 3 and deduce
that [τ ].8Z = 0 ∈ H2(Mor(Σ);Z/8). Hence the restriction Mor(Σ)(8) of M(Σ)(8) to the

Morita subgroup is a trivial extension. From the embedding M̂or(Σ) ↪→ Mor(Σ)(8), it

follows that M̂or(Σ) is also a trivial extension.

Remark 67. The embedding M̂or(Σ) ↪→ Mor(Σ)(8) is essential to the above proof. The

extension M̂or(Σ) is classified by c1.2Z ∈ H2(Mor(Σ);Z/2), by Lemma 58. The vanishing
of Morita’s cocycle c on Mor(Σ) implies that we have 12c1 = [c] = 0 ∈ H2(Mor(Σ);Z),
but this only implies the tautology that 12c1.2Z = 0 ∈ H2(Mor(Σ);Z/2) after reduction
modulo two, from which we cannot deduce that c1.2Z = 0.
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Theorem 68 (Theorem E). The action of the Morita subgroup of the mapping class
group on the Borel-Moore homology of the configuration space Cn(Σ) with coefficients in
the Schrödinger representation induces a well-defined complex unitary representation

Mor(Σ) −→ U
(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

))
(73)

that lifts the natural projective unitary representation of Mor(Σ) on this Hilbert space.

Proof. Let us abbreviate Vn = HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));W ). We first note that the

homomorphism (71) must send the kernel of the central extension to the centre of U(Vn),
and so it descends to

Mor(Σ) −→ PU(Vn).

This is the natural projective action of Mor(Σ). To lift it to a linear action, we compose

(71) with any section of the central extension M̂or(Σ)→ Mor(Σ), which exists by Lemma
66.

Remark 69. We are not forced to take Borel-Moore homology, or relative homology,
in our constructions. The core of the construction is to obtain an action of (a subgroup
or an extension of) the mapping class group M(Σ) on Cn(Σ) equipped with a certain
local system. Once we have this, we may apply any (twisted) homology theory we like,
possibly relative to a subspace of Cn(Σ) that is invariant under the action of M(Σ), such
as ∂−Cn(Σ) = Cn(Σ, ∂−(Σ)) or ∂Cn(Σ) = Cn(Σ, ∂Σ). In particular, we may simply take
ordinary (twisted) homology, in which case the right-hand side of diagram (72) becomes
U(Hn(Cn(Σ);W )). We have chosen to take Borel-Moore (twisted) homology relative to
the subspace ∂−Cn(Σ) in Theorems 64 and 68, since this homology group admits an
easily-described basis, as shown in §2.

6.4 Finite dimensional Schrödinger representations.

For an integer N > 2, the finite-dimensional Schrödinger representation is an action of
the discrete Heisenberg group H on the Hilbert space WN = L2((Z/N)g), which may be
defined as follows:[

$N

(
k, x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = eiπ

k−p·q
N ei

2π
N
p·sψ(s− q). (74)

Note that this matches the generic formula with ~ = 2π
N . It may also be constructed by

composing the natural quotient

H = Zg n Zg+1 −� (Z/N)g n
(
Z/2N × (Z/N)g

)
with the representation of the right-hand group induced from the one-dimensional rep-
resentation Z/2N × (Z/N)g � Z/2N ↪→ S1, where the second map is t 7→ exp

(
πit
N

)
.

We may adapt the above construction using WN in place of W , when N is even, using
the analogue of the Stone-von Neumann theorem for WN proven in [21, Theorem 2.4]
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(see also [22, Theorem 3.2] and [20, Theorem 2.6]). As before, we obtain from this a
(now finite-dimensional) Shale-Weil projective representation of the symplectic group
which lifts to a linear representation on the metaplectic group. Using this to untwist the
action on the (stably) universal central extension of the mapping class group, we obtain:

Theorem 70 (Theorem C). The action of the mapping class group on the Borel-Moore
homology of the configuration space Cn(Σ) with coefficients in WN induces a well-defined

complex unitary representation of the stably universal central extension M̃(Σ) of the
mapping class group M(Σ) on the

(
2g+n−1

n

)
Ng-dimensional complex Hilbert space

VN,n = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));WN

)
, (75)

lifting a natural projective unitary representation M(Σ)→ PU(VN,n).

As described in [19], the Shale-Weil representation may be realised geometrically
by theta functions, and it may also be interpreted and extended as a U(1)-TQFT.
An alternative exposition may be found in [18]; see for example the statement for the
resolution of the projective ambiguity in Chapter 3, Theorem 4.1.

7 Relation to the Moriyama and Magnus representations

In this section we study the kernels of the representations that we have constructed, and
prove Proposition F. The proof will use:

• a theorem of Moriyama [36], which identifies each J(i) with the kernel of a certain
homological representation of M(Σ);

• a theorem of Suzuki [41], which identifies the Magnus kernel with the kernel of a
certain twisted homological representation of M(Σ) (a homological interpretation
of the Magnus representation, which was originally defined via Fox calculus);

together with a study of the connections between our representations and those of
Moriyama and Suzuki.

7.1 The Moriyama representation.

Moriyama [36] studied the action of the mapping class group M(Σ) on the homology
group HBM

n (Fn(Σ′);Z) with trivial coefficients, where Σ′ denotes Σ minus a point on its
boundary and Fn(−) denotes the ordered configuration space. On the other hand, our
construction (39) (Theorem 41) may be re-interpreted as a twisted representation

M(Σ) −→ Auttw
Z[H]

(
HBM
n (Cn(Σ′);Z[H])

)
. (76)

We pause to explain this re-interpretation. We must first of all explain the twisted auto-
morphism group on the right-hand side of (76). Let us write Mod• for the category whose
objects are pairs (R,M) of a ring R and a right R-module M , and whose morphisms
are pairs (θ : R → R′, ϕ : M → M ′) such that ϕ(mr) = ϕ(m)θ(r). The automorphism
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group of (R,M) in Mod• is written Auttw
R (M); note that this is generally larger than

the automorphism group AutR(M) of M in ModR.
If we set V = Z[H], then (39) is a functor of the form Ac(M(Σ) y H) → ModZ[H].

But any functor of the form Ac(G y K) → ModZ[K] corresponds to a homomorphism
G→ Auttw

Z[K](M), where the Z[K]-module M is the image of the object id ∈ Ac(Gy K).

(Compare Remark 39, which describes the reverse procedure.) Thus (39) corresponds
to a homomorphism

M(Σ) −→ Auttw
Z[H]

(
HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));Z[H]

))
.

Finally, removing a point (equivalently, removing the closed interval ∂−(Σ)) from the
boundary of Σ corresponds, on Borel-Moore homology of configuration spaces Cn(Σ), to
taking homology relative to the subspace Cn(Σ, ∂−(Σ)) of configurations having at least
one point in the interval. ThusHBM

n (Cn(Σ), Cn(Σ, ∂−(Σ));Z[H]) andHBM
n (Cn(Σ′);Z[H])

are isomorphic as Z[H]-modules, and we obtain (76).
When n = 2, Moriyama’s representation is a quotient of ours: there is a quotient of

groups H� Z/2 = S2 given by sending σ 7→ σ and ai, bi 7→ 1, which induces a quotient
of twisted M(Σ)-representations

HBM
2 (C2(Σ′);Z[H]) −� HBM

2 (C2(Σ′);Z[S2]) ∼= HBM
2 (F2(Σ′);Z), (77)

where the isomorphism on the right-hand side follows from Shapiro’s lemma. (Shapiro’s
lemma holds for arbitrary coverings with ordinary homology, and for finite coverings with
Borel-Moore homology.) It follows that the kernel of our representation is a subgroup
of the kernel of HBM

2 (F2(Σ′);Z), which was proven by Moriyama to be the Johnson
kernel J(2). In §8 we will compute the action of a genus-1 separating twist Tγ ∈ J(2)
on HBM

2 (C2(Σ′);Z[H]), and in particular show that it is (very) non-trivial; see Theorem
79. Thus the kernel of HBM

2 (C2(Σ′);Z[H]) is strictly smaller than J(2).
For any n > 2, we have a quotient of twisted M(Σ)-representations

HBM
n (Cn(Σ′);Z[H]) −� HBM

n (Cn(Σ′);Z).

By Shapiro’s lemma and the universal coefficient theorem (together with the fact that
the integral Borel-Moore homology of Cn(Σ′) is free abelian), there are isomorphisms

HBM
n (Fn(Σ′);Z) ∼= HBM

n (Cn(Σ′);Z[Sn]) ∼= HBM
n (Cn(Σ′);Z)⊗ Z[Sn].

Thus the kernel of the representation HBM
n (Cn(Σ′);Z) is the same as the kernel of the

representation HBM
n (Fn(Σ′);Z), since M(Σ) acts trivially on Sn. (This is also shown in

[37].) The latter kernel was proven by Moriyama to be the nth term J(n) of the Johnson
filtration.

Summarising this discussion, we have:

Proposition 71. The kernel of the twisted M(Σ)-representation (76) is contained in the
nth term J(n) of the Johnson filtration. When n = 2 it is moreover a proper subgroup
of the Johnson kernel J(2).
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7.2 The Magnus representation.

The kernel of our representation (76) is also contained in the kernel of the Magnus
representation. This may be seen as follows. The M(Σ)-equivariant surjection H � H
induces a quotient of twisted M(Σ)-representations

HBM
n (Cn(Σ′);Z[H]) −� HBM

n (Cn(Σ′);Z[H]). (78)

By a similar argument as above, the kernel of the representation HBM
n (Cn(Σ′);Z[H]) is

the same as the kernel of the representation HBM
n (Fn(Σ′);Z[H]). Moreover, it is shown

in [37] that there is an inclusion of M(Σ)-representations[
HBM

1 (F1(Σ′);Z[H])
]⊗n

↪−→ HBM
n (Fn(Σ′);Z[H]), (79)

where HBM
1 (F1(Σ′);Z[H]) is the Magnus representation of M(Σ). (This uses [41], which

gives a homological interpretation of the Magnus representation, which was originally
defined via Fox calculus.) The maps of representations (78) and (79) imply that

ker
[
HBM
n (Cn(Σ′);Z[H])

]
⊆ ker

[
HBM
n (Cn(Σ′);Z[H])

]
= ker

[
HBM
n (Fn(Σ′);Z[H])

]
⊆ ker(Magnus).

Combining this with Proposition 71 and writing Mag(Σ) for the kernel of the Magnus
representation, we have:

Proposition 72. The kernel of (76) is contained in J(n) ∩Mag(Σ).

It is known [40, §6] that the kernel of the Magnus representation does not contain
J(n) for any n > 1, so this implies that the kernel of (76) is strictly contained in J(n).

7.3 Other related representations.

Recently, the representations of M(Σ) on the ordinary (rather than Borel-Moore) ho-
mology of the configuration space Fn(Σ) has been studied3 by Bianchi, Miller and Wil-
son [10]: they prove that, for each n and i, the kernel of the M(Σ)-representation
Hi(Fn(Σ);Z) contains J(i), and is in general strictly larger than J(i). They conjecture
that the kernel of the M(Σ)-representation on the total homology H∗(Fn(Σ);Z) is equal
to the subgroup generated by J(n) and the Dehn twist around the boundary.

The M(Σ)-representation Hi(Cn(Σ);F) for certain field coefficients F has been com-
pletely computed. For F = F2 it has been computed in [9, Theorem 3.2] and is symplectic,
i.e. it restricts to the trivial action on the Torelli group T(Σ) = J(1). For F = Q it has
been computed in [39, Theorem 1.4] and is not symplectic, but it restricts to the trivial
action on the Johnson kernel J(2).

3This is equivalent to studying the homology of Fn(Σ′) since the inclusion Fn(Σ′) ↪→ Fn(Σ) is a
homotopy equivalence. On the other hand, for Borel-Moore homology, this would not be equivalent,
since the inclusion is not a proper homotopy equivalence.
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8 Computations for n = 2

In this section we will do some computations in the case n = 2, when V is the regular
representation Z[H] of the Heisenberg group H. The main goal is to obtain in this case
an explicit formula for the action of a Dehn twist along a genus 1 separating curve.
When the surface has genus 1 this is displayed in Figure 9; in general, the formula is
given by Theorem 79. One may compare these calculations to the calculations of An and
Ko [1, page 274], although they consider representations of surface braid groups whereas
we consider representations of mapping class groups.

We will start with the case where the surface itself has genus 1, where we first compute
the action of the Dehn twists Ta, Tb, along the standard essential curves a, b. Since Ta and
Tb act non-trivially on the local system Z[H], they do not act by automorphisms, but give
isomorphisms in the category of spaces with local systems, which, after taking homology
with local coefficients, give isomorphisms in the category of Z[H]-modules. We refer to
[17, Chapter 5] for functoriality results concerning homology with local coefficients. The
upshot is a twisted action of the full mapping class group M(Σ). As described in §5.1,
a twisted action (over a ring R) of a group G is a functor Ac(G y X)→ ModR, where
Ac(G y X) is the action groupoid associated to an action of G on some set X. In the
present setting, we have G = M(Σ), X = H and R = Z[H], so the twisted representation
is of the form

Ac(M(Σ) y H) −→ ModZ[H]. (80)

We briefly recall from §5.2 some of the relevant details of the construction of this
twisted representation. Let f ∈M(Σ) and let fH be its action on the Heisenberg group.
Then the Heisenberg homology HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H) is defined from the regular
covering space C̃n(Σ) associated with the quotient φ : Bn(Σ)� H. As explained in §5.2,
at the level of homology there is a twisted functoriality and, in particular, associated
with f , we get a right Z[H]-linear isomorphism

Cn(f)∗ : HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)f−1

H
−→ HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H) .

Our choice for twisting on the source with f−1
H rather than on the target with fH will

slightly simplify the writing of the matrix. Note also that when working with coefficients
in a left Z[H]-representation V the twisting on the right by f−1

H will correspond to
twisting the action on V by fH. More generally, for any τ ∈ Aut(H), we have a shifted
isomorphism

(Cn(f)∗)τ : HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)f−1

H ◦τ
−→ HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));H)τ .

In terms of the functor (80) on the action groupoid, the above map (Cn(f)∗)τ is the image
of the morphism f : τ−1 ◦ fH → τ−1. If f , g are two mapping classes, the composition
formula (functoriality of (80)) states the following:

Cn(g ◦ f)∗ = Cn(g)∗ ◦ (Cn(f)∗)g−1
H

.

We will need to compute compositions in specific bases. Note that a basis B for a right
Z[H]-module M is also a basis for the twisted module Mτ , τ ∈ Aut(H).
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Figure 6: The closed curves a, b and the arcs α, β, α′, β′.

Lemma 73. Let M,M ′ be free right Z[H]-modules with fixed bases B, B′ and let τ ∈
Aut(H). If a Z[H]-linear map F : M →M ′ has matrix Mat(F ) in the bases B, B′, then
the matrix of the shifted Z[H]-linear map Fτ : Mτ →M ′τ is τ−1(Mat(F )).

The action of τ−1 on the matrix is given by its action on each individual coefficient.
Proof. We note that the maps F and Fτ are equal as maps of Z-modules. Let B =
(ej)j∈J , B′ = (fi)i∈I , Mat(F ) = (mi,j)i∈I,j∈J . Then for coefficients hj ∈ H, j ∈ J , we
have

Fτ

(∑
j

ej ·τ hj
)

= F

(∑
j

ejτ(hj)

)
=
∑
i,j

fimijτ(hj)

=
∑
i,j

fi ·τ τ−1(mij)hj ,

which gives the stated result.

8.1 Genus one

Here we consider the genus 1 case with n = 2 configuration points. Let a, b be simple
closed curves representing the symplectic basis of H1(Σ) previously denoted (a1, b1). We
will use the same notation a, b for the curves, their homology classes and their lifts in
H which were previously ã, b̃. The corresponding Dehn twists are denoted by Ta, Tb.
The homology HBM

2 (C2(Σ), C2(Σ, ∂−(Σ));H) is a free module of rank 3 over Z[H]. A
basis was described in Theorem 11. Here we replace γ1, γ2 by α, β depicted in Figure
6, and the basis is denoted by w(α) = E(2,0), w(β) = E(0,2), v(α, β) = E(1,1). In more
detail, w(α) is represented by the cycle in the 2-point configuration space given by the
subspace where both points lie on the arc α. Similarly, w(β) is given by the subspace
where both points lie on β and v(α, β) is given by the subspace where exactly one point
lies on each of these arcs.
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Figure 7: Tethers.

In fact, we have to be even more careful to specify these elements precisely, since the
preceding description only determines them up to the action of the deck transformation
group H, because we have just described cycles in the configuration space C2(Σ), whereas
cycles for the Heisenberg-twisted homology are cycles in the covering space C̃2(Σ). To
specify such a lifting of the cycles in C2(Σ) that we have described, we first choose once
and for all a base configuration c0 contained in ∂Σ and a lift of c0 to C̃2(Σ). A lift of a
cycle to C̃2(Σ) is therefore determined by a choice of a path (called a “tether”) in C2(Σ)
from a point in the cycle to c0. For w(α), w(β) and v(α, β), we choose these tethers as
illustrated in the top row of Figure 7.

By Poincaré duality, and the fact that C2(Σ) is a connected, oriented 4-manifold with
boundary C2(Σ, ∂Σ) = {c ∈ C2(Σ) | c ∩ ∂Σ 6= ∅}, we have a non-degenerate pairing

〈−,−〉 : HBM
2 (C2(Σ), ∂−;Z[H])⊗H2(C2(Σ), ∂+;Z[H]) −→ Z[H], (81)

where ∂± is an abbreviation of C2(Σ, ∂±(Σ)), and we note that the boundary ∂C2(Σ) =
C2(Σ, ∂Σ) decomposes as ∂+ ∪ ∂−, corresponding to the decomposition of the boundary
of the surface ∂Σ = ∂+(Σ)∪∂−(Σ). (Formally, it is a manifold triad.) There are natural
elements of H2(C2(Σ), ∂+;Z[H]) that are dual to w(α), w(β) and v(α, β) with respect
to this pairing, which we denote by w(α′), w(β′) and v(α′, β′) respectively. The element
v(α′, β′) is defined exactly as above: it is given by the subspace of 2-point configurations
where one point lies on each of the arcs α′ and β′ of Figure 6. The element w(α′) is defined
as follows: first replace the arc α′ with two parallel copies α′1 and α′2 (as in the bottom-
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left of Figure 7), and then w(α′) is given by the subspace of 2-point configurations where
one point lies on each of α′1 and α′2. The element w(β′) is defined exactly analogously.
Again, in order to specify these elements precisely, we have to choose tethers, which are
illustrated in the bottom row of Figure 7.

A practical description of the pairing (81) is as follows. Let x = w(γ) or v(γ, δ) for
disjoint arcs γ, δ with endpoints on ∂−(Σ), and choose a tether for x, namely a path
tx from c0 to a point in x. Similarly, let y = w(ε) or v(ε, ζ) for disjoint arcs ε, ζ with
endpoints on ∂+(Σ), and choose a tether ty for y. Suppose that the arcs γ t δ intersect
the arcs ε t ζ transversely. Then the pairing (81) is given by the formula〈

[x, tx], [y, ty]
〉

=
∑

p={p1,p2}∈x∩y

sgn(p1).sgn(p2).sgn(`p).φ(`p), (82)

where `p ∈ B2(Σ) is the loop in C2(Σ) given by concatenating:
• the tether tx from c0 to a point in x,
• a path in x to the intersection point p,
• a path in y from p to the endpoint of the tether ty,
• the reverse of the tether ty back to c0,

sgn(`p) ∈ {+1,−1} is the sign of the induced permutation in S2 and sgn(pi) ∈ {+1,−1}
is given by the sign convention in Figure 8. (In fact, there should be an extra global −1
sign on the right-hand side of (82), which we have suppressed for simplicity. Thus (82)
is really a formula for −(81). This global sign ambiguity does not affect our calculations,
since all we need is a non-degenerate pairing of the form (81), and any non-degenerate
pairing multiplied by a unit is again a non-degenerate pairing. This extra global sign also
appears in Bigelow’s formula [12, page 475, ten lines above Lemma 2.1]. See Appendix
C for further explanations of these signs.)

With this description of (81), it is easy to verify that the matrix 〈[w(α)], [w(α′)]〉 〈[w(α)], [w(β′)]〉 〈[w(α)], [v(α′, β′)]〉
〈[w(β)], [w(α′)]〉 〈[w(β)], [w(β′)]〉 〈[w(β)], [v(α′, β′)]〉
〈[v(α, β)], [w(α′)]〉 〈[v(α, β)], [w(β′)]〉 〈[v(α, β)], [v(α′, β′)]〉

 ∈ Mat3,3(Z[H])

is the identity; this is the precise sense in which these two 3-tuples of elements are “dual”
to each other.4

Theorem 74. With respect to the ordered basis (w(α), w(β), v(α, β)):
(a) The matrix for the isomorphism

Ta = C2(Ta)∗ : HBM
2 (C2(Σ), ∂−;Z[H])(T−1

a )H
−→ HBM

2 (C2(Σ), ∂−;Z[H])

is

Ma =

 1 u2a−2b2 (u−1 − 1)a−1b
0 1 0
0 −a−1b 1

 .

4Since we know that w(α), w(β) and v(α, β) form a basis for the Z[H]-module HBM
2 (C2(Σ), ∂−;Z[H]),

it follows that the elements w(α′), w(β′) and v(α′, β′) are Z[H]-linearly independent in the Z[H]-module
H2(C2(Σ), ∂+;Z[H]), although they do not necessarily span it.
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Figure 8: Sign convention for intersections between cycles representing elements of the
homology groups HBM

n (Cn(Σ), ∂−;Z[H]) and Hn(Cn(Σ), ∂+;Z[H]).

(b) The matrix for the isomorphism

Tb = C2(Tb)∗ : HBM
2 (C2(Σ), ∂−;Z[H])(T−1

b )H
−→ HBM

2 (C2(Σ), ∂−;Z[H])

is

Mb =

 u−2b2 0 0
−u−1 1 1− u−1

−u−1b 0 b

 .

Proof. Let us simplify the notation for the basis and the corresponding dual homology
classes by

(e1, e2, e3) = (w(α), w(β), v(α, β)) (e′1, e
′
2, e
′
3) = (w(α′), w(β′), v(α′, β′)).

Using the non-degenerate pairing (81) and elementary linear algebra, we have that

C2(f)∗(ei) =

3∑
j=1

ej .〈C2(f)∗(ei), e
′
j〉

for any f ∈M(Σ). Computing the matrices Ma and Mb therefore consists in computing
〈Ta(ei), e′j〉 and 〈Tb(ei), e′j〉 for i, j ∈ {1, 2, 3}. We will explain how to compute two of
these 18 elements of Z[H], the remaining 16 being left as exercises for the reader. In
each case the idea is the same: apply the Dehn twist to the explicit cycle (described
above) representing the homology class ei, and then use the formula (82) to compute
the pairing.
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We begin by computing 〈Ta(e2), e′1〉 = 〈Ta(w(β)), w(α′)〉, the top-middle entry of Ma.

〈Ta(w(β)), w(α′)〉 = 〈w(Ta(β)), w(α′)〉

=

= (−1).(−1).(+1).φ




= φ(a−1bσ−1a−1bσ)

= a−1ba−1b

= u2a−2b2.

We next calculate 〈Ta(e3), e′1〉 = 〈Ta(v(α, β)), w(α′)〉, the top-right entry of Ma. This
is slightly more complicated, since in this case there are two intersection points in the
configuration space C2(Σ), so we obtain a Heisenberg polynomial (i.e. element of Z[H])
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with two terms.

〈Ta(v(α, β)), w(α′)〉 = 〈v(α, Ta(β)), w(α′)〉

= +

= (−1).(+1).(−1).φ





+ (+1).(−1).(+1).φ




= φ(σ−1a−1b)− φ(a−1b)

= u−1a−1b− a−1b

= (u−1 − 1)a−1b.

The other 16 entries of the matrices Ma and Mb may be computed analogously.

Notation 75. To shorten the notation in the following, we will use the abbreviation

A := HBM
2 (C2(Σ), C2(Σ, ∂−(Σ));H) = HBM

2 (C2(Σ), ∂−;Z[H]).

Remark 76 (Verifying the braid relation.). Recall that M(Σ1,1) is generated by Ta and
Tb subject to the single relation TaTbTa = TbTaTb. It must therefore be the case that the
isomorphism

A(TaTbTa)−1
H

A(TaTb)
−1
H

A(Ta)−1
H

A
(Ta)

(TaTb)
−1
H

(Tb)(Ta)−1
H Ta
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is equal to the isomorphism

A(TbTaTb)
−1
H

A(TbTa)−1
H

A(Tb)
−1
H

A
(Tb)(TbTa)−1

H
(Ta)

(Tb)
−1
H Tb

in other words, using Lemma 73, we must have the following equality of matrices:

Ma.(Ta)H(Mb).(TaTb)H(Ma) = Mb.(Tb)H(Ma).(TbTa)H(Mb), (83)

where Ma and Mb are as in Theorem 74 and the automorphisms (Ta)H, (Tb)H ∈ Aut(H)
are extended linearly to automorphisms of Z[H] and thus to automorphisms of matrices
over Z[H]. Indeed, one may calculate that both sides of (83) are equal to 0 u2a−2b2 0

−u−1 1 + (u−3 − u−2)a−1 − u−5a−2 (1− u−1)(1 + u−3a−1)
0 −a−1b− u−1a−2b u−1a−1b

 . (84)

Remark 77 (The Dehn twist around the boundary.). In a similar way, we may compute
the matrix M∂ for the action T∂ of the Dehn twist T∂ around the boundary of Σ1,1. We
note that T∂ lies in the Chillingworth subgroup of M(Σ1,1), so its action on H is trivial
and the action T∂ is an automorphism

T∂ : A −→ A.

However, to compute its matrix M∂ , it is convenient to decompose T∂ into isomorphisms
as follows. Write g = TaTbTa = TbTaTb, so that T∂ = g4. Then T∂ decomposes as

A = Ag−4
H

Ag−3
H

Ag−2
H

Ag−1
H

A
(Tg)

g−3
H

(Tg)
g−2
H

(Tg)
g−1
H Tg

where Tg denotes the action of g, given by the matrix (84) above. The matrix M∂ may
therefore be obtained by multiplying together four copies of (84), shifted by the actions
of id, gH, g2

H and g3
H respectively. This may be implemented in Sage to show that M∂

is equal to the matrix displayed in Figure 9. More details of these Sage calculations are
given in Appendix D.

One may verify explicitly by hand that, if we set a = b = u2 = 1 in the matrix
M∂ = (Figure 9), it simplifies to the identity matrix. This is expected, since applying
this specialisation to our representation recovers the second Moriyama representation
(as discussed in §7; see in particular the quotient (77) of M(Σ)-representations), whose
kernel is the Johnson kernel J(2) by [36], which contains T∂ .

8.2 Higher genus

For arbitrary genus g > 1, we view the surface Σ = Σg,1 as the quotient of the punctured
rectangle depicted in Figure 10, where the 2g holes are identified in pairs by reflection.
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

u−8b2+u−4a−2−ua−2b2+(u−1−u−2)a−2b+

(u−3−u−4)a−1b2+(u−4−u−5)a−1b

(u2+1−2u−1+u−2+u−4)a−2b2−ua−2b4+

(−u2+u+u−1−u−2)a−2b3−u−3a−2+

(−1+u−1+u−3−u−4)a−2b

(−1+2u−1−u−2−u−4+u−5)a−2b+

(u−1)a−2b3+(u2−u−u−1+2u−2−u−3)a−2b2+

(−u−3+u−4)a−1b+(u−4−u−5)a−1b3+

(−u−2+u−3+u−5−u−6)a−1b2+

(−u−3+u−4)a−2

−u−1−u−3+2u−4−u−5−u−7+u−2a2+
(u−1−u−2−u−4+u−5)a+u−6a−2+

(u−3−u−4−u−6+u−7)a−1

1+u−2−u−3+u−6+u−6a−2b2−u−1b2+
(u−3−u−4)a−1b2+(−1+u−1+u−3−u−4)b+

(u−2−2u−3+u−4+u−6−u−7)a−1b−u−5a−2+

(−u−2+u−3+u−5−u−6)a−1+(u−5−u−6)a−2b

(−u−6+u−7)a−2b+

(u−1−u−2−u−4+2u−5−u−6)b+

(−u−3+2u−4−u−5−u−7+u−8)a−1b+

1−u−1+u−2−3u−3+2u−4+u−6−u−7+
(−u−2+2u−3−u−4+u−5−2u−6+u−7)a−1

+(u−2−u−3)ab+(−1+u−1+u−3−u−4)a+

(−u−5+u−6)a−2

−u−6ab+(−u−3+u−4−u−7)b−u−4+

(u−1−u−4+u−5)a−1b+u−2a−2b+

(−u−3+u−6)a−1+u−5a−2

(−1−u−2+2u−3−u−6)a−1b+u−1a−1b3+

u−2a−2b3+(1−u−1−u−3+u−4)a−1b2+

(u−1−u−2+u−5)a−2b2+(−u−1+u−4−u−5)a−2b+

(u−2−u−5)a−1−u−4a−2

u−3+(u−2−u−3−u−5+u−6)a−1+

(−u−1+u−2−u−5+u−6)a−1b2+

(−u−2+u−3)a−2b2+

(−1+u−1+2u−3−3u−4+u−7)a−1b+

(−u−1+u−2−u−5+u−6)a−2b+(−u−4+u−5)b2+

(u−2−u−3−u−5+u−6)b+(−u−4+u−5)a−2



Figure 9: The action of the Dehn twist around the boundary of Σ1,1.

The arcs αi, βi for i ∈ {1, . . . , g} form a symplectic basis for the first homology of Σ
relative to the lower edge of the rectangle. Following Theorem 11, a basis for the free
Z[H]-module HBM

2 (C2(Σ), C2(Σ, ∂−(Σ));H) is given by the homology classes represented
by the 2-cycles

• w(ε) for ε ∈ {α1, β1, α2, β2, . . . , αg, βg},
• v(δ, ε) for δ, ε ∈ {α1, β1, α2, β2, . . . , αg, βg} with δ < ε

where we use the ordering α1 < β1 < α2 < · · · < αg < βg. Here w(ε) denotes the
subspace of configurations where both points lie on ε and v(δ, ε) denotes the subspace of
configurations where one point lies on each of δ and ε. As in the genus 1 setting, we have
to be more careful to specify these elements precisely; this is done by choosing, for each
of the 2-cycles listed above, a path (called a “tether”) in C2(Σ) from a point in the cycle
to c0, the base configuration, which is contained in the bottom edge of the rectangle.
Note that the space of configurations of two points in the bottom edge of the rectangle
is contractible, so it is equivalent to choose a path in C2(Σ) from a point in the cycle to
any configuration contained in the bottom edge of the rectangle.

For cycles of the form w(ε), we may choose tethers exactly as in the genus 1 setting:
see the top-left and top-middle of Figure 7. For cycles of the form v(αi, βi), we may also
choose tethers exactly as in the genus 1 setting: see the top-right of Figure 7. For other
cycles of the form v(δ, ε), we choose tethers as illustrated in Figure 11.

Exactly as in the genus 1 setting, there is a non-degenerate pairing (81) defined via
Poincaré duality for the 4-manifold-with-boundary C2(Σ). Associated to the collection
of arcs α′i, β

′
i illustrated in Figure 10 there are elements of H2(C2(Σ), ∂+;H):

• w(ε) for ε ∈ {α′1, β′1, α′2, β′2, . . . , α′g, β′g},
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Figure 10: The arcs αi, βi, α
′
i, β
′
i and the closed genus-one-separating curve γ.

Figure 11: More tethers.

• v(δ, ε) for δ, ε ∈ {α′1, β′1, α′2, β′2, . . . , α′g, β′g} with δ < ε
where we use the ordering α′1 < β′1 < α′2 < · · · < α′g < β′g. Here, w(ε) is the subspace of
configurations where one point lies on each of ε+ and ε−, where ε+, ε− are two parallel,
disjoint copies of ε. As above, we specify these elements precisely by choosing tethers
(paths in C2(Σ) from a point on the cycle to a configurations contained in the bottom
edge of the rectangle). For elements of the form w(ε) or v(α′i, β

′
i), we choose these exactly

as in the genus 1 setting; see the bottom row of Figure 7. For other elements of the form
v(δ, ε), we choose them as illustrated in Figure 12.

Remark 78. These choices of tethers may seem a little arbitrary, and indeed they are;
however, any different choice would have the effect simply of changing the chosen basis
for the Heisenberg homology HBM

2 (C2(Σ), ∂−;H) by rescaling each basis vector by a unit
of Z[H]. This would have the effect of conjugating the matrices that we calculate by an
invertible diagonal matrix.
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Figure 12: Even more tethers.

The geometric formula (82) for the non-degenerate pairing 〈− , −〉 holds exactly as
in the genus 1 setting, and one may easily verify using this formula that the bases

B = {w(ε), v(δ, ε) | δ < ε ∈ {α1, . . . , βg}}
B′ = {w(ε), v(δ, ε) | δ < ε ∈ {α′1, . . . , β′g}}

(85)

for HBM
2 (C2(Σ), ∂−;H) and H2(C2(Σ), ∂+;H) respectively are dual with respect to this

pairing. Choose a total ordering of B as follows:
• w(α1), w(β1), v(α1, β1),
• v(α1, ε) for ε = α2, β2, . . . , αg, βg,
• v(β1, ε) for ε = α2, β2, . . . , αg, βg,
• followed by all other basis elements in any order,

and similarly for B′. Denote by γ the genus-1 separating curve in Σ pictured in Figure
10.

Theorem 79. With respect to the ordered bases (85), the matrix for the automorphism
Tγ = C2(Tγ)∗ of HBM

2 (C2(Σ), ∂−;H) is given in block form as

Mγ =


Λ 0 0 0
0 p.I r.I 0
0 q.I s.I 0
0 0 0 I

 , (86)

where Λ is the 3× 3 matrix depicted in Figure 9, the middle two columns and rows each
have width/height 2g − 2 and the Heisenberg polynomials p, q, r, s ∈ Z[H] are:

• p = −a−1b+ u−2b+ u−2a−1,
• q = 1− a+ u−2 − u−2a−1,
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• r = a−1(−b+ b2 + u−2 − u−2b),
• s = 1− b+ u−2 + u−2a−1b− u−2a−1,

where we are abbreviating the elements a1, b1 ∈ H as a, b respectively.

Proof. As in the proof of Theorem 74, this reduces to computing 〈Tγ(ei), e
′
j〉 as ei and

e′j run through the ordered bases (85).
First note that the basis elements come in three types: those entirely supported in

the genus-1 subsurface containing γ (the first three), those supported partially in this
subsurface and partially in the complementary genus-(g−1) subsurface (the next 4g−4)
and those supported entirely outside of the genus-1 subsurface (the rest). The Dehn twist
Tγ does not mix these two complementary subsurfaces, so Mγ is a block matrix with
respect to this partition.

The top-left 3 × 3 matrix involves only the basis elements w(α1), w(β1), v(α1, β1)
and their duals, and so the calculation of this submatrix is identical to the calculation
in genus 1, which is given by the matrix in Figure 9.

The bottom-right submatrix involves only basis elements supported outside of the
genus-1 subsurface containing γ, so the effect of Tγ is the identity on these elements.

It remains to calculate the middle (4g − 4)× (4g − 4) submatrix, which records the
effect of Tγ on v(α1, ε) and v(β1, ε) for ε ∈ {α2, . . . , βg}. Since ε ∩ γ = ∅, we must have

Tγ(v(α1, ε)) = pε.v(α1, ε) + qε.v(β1, ε)

Tγ(v(β1, ε)) = rε.v(α1, ε) + sε.v(β1, ε)

for some pε, qε, rε, sε ∈ Z[H]. Precisely, we have

pε =
〈
v(Tγ(α1), ε), v(α′1, ε

′)
〉

qε =
〈
v(Tγ(α1), ε), v(β′1, ε

′)
〉

rε =
〈
v(Tγ(β1), ε), v(α′1, ε

′)
〉

sε =
〈
v(Tγ(β1), ε), v(β′1, ε

′)
〉
,

where ε′ denotes the dual of ε, and we have again used the fact that ε ∩ γ = ∅ to
rewrite Tγ(v(α1, ε)) = v(Tγ(α1), Tγ(ε)) = v(Tγ(α1), ε) and similarly for Tγ(v(α1, ε)).
From these formulas and (82) it is clear that pε, qε, rε, sε do not in fact depend on ε.
Indeed, when computing these values of the non-degenerate pairing, we may ignore one
of the two configuration points (the one that starts on the left in the base configuration
and which travels via the arcs ε and ε′), since it contributes neither to the signs nor to
the loops `p in the formula (82). We will compute sε = s, leaving the computation of
the other three polynomials as exercises for the reader. In the following computations,
as mentioned above, we ignore one of the two configuration points, since it does not
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contribute anything non-trivial to the formula (82).

s = 〈v(Tγ(β1), ε), v(β′1, ε
′)〉

= (5 intersection points: x1, . . . , x5)

= φ




− φ





+ φ




+ φ





− φ




= φ( )− φ(σ−1b−1aba−1bab−1a−1bσ) + φ(σ−1ab−1a−1bσ)

+ φ(σ−1a−1bab−1a−1bσ)− φ(σ−1b−1a−1bσ)

= 1− b+ u−2 + u−2a−1b− u−2a−1.
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...

Figure 13: A model for Σ

Appendix A: a deformation retraction through Lipschitz embeddings

Here we will prove Lemma 13. We have a model for (Σ,Γ) by gluing 2g bands bj =
[−1, 1]× [−l, l], 1 6 j 6 2g and 4g + 1 squares cν = [0, 1]× [0, 1], 0 6 j 6 4g according
to the identifications depicted in Figure 13. We obtain a deformation retraction h which
is defined on each band by the formula ht(u, v) = ((1 − t)u, v) and on each square by
ht(u, v) = (u, (1− t)v). It remains to show that for an appropriate metric d the map ht,
0 6 t < 1, is a 1-Lipschitz embedding. On each band and square we use the standard
Euclidean metric. Then for points x, y ∈ Σ, the distance d(x, y) is defined as the shortest
length of a path from x to y. It is convenient to assume that l is big enough so that
no shortest path can go across a handle. Then d is a metric which is flat outside 4g
boundary points where the curvature is concentrated. Then we have that ht, 0 6 t < 1, is
a 1-Lipshitz embedding in each band or square from which we deduce that ht, 0 6 t < 1,
is globally a 1-Lipschitz embedding.

Appendix B: automorphisms of the Heisenberg group

In this appendix we prove Lemma 16. Denote H∗ = Hom(H,Z). There is an obvious
action of Aut(H) = GL(H) (and hence of Sp(H) ⊆ Aut(H)) on H∗ by pre-composition,
and we consider the semi-direct product Sp(H)nH∗ with respect to this action. There
is a well-defined homomorphism

Sp(H) nH∗ −→ Aut+(H) (87)

given by sending (g : H → H, f : H → Z) to the automorphism of H = Z×H that sends
(1, 0) to itself and (0, x) to (f(x), g(x)) for each x ∈ H. This fits into a commutative
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diagram of the form

1 1

H∗ AutH(H)

Sp(H) nH∗ Aut+(H)

Sp(H) Aut(H)

1

(87)

incl

whose columns are exact, and where AutH(H) denotes the automorphisms of H that
send u = (1, 0) to itself and induce the identity on H = H/Z(H). It is easy to verify by
hand that (1) the top horizontal map H∗ → AutH(H) is bijective and (2) the image of
the vertical map Aut+(H)→ Aut(H) is contained in Sp(H). These two facts imply that,
if we replace the bottom-right group Aut(H) with Sp(H), the diagram above becomes
a map of short exact sequences

1 1

H∗ AutH(H)

Sp(H) nH∗ Aut+(H)

Sp(H) Sp(H)

1 1

∼=

(87)

id

and so the five-lemma implies that (87) is an isomorphism. We record this as:

Lemma 80. The homomorphism (87) is an isomorphism.

We note that the inverse of (87) may be described as follows. By commutativity of
the bottom square of the diagram above, the homomorphism

pr1 ◦ (87)−1 : Aut+(H) −→ Sp(H) nH∗ � Sp(H)

coincides with the natural projection Aut+(H)→ Sp(H). The function (crossed homo-
morphism)

pr2 ◦ (87)−1 : Aut+(H) −→ Sp(H) nH∗ � H∗
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is given by sending an automorphism ϕ to pr1(ϕ(0,−)) : H ↪→ H → H � Z. Putting
these together, we recover precisely the description of the homomorphism Aut+(H) →
Sp(H)nH∗ given just before the statement of Lemma 16. Thus Lemma 80 is equivalent
to Lemma 16 and we have (22) = (87)−1.

Remark 81. The arguments in this appendix apply more generally to any 2-nilpotent
group. Suppose that G is a 2-nilpotent group, specifically the central extension

1→ Z −→ G −→ H → 1

of an abelian group H associated to a given 2-cocycle ω : H ×H → Z. Then there is a
natural isomorphism

Υ: Autω(H) n Hom(H,Z) ∼= AutZ(G), (88)

where AutZ(G) ⊆ Aut(G) is the group of automorphisms ofG that restrict to the identity
on Z, and Autω(H) ⊆ Aut(H) is the group of automorphisms of H that preserve the
2-cocycle ω. The isomorphism (88) is given explicitly by

Υ(g, f)(z, h) = (z + f(h), g(h)), (89)

where we are writing G = Z ×H with its product twisted by ω. This specialises to (87)
when H = H1(Σ), Z = Z and ω is the intersection form on H1(Σ).

Remark 82. We note that the isomorphism (88) is really a homomorphism, and not an
anti-homomorphism, as one may check using the explicit formula (89) and the definition
of the semi-direct product. If we had written the semi-direct product on the left-hand
side of (88) in the more usual way as o (swapping the two factors), then this formula
would not have defined a homomorphism. This is because in general, for a group Γ acting
on another group Λ, the swap map (g, f) 7→ (f, g) is not an isomorphism ΓnΛ ∼= ΛoΓ,
but an isomorphism ΓnΛ ∼= (ΛopoΓop)op. For this reason, we have consistently written
all semi-direct products as n throughout the paper.

In particular, we may consider the continuous Heisenberg group HR (used in §6): this
is the central extension of HR := H1(Σ;R) ∼= R2g by R corresponding to the intersection
form ω on HR. By the discussion above, we have natural isomorphisms

Aut+(H) ∼= Sp(H) n Hom(H,Z)

Aut+(HR) ∼= Sp(HR) n Hom(HR,R),

where, as in the discrete case, Aut+(HR) denotes the subgroup of Aut(HR) of automor-
phisms that act by the identity on the central copy of R. There are natural inclusions
Sp(H) ↪→ Sp(HR) and Hom(H,Z) ↪→ Hom(HR,R) given by tensoring −⊗Z R (they are
injective since R is torsion-free, hence flat over Z). Together with the natural isomor-
phisms above, they induce a natural inclusion

Aut+(H) ↪−→ Aut+(HR), ϕ 7→ ϕR (90)

having the property that, for any ϕ ∈ Aut+(H), the automorphism ϕR : HR → HR sends
H ⊂ HR onto itself and restricts to ϕ : H → H.
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Figure 14: Choices of tangent vectors from the computation of the sign of the intersection
of x and y at p = {p1, p2} ∈ C2(Σ).

Appendix C: signs in the intersection pairing formula

Here we explain the signs appearing in the formula (82) for the intersection pairing on
the homology of 2-point configuration spaces, including the extra global −1 sign that
was suppressed in (82) (see the comment in the paragraph below the formula).

We take the viewpoint that an orientation o of a d-dimensional smooth manifold M
is given by a consistent choice of vector o(p) ∈ ΛdTpM for all p ∈ M . We either choose
a metric on the bundle ΛdTM and require o(p) to be a unit vector with respect to this
metric, or we consider o(p) up to rescaling by positive real numbers.

Let us fix an orientation oΣ for the surface Σ. This determines an orientation oC2(Σ)

of the configuration space C2(Σ) by setting

oC2(Σ)({p1, p2}) = oΣ(p1) ∧ oΣ(p2).

Recall that we have 2-dimensional submanifolds x and y of C2(Σ) that intersect trans-
versely, and let p = {p1, p2} be a point of x ∩ y. Let v, w be the tangent vectors at p1

and let v′, w′ be the tangent vectors at p2 illustrated in Figure 14. We have

v ∧ w = sgn(p1).oΣ(p1)

v′ ∧ w′ = sgn(p2).oΣ(p2),

where sgn(pi) is the sign of the intersection of the arcs in Σ underlying x and y at pi.
Similarly, we have

ox(p) ∧ oy(p) = sgn(p).oC2(Σ)(p),

where sgn(p) is the sign that we are trying to compute: the sign of the intersection of x
and y in the configuration space. The orientations of x and y depend on the tethers tx,
ty that have been chosen. Precisely, we have

ox(p) =

{
v ∧ v′ (∗)
v′ ∧ v (†)

}
oy(p) =

{
w ∧ w′ (∗)
w′ ∧ w (†)

}
,

where the possibilities ((∗), (∗)) or ((†), (†)) occur if sgn(`p) = +1 and the possibilities
((∗), (†)) or ((†), (∗)) occur if sgn(`p) = −1. We therefore have

ox(p) ∧ oy(p) = sgn(`p).(v ∧ v′) ∧ (w ∧ w′).
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Putting this together with the formulas above, we obtain

(v ∧ w) ∧ (v′ ∧ w′) = sgn(p1).sgn(p2).oΣ(p1) ∧ oΣ(p2)

= sgn(p1).sgn(p2).oC2(Σ)(p)

= sgn(p1).sgn(p2).sgn(p).ox(p) ∧ oy(p)
= sgn(p1).sgn(p2).sgn(p).sgn(`p).(v ∧ v′) ∧ (w ∧ w′)
= −sgn(p1).sgn(p2).sgn(p).sgn(`p).(v ∧ w) ∧ (v′ ∧ w′),

and hence we have
sgn(p) = −sgn(p1).sgn(p2).sgn(`p).

Appendix D: Sage computations

Here we give the worksheet of the Sage computations used in the calculation of the
matrix M∂ displayed in Figure 9 (cf. Remark 77 on page 56).
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In [1]: load("HeisLatex_.sage") #available on demand 


In [2]: # R is the center of Heisenberg group ring


R.<u>= LaurentPolynomialRing(ZZ,1)


In [3]: # H is Heisenberg group ring


H = Heis(base=R, category=Rings())


In [32]: a=H(dict({(1,0):1}))   #generator (0,a)


b=H(dict({(0,1):1}))


am=H(dict({(-1,0):1})) #inverse generators


bm=H(dict({(0,-1):1}))


In [33]: a*b-u^2*b*a #check relation


In [34]: # a->a , b -> a^-1b (T_a action on H)


def Ha(h:HeisEl):


   d0=h.d


   h1=H()


   for k in d0:


       i=k[0]


       j=k[1]


       h1+= H({(i-j,j):d0[k]*u^(j*(j-1))})   


   return h1


def MHa(M): # same on matrices


   M1=matrix(H,3)


   for i in range(3):


       for j in range(3):


           M1[i,j]=Ha(M[i,j])


   return M1


In [35]: def Hb(h:HeisEl): #T_b action on H


   d0=h.d


   h1=H()


   for k in d0:


       i=k[0]


       j=k[1]


       h1+= H({(i,i+j):d0[k]*u^(-i*(i-1))})   


   return h1


def MHb(M): # same on matrices


   M1=matrix(H,3)


   for i in range(3):


       for j in range(3):


           M1[i,j]=Hb(M[i,j])


   return M1


In [36]: def Hab(h):       #other actions


   return Ha(Hb(h))


def Hba(h):


   return Hb(Ha(h))


def Haba(h):


   return Ha(Hba(h))


def Hbab(h):


   return Hb(Hab(h))


def Hs(h):


   return(Haba(Haba(h)))


In [37]: def MHab(M):    #same on matrices


   return MHa(MHb(M))


def MHba(M):


   return MHb(MHa(M))


def MHaba(M):


   return MHa(MHba(M))


def MHbab(M):


   return MHb(MHab(M))


def MHs(M):


   return(MHaba(MHaba(M)))


In [38]: Ma=matrix([[H(1),u^2*am^(2)*b^2,(H(u^(-1))-H(1))*am*b],[H(0),H(1),H(0)],[H(0),H(-1)*am*b,H(1)]])


In [39]: %display latex


Ma #Ta action


In [40]: Mb=matrix([[H(u^(-2))*b^2,H(0),H(0)],[H(-u^(-1)),H(1),H(1-u^(-1))],[H(-u^(-1))*b,H(0),b]])


In [41]: Mb #Tb action


In [42]: MHa(Mb) # Ta shifted action of Tb


In [43]: MHb(Ma) #Tb shifted action of Ta


In [44]: MHab(Ma) #TaTb shifted action of Ta


Out[33]: 0

Out[39]: ⎛

⎝
⎜

1

0

0

u2a−2b2

1

−a−1b1

(−1 + )u−1 a−1b1

0

1

⎞

⎠
⎟

Out[41]: ⎛

⎝
⎜

u−2b2

−u−1

−u−1b1

0

1

0

0

1 − u−1

b1

⎞

⎠
⎟

Out[42]: ⎛

⎝
⎜

a−2b2

−u−1

−u−1a−1b1

0

1

0
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1 − u−1

a−1b1

⎞

⎠
⎟

Out[43]: ⎛

⎝
⎜

1
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u−4a−2

1

−u−2a−1

(− + )u−2 u−3 a−1

0
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⎠
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1

0
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In [45]: MHba(Mb) #TbTa shifted action of Tb


In [46]: X=Ma*MHa(Mb)*MHab(Ma) #action of TaTbTa


X


In [47]: Y=Mb*MHb(Ma)*MHba(Mb) #action of TbTaTb


Y


In [48]: X-Y #check braid relation TaTbTa=TbTaTb


In [49]: Z=X*MHaba(X) #action of (TaTbTa)^2


In [50]: Z[:,0] # first colomn


In [51]: Z[:,1]


In [52]: Z[:,2]


In [53]: ZZ=Z*MHs(Z) #action of Tc=(TaTbTa)^4


In [54]: ZZ[:,0]


In [55]: ZZ[:,1]


In [56]: ZZ[:,2]


In [57]: ZZ*Ma-Ma*MHa(ZZ) # check that Tc is central


In [58]: ZZ*Mb-Mb*MHb(ZZ)
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